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Abstract

We present a novel theoretical framework for un-
derstanding the expressive power of coupling-
based normalizing flows such as RealNVP (Dinh
et al., 2017). Despite their prevalence in scien-
tific applications, a comprehensive understanding
of coupling flows remains elusive due to their
restricted architectures. Existing theorems fall
short as they require the use of arbitrarily ill-
conditioned neural networks, limiting practical
applicability. Additionally, we demonstrate that
these constructions inherently lead to volume-
preserving flows, a property which we show to
be a fundamental constraint for expressivity. We
propose a new distributional universality theorem
for coupling-based normalizing flows, which over-
comes several limitations of prior work. Our re-
sults support the general wisdom that the coupling
architecture is expressive and provide a nuanced
view for choosing the expressivity of coupling
functions, bridging a gap between empirical re-
sults and theoretical understanding.

1. Introduction
Density estimation and generative modeling of complex dis-
tributions is a fundamental problem in statistics and machine
learning, with applications ranging from computer vision
(Rombach et al., 2022) to molecule generation (Hoogeboom
et al., 2022) and uncertainty quantification (Ardizzone et al.,
2018b).

Normalizing flows are a common class of generative models
that model a probability density which can be trained from
samples via the maximum likelihood criterion. They are
implemented by transporting a simple multivariate base
density such as the standard normal via a learned invertible
function to the distribution of interest. One particularly
efficient variant of such invertible neural networks are based
on so-called couplings blocks, which make the resulting
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distribution both fast to evaluate pθ(x) ≈ p(x) and sample
from x ∼ pθ(x) ≈ x ∼ p(x).

Coupling blocks impose a strong architectural constraint
on invertible neural networks. Most strikingly, half of
the dimensions are left unchanged in each block, and the
transformation of the remaining dimensions is restricted in
order to ensure invertibility. At the same time, even the
simple affine coupling-based normalizing flows can learn
high-dimensional distributions such as images (Kingma &
Dhariwal, 2018).

Theoretical explanations for this architecture’s ability to fit
complex distributions are limited. Existing proofs make as-
sumptions that are not valid in practice, as the involved con-
structions rely on ill-conditioned neural networks (Koehler
et al., 2021).

We extend the theory in two ways: First, we prove that
volume-preserving normalizing flows (Dinh et al., 2015;
Sorrenson et al., 2019) are not universal approximators in
terms of KL divergence, the practical loss measure. In fact,
the existing universal approximation theorems for coupling-
based normalizing flows construct volume-preserving flows
(Teshima et al., 2020a; Koehler et al., 2021), fundamentally
limiting their practical implications for learning distribu-
tions. Second, we introduce a new proof for the distri-
butional universality of coupling-based normalizing flows.
This proof is constructive, showing that training layers se-
quentially converges to the correct target distribution, which
we illustrate in Figure 1.

In summary, we contribute:

• We show the limits of volume-preserving flows as dis-
tributional universal approximator in Section 4.2.

• We then show that existing distributional universal-
ity proofs for affine coupling-based normalizing flows
construct such volume-preserving flows in Section 4.3.

• We give a new universality proof for coupling-based
normalizing flows that overcomes previous shortcom-
ings in Section 4.5.

Our results validate a crucial insight previously observed
only empirically: Affine coupling blocks are an effective
foundation for normalizing flows. Our proof elucidates
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Figure 1. Our universality proof constructs a normalizing flow
by iteratively adding affine coupling blocks. We illustrate this by
constructing such a flow from real data. Each block first rotates the
distribution pn−1(z) from the previous step (first column), then
applies an affine coupling layer that transforms the active dimen-
sions to zero mean and unit variance for each passive coordinate b
(second column). The resulting latent distribution converges step
by step (third column) to a standard normal distribution, where the
learned additional layers essentially learn the identity (last row).
The data distribution pθ(x) converges in parallel (right).

how more expressive coupling functions can achieve good
performance with fewer layers. Additionally, our findings
advise caution in using volume-preserving flows due to their
inherent limitations in expressivity.

2. Related Work
Normalizing flows form a class of generative models that are
based on invertible neural networks (Rezende & Mohamed,
2015). We focus on the widely-used coupling-based flows,
which involve a sequence of simple invertible blocks (Dinh
et al. (2015; 2017), see Section 3).

That coupling-based normalizing flows work well in practice
despite their restricted architecture has sparked the interest
of several papers analyzing their distributional universality,
i.e. the question whether they can approximate any target dis-
tribution to arbitrary precision (see Definition 4.1). Teshima

et al. (2020a) showed that that coupling flows are univer-
sal approximators for invertible functions, which results in
distributional universality. Koehler et al. (2021) demon-
strated that affine coupling-based normalizing flows can
approximate any distribution with arbitrary precision using
just three coupling blocks. However, these works assume
neural networks with exploding derivatives for couplings,
an unrealistic condition in practical scenarios. Our work
addresses this limitation by showing that training a normal-
izing flow layer by layer yields universality. We additionally
demonstrate that these works construct volume-preserving
transformations in Section 4.3, an additional important limi-
tation.

Some works show distributional universality of augmented
affine coupling-based normalizing flows, which add at least
one additional dimension usually filled with exact zeros
(Huang et al., 2020; Koehler et al., 2021; Lyu et al., 2022).
The problem with adding additional zeros is that the flow
is not exactly invertible anymore in the data domain and
usually loses tractability of the change of variables formula
(Equation (1)). Lee et al. (2021) add i.i.d. Gaussians as ad-
ditional dimensions, which again allows density estimation,
but they only show how to approximate the limited class of
log-concave distributions. Our universality proof does not
rely on such a construction.

Other theoretical work on the expressivity of normalizing
flows considers more expressive invertible neural networks,
including SoS polynomial flows, Neural ODEs and Resid-
ual Neural Networks (Jaini et al., 2019; Zhang et al., 2020;
Teshima et al., 2020b; Ishikawa et al., 2022). Another line
of work found that the number of required coupling blocks
is independent of dimension D for Gaussian distributions
compared to O(D) Gaussianization blocks that lack cou-
plings between dimensions (Koehler et al., 2021; Draxler
et al., 2022; 2023).

3. Coupling-based Normalizing Flows
Normalizing Flows are a class of generative models that
represent a distribution pθ(x) with parameters θ by learning
an invertible function z = fθ(x) so that distribution of
the latent codes z ∈ RD obtained from the data x ∈ RD

are distributed like a standard normal distribution p(z) =
N (z; 0, I). Via the change of variables formula, see (Köthe,
2023) for a review, this invertible function yields an explicit
form for the density pθ(x):

pθ(x) = p(z = fθ(x))|f ′
θ(x)|, (1)

where f ′
θ(x) =

∂
∂xfθ(x) is the Jacobian matrix of fθ at x

and |f ′
θ(x)| is its absolute determinant.

Equation (1) allows easily evaluating the model density at
points of interest. Obtaining samples from pθ(x) can be
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achieved by sampling from the latent standard normal and
applying the inverse f−1

θ (z) of the learned transformation:

x = f−1
θ (z) ∼ pθ(x) for z ∼ p(z). (2)

The change of variables formula (Equation (1)) can be used
directly to train a normalizing flow. The corresponding loss
minimizes the Kullback-Leibler divergence between the true
data distribution p(x) and the learned distribution, which
can be optimized via a Monte-Carlo estimate of the involved
expectation:

L = DKL(p(x)∥pθ(x)) (3)
= Ex∼p(x)[log p(x)− log pθ(x)] (4)
= Ex∼p(x)[− log pθ(x)] + const. (5)

This last variant makes clear that minimizing this loss is
exactly the same as maximizing the log-likelihood of the
training data. For training, the expectation value is approxi-
mated using (batches of) training samples x1,...,N .

In order for Equations (1) and (2) to be useful in practice,
fθ(x) must have (i) a tractable inverse f−1

θ (z) for fast sam-
pling, and (ii) a tractable Jacobian determinant |f ′

θ(x)| for
fast training while (iii) being expressive enough to model
complicated distributions. These constraints are nontrivial
to fulfill at the same time and significant work has been put
into constructing such invertible neural networks.

In this work, we focus on the class of coupling-based neural
networks (Dinh et al., 2015; 2017). This design lies in a
sweet spot of being expressive yet easy to invert (Draxler
et al., 2023) and exhibits a tractable Jacobian determinant.
Its basic building block is the coupling layer, which consists
of one invertible function x̃i = c(xi; θi) for each dimension,
but with a twist: Only the second half of the dimensions a =
xD/2+1,...,D (active) is changed in a coupling layer, and the
parameters θ = θ(b) are predicted by a neural network
that depends on the first half of dimensions b = x1,...,D/2

(passive):

x̃ = fcpl(x) =



b1
...

bD/2

c(a1; θ1(b))
...

c(aD/2; θD(b))


. (6)

The neural network θ(b) allows for modeling dependencies
between dimensions in the coupling layer. Calculating the
inverse of the coupling layer is easy, as b = b̃ for the passive
dimensions. This allows computing the parameters θ(b)

necessary to invert the active half of dimensions:

x = f−1
cpl (x̃) =



b̃1
...

b̃D/2

c−1(a′1; θ1(b̃))
...

c−1(a′D/2; θD/2(b̃))


. (7)

Choosing the right one-dimensional invertible function
c(x; θ) is the subject of active research, see our list in Ap-
pendix A and the review by Kobyzev et al. (2021). Many
applications use affine-linear functions c(x; s, t) = sx+ t
where s > 0 and t are the parameters to be predicted by the
θ(b) subnetwork as a function of the passive dimensions. Es-
pecially for smaller-dimensional problems it has proven use-
ful to use more flexible c such as rational-quadratic splines
(Durkan et al., 2019b). Our universality results are compati-
ble with all coupling architectures we are aware of except for
NICE. At the same time, our construction gives a direct rea-
son for using more expressive couplings, as they can learn
the same distributions with fewer layers (see Section 4.6).

In order to be expressive, a normalizing flow consists of a
stack of coupling layers, each with a different active and
passive subspace. This is realized by an additional layer
before each coupling which rotates an incoming vector x
via a rotation matrix Q ∈ SO(D):

frot(x) = Qx, (8)

f−1
rot (x̃) = QT x̃. (9)

Often, Q is simply chosen as a permutation matrix that is
fixed during training, but some variants allow any rotation Q
or learning the rotation during training (Kingma & Dhariwal,
2018). Our universality theorem will consider free-form
rotation matrices Q. This does not restrict its applicability
to some architectures, since any invertible linear function
can be represented by a fixed number of coupling blocks
with fixed permutations (Koehler et al., 2021).

A rotation layer together with a coupling layer forms a
coupling block:

fblk(x) = (fcpl ◦ frot)(x) = fcpl(Qx). (10)

In the remainder of this paper, we are concerned with what
distributions p(x) a potentially deep concatenation of cou-
pling blocks can represent.

4. Distributional Universality of Coupling
Flows

In this section, we give our new distributional universality
results for coupling-based normalizing flows. We start off by
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explaining what we mean by distributional universality. We
then show a negative result concerning volume-preserving
flows, in that they are not distributional universal approxi-
mator in terms of KL divergence. This shows a fundamental
limitation of previous universality proofs of coupling flows.
We then give our proof that overcomes several of those
shortcomings.

4.1. Distributional Universality

By distributional universality we mean that a certain class
of generative models can represent any distribution p(x).
Due to the nature of neural networks, we cannot hope for
our generative model to exactly (i.e. exact equality in the
mathematical sense) represent p(x). This becomes clear via
an analogue in the context of regression: A neural network
with ReLU activations always models piecewise linear func-
tions, and as such it can never exactly regress a parabola
y = x2. However, for every finite value of ϵ > 0 and given
more and more linear pieces, it can follow the parabola ever
so closer, so that the average distance between x2 and fθ(x)
vanishes: Ex∼p(x)[|x2 − fθ(x)|2] < ϵ. To characterize the
expressivity of a class of neural networks, it is thus instruc-
tive to call a class of networks universal if the error between
the model and any target can be reduced arbitrarily.

In terms of representing distributions p(x), the following
definition captures universality of a class of model distribu-
tions, similar to (Teshima et al., 2020a, Definition 3):

Definition 4.1. A set of probability distributions P is called
a distributional universal approximator if for every possible
target distribution p(x) there is a sequence of distributions
pn(x) ∈ P such that pn(x)

n→∞−−−−→ p(x).

The formulation of universality as a convergent series is
useful as it (i) captures that the distribution in question p(x)
may not lie in P , and (ii) the series index n usually reflects
a hyperparameter of the underlying model corresponding to
computational requirements (for example, the depth of the
network).

We have left the exact definition of the limit “pn(x)
n→∞−−−−→

p(x)” open as we may want to consider different varia-
tions of convergence. The existing literature on affine
coupling-based normalizing flows considers weak conver-
gence (Teshima et al., 2020a) respectively convergence in
Wasserstein distance (Koehler et al., 2021). We will note in
Section 4.3 that the constructions used in the existing proofs
are fundamentally tied to these relatively weak convergence
metrics. Many metrics of convergence have been proposed,
see (Gibbs & Su, 2002) for a systematic overview.

In this paper, we consider continuous target distributions
p(x) that have infinite support and finite moments, which
covers distributions of practical interest.

4.2. Limitations of Volume-preserving Flows

In this section, we provide a negative universality result
of normalizing flows which have a constant Jacobian de-
terminant |f ′

θ(x)| = const, such as nonlinear independent
components estimation (NICE) (Dinh et al., 2015) or gen-
eral incompressible-flow networks (GIN) (Sorrenson et al.,
2019). Such flows are usually called volume-preserving
flows or sometimes incompressible flows.

For one-dimensional functions, this implies that fθ(x) is
linear. For multivariate functions, fθ(x) can be nonlinear,
only that any volume change in one dimension must be
compensated by an inverse volume change in the remaining
dimensions. For example, GIN realizes volume-preserving
coupling blocks by requiring that

∑D/2
i=1 log si(b) = const.

This is more expressive than NICE, which set all si(b) = 1
except in a linear rescaling layer.

While volume-preserving flows can be useful in certain ap-
plications such as disentanglement (Sorrenson et al., 2019)
or temperature-scaling in Boltzmann generators (Dibak
et al., 2022), they are at disadvantage in terms of what
distributions they can learn.

To derive this, let us adapt the change of variables formula
Equation (1) to volume-preserving flows:

pθ(x) = p(z = fθ(x))C, (11)

where C = |f ′
θ(x)|. This equation says that for every x

the density modeled by the flow is exactly the density of
the corresponding latent code z = fθ(x) up to a constant
factor – and likewise every latent code must lend its relative
likelihood to exactly one point in the data space.

It turns out that this restriction is fatal for the expressivity
of volume-preserving flows:

Theorem 4.2. The family of normalizing flows with constant
Jacobian determinant |f ′

θ(x)| = const is not a universal
distribution approximator under KL divergence.

In the detailed proof in Appendix B.1, we construct a
counter-example of a distribution that cannot be approx-
imated in terms of KL divergence. Intuitively speaking,
volume-preserving flows can only morph the latent distribu-
tion p(z) by shifting regions of it around, but they cannot
compress or inflate space to vary the local density by Equa-
tion (11). This implies that the structure of pθ(x) is essen-
tially shared with the latent distribution p(z). For example,
the local maxima of the learned density, usually referred
to as its modes, are inherited from the latent distribution.
This means that the learned distribution cannot create multi-
modal distributions from a standard normal latent space:

Corollary 4.3. A normalizing flow pθ(x) with constant
Jacobian determinant |f ′

θ(x)| = const has the same number
of modes as the latent distribution p(z).
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Figure 2. A normalizing flow with constant Jacobian deter-
minant is not able to model a simple bimodal mixture (first
vs second row): The modeled density in both modes is almost
identical despite their different weight in the ground truth. Also,
the volume-preserving flow really has only one maximum and the
second pseudo mode is connected to the first by a bridge of high
density. A normalizing flow with variable Jacobin determinant
does not have these issues (third row).

Figure 2 illustrates this shortcoming by learning a two-
dimensional target distribution with an volume-preserving
flow. The problem is that by Equation (11) there is a one-to-
one correspondence between maxima of pθ(x) and p(z) and
the neighborhoods in data and latent space. In the example,
this connects the learned “modes” by a thin bridge and they
really form one connected region of high probability with-
out a barrier. In addition, the density is off at both modes.
A normalizing flow with flexible volume change does not
have these issues and correctly approximates the bimodal
distribution. We give the detailed proof in Appendix B.2
and experimental details in Appendix E.2.

This can partially be recovered by having a (learnable) multi-
modal distribution in the latent space, but this is necessarily
limited if the structure of the distribution to learn is un-
known.

Our Theorem 4.2 and Corollary 4.3 identify a fundamen-
tal limitation for applications based on volume-preserving
flows. It explains why RealNVP significantly outperforms
NICE in practice (Dinh et al., 2017). Work using volume-
preserving flows must take this limited expressivity and the
resulting biases in the learned distributions into account. In
the next section, we will find that this problem also applies
in existing universality proofs for coupling-based normaliz-
ing flows.

4.3. Problems with Existing Constructions

There are already existing proofs showing that affine and
more expressive coupling flows are distributional univer-
sal approximators. They make use of specially parame-
terized coupling blocks that results in convergence to ar-
bitrary distributions (Teshima et al., 2020a; Koehler et al.,
2021). While technically correct, the metrics of convergence
employed by (Teshima et al., 2020a; Koehler et al., 2021)
are indifferent to two shortcomings of these constructions:
they require ill-conditioned networks and construct volume-
preserving flows, which are not universal in KL divergence
by our Theorem 4.2. We will demonstrate the shortcomings
via the approach presented in Koehler et al. (2021), but the
same arguments also apply to the construction in (Teshima
et al., 2020a).

The key result in Koehler et al. (2021, Theorem 1) is that for
any approximation error ϵ > 0 it is possible to construct a
coupling flow fθ consisting of three affine couplings blocks
for which the Wasserstein distance W2 is smaller than ϵ:

W2(pθ(x), p(x)) < ϵ. (12)

In the proof of this statement explicit formulas for the
rotations, offset and scaling functions in the three affine
coupling layers are given. To make our point, let us take
a closer look at the scaling terms s(b) of the affine cou-
plings ã = s(b) ⊙ a + t(b). For the three affine cou-
pling layers the scaling factors are given by s1 = ϵ′ and
s2 = s3 = ϵ′′ for each active dimension where ϵ′ and ϵ′′

are two constants smaller than ϵ. Computing the network’s
Jacobian determinant we find

∣∣f−1′
θ

∣∣ = (ϵ′ · ϵ′′ · ϵ′′)
D
2 and

|f ′
θ| = (ϵ′ · ϵ′′ · ϵ′′)−

D
2 .

The derived expressions for Jacobian determinants show
two important shortcomings for the universality theorems.
The first one is that as the approximation error ϵ becomes
very small, ϵ′ and ϵ′′ also becomes very small. For the
forward pass this leads to a vanishing and for the inverse
pass to an exploding Jacobian determinant. This illustrates
the point made in Koehler et al. (2021, Remark 2) that for
small approximation errors, the network is ill-conditioned,
making the construction unrealistic.

The second point is a more fundamental issue. The derived
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expressions for the Jacobian determinants of the normaliz-
ing flow with the constructed parameters for the three affine
couplings as given in (Koehler et al., 2021) show that these
determinants are constant as ϵ′ and ϵ′′ are constant factors.
The resulting construction is therefore a volume-preserving
flow, which we considered in the previous section. This
means that by our Theorem 4.2 and Corollary 4.3, the re-
sulting normalizing flows are not distributional universal
approximators under KL divergence and always represent
unimodal distributions regardless of the data distribution.

The insights from this section, that existing constructions
rely on ill-conditioned normalizing flows and do not con-
verge under KL divergence, motivate the introduction of our
new universality theorem.

4.4. Convergence Metric

Ideally, we would make a universality statement in terms
of the KL divergence in Equation (3) as our measure of
convergence. It is not only the metric used in practice, it
also a strong metric of convergence that implies weak con-
vergence, that ensures convergence of expectation values,
and it implies convergence of the densities (Gibbs & Su,
2002). Also, as we showed previously in Section 4.2, the KL
divergence is able to distinguish the expressivity between
volume-preserving and non-volume-preserving flows, but
weak convergence and Wasserstein distance are not (Sec-
tion 4.3).

The metric of convergence we consider in our proof is in-
deed related to the Kullback-Leibler divergence. To con-
struct it, rewrite the loss L in Equation (3) in comparing the
current latent distribution pθ(z) as the push forward of p(x)
through our flow fθ(x):

L = DKL(p(x)∥pθ(x)) (13)

=

∫
p(x) log

p(x)

p(z = f(x))|f ′(x)|
dx (14)

=

∫
p(z)|f−1

θ
′(z)| log

p(f−1(z))|f−1
θ

′(z)|
p(z)

dz (15)

= DKL(pθ(z)∥p(z)). (16)

This identity shows that the divergence between the true
p(x) and the model pθ(x) can equally be measured in the
latent space, via the KL divergence between the current
latent distribution that the model generates from the data
pθ(z) and the target latent distribution p(z).

Let us now consider what happens if we append one more
affine coupling block to an existing normalizing flow fθ(x),
resulting in a flow which we call pθ∪φ(x). Let us choose
the parameters of the additional coupling block φ such that
it maximally reduces the loss without changing the previous

parameters:

min
φ

DKL(pθ∪φ(z)∥p(z)). (17)

This allows us to measure the additional loss improvement
that was achieved by adding one more affine coupling block:

∆affine := min
φ

DKL(pθ∪φ(z)∥p(z))−DKL(pθ(z)∥p(z)).
(18)

Note that for our argument it is sufficient to consider affine
coupling blocks, but the results extend to more expressive
coupling functions as well.

The following theorem allows us to use the above loss im-
provement ∆affine as a convergence metric for distributions.
It states that adding another coupling layer can always im-
prove on the loss L unless it has already converged to a
standard normal in the latent space:

Theorem 4.4. Let p(z) be a continuous probability distri-
bution with finite first and second moment and p(x) > 0
for all x ∈ RRD. Then, the distribution is the standard
normal distribution if and only if an affine coupling block
with a ReLU subnetwork θ(x1,...,D/2) containing at list two
hidden layers cannot improve the KL divergence as given
by Equation (18):

p(z) = N (z; 0, I) ⇔ ∆affine = 0. (19)

This shows that the maximally achievable loss improve-
ment ∆affine is a useful convergence metric for normalizing
flows: If adding more layers has no effect then the latent
distribution has converged to the right distribution.

In the remainder of this section, we give a sketch of the
proof of Theorem 4.4, with technical details moved to Ap-
pendix C.1. We will continue with our universality theorem
in the next section.

We proceed as follows: First, we use an explicit form of the
maximal loss improvement ∆∗

affine for infinitely expressive
affine coupling blocks (Draxler et al., 2020). Then, we show
in Lemma 4.5 that convergence of these unrealistic networks
is equivalent to convergence of finite ReLU networks. Fi-
nally, we show that ∆affine = 0 implies p(z) = N (z; 0, I).
While this derivation is constructed for affine coupling
blocks, it also holds for coupling functions which are more
expressive (see Appendix A for all applicable couplings we
are aware of): If an affine coupling block cannot make an
improvement, neither can a more expressive coupling. The
other direction is trivial, since by p(z) = N (0, I), no loss
improvement is possible.

If we assume for a moment that neural networks can exactly
represent arbitrary continuous functions, then this hypothet-
ical maximal loss improvement was computed by Draxler
et al. (2020, Theorem 1). A single affine coupling block
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with a fixed rotation layer Q, in order to maximally re-
duce the loss, will standardize the data by normalizing
the first two moments of the active half of dimensions
a = (Qx)D/2+1,...,D conditioned on the passive half of
dimensions b = (Qx)1,...,D. The moments before the cou-
pling

Eai|b[ai] = mi(b), Varai|b[ai] = σi(b) (20)

are mapped to:

Eãi|b[ãi] = 0, Varãi|b[ãi] = 1. (21)

This is achieved via the following affine transformation,
shifting the mean to zero and scaling the standard deviation
to one:

ãi(ai; b) =
1

σi(b)
(ai −mi(b)). (22)

In terms of loss, this transformation can at most achieve the
following loss improvement, with a contribution from each
passive coordinate b:

∆∗
affine = max

Q

1
2

D/2∑
i

Eb

[
m2

i (b) + σ2
i (b)− 1− log σ2

i (b)
]
.

(23)
With the asterisk, we denote that this improvement can
not necessarily be reached in practice with finite neural
networks. More expressive coupling functions can reduce
the loss stronger. We pick up on this point in Section 4.6.

What loss improvement can be achieved if we go back to
finite neural networks? In the following statement, we show
that ∆∗

affine > 0 is equivalent to the existence of a two layer
ReLU subnetwork with finite width which determines the
parameters in an affine coupling block fcpl that achieves
∆affine > 0:

Lemma 4.5. Given a continuous probability density p(z)
on z ∈ Rk. Then,

∆∗
affine > 0 (24)

if and only if there is a ReLU neural network with two hidden
layers with a finite number of neurons such that:

∆affine > 0. (25)

This says that the events ∆affine = 0 and ∆∗
affine = 0 can be

used interchangeably. The equivalence comes from the fact
that if ∆affine > 0, then we can always construct a two-layer
ReLU neural network that scales the conditional standard
deviations closer to one and the conditional means closer
to zero. In the detailed proof in Appendix C.1.2 we also
make use of a classical regression universal approximation
theorem (Hornik, 1991).

Finally, if the first two conditional moments of any latent
distribution p(z) are normalized for all rotations Q:

Eai|b[ai] = 0, Varai|b[ai] = 1, (26)

then the distribution must be the standard normal distri-
bution: p(z) = N (z; 0, I). This can be obtained directly
by combining Gaussian identification results (Eaton, 1986;
Bryc, 1995).

This concludes the proof sketch of Theorem 4.4 and we
are now ready to present our universality result, employing
∆affine as a convergence metric.

4.5. Affine Coupling Flows Universality

To construct our universal coupling flow, we follow a simple
iterative scheme. We start with the data distribution as our
original guess for the latent distribution: p0(z) = p(x = z).
Then, we append a single affine coupling block fblk(x) con-
sisting of a rotation Q and a coupling fcpl. We optimize the
new parameters to maximally reduce the loss as in Equa-
tion (17) and get a new latent estimate p1(z) = pφ(z).

The following theorem assures us that iterating this proce-
dure makes the latent distribution pn(z) converge to the
standard normal distribution in the latent space p(z):

Theorem 4.6. Coupling-based normalizing flows with affine
couplings are distributional universal approximator under
the convergence metric ∆affine as given in Section 4.4.

The proof idea is simple: The convergence metric ∆affine
measures how much adding another affine coupling block
can reduce the loss L, but the total loss that can be reduced
by the concatenation of many blocks is bounded. Thus,
later layers cannot arbitrarily improve on the loss and their
loss improvements ∆affine must converge to zero. By The-
orem 4.4, the fixed point of this procedure has a standard
normal distribution in the latent space. We give the full
proof in Appendix C.2.

Figure 1 shows an example for how Theorem 4.6 constructs
the coupling flow in order to learn a toy distribution. The
affine coupling flow is able to learn the distribution well,
despite the difficult topology of the problem.

While our proof removes spurious constructions present in
previous work, there are still some properties we hope can
be improved in the future: First, the construction does not
exploit that a deep stack of blocks can undertake coordinated
action, which can be found using end-to-end training. Sec-
ondly, it is unclear how the convergence metric Section 4.4
is related to convergence in the loss used in practice, the KL
divergence given in Equation (3). We conjecture that our
way of setting up the coupling flow also converges in KL
divergence. The reverse holds: We show in Corollary C.3 in
Appendix C.3 that convergence in KL implies convergence

7
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Figure 3. Only coupling functions strictly more expressive than
affine can fit non-Gaussian conditionals p(ai|b) in a single block,
resulting in a faster loss decrease (Equation (27)). Note that cou-
pling flows of both kinds are universal.

under our new metric. Finally, our proof gives no guarantee
on the number of required coupling blocks. We hope that
our contribution paves the way towards a full understanding
of affine coupling-based normalizing flows.

4.6. Expressive Coupling Flow Universality

The above Theorem 4.6 shows that affine couplings
c(ai; θ) = sai + t are sufficient for universal distribution
approximation. As mentioned in Section 3, a plethora of
more expressive coupling functions have been suggested,
for example neural spline flows (Durkan et al., 2019b) that
use monotone rational-quadratic splines as the coupling
function. It turns out that by choosing the parameters in the
right way, all coupling functions we are aware of can exactly
represent an affine coupling, except for volume-preserving
variants, see Appendix A. For example, a rational quadratic
spline can be parameterized as an affine function by using
equidistant knots (ak, ãk) where ãk = sak + t and fixing
the derivative at each knot to s.

Thus, the universality of more expressive coupling functions
follows immediately from Theorem 4.6, just like Ishikawa
et al. (2022) extended their results from affine to more ex-
pressive couplings:
Corollary 4.7. Coupling-based normalizing flows with cou-
pling functions at least as expressive as affine couplings
are distributional universal approximator under the conver-
gence metric ∆affine as given in Section 4.4.

Our proof of Theorem 4.6, constructed through layer-wise
training, shows how more expressive coupling functions
can outperform affine functions using the same number of
blocks. Similar to the loss improvement for an affine cou-
pling in Equation (18), let us compute the maximally pos-
sible loss improvement for an arbitrarily flexible coupling
function:

∆∗
universal = max

Q
Eb[J(b) + ∆∗

affine(Q)] ≥ ∆∗
affine, (27)

where the expectation again goes over the passive coordinate
b = (Qx)1,...,D/2.

Here, the additional loss improvement is the conditional
negentropy J(b) =

∑D/2
i=1 DKL(pθ(ai|b)∥N (mi(b), σi(b)),

which measures the deviation of each active dimension from
a Gaussian distribution with matching mean and variance.
An affine coupling function c(ai; θ) = sai + t doesn’t
influence this term, due to its symmetrical effect on both
sides of the KL in J(p) (Draxler et al., 2022, Lemma 1).
More expressive coupling blocks, however, are able to tap on
this loss component if the conditional distributions p(ai|b)
are significantly non-Gaussian, see Figure 3 for an example.

The impact of this gain likely varies with the dataset. For
instance, in images, the distribution of one color channel
of one pixel conditioned on the other color channels in the
entire image, often shows a simple unimodal pattern with
low negentropy. This a successful scenario in separating pas-
sive and active dimensions in images (Kingma & Dhariwal,
2018). We give additional technical details on Equation (27)
and the subsequent arguments in Appendix D.

5. Conclusion
Our new universality proofs show an intriguing hierarchy
of the universality of different coupling blocks:

1. Volume-preserving normalizing flows, i.e. flows with
a constant volume change such as the coupling-based
NICE and GIN (Dinh et al., 2015; Sorrenson et al.,
2019) are not universal in KL divergence, meaning that
there is a fundamental limit in what distributions they
can represent.

2. Affine coupling flows such as RealNVP (Dinh et al.,
2017) are distributional universal approximators de-
spite their seemingly restrictive architecture.

3. Coupling flows with more expressive coupling func-
tions are also universal approximators, but they con-
verge faster by tapping on an additional loss component
in layer-wise training.

Our work theoretically grounds why coupling blocks are the
standard choice for practical applications with normalizing
flows, combined with their easy implementation and speed
in training and inference. We remove spurious construc-
tions present in previous proofs and use a simple principle
instead: Construct a flow layer by layer until no more loss
improvement can be achieved.

Using volume-preserving flows may have negatively af-
fected existing work. This shortcoming can be (partially)
addressed by choosing or learning a more flexible latent
distribution.
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A. Compatible Coupling Functions
The following lists all coupling functions c(a; θ) (see Equation (6) for its usage) we are aware of. Our universality guarantees
Theorem 4.6 and Corollary 4.7 hold for all of them:

• Affine coupling flows as RealNVP (Dinh et al., 2017) and GLOW (Kingma & Dhariwal, 2018):

c(x; θ) = sx+ t. (28)

Here, θ = [s; t] ∈ R+ × R. Note that NICE (Dinh et al., 2015) is explicitly excluded from this list as it is a
volume-preserving flow (see Section 4.2).

• Nonlinear squared flow (Ziegler & Rush, 2019):

c(x; θ) = ax+ b+
c

1 + (dx+ h)2
, (29)

for θ = [a, b, c, d, h] ∈ R+ × R4. Choose c = 0 to obtain an affine coupling.

• Flow++ (Ho et al., 2019):

c(x; θ) = sσ−1

 K∑
j=1

πjσ

(
x− µj

σj

)+ t. (30)

Here, θ = [s; t; (πj , µj , σj)
K
j=1] ∈ R+ ×R× (R×R×R+)

K and σ is the logistic function. Choose all πj = 0 except
for π1 = 1, all µj = 0 and all σj = 1 to obtain an affine coupling.

• SOS polynomial flows (Jaini et al., 2019):

c(x; θ) =

∫ x

0

k∑
κ=1

(
r∑

l=0

al,κu
l

)2

du+ t. (31)

Here, θ = [t; (al,κ)l,κ] ∈ R× Rrk. Choose all al,κ = 0 except for a1,0 = s to obtain an affine coupling.

• Spline flows in all variants: Cubic (Durkan et al., 2019a), piecewise-linear, monotone quadratic (Müller et al., 2019),
and rational quadratic (Durkan et al., 2019b) splines. A spline is parameterized by knots θ with optional derivative
information depending on the spline type, and c computes the corresponding spline function. Choose the spline knots
as yi = sxi + t for an affine coupling, choose the derivatives as x′

i = s for an affine coupling.

• Neural autoregressive flow (Huang et al., 2018) use a feed-forward neural network to parameterize c(x; θ) by a
feed-forward neural network. They show that a neural network is guaranteed to be bijective if all activation functions
are strictly monotone and all weights positive. One can construct a ReLU network with a single linear region to obtain
an affine coupling.

• Unconstrained monotonic neural networks (Wehenkel & Louppe, 2019) also use a feed-forward neural, but restrict
it to have positive output. To obtain c(x; θ), this function is then numerically integrated with a learnable offset for
x = 0. Choose a constant neural network to obtain an affine coupling.

B. Proofs on Volume-preserving Flows
B.1. Proof of Theorem 4.2

In this section we want to present a two-dimensional example, for which no normalizing flow with constant Jacobian
determinant can be constructed such that the KL-divergence between the data distribution and the distribution defined by the
normalizing flow is zero.

p(x, y) =


0.9 if (x, y) ∈ [−0.5, 0.5]× [−0.5, 0.5]

0.9− k · (|x| − 0.5) if |x| ∈
[
0.5, 0.9

k + 0.5
]
∧ |y| ∈ [0, |x|]

0.9− k · (|y| − 0.5) if |y| ∈
[
0.5, 0.9

k + 0.5
]
∧ |x| ∈ [0, |y|]

0 else

(32)
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The data distribution p(x, y) which has to be approximated by the model is defined in (32). This data distribution has
a constant value of 0.9 in a box centered around the origin with a side length of one. This region of constant density is
skirted by a margin where the density decreases linearly to zero. Outside the decreasing region, the density is zero. The
linear decline is governed by the constant k in (32) which has to be chosen such that the density integrates to one. Since
our example only requires the region of constant density but not the decaying tails of it, the exact functional form of the
decaying regions are not relevant as long as they lead to a properly normalized distribution. Equation (32) only provides a
possible definition of such a density.

To approximate this data distribution a normalizing flow as defined in Section 3 is considered. In this example, we focus on
normalizing flows with constant Jacobian determinant. To simplify notation we define J = |f ′

θ(x)| = const.

A =
{
(x, y) ∈ R2 : 0.9− ϵ < pθ(x, y)

}
(33)

B = [−0.5, 0.5]× [−0.5, 0.5] (34)
Ā = B\A (35)

We choose ϵ = 0.1 and use this constant to define the set A (see (33)). In addition we define B which is the region of the
data space, where the data distribution has a constant value of 0.9 (see (34)). Ā is the complement of A on B (see (35)).

∆affine(p, pθ) = sup
A measurable

|P (A)− Pθ(A)| (36)

∆affine(p, pθ) ≤
√

1

2
DKL(p||pθ) (37)

The aim of this example, is to find lower bounds for the KL-divergence between the data distribution and the distribution
defined by the normalizing flow. To find these bounds we use Pinsker’s inequality (37) (Gibbs & Su, 2002) which links the
total variation distance (36) to the Kullback-leibler divergence. It is worth mentioning, that constructing one measurable
event for which |P (A)− Pθ(A)| > 0 provides a lower bound for the total variation distance and therefore for the KL
divergence.

To construct such an event, we consider two distinct cases, which consider different choice for the normalizing flow,
charaterised by the value of the absolute Jacobian determinant.

Case 1: A = ∅

This case arises if the absolute Jacobin determinant is so small, that the distribution defined by the normalizing flow never
exceeds the limit defining A or if it is chosen so large, that the volume of A vanishes.

In this case, we find Ā = B and |Ā| = 1 where |Ā| denotes the volume of the data space occupied by Ā. Using the fact that
the data distribution has a constant value of 0.9 in B and that pθ < 0.9− ϵ in Ā = B,

∣∣P (Ā)− Pθ(Ā)
∣∣ = ∣∣0.9− Pθ(Ā)

∣∣ (38)
≥ |0.9 · 1− (0.9− ϵ) · 1| (39)
= |ϵ| = ϵ (40)

Using (40) as a lower bound for the total variation distance (40) we can apply (37) to find (43) as a lower bound for the KL
divergence.

DKL(p||pθ) ≥ 2 ·∆affine(p, pθ)
2 (41)

≥ 2 · ϵ2 (42)
= 0.02 (43)
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Case 2: A ̸= ∅

Inserting the definition of pθ(x, y) as given in (1) into the definition of A (see 33) and rewriting the condition defining the
set yields (44).

A =

{
(x, y) ∈ R2 :

0.9− ϵ

J
< p(z = fθ(x, y))

}
(44)

This defines a set C in the latent space which is defined in (45).

C =

{
z ∈ R2 :

0.9− ϵ

J
< p(z)

}
(45)

Since the normalizing flows considered in this example have a constant Jacobian, the volume of A in the data space is
directly linked to the volume of C in the latent space via (46).

|A| = 1

J
· |C| (46)

The definition of C (45) shows, that C is a circle around the origin of the latent space. To determine the volume of C we
compute the radius of this circle. This is done by inserting the definition of the latent distribution, which is a two dimensional
standard normal distribution into the condition defining C (see (45)). This yields (47). Since the latent distribution is
rotational invariant one can simply look at it as a function of the distance r from the origin. Solving the for r leads to (48).

0.9− ϵ

J
<

1

2π
· exp

(
−r2

2

)
(47)

⇒ r =

√
−2 · log

(
2π · (0.9− ϵ)

J

)
(48)

Inserting (48) into the formula for the area of a circle and using (46), yields (50) as an expression for the volume of A. The
lower bound for the volume of A arises from finding the local maximum (which is also the global maximum) of (50) with
respect to the absolute Jacobian determinant J .

|A| = 1

J
· π · r2 (49)

=
1

J
· 2π · log

(
J

2π · (0.9− ϵ)

)
(50)

≤ 1

e · (0.9− ϵ)
(51)

(52)

As in the previous case, we now compute
∣∣P (Ā)− Pθ(Ā)

∣∣.
∣∣P (Ā)− Pθ(Ā)

∣∣ = ∣∣|Ā| · 0.9− Pθ(Ā)
∣∣ (53)

≥
∣∣|Ā| · 0.9− |Ā| · (0.9− ϵ)

∣∣ (54)
= |Ā| · ϵ (55)
≥ (1− |A|) · ϵ (56)

≥
(
1− 1

e · (0.9− ϵ)

)
· ϵ (57)
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Using (41) and (57) as a lower bound for the total variation distance and inserting our choice for ϵ yields (58) as a lower
bound for the KL divergence between the data distribution and the distribution defined by the normalizing flow.

DKL(p||pθ) ≥ 2 ·
(
ϵ ·
(
1− 1

e · (0.9− ϵ)

))2

(58)

≈ 0.0058 (59)

We can conclude, that we have derived lower bounds for the KL divergence between the data distribution and the distribution
defined by the normalizing flow, which can not be undercut by any normalizing flow with a constant absolute Jacobian
determinant. Therefore, we have proven that the class of normalizing flows with constant (absolute) Jacobian determinant
can not approximate arbitrary continuous distributions if one uses the KL divergence as a convergence measure.

B.2. Proof of Corollary 4.3

Definition B.1. Given a probability density p(x) and a connected set M ⊂ RD. Then, M is called a mode of p(x) if

p(x) = p(y) ∀x, y ∈ M, (60)

and there is a neighborhood U of M such that:

p(x) > p(y) ∀x ∈ M,y ∈ U \M. (61)

With this definition of a mode, let us characterize the correspondence between modes of pθ(x) and p(z) for an volume-
preserving flow:

Lemma B.2. Given a latent probability density p(z), a diffeomorphism fθ : RD → RD with constant Jacobian determinant
|f ′

θ(x)| = const and a mode M ⊂ RD. Then, f(M) is a mode of pθ(x).

Proof. We show that f(M) fulfils Definition B.1. First, for every x, y ∈ f(M): The pre-images of x, y are unique in M as
f is bijective, that is: f−1(x), f−1(y) ∈ M . As M is a mode:

p(f−1(x)) = p(f−1(y)). (62)

We follow:
(f♯p)(x) = p(f−1(x))|J | = p(f−1(y))|J | = (f♯p)(y), (63)

where we have used the change-of-variables formula for bijections and that |J | = const.

Let U be a neighborhood of M such that Equation (61) is fulfilled. As f is continuous, there is a neighborhood V of f(M)
such that V ⊆ f(U). Consider x ∈ f(M), y ∈ V \ f(M). As M is a mode:

p(f−1(x)) > p(f−1(y)). (64)

Multiplying both sides by |J |, we find:

(f♯p)(x) = p(f−1(x))|J | > p(f−1(y))|J | = (f♯p)(y). (65)

Thus, f(M) is a mode of (f♯p)(x) by Definition B.1.

This makes us ready for the proof of a generalization of Corollary 4.3:

Theorem B.3. p(z) and pθ(x) have the same number of modes.

Proof. By Lemma B.2, every mode of p(x) implies a mode of (f♯p)(x). Also, every mode of (f♯p)(x) implies a mode of
(f−1

♯ f♯p)(x) = p(x). Therefore, there is a one-to-one correspondence of modes between p(x) and (f♯p)(x).
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C. Proofs on Affine Coupling Flows
C.1. Proof of Theorem 4.4

C.1.1. UNDERLYING THEOREMS

Here, we restate the results from the literature that our main proof is based on:

First, (Eaton, 1986) show that if for some vector-valued random variable X and every pair of orthogonal projections the
mean of one projection conditioned on the other is zero, then X follows a spherical distribution:

Theorem C.1 (Eaton (1986)). Suppose the random vector X ∈ RD has a finite mean vector. Assume that for each vector
v ̸= 0 and for each vector u perpendicular to v (i.e. u · v = 0):

E[u ·X|v ·X] = 0. (66)

Then X is spherical and conversely.

Secondly, Cambanis et al. (1981, Corollary 8a) identifies the Gaussian from all elliptically contoured (which includes
spherical) distributions. We write it in the form of Bryc (1995, Theorem 4.1.4):

Theorem C.2 (Bryc (1995)). Let p(x) be radially symmetric with E[∥x∥α] < ∞ for some α > 0. If

E[∥x1,...,m∥α|xm+1,...,n] = const, (67)

for some 1 ≤ m < n, then p(x) is Gaussian.

Finally, Draxler et al. (2020, Theorem 1) show that the explicit form of the maximally achievable loss improvement by an
affine coupling block ∆∗

affine if the data is rotated by a fixed rotation layer Q is given by:

∆∗
affine(Q) = min

s,t
DKL(ps,t|Q(z)∥p(z)) (68)

= 1
2Eb

[
mi(b)

2 + σi(b)
2 − 1− log σi(b)

2
]
. (69)

Here, s, t are the scaling and translation in an affine coupling block (see Equation (28)), and we optimize over continuous
functions for now. By ps,t|Q(z) we denote the latent distribution achieved if ã(a; b) = s(b)⊙ a+ t(b) is applied to p(a, b),
the rotated version of the incoming p(z). The symbols mi(b), σi(b)

2 are conditional moments of the active dimensions ai
conditioned on the passive dimensions b:

mi(b) = Eai|b[ai], σi(b) = Eai|b[a
2
i ]−mi(b)

2. (70)

These conditional moments are continuous functions of b if p(x) is a continuous distribution and p(b) > 0 for all passive
b ∈ RD/2. The improvement in Equation (69) is achieved by the affine coupling block with the following subnetwork:

s∗i (b) =
1

σi(b)
, t∗i (b) = −mi(b)

σi(b)
. (71)

Note that s∗(b) and t∗(b) are continuous functions and not actual neural networks. In the next section, we show that a
similar statement on practically realizable neural networks that is sufficient for our universality.

C.1.2. RELATION TO PRACTICAL NEURAL NETWORKS

To relate Equations (69) and (71) to actually realizable networks, which cannot exactly follow the arbitrary continuous
functions s∗i (b), t

∗
i (b), we show Lemma 4.5 asserting that the fix point of adding coupling layers with continuous functions

is the same as that of single-layer neural networks, derived using a universal approximation theorem for neural networks
(Hornik, 1991):

Proof. First, note that ∆affine ∗ (Q) ≥ ∆affine(Q) ≥ 0 since no practically realizable coupling block can achieve better than
Equation (69). Thus, if ∆∗

affine(Q) = 0, so is ∆affine(Q) = 0.
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For the reverse direction, we fix Q = I , and otherwise consider a rotated version of p. Also, without loss of generalization,
we consider one single active dimension ai in the following, but the construction can then be repeated for each other active
dimension.

If we apply any affine coupling layer fcpl,φ(a; b) = sφ(b)a+ tφ(b), the loss change by this layer can be computed from the
theoretical maximal improvement ∆∗

affine(Q) before and after adding this layer ∆̃∗
affine(I):

∆affine(I) = ∆∗
affine(I)− ∆̃∗

affine(I) =
1
2Eb

[
mi(b)

2 + σi(b)
2 − 1− log σi(b)

2
]
− 1

2Eb

[
m̃i(b)

2 + σ̃i(b)
2 − 1− log σ̃i(b)

2
]
.

(72)

The moments after the affine coupling layers read:

m̃i(b) = sφ(b)mi(b) + tφ(b), σ̃i(b) = sφ(b)σi(b). (73)

Case 1: Eb[σi(b)
2 − 1− log σi(b)

2] > 0:

Then, without loss of generality, by continuity and positivity of p and consequential continuity of σi(b) in b, there is a convex
open set A ⊂ RD/2 with non-zero measure p(A) > 0 where σi(b) > 1. If σi(b) < 1 everywhere, apply the following
argument flipped around σi(b) = 1.

Denote by σmax = maxb∈A σi(b). Then, by continuity of σi(b) there exists B ⊂ A so that σi(b) > (σmax − 1)/2 + 1 =:
σmax /2 for all b ∈ B. Let C ⊂ B be a multi-dimensional interval [l1, r1]× · · · × [lD/2, rD/2] with p(C) > 0 inside of B.

Now, we construct a ReLU neural network with two hidden layers with the following property, where F ⊂ E ⊂ C are
specified later with p(F ) > p(E) > 0: 

fφ(x) =
1

σmax /2
x ∈ E ⊂ D

1
σmax /2

≤ fφ(x) < 1 x ∈ D

fφ(x) = 0 else.

(74)

To do so, we make four neurons for each dimension i = 1, . . . , D/2:

ReLU(xi − li),ReLU(xi − li −∆affine),ReLU(xi − ri),ReLU(xi − ri + δ), (75)

where 0 < ∆affine < mini(ri − li)/4. If we add these four neurons with weights 1,−1,−1, 1, we find the following
piecewise function: 

0 x ≤ li

x− li li < x < li + δ

δ li + δ ≤ x ≤ ri − δ

ri − x ri − δ < x < ri

0 ri ≤ x.

(76)

If we repeat this for each dimension and add together all neurons with the corresponding weights into a single neuron
in the second layer, then only inside D = (l1 + ∆affine, r1 − ∆affine) × · · · × (lD/2 + ∆affine, rD/2 − ∆affine) ⊂ C the
weighted sum would equal δD/2. By choosing ∆affine as above, this region has nonzero volume. We thus equip the
single neuron in second layer with a bias of −δD/2 + ϵ for some ϵ < δ, so that it is constant with value ϵ inside
E = (l1 + δ − ϵ, r1 − δ + ϵ)× · · · × (lD/2 + δ + ϵ, rD/2 − δ − ϵ) ⊂ D and smoothly interpolates to zero in the rest of D.

For the output neuron of our network, we choose weight (σmax /2 − 1)/ϵ and bias 1. By inserting the above construction,
we find the network specified in Equation (74).

Now, for all b ∈ D,
1 < σ̃i(b) < σi(b), (77)

so that
m̃i(b)

2 + σ̃i(b)
2 − 1− log σ̃i(b)

2 < mi(b)
2 + σi(b)

2 − 1− log σi(b)
2. (78)
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Thus, parameters φ exist that improve on the loss. (Note that this construction can be made more effective in practice by
identifying the sets where σ > 1 resp. σ < 1 and then building neural networks that output one or scale towards σ̃(b) = 1
everywhere. Because we are only interested in identifying improvement, the above construction is sufficient.)

Now, regrading tφ, we focus on Eb[mi(b)
2] > 0 (otherwise choose tφ = 0 as a constant, which corresponds to a ReLU

network with all weights and biases set to zero):

Eb[mi(b)
2] > Eb[(sφ(b)mi(b) + tφ(b))

2]. (79)

By (Hornik, 1991, Theorem 1) there always is a tφ that fulfills this relation.

Case 2: Eb[σi(b)
2 − 1 − log σi(b)

2] = 0. Then, choose the neural network sφ(b) = 1 as a constant. As ∆affine > 0,
Eb∼p(a,b)[mi(b)

2] > 0 and we can use the same argument for the existence of tφ as before.

C.1.3. MAIN PROOF

We now turn to the proof of Theorem 4.4:

Proof. The forward direction is trivial: p(z) = N (0, I) and therefore DKL(p(z)∥N (0, I)) = 0. As adding a identity layer
is a viable solution to Equation (17), there is a φ with DKL(pφ(z)∥N (0, I)) = 0, and thus ∆affine = 0.

For the reverse direction, start with ∆affine = 0. Then, by Lemma 4.5, also ∆∗
affine = 0.

The maximally achievable loss improvement for any rotation Q is then given by:

∆∗
affine = max

Q

1
2Eb

[
mi(b)

2 + σi(b)
2 − 1− log σi(b)

2
]
= 0. (80)

It holds that both x2 ≥ 0 and x2 − 1− log x2 ≥ 0. Thus, the following two summands are zero:

0 = 1
2Eb

[
mi(b)

2
]
, (81)

0 = 1
2Eb

[
σi(b)

2 − 1− log σi(b)
2
]
. (82)

This holds for all Q since the maximum over Q is zero.

By continuity of p(b) and m1(b) in p, this implies for all b:

Ea1|b[a1] = 0. (83)

Fix b1 and marginalize out the remaining dimensions b2,...D/2 to compute the mean of a1 conditioned on b1:

ma1|b = Ea1|b1 [a1] = Eb1,...,D/2
[Ea1|b[a1]] = Eb1,...,D/2

[0] = 0. (84)

As a1 and b1 are arbitrary orthogonal directions since the above is valid for any Q, we can employ Theorem C.1 to follow
that p(x) is spherically symmetric.

We are left with showing that for a spherical p(x), if for all Q there is no improvement ∆affine(Q), then p(x) = N (0, I).

Without loss of generality, we can fix Q = I , as (Q♯p)(x) = p(x) for all Q. We write x = (p; a).

As ∆affine = 0, we can follow σi(b) = 1 like above. This implies that:

Ea|b[∥a∥
2
] =

D/2∑
i=1

(mi(b)
2 + σi(b)

2) = D/2. (85)

In particular, this is independent of b and we can thus apply Theorem C.2 with α = 2.

Finally, m(b) = 0 and σi(b) = 1 for all Q imply that p(x) = N (0, I).
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Q1 θ1

Q1 θ1 Q2 θ2

min
Q1,θ1

ℒ1

min
Q2,θ2

ℒ2

Q1 θ1 Qn θnQ2 θ2

min
Qn,θn

ℒn

Figure 4. The normalizing flow we construct in our proof is remarkably simple: We iteratively add coupling blocks, optimizing the
parameters of the new block while keeping previous parameters fixed. Theorem 4.4 shows that if adding another blocks shows no
improvement in the loss, the flow has converged to a standard normal distribution in the latent space. Since the total loss that can be
removed is finite, the flow converges.

C.2. Proof of Theorem 4.6

The proof idea of iteratively adding new layers which are trained without changing previous layers is visualized in Figure 4.

Proof. Let us consider a coupling-based normalizing flow of depth n and call the corresponding latent distributions pn(z),
where n = 0 corresponds to the initial data distribution p(x). Denote by Ln = DKL(pn(z)∥p(z)) the corresponding loss.
Then, if we add another layer to the flow, we achieve a difference in loss of ∆affine,n = Ln+1 − Ln.

Without loss of generality, we assume that the rotation layer Q of this additional block can be chosen freely. Otherwise add
48 coupling blocks with fixed rotations that together exactly represent the Q we want, as shown by Koehler et al. (2021,
Theorem 2).

We then choose the rotation Q and subnetwork parameters φ of the additional block such that it maximally reduces the loss
in the sense of Equation (17), keeping the parameters of the previous layers fixed. Then, ∆affine,n attains the value given in
Equation (18).

Each layer contributes a non-negative improvement in the loss, which in total can only sum up to the initial loss. For a
non-negative series whose total sum is finite, the series must go to zero, which shows convergence in terms of Section 4.4:

∞∑
n=0

∆affine,n ≤ L0 < ∞ ⇒ ∆affine,n → 0. (86)

C.3. Relation to Convergence in KL

Corollary C.3. Given a series of probability distributions pn(z). Then, convergence in KL divergence

DKL(pn(z)∥N (0, 1))
n→∞−−−−→ 0 (87)

implies convergence in the convergence metric in Section 4.4:

∆affine,n
n→∞−−−−→ 0. (88)

Proof. By assumption, for every ϵ > 0 there exists N ∈ N such that:

DKL(pn(z)∥N (0, 1)) < ϵ ∀n > N. (89)
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This implies convergence of ∆affine,n, by the following upper bound via the sum of all possible future improvements which
is bounded from above by the total loss:

∆affine,n ≤
∞∑

m=n

∆affine,m ≤ DKL(pn(z)∥N (0, 1)) < ϵ ∀n > N. (90)

D. Benefits of More Expressive Coupling Blocks
To see what the best improvement for an infinite capacity coupling function can ever be, we make use of the following
Pythagorean identity combined from variants in Draxler et al. (2022); Cardoso (2003); Chen & Gopinath (2000):

L = DKL(pθ(z)∥N (0, I)) = P + Eb∼p(a,b)[D(b) + J(b) + S(b)]. (91)

The symbols P,D(b), J(b), S(b) all denote KL divergences:

The first two terms remain unchanged under a coupling layer: The KL divergence to the standard normal in the passive
dimensions P = DKL(pθ(b)∥N (0, ID/2)), which are left unchanged. The dependence between active dimensions D(b) =
DKL(pθ(a|b)∥pθ(a1|b) · · · pθ(aD/2|b)) measures the multivariate mutual information between active dimensions. It is
unchanged because each dimension ai is treated conditionally independent of the others (Chen & Gopinath, 2000).

The remaining terms measure how far each dimension pθ(ai|b) differs from the standard normal: The negentropy mea-
sures the divergence to the Gaussian with the same first moments as pθ(ai|b) in each dimension, summing to J(b) =∑D/2

i=1 DKL(pθ(ai|b)∥N (mi(b), σi(b))). Finally, the non-Standardness S(b) =
∑D/2

i=1 DKL(N (mi(b), σi(b))∥N (0, 1))
measures how far these 1d Gaussian are away from the standard normal distribution.

Note that the total loss L is invariant under a rotation of the data. The rotation does, however, affect how that loss is
distributed into the different components in Equation (91).

If we restrict the coupling function to be affine-linear c(ai; θ) = sai + t (i.e. a RealNVP coupling), then this means that
also J(b) is left unchanged, essentially because pθ(ai|b) and N (mi(b), σi(b)) undergo the same transformation (Draxler
et al., 2022, Lemma 1). Only a nonlinear coupling function c(ai; θ) can thus affect J(b) and reduce it to J̃(b) < J(b) (if
J(b) > 0).

Taking the loss difference between two layers, we find Equation (27).

E. Experimental details
We base our code on PyTorch (Paszke et al., 2019), Numpy (Harris et al., 2020), Matplotlib (Hunter, 2007) for plotting and
Pandas (Wes McKinney, 2010; The pandas development team, 2020) for data evaluation.

We provide our code at https://github.com/vislearn/Coupling-Universality. Sequentially running all
experiments takes less than two hours on a desktop computer with a GTX 2080 GPU.

E.1. Layer-wise flow

In experiment on a toy dataset for Figure 1, we demonstrate that a coupling flow constructed layer by layer as in Equation (22)
learns a target distribution. We proceed as follows:

We construct a data distribution on a circle as a Gaussian mixture of M Gaussians with means mi = (r cosφi, r sinφi),
where φi = 0, 1

M 2π, . . . , M−1
M 2π are equally spaced, and σi = 0.3. The advantage of approximating the ring with this

construction is that this yields a simple to evaluate data density, which we need for accurately plotting pθ(z):

p(x) =
1

M

M∑
i=1

N (x;mi, σ
2I). (92)

We then fit a total 100 layers in the following way: First, treat p(x) as the initial guess for the latent distribution. Then,
we build the affine coupling block that maximally reduces the loss using Equation (22). We therefore need to know the
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conditional mean m(b) and standard deviation σ(b) for each b. We approximate this from a finite number of samples
N which are grouped by the passive coordinate b into B bins so that N/B samples are in each bin. We then compute
the empirical mean mi and standard deviation σi over the active dimension in each bin i = 1, . . . , B. According to
Equation (22), we define si =

1
σi

and ti = − 1
σi
mi at the bin centers and interpolate between bins using a cubic spline.

Outside of the domain of the splines, we extrapolate constant s, t with the value of the closest bin. We do not directly
optimize over Q, but choose the Q that reduces the loss most out of NQ random 2d rotation matrices.

We limit the step size of each layer to avoid artifacts from finite training data, by mapping:

x̃ = αx+ (1− α)fblk(x). (93)

In addition, we resample the training data from the ground truth distribution after every step to avoid overfitting.

We choose N = 226, B = 64, M = 20, α = 0.5, NQ = 10. The resulting flow has 64 · 2 · 100 = 12, 800 learnable
parameters.

E.2. Volume-preserving flows

The target distribution is a two-dimensional Gaussian Mixture Model with two modes. The two modes have the same
relative weight but different covariance matrices.

The normalizing flow with a constant Jacobian determinant consists of 15 GIN coupling blocks as introduced in Sorrenson
et al. (2019). This type of coupling blocks has a Jacobin determinant of one. To allow volume scaling a layer with a learnable
global scaling is added after the final coupling block. This learnable weight is initialized as one. For the normalizing flow
with variable Jacobin determinant, the GIN coupling is modified by removing the normalization of the scaling factors in the
affine couplings. This allows the normalizing flow to have variable Jacobian determinants. In this case, the global scaling
block is omitted. To implement the normalizing flows we use the FrEIA package (Ardizzone et al., 2018a) implementation
of the GIN coupling blocks.

In both normalizing flows, the two sub-networks used to compute the parameters of the affine couplings are fully connected
neural networks with two hidden layers and a hidden dimensionality of 128. ReLU activations are used. The weights of
the linear layers of the subnetworks are initialized by applying the PyTorch implementation of the Xavier initialization
(Glorot & Bengio, 2010). In addition, the weights and biases of the final layer of each sub-networks are set to zero.

The networks are trained using the Adam (Kingma & Ba, 2017) with PyTorch’s default settings and a initial learning rate of
1 · 10−3 which is reduced by a factor of ten after 5000, 10000 and 15000 training iterations. In total, the training ran for
25000 iterations. In each iteration, a batch of size 128 was drawn from the target distribution to compute the negative log
likelihood objective. We use a standard normal distribution as latent distribution.
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