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Abstract

This paper introduces a novel generative model
for discrete distributions based on continuous nor-
malizing flows on the submanifold of factorizing
discrete measures. Integration of the flow gradually
assigns categories and avoids issues of discretizing
the latent continuous model like rounding, sam-
ple truncation etc. General non-factorizing discrete
distributions capable of representing complex sta-
tistical dependencies of structured discrete data,
can be approximated by embedding the subman-
ifold into a the meta-simplex of all joint discrete
distributions and data-driven averaging. Efficient
training of the generative model is demonstrated by
matching the flow of geodesics of factorizing dis-
crete distributions. Various experiments underline
the approach’s broad applicability.

1 INTRODUCTION

Generative models Kobyzev et al. [2021], Papamakarios
et al. [2021] define an active area of research. They include,
in particular, deep diffusion models Song et al. [2021], Yang
et al. [2023]. The simple diffusion processes involved, how-
ever, lead to long training times and specialized algorithmic
methods are required for efficient sampling.

As an alternative, the recent paper Lipman et al. [2023] in-
troduces the flow matching approach to generative modeling
which enables more stable and efficient training. This is
achieved by taking as loss function the expected distance
of a time-variant parametrized vector field to the vector
field which generates the time-variant marginal distribution
pt, t ∈ [0, 1], that connects a reference measure p0 and the
target distribution p1. The key insight which makes the ap-
proach efficient is that the loss function gradients can be
computed, by averaging over the sample set, the distance to
the generating vector fields conditioned on individual data

samples. The concrete form of the time-variant conditional
measures generated in this way determine a whole class of
flow-matching approaches and the form of the local approx-
imation of the data distribution. Even in the simplest case of
basic Gaussian measures with time-variant parameters, the
approach subsumes diffusion paths and hence provides an
attractive alternative to current practice of diffusion-based
approaches. More sophisticated paths by optimal Gaussian
measure transport McCann [1997], Takatsu [2010] can be
easily adopted and further improve the method.

Our approach is closely related to the recent extension of the
flow matching approach to Riemannian manifolds Chen and
Lipman [2023]. It provides a generative model for discrete
or categorial data, which defines another active subarea of
research (cf. Section 2). This seamless combination of a
Riemannian geometric structure for the respresentation and
generation of discrete data, and the flow-matching approach
for efficient and stable training, appears to be new in the lit-
erature. Our approach utilizes, in particular, the embedding
approach of categorial distributions recently studied by Boll
et al. [2023, 2024].

Specifically, as illustrated for a toy problem by Figure 1, we
design and learn a dynamical system whose flow evolves
on the submanifold of all factorizing discrete distributions.
This submanifold is embedded into the meta-simplex of
all (possible) discrete distributions of n discrete random
variables, each of which takes c values. Since the extreme
points of the embedded submanifold and the ambient sim-
plex coincide, pushing forward a basic reference measure –
as illustrated by Figure 2 – to (possibly a subset of) these
extreme points, entails via the flow-matching training ob-
jective a convex combination of the extrem point measures,
each of which represents a hard category assignment to each
discrete random variable. As a result, we implicitly have
a ‘universality property’ in that (theoretically) any discrete
joint distribution can be represented and be sampled from
using our approach.
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Figure 1: The tetrahedron represents in local coordinates all
joint distributions w ∈ ∆4 (with 4 = cn) of n = 2 variables
taking c = 2 values. The embedded surface is the assign-
ment manifold W of all factorizing distributions of 2 binary
variables. The blue point represents a target joint distribution
p(y1, y2) =

1
100 (45, 5, 5, 45)

⊤ with strong statistical depen-
dency, i.e. it is not close to the any factorizing distribution.
This paper introduces a generative model for representing
arbitrary discrete distributions as convex combination of
hard category assignment distributions corresponding to the
extreme points. Figure 2 illustrates the representation of the
target distribution (blue point).

In summary, this paper contributes

• a novel continuous normalizing flow model of discrete
joint distributions;

• a geometric Riemannian representation of time-variant
push-forward measures which is efficient and stable
learnable based on matching geodesic flows;

• a novel approach to data-driven approximations of gen-
eral discrete distributions by submanifold embedding
and averaging.

Section 2 reports related work on generative models on man-
ifolds and for discrete distributions, respectively. Section 3
specifies the dynamical systems tailored to discrete distribu-
tions and the embedding of the submanifold of factorizing
distributions in the meta-simplex. Our approach is intro-
duced in Section 4. Experimental results are discussed in
Section 5. We conclude in Section 7 and provide supplemen-
tal material in the appendix.

2 RELATED WORK

We distinguish two areas of related research:

• generative models on manifolds, and

• generative models of discrete distributions.

Figure 2: Visualization of 1000 samples from the target
distribution (blue point; cf. Figure 1). Each sample corre-
sponds to an integral curve T (W (t)) (6) of the assignment
flow ODE (1) on the embedded submanifold of factorizing
distributions W ⊆ S4, which can be computed efficiently
by geometric integration. The entire assignment flow pushes
forward a standard Gaussian reference distribution on the
tangent space at the barycenter (red point), which is lifted
to the submanifold and transported to the extreme points.
The resulting ‘weights’ represent the blue target distribution
as convex combination. The parametrized vector field of
the generative model is trained in a stable and efficient way
by matching e-geodesic curves on the assignment manifold,
which represent the training data and can be computed in
closed form.

2.1 GENERATIVE MODELS ON MANIFOLDS

Our work is inspired by and closely related to Chen and
Lipman [2023]. This work is based on the flow-matching
approach to generative modeling introduced in the recent
paper Lipman et al. [2023], which enables more stable
and efficient training of continuous normalizing flows and
hence provides an attractive alternative to maximum like-
lihood learning. The paper Chen and Lipman [2023] ex-
tends the flow-matching approach to Riemannian manifolds
and distinguishes two scenarios: simple manifolds on which
geodesics can be computed in closed form, and general
(non-simple) manifolds where approximate distances like
the truncated diffusion distance are proposed instead.

Our approach adds the statistical (assignment) manifold
W with the corresponding Fisher-Rao geometry to the list
of simple manifolds in Chen and Lipman [2023]. In ad-
dition, we propose a generative model for approximating
joint distributions of discrete random variables using the
flow-matching approach, which essentially rests upon the
embedding T (W) ⊂ SN of the assignment manifold W
in the meta-simplex SN (Figures 1 and 3). To the best of
our knowledge, our geometric approach to combining these
three aspects appears to be novel in the literature.
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Since our approach utilizes flow-matching of e-geodesics
(i.e. autoparallel curves with respect to the e-connection;
cf. Amari and Nagaoka [2000]), which can be computed in
closed form, it shares the advantages of generative models
for distributions on other simple manifolds proposed so far,
over related work using alternative methods Chen and Lip-
man [2023]: significantly more stable and efficient training
in comparison to using the maximum likelihood criterion
(e.g., Lou et al. [2020], Mathieu and Nickel [2020]), better
scalability to high dimensions than, e.g., Ben-Hamu et al.
[2022], Rozen et al. [2021], and no need for incorporating
a costly simulation subroutine and approximation into the
training procedure, as required in connection with exten-
sions of diffusion-based generative models to manifolds
(e.g., Huang et al. [2022], De Bortoli et al. [2022]).

2.2 GENERATIVE MODELS OF DISCRETE
DISTRIBUTIONS

Discrete distribution means a probability distribution of
a discrete random variable, i.e. a random variable taking
values in a finite set, or the joint distribution of several
discrete random variables. Machine learning scenarios with
discrete distributions have been studied from various angles
in the literature.

The papers Maddison et al. [2017], Jang et al. [2017] study
discrete random variables encoded by unit vectors, that are
mollified via the softmax function, and sampling via the
argmax operation perturbed by Gumbel-distributed noise
(cf. Hazan and Jaakkola [2012]), both mainly motivated by
applying the reparametrization trick and large-scale stochas-
tic gradient via automatic differentiation, in connection with
discrete random variables. A variant based on Gaussian dis-
tributions has been proposed by Potapczynski et al. [2020].
This differs from our objective to represent and sample from
complex discrete joint distributions, which would be diffi-
cult to achieve using parametric densities on the probability
simplex, like the Gumbel, Dirichlet and other distributions
Aitchinson [1982].

Conversely, Tran et al. [2019] apply a discrete change-of-
variable formula and ensure invertibility of the proposed
Discrete Flow architecture by modulo arithmetic of integers.
This creates a highly non-smooth scenario which affects
gradient-based training and apparently is not fully under-
stood.

Accordingly, the authors of Lippe and Gavves [2021] crit-
icize the limited performance of discrete transformations
Tran et al. [2019], Hoogeboom et al. [2019] regarding vo-
cabulary size and gradient approximation. Likewise, de-
quantization techniques as proposed by Dinh et al. [2017],
Ho et al. [2019] are limited regarding the representation of
multidimensional statistical relations between categories.
The normalizing flow approach proposed by Lippe and

Gavves [2021] uses a factorizing decoder, i.e. the catego-
rial variables are conditionally independent given the latent
variables. Authors concede that this tends to limit model
expressivity.

Chen et al Chen et al. [2022] propose a generative model
for discrete distributions p(y) = p(y1, . . . , yn) of n cate-
gorial variables, each taking ci values, based on continu-
ous normalizing flows and quantisation of the generated
probability distribution p(x), x ∈ RnD (cf., e.g., Graf and
Luschgy [2000],Gruber [2004]) whose geometry in terms
of the Voronoi partition can be learned for each variable.
An additional benefit of this approach is that for each cell
a distribution q(x|yi) is learned which enables dequanti-
zation y 7→ x after learning the discrete distribution p(y).
The dimension D of the continuous latent domain ranges
from 2 . . . 6 in the paper and the best choice of D and the
numbers of Voronoi cells Ni, i ∈ [n], depending on the
discrete distribution parameters ci, i ∈ [n] and n, appar-
ently is open. The ability to choose a small dimension D
independent of the number of categories, is an advantage.
On the other hand, the representation of Voronoi cells by
intersecting rays and linear inequality constraints is numer-
ically subtle regarding automatic differentiation and train-
ing, and degenerate Voronoi cells may arise depending on
the initial anchor points and the support of the underlying
continuous distribution. Furthermore, maximum likelihood
learning is employed which is less stable and efficient than
the flow-matching approach Chen et al. [2023] (cf. Section
4.1 below).

The paper Hoogeboom et al. [2021] introduces Argmax
Flows and Multinomial Diffusion which are closer in spirit
to our approach in that learnable descision regions in a
flat space are used for categorization. On the other hand,
the ELBO variational bound Blei et al. [2017] is applied
together with Gaussian or Gumbel-thresholding for the
argmax layer, which contrasts with our approach which
uses a geodesic flow-matching objective function and learn-
able smooth regions on the tangent bundle defining category
assignment.

Finally, we point out the very recent paper Chen et al. [2023]
which uses a real-valued representation of bit-encoded dis-
crete or categorial data, in connection with diffusion-based
generative models. Impressive empirical results are reported.
We refer again, however, to the superiority of the flow-
matching approach relative to diffusion models Lipman
et al. [2023],Chen and Lipman [2023].

In view of the two paragraphs above, we point out that
the generative model introduced in this paper seamlessly
combines a flow-matching approach with a Riemannian ge-
ometric structure tailored to represent discrete distributions
and to generate discrete and categorial data.
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3 BACKGROUND

3.1 ASSIGNMENT FLOWS

Denote by Sc := ∆̊c = {p ∈ Rc : pj > 0, ⟨1c, p⟩ =
1, ∀j ∈ [c]} the relative interior of the probability simplex
∆c, i.e. the set of discrete probability distributions of cat-
egorial random variables y which take values in the set
[c] = {1, 2, . . . , c}, c ∈ N. Sc equipped with the Fisher-
Rao metric gw(u, v) = ⟨u,Diag(w)−1v⟩, u, v ∈ T0, is a
Riemannian manifold, with the trivial tangent bundle Sc×T0
and tangent space T0 = {v ∈ Rc : ⟨1c, v⟩ = 0}.

The assignment manifold W = Sc × · · · × Sc ⊂ Rn×c≥ (n
factors) is a corresponding product manifold with trivial tan-
gent bundle W ×T0 and tangent space T0 = T0 × · · · × T0,
equipped with the product Fisher-Rao metric gW (U, V ) =∑
i∈[n] gWi

(Ui, Vi), W ∈ W, U, V ∈ T0. Each point
W = (W1, . . . ,Wn)

⊤ ∈ W represents a factorizing joint
distribution of n discrete random variables y1, . . . , yn, each
taking values in [c].

Assignment flows denote a class of dynamical systems of
the form

Ẇ (t) = RW (t)

[
Fθ

(
W (t)

)]
, W (0) =W0 ∈ W (1)

where the generating vector field on the right-hand side is
given by a parametrized function Fθ : W → Rn×c with
parameters θ, and RW is a T0-valued linear map(

RW [Fθ(W )]
)
i
= RWi

Fθ;i(W ), i ∈ [n] (2a)

= Diag(Wi)Fθ;i(W )−
〈
Wi, Fθ;i(W )

〉
, (2b)

which represents the inverse metric tensor in the coordi-
nates of the ambient Euclidean space Rn×c. Given the initial
point W0 in general position, which encodes structured data
in concrete applications, limt→∞W (t) = (ej1 , . . . , ejn)

⊤

converges to an extreme point of the closure of W , which
corresponds to an hard label assignment for each discrete
variable yi = ji ∈ [c], i ∈ [n] in terms of the canonical unit
vectors eji ∈ Rc. Assignment flows have been introduced in
Åström et al. [2017] with basic properties (well-posedness,
convergence) established in Zern et al. [2022] and a wide
range of efficient geometric integration schemes for com-
puting W (t) Zeilmann et al. [2020].

The exponential map with respect to the e-connection reads

Expp(v) =
p · e

v
p

⟨p, e p
v ⟩
, p ∈ Sc, v ∈ T0, (3)

where multiplication · and the exponential function apply
componentwise. We set

expp : T0 → Sc, p ∈ Sc, (4a)

expp := Expp ◦Rp. (4b)

Both mappings (3) and (4) extend factor-wise to the prod-
uct space T0 = T0W analogous to (2). For more details
on information geometry, we refer to Amari and Nagaoka
[2000].

3.2 META-SIMPLEX FLOW EMBEDDING

The assignment manifold W only represents factorizing
distributions which forms a very specific subset of all joint
distributions of n discrete random variables y1, . . . , yn, each
taking [c] values. Indeed, a general distribution is specified
by the combinatorially large number of N := cn values
p(y1, . . . , yn) of the joint probability distribution, whereas
a point W ∈ W on the assignment manifold merely has
n · c coordinates. In order to approximate general discrete
distributions which typically are supposed to represent com-
plex statistical dependencies of discrete structured output,
we introduce the corresponding meta-simplex of all discrete
distributions

SN =
{
p ∈ RN> : ⟨1N , p⟩ = 1, ∀j ∈ [N ]

}
. (5)

For example, the joint distribution of two binary variables
(n = c = 2) is a point p(y1, y2) ∈ S4. By contrast, if
p(y1, y2) = W ∈ W ⊂ S4 is a distribution on the as-
signment manifold, then W = (( w1

1−w1
) , ( w2

1−w2
))⊤. The

corresponding two-dimensional submanifold W embedded
in S4 is depicted by Figure 1. From the viewpoint of mathe-
matics, such embedded sets are known as Segre varieties at
the intersection of algebraic geometry and statistics Lin et al.
[2009], Drton et al. [2009]. The corresponding embedding
map reads

T : W → T ⊂ SN , T (W )α :=
∏
i∈[n]

Wi,αi
, (6)

with the multi-index notation α = (α1, . . . , αn) ∈ [c]n.
For the above example with n = c = 2, one has T (W ) =
(w1w2, w1(1−w2), (1−w1)w2, (1−w1)(1−w2))

⊤. The
mapping (6) has been introduced and studied recently in
Boll et al. [2023, 2024]. Each multi-index α indexes ex-
actly one extreme point eα ∈ {0, 1}N (unit vector, discrete
Dirac measure) of the meta-simplex SN , and we identify
accordingly α with this discrete extreme measure, which
represents a hard category or label assignment to each dis-
crete random variable y1, . . . , yn. We therefore call α also
label configuration.

The components of a point p ∈ SN in (5) are indexed by α
as well, analogous to the embedded vectors (6). We use the
short-hand

p(α) := p(yα1 , . . . , yαn) = pα, α ∈ [c]n. (7)

The following proposition highlights the specific role of the
embedded assignment manifold T (W) ⊂ SN .
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Figure 3: Overview of the approach: The standard Gaus-
sian reference measure N (0, I) is pushed forward by the
exponential map expW from the flat tangent product space
T0 to the assignment manifold W , and further to the meta-
simplex SN (5) by geometrically integrating the assignment
flow (1). Since the assignment flow converges to the extreme
points of W which agree with the extreme points of SN ,
an approximation p̃(α) of a general discrete target measure
p(α) underlying given data can be approximated by match-
ing the flow of e-geodesics (corresponding to data samples)
and convex combination in terms of embedded factorized
distributions T (W ), W ∈ W and empirical expectation.

Proposition 1([Boll et al., 2024, Prop. 3.2]) For every W ∈
W , the distribution T (W ) ∈ SN has maximum entropy

H
(
T (W )

)
= −

∑
α∈[c]n

T (W )α log T (W )α (8)

among all p ∈ SN subject to the marginal constraint Mp =
W , where the marginalization map M : RN → Rn×c is
given by

(Mp)i,j :=
∑

α∈[c]n : αi=j

pα, ∀(i, j) ∈ [n]× [c]. (9)

Any general distribution p ∈ SN \W which is not in T (W)
has non-maximal entropy and hence is more informative
by encoding additional statistical dependencies Cover and
Thomas [2006]. Our approach for generating general distri-
butions p ∈ SN , by combining simple distributionsW ∈ W
via the embedding (6) and assignment flows (1), is intro-
duced next.

4 APPROACH

Every joint distribution p ∈ SN can be written as convex
combination of extreme point measures

p(α) =
( ∑
β∈[c]n

pβeβ
)
α
= Eβ∼p[T (Meβ)]α, (10)

where the right-hand side denotes the expectation of the
argument with respect to p. We will employ flow-matching,

which approximates the data distribution by a mixture of
simple conditional distributions q(α|β)

p(α) ≈
∫
q(α|β)p(β)dβ = Eβ∼p[q(α|β)] =: p̃(α).

(11)
Comparing (11) and (10) motivates the Ansatz

q(α|β) := EW∼νβ [T (W )α] ≈ T (Meβ)α, (12)

where the latter approximation holds for a simple distribu-
tion νβ on W concentrated close to the extreme point Meβ
on W , which corresponds (cf. Eq. (9)) to the extreme point
eβ ∈ Sn. The distribution q(α|β) defined by (12) is simple,
because the right-hand side merely involves a factorizing
distributionW ∈ W on the embedded assignment manifold,
the embedding map T (6) and averaging.

Figure 3, center and top row, illustrates this part of the
approach.

4.1 RIEMANNIAN FLOW MATCHING

A distribution ν on W can approximately represent un-
known discrete data distributions p ∈ SN through

pα ≈ EW∼ν [T (W )α]. (13)

The underlying idea is that every distribution p ∈ SN can be
represented as a mixture of Dirac distributions on extreme
points (10). Chen and Lipman [2023] describe a method
for learning continuous normalizing flows on Riemannian
manifolds via flow matching. In our case, the manifold in
question is the assignment manifold W and we are learning
a measure ν on W to represent a discrete data distribution
p via (13). A core contribution of Chen and Lipman [2023]
was to show how flow matching to learn ν can be achieved
by matching conditional probability distributions νβ :=
ν(W |β) for data samples β ∼ p. This corresponds to the
distribution νβ = δϵ1W+(1−ϵ)Meβ ∈ W in the ansatz (12),
with 0 < ϵ≪ 1 and the barycenter 1W of W . νβ is closely
concentrated around the extreme point of W corresponding
to the extreme point eβ ∈ SN .

We now describe how ν is learned via a normalizing flow
and geodesic flow matching, as illustrated by the bottom
part of Figure 3. Fix ϵ and define the representation

qβ = ϵ1W + (1− ϵ)Meβ ∈ W (14)

of sample data β ∼ p on W . Define the reference distribu-
tion

ν0 = (exp1W
)♯N0 (15)

on W as push-foward with respect to the exponential map of
the standard Gaussian N0 = N (0, I) centered in the tangent
space at 0 ∈ T0, and the define conditional distributions

ν0(W |qβ) = ν0(W ), ν1(W |qβ) = δqβ (16)
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as endpoints of a probability path defined below, for each
configuration β ∈ [c]n. Clearly, one has

Eqβ∼ν [ν0(W |qβ)] = ν0(W ), (17a)
Eqβ∼ν [ν1(W |qβ)] = Eqβ∼ν [δqβ ] = ν, (17b)

due to the unconditional reference measure in the former
case and the Dirac measure in the latter. As a consequence,
we can flow-match the probability path

νt(W ) = Eqβ∼ν [νt(W |qβ)] (18)

by merely flow-matching conditional probability paths
νt(W |qβ) with endpoints (16) for individual data samples
β ∼ p. A simple choice is the probability path generated
by pushing ν0 along e-geodesics connecting each initial
W0 ∈ W governed by ν0 with qβ .

Denote a latent tangent vector on T0 by u0 ∼ N0 and the
corresponding point on W by W0 = exp1W

(u0). Further,
denote by uβ = exp−1

1W
(qβ) ∈ T0 the tangent vector corre-

sponding to qβ . Then the path of an e-geodesic connecting
W0 with qβ reads

W β
t = expW0

(t exp−1
W0

(qβ)) (19a)

= exp1W
(u0 + t(uβ − u0)) (19b)

and differentiation gives

Ẇ β
t = RWβ

t
[uβ − u0] (20)

with the linear mapRWβ
t

given by (2) and factor-wise exten-
sion. The Riemannian conditional flow matching objective,
in the present case with the norm induced by the Fisher-Rao
metric, reads

LRCFM(θ) = Et,qβ ,W0

[
∥RWβ

t
[Fθ(W

β
t )]−Ẇ

β
t ∥2Wβ

t

]
, (21)

It was shown in Lipman et al. [2023], Chen and Lipman
[2023], that (21) has the same gradient with respect to pa-
rameters θ as the unconditional Riemannian flow matching
objective

LRFM(θ) = Et,W0

[
∥Rψt

[Fθ(ψt)]− U(ψt))∥2ψt

]
, (22)

for a vector field U which transports ν0 to ν and generates
the assignment flow ψt by integrating (1). Here, the expec-
tation is taken with respect to t ∼ U [0, 1], qβ ∼ ν,W0 ∼ ν0
respectively and ψt = ψt(W0).

As (20) suggests in view of (1), we have written the param-
eterized vector field in (21) as an assignment flow vector
field with parameterized fitness function Fθ. Substituting
(20) into (21) finally gives

LRCFM(θ) = Et,qβ ,W0

[
∥RWβ

t
[Fθ(W

β
t )− (vβ − v0)]∥2Wβ

t

]
(23)

which we can directly use as a training objective to learn pa-
rameters θ. Learning θ amounts to learning a flow (1) which
generates ν through pushfoward of ν0 and approximates the
data distribution by (13).

4.2 LIKELIHOOD COMPUTATION

For any configuration α ∈ [c]n, let rα ⊆ W denote the set
of points on the assignment manifold which have Meα as
closest extremal point of W . We aim to bound the probabil-
ity of rα under the pushforward distribution νt = (ψt)♯ν0
from below. To this end, we construct a subset r̃α ⊆ T0 such
that

exp1W
(r̃α) ⊆ rα (24)

Let ν̃t = (exp−1
1W

)♯νt. Then

log pα = logPW∼νt(rα) ≥ logPv∼ν̃t(r̃α). (25)

Because we learn the flow ψt such that it concentrates proba-
bility mass close to points qα (see (14)), we can strategically
choose r̃α to make importance sampling for this integral
cheap to compute. Let ρ be a proposal distribution with
support r̃α. Then

log Pv∼ν̃t(r̃α) = log

∫
r̃α

ν̃t(v)dv (26a)

= log

∫
r̃α

ν̃t(v)

ρ(v)
ρ(v)dv (26b)

= logEv∼ρ
[ ν̃t(v)
ρ(v)

]
(26c)

≥ Ev∼ρ[log ν̃t(v)− log ρ(v)] (26d)

by Jensen’s inequality and we can thus compute a lower
bound on the log-likelihood of α under our model by ap-
proximating the integral in (26d). Evaluating the integrand
amounts to computing log-likelihood under a continuous
normalizing flow. This can be done through a instantaneous
change of variables Grathwohl et al. [2019] and evaluating
the log-likelihood under the proposal distribution, which we
are able to do in closed form. Since νt is trained to transport
the reference distribution to one which is concentrated on
points qα, we expect the integrand in (26a) to have most of
its mass close to q̃α = exp−1

1W
(qα), which motivates the fol-

lowing choice of r̃α and ρ. Let r̃α be a sphere with diameter
d > 0 centered at q̃α and choose d small enough to satisfy
(24). Let ρ be an isotropic normal distribution with variance
σ2 and mean q̃α supported only on the sphere r̃α. The tail
probability of this distribution required to normalize it to
probability mass 1 is analytically available because ρ has
rotational symmetry (see Appendix B).

5 EXPERIMENTS

5.1 GENERATING IMAGE SEGMENTATIONS

In image segmentation, a joint assignment of classes to
pixels is usually sought conditioned on the pixel values
themselves. Here, we instead focus on the unconditional
discrete distribution of segmentations, without regard to

6



Figure 4: Left: Random samples drawn from our model trained on discrete Cityscapes segmentation data (c = 8 classes) at
resolution 128× 256. Right with blue border: Randomly drawn training data.

Figure 5: Histogram of samples from our model fitting the joint distribution of n = 2 discrete random variables. Left and
middle: c = 91 classes per variable. Right: c = 2 classes per variable. All three plots show values of the joint distribution.
Clearly, the model is able to fit multi-modal joint distributions which do not factorize into independent marginals. The plot
on the right is the joint distribution shown as blue dot in Figures 1 and 2.
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Figure 6: Convergence of importance sampling the integral
(26d) for our generative model of MNIST data. Already for
few samples, relative error is within few percentage points.
Mean and standard deviation are evaluated over 30 data
drawn at random from the MNIST test set.

3.28 bits / dim 2.92 bits / dim 3.75 bits / dim 3.39 bits / dim 3.84 bits / dim

4.10 bits / dim 3.83 bits / dim 3.67 bits / dim 3.48 bits / dim 4.13 bits / dim

Figure 7: Upper-bound on the likelihood of samples from
MNIST (in distribution, first row) and Omniglot (out of
distribution, second row) under our model. Data with low
likelihood (high bits/dim) can be detected as outliers. Like-
lihood was bounded by approximating (26d) through 200
importance samples.
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the original pixel data. These discrete distributions are very
high-dimensional in general, with N = cn increasing expo-
nentially in the number of pixels. We perform Riemannian
flow-matching (22) via the conditional objective (21) to lean
assignment flows (1) which approximate this discrete dis-
tribution via (12). To this end, we parametrize Fθ by the
UNet architecture of Dhariwal and Nichol [2021] (details in
Appendix A) and train on the segmentations of Cityscapes
Cordts et al. [2016], downsampled to c = 8 classes and res-
olution 128× 256, as well as MNIST LeCun et al. [2010],
regarded as binary c = 2 segmentations of 28 × 28 pixel
images.

Figure 4 shows samples from the learned distribution of
Cityscapes segmentations randomly drawn from our model.

5.2 NUMERICAL LIKELIHOOD BOUNDS

In general, sampling integrals over high-dimensional do-
mains is a difficult task. We evaluate the effectiveness of our
importance sampling approach of Section 4.2 empirically
by plotting the relative error of likelihood bounds computed
from varying number of importance samples. The reference
value for the integral is computed from 3557 samples. Fig-
ure 6 shows that even a small number of samples suffices
to compute a reasonable approximation to the integral. This
is evaluated on MNIST (padded to size 32 × 32) i.e. the
domain of interation is (c− 1)n = 1024 dimensional.

5.3 DETECTING OUT-OF-DISTRIBUTION DATA

We test if the bound on log-likelihood (26d) under our gen-
erative model allows to detect out-of-distribution data. To
this end, we train a model (1) to approximate the MNIST
data distribution and compute the bound (26d) by impor-
tance sampling. The Omniglot dataset Lake et al. [2015]
contains visually similar images to MNIST, but displays a
wide variety of different symbols. Figure 7 shows random
samples of MNIST and Omniglot as well as the bound on
log-likelihood of each sample under our learned MNIST
distribution. Samples from this model can be found in Ap-
pendix A.

6 DISCUSSION

Riemannian flow matching on the assignment manifold is a
remarkably stable and efficient approach to learning high-
dimensional discrete distributions. Because training does
not require simulation of flow trajectories, it requires few
function evaluations compared to established likelihood-
based normalizing flow training.

To the best of our knowledge, our work is the first to demon-
strate flow-matching for discrete data. The Cityscapes ex-
periment illustrates the resulting gain in efficiency. While

the related work Hoogeboom et al. [2021] studies the same
discrete labeling dataset, they subsample to low resolution
32 × 64 in order to save on computation. In contrast, Fig-
ure 4 shows convincing samples at resolution 128 × 256
from our model trained within 3.5 hours on a single desktop
GPU.

Current limitations. Even though the importance sampling
approach proposed in Section 4.2 is empirically very effec-
tive, it still requires more computational effort to evaluate
compared to typical normalizing flow models. This is be-
cause the integrand needs to be sampled by performing
instantaneous change of variables and integrating the flow
backward in time multiple times to get a precise and reli-
able estimate (Fig 6). Beyond computational considerations,
there is also a Jensen gap in the estimate (26d) which can
not be reduced by drawing more samples. There is some
potential to make (25) an equality in the future by choosing
r̃α accordingly. In principle, one can also consider direct
simulation of (13) as an alternative which estimates exact
likelihood without the Jensen gap. A numerically stable pro-
cedure to perform this sampling was suggested in Boll et al.
[2023], but the approach still only works for low dimensions
in practice. This is because even for moderate n, the number
of configurations N = cn is large and thus the number of
random samples required to encounter any given one grows
quickly in general.

7 CONCLUSION

We have introduced a stable and efficient flow-matching
approach on the statistical assignment manifold which en-
ables to learn complex joint distributions of many discrete
random variables. While some limitations related to likeli-
hood estimation remain to be adressed in future work, our
approach shows clear promise as an alternative to score-
or likelihood-based modelling for the challenging setting
of discrete data. This promise is founded on principled
information-geometric modelling of discrete distributions.
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Generative Modeling of Discrete Joint Distributions by
E-Geodesic Flow Matching on Assignment Manifolds

(Appendix)

Bastian Boll1 Daniel Gonzalez-Alvarado1 Christoph Schnörr1

1Institute for Mathematics, Image and Pattern Analysis Group, Heidelberg University, Germany

A IMPLEMENTATION DETAILS

For the Cityscapes experiment, we employ the UNet architecture of Dhariwal and Nichol [2021] with attention_resolutions
(32, 16, 8), channel_mult (1,1,2,3,4), 4 attention heads, 3 blocks and 64 channels. We trained for 250 epochs using Adam
with learning rate 0.0001 and cosine annealing scheduler.

For MNIST, we use the same architecture with attention_resolutions (16), channel_mult (1,2,2,2), 4 attention heads, 2
blocks and 32 channels. We trained for 100 epochs using Adam with learning rate 0.0005 and cosine annealing scheduler..
We pad the original 28× 28 images with zeros to size 32× 32 to be compatible with spatial downsampling employed by the
UNet architecture. As Figure 8 shows, our model does not simply memorize the training data.

For the simple distributions in Figure 5, we employ a neural network composed of batch normalization, dense layers and
ReLU activation. The sequence of hidden dimensions for the mixture of Gaussian and Pinwheel distributions is (256, 256).
For the coupled binary variables, we use a linear function Fθ, with no batch normalization or bias. We trained for 2k steps
with batch size 512 using Adam with learning rate 0.0005.

In all experiments, the smoothing constant ϵ of (14) is set to 0.01.

Rather than the original c = 33 classes, we only use the c = 8 class categories specified in torchvision. The same subsampling
of classes was used in the related work Hoogeboom et al. [2021]. They additionally perform spatial subsampling to 32× 64.
Instead, we subsample the spatial dimensions (NEAREST interpolation) to 128× 256.

All experiments in this paper were run on one of two desktop graphics cards (1x NVIDIA RTX2080ti, 1x NVIDIA
RTX2060super), requiring less than 100 compute hours in total.

B IMPORTANCE SAMPLING

Let Q ∈ Rc×(c−1) be an orthonormal basis of the linear subspace T0Sc ⊆ Rc. Independently for the tangent space of every
individual simplex with index i ∈ [n], the chosen proposal distribution is the normal distribution

ρi = Q♯N
(
Q⊤(q̃α)i, σ

2Ic−1

)
(27)

on T0Sc, centered and supported on a disk with radius r > 0,

r̃α = {ui ∈ T0Sc : ∥ui − (q̃α)i∥2 ≤ r}. (28)
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Figure 8: Illustration of handwritten digit samples trained from the MNIST dataset. The leftmost column, highlighted with a
red frame, displays random samples generated by our model through integration Eq. (1) with random initializations. The
remaining plots depict the five closest training data to our sample based on pixel-wise distances.

For any ui ∈ T0Sc, it holds QQ⊤ui = ui and we have

∥ui − (q̃α)i∥22 = ⟨ui − (q̃α)i, ui − (q̃α)i⟩ (29a)

= ⟨QQ⊤(ui − (q̃α)i), ui − (q̃α)i⟩ (29b)

= ⟨Q⊤(ui − (q̃α)i), Q
⊤(ui − (q̃α)i)⟩ (29c)

= ∥Q⊤ui −Q⊤(q̃α)i)∥22. (29d)

Thus, ui ∈ r̃α exactly if the coordinates Q⊤ui lie in the ball

r̂α = {x ∈ Rc−1 : ∥x−Q⊤(q̃α)i∥2 ≤ r}. (30)

Since the proposal distribution (27) is a normal distribution with variance σ2 centered and supported on r̂α, we need the
probability of r̂α under a normal distribution with full support centered on it, as normalization constant of ρi. By first
shifting the mean, this can be computed as the probability of the sphere {x ∈ Rc−1 : ∥x∥2 ≤ r}. Let X be a standard normal
random variable on Rc−1, then the sought probability is

P(∥σX∥22 ≤ r2) = P
(
∥X∥22 ≤ r2

σ2

)
. (31)

Since X has normal distribution, ∥X∥22 has χ2-distribution and (31) can be computed by evaluating the cumulative
distribution function of χ2 with c − 1 degrees of freedom. In practice, we set a probability mass of 0.8 from the outset
and then choose σ2 by inverting (31). A simple geometric argument shows that the largest radius r which satisfies the
requirements is

r = ∥q̃α∥2
√

c

2(c− 1)
. (32)
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Figure 9: Illustration of Cityscapes segmentation samples drawn from our model. The leftmost column, highlighted with a
black frame, displays random samples generated by our model through integration Eq. (1) with random initializations. The
remaining plots depict the five closest training data to sample based on pixel-wise distance.
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