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Abstract: This paper introduces assignment flows for density matrices as state spaces for representa-
tion and analysis of data associated with vertices of an underlying weighted graph. Determining an
assignment flow by geometric integration of the defining dynamical system causes an interaction of
the non-commuting states across the graph, and the assignment of a pure (rank-one) state to each ver-
tex after convergence. Adopting the Riemannian–Bogoliubov–Kubo–Mori metric from information
geometry leads to closed-form local expressions that can be computed efficiently and implemented
in a fine-grained parallel manner. Restriction to the submanifold of commuting density matrices
recovers the assignment flows for categorical probability distributions, which merely assign labels
from a finite set to each data point. As shown for these flows in our prior work, the novel class of
quantum state assignment flows can also be characterized as Riemannian gradient flows with respect
to a non-local, non-convex potential after proper reparameterization and under mild conditions on
the underlying weight function. This weight function generates the parameters of the layers of a
neural network corresponding to and generated by each step of the geometric integration scheme.
Numerical results indicate and illustrate the potential of the novel approach for data representation
and analysis, including the representation of correlations of data across the graph by entanglement
and tensorization.

Keywords: assignment flows; Riemannian gradient flows; density matrix; information geometry
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1. Introduction
1.1. Overview and Motivation

A basic task of data analysis is categorization of observed data. We consider the
following scenario: On a given undirected, weighted graph G = (V , E , w), data Di ∈ X are
observed as points in a metric space (X , dX ) at each vertex i ∈ V . Categorization means to
determine an assignment

Di → j ∈ {1, . . . , c} =: [c] (1)

of a class label j among a finite set of labels to each data point Di. Depending on the
application, labels carry a specific meaning, e.g., type of tissue in medical imaging data,
object type in computer vision or land use in remote sensing data. The decision at any
vertex typically depends on decisions at other vertices. Thus, the overall task of labeling
data on a graph constitutes a particular form of structured prediction in the field of machine
learning [1].

Assignment flows denote a particular class of approaches for data labeling on graphs [2,3].
The basic idea is to represent each possible label assignment at vertex i ∈ V by an assignment
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vector Si ∈ ∆c in the standard probability simplex, the vertices of which encode the unique
label assignment for every label by the corresponding unit vector ej, j ∈ [c]. Data labeling
is accomplished by computing the flow S(t) of the dynamical system:

Ṡ = RS[ΩS], S(0) = S0, (2)

with the row-stochastic matrix S(t) and row vectors Si(t) as the state, which, under mild
conditions, converges to unique label assignment vectors (unit vectors) at every vertex
i ∈ V [4]. The vector field on the right-hand side in Equation (2) is parameterized by
parameters collected in a matrix Ω. These parameters strongly affect the contextual label
assignments. They can be learned from data in order to take into account typical relations
of data in the current field of application [5]. For a demonstration of the application of this
approach to a challenging medical imaging problem, we refer to [6].

From a geometric viewpoint, system (2) can be characterized as a collection of indi-
vidual flows Si(t) at each vertex that are coupled by the Ω parameters. Each individual
flow is determined by a replicator equation, which constitutes a basic class of dynamical
systems known from evolutionary game theory [7,8]. By restricting each vector Si(t) to
the relative interior ∆̊c of the probability simplex (i.e., the set of strictly positive discrete
probability vectors) and by turning this convex set into a statistical manifold equipped with
Fisher–Rao geometry [9], the assignment flow (2) becomes a Riemannian ascent flow on
the corresponding product manifold. The underlying information geometry is not only
important for making the flow converge to unique label assignments but also for the design
of efficient algorithms that actually determine the assignments [10]. For extensions of the
basic assignment flow approach to unsupervised scenarios of machine learning and for an
in-depth discussion of connections to other closely related work on structured prediction
on graphs, we refer to [11–13].

In this paper, we study a novel and substantial generalization of assignment flows from
a different point of view: assignment of labels to metric data, where the labels are elements
of a continuous set. This requires replacement of the simplex ∆c as state space, which can
only represent assignments of labels from a finite set. The substitutes for assignment vectors
Si, i ∈ V are Hermitian positive definite density matrices ρi, i ∈ V with unit trace:

Dc = {ρ ∈ Cc×c : ρ = ρ∗, tr ρ = 1}. (3)

Accordingly, the finite set of unit vectors ej, j ∈ [c] (vertices of ∆c are replaced by rank-one
density matrices ρ∞, also known as pure states in quantum mechanics [14]. The resulting
quantum state assignment flow (QSAF)

ρ̇ = Rρ

[
Ω[ρ]

]
, ρ(0) = ρ0, (4)

consists of a system of nonlinear first-order differential equations, whose solution ρ(t)
evolves on a corresponding product of state spaces Dc as given by Equation (3), with a
linear averaging operator Ω[.] and a generalized replicator operator Rρ[.] that is linear
with respect to the Ω[ρ] argument and nonlinear with respect to ρ (cf. Equation (64)). The
similarity of Equations (4) and (2) can be attributed to the common underlying design
strategy. System (4) couples the individual evolutions ρi(t) at each vertex i ∈ V through
Ω parameters, and the underlying information geometry causes convergence of each ρi(t)
towards a pure state. Using a different state space Dc (rather than ∆̊c in Equation (2))
requires the adoption of a different Riemannian metric, which results in a corresponding
definition of the operator Rρ.

Our approach is natural in that restricting Equation (4) to diagonal density matrices results
in Equation (2) after identifying each vector diag(ρi) of diagonal entries of the density matrix
ρi with an assignment vector Si ∈ ∆̊c. Conversely, Equation (4) considerably generalizes
Equation (2) and enhances modeling expressivity due to the non-commutative interaction of
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the state spaces ρi, i ∈ V across the underlying graph G when the quantum state assignment
flow is computed by applying geometric numerical integration to Equation (4).

We regard our approach merely as an approach to data representation and analysis rather
than a contribution to quantum mechanics. For example, dynamics Equation (4) clearly dif-
fers from the Hamiltonian evolution of quantum systems, yet we adopt the term “quantum
state”, since not only density matrices as state spaces but also the related information geom-
etry are largely motivated by quantum mechanics and quantum information theory [9,15].

1.2. Contribution and Organization

Section 2 summarizes the information geometry of both the statistical manifold of cate-
gorical distributions and the manifold of strictly positive definite density matrices. Section 3
summarizes the assignment flow approach (2) as a reference for the subsequent gener-
alization to Equation (4). This generalization is the main contribution of this paper and
is presented in Section 4. Each row of Table 1 specifies the section where an increas-
ingly general version of the original assignment flow (left column) is generalized to the
corresponding quantum state assignment flow (right column, same row).

Table 1. Components of the the Assignment Flow approach and the corresponding components of the
novel Quantum State Assignment Flow approach.

Assignment Flow (AF) Quantum State AF (QSAF)

Single-vertex AF (Section 3.1) Single-vertex QSAF (Section 4.2)

AF approach (Section 3.2) QSAF approach (Section 4.3)

Riemannian gradient AF (Section 3.3) Riemannian gradient QSAF (Section 4.4)

Recovery of the AF from the QSAF by restriction (Section 4.5)

Alternative metrics on the positive definite matrix manifold that have been used in the
literature are reviewed in Section 2.3 in order to position our approach from this point of
view. In Section 5, we describe some academic experiments that we conducted to illustrate
the properties of the novel approach. Working out a particular scenario of data analysis
is beyond the scope of this paper. We conclude and indicate directions of further work in
Section 6. For ease of readin, proofs are listed in Appendix A.

This paper considerably elaborates the short preliminary conference version [16].

1.3. Basic Notation

For the reader’s convenience, below, we specify the basic notational conventions used
in this paper.

[c] {1, 2, . . . , c}, c ∈ N
1c (1, 1, . . . , 1)> ∈ Rc

Rc
+ {x ∈ Rc : xi ≥ 0, i ∈ [c]}

Rc
++ {x ∈ Rc : xi > 0, i ∈ [c]}

e1, e2, . . . Canonical basis vectors of Rc

〈u, v〉 Euclidean inner vector product
‖u‖ Euclidean norm

√
〈u, u〉

Ic Unit matrix of Rc×c

p · q Component-wise vector multiplication (p · q)i = piqi, i ∈ [c], p, q ∈ Rc
q
p Component-wise division

( q
p
)

i =
qi
pi

, i ∈ [c], q ∈ Rc, p ∈ Rc
++

Hc Space of Hermitian c× c matrices (cf. (22))
tr(A) Trace ∑i Aii of matrix A
〈A, B〉 Matrix inner product tr(AB), A, B ∈ Hc
[A, B] Commutator AB− BA
Diag(v) The diagonal matrix with vector v as entries
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diag(V) The vector of the diagonal entries of a square matrix V
expm The matrix exponential
logm The matrix logarithm exp−1

m
∆c The set of discrete probability vectors of dimension c (cf. (6))

Sc
The relative interior of ∆c, i.e., the set of strictly positive probability
vectors (cf. (7))

Wc The product manifold Sc × · · · × Sc (cf. (53))
Pc The set of symmetric positive definite c× c matrices (cf. (17))
Dc The subset of matrices in Pc whose trace is equal to 1 (cf. (18))
Qc The product manifold Dc × · · · × Dc (cf. (96))
1Sc Barycenter 1

c1c of the manifold Sc
1Wc Barycenter (1Sc ,1Sc , . . . ,1Sc)

> of the manifoldW
1Dc Matrix Diag(1Sc) ∈ Dc ⊂ Cc×c

gp, gW , gρ The Riemannian metrics on Sc,Wc,Dc (cf. (8), (54), (25))
Tc,0, Tc,0,Hc,0 The tangent spaces to Sc,Wc,Dc (cf. (10), (54), (21))
πc,0, Πc,0 Orthogonal projections onto T0,Hc,0 (cf. (11), (24))

Rp, RW ,Rρ
Replicator operators associated with the assignment flows
on Sc,Wc,Dc,Qc (cf. (12), (58), (64), (106))

∂ Euclidean gradient operator: ∂ f (p) =
(
∂p1 f (p), ∂p2 f (p), . . .

)>
grad Riemannian gradient operator with respect to the Fisher–Rao metric

RW [·], Ω[·], etc.
Square brackets indicate a linear operator that acts in a non-standard
way, e.g., row-wise to a matrix argument.

2. Information Geometry

Information geometry [17,18] is concerned with the representation of parametric prob-
ability distributions from a geometric viewpoint, e.g., the exponential family of distribu-
tions [19]. Specifically, an open convex setM of parameters of a probability distribution
becomes a Riemannian manifold (M, g) when equipped with a Riemannian metric g. The
Fisher–Rao metric is the canonical choice due to its invariance properties with respect to
reparameterization [20]. A closely related scenario concerns the representation of the inte-
rior of compact convex bodies as Riemannian manifolds (M, g) due to the correspondence
between compactly supported Borel probability measures and an affine equivalence class
of convex bodies [21].

A key ingredient of information geometry is the so-called α-family of affine connections
introduced by Amari [17], which comprises the so-called e-connection ∇ and m-connection
∇∗ as special cases. These connections are torsion-free and dual to each other in the sense
that they jointly satisfy the equation that uniquely characterizes the Levi–Civita connection
as a metric connection [17] (Definition 3.1, Theorem 3.1). Regarding numerical compu-
tations, working with the exponential map induced by the e connection is particularly
convenient, since its domain is the entire tangent space. We refer to [9,22,23] for further
reading and to [24] and [9] (Chapter 7) for the specific case of quantum state spaces.

In this paper, we are concerned with two classes of convex sets:

• The relative interior of probability simplices, each of which represents the categorical
(discrete) distributions of the corresponding dimension; and

• The set of positive definite symmetric matrices with trace one.

Sections 2.1 and 2.2 introduce the information geometry for the former and the latter
class of sets, respectively.

2.1. Categorical Distributions

We set
[c] := {1, 2, . . . , c}, c ∈ N. (5)
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and denote the probability simplex of distributions on [c] as

∆c :=
{

p ∈ Rc
+ : 〈1c, p〉 = ∑

i∈[c]
pi = 1

}
, 1c := (1, 1, . . . , 1)> ∈ Rc. (6)

Its relative interior equipped with the Fisher–Rao metric becomes the Riemannian
manifold (Sc, g),

Sc := rint ∆c = {p ∈ ∆c : pi > 0, i ∈ [c]}, (7)

gp(u, v) := ∑
i∈[c]

uivi
pi

= 〈u, Diag(p)−1v〉, ∀u, v ∈ Tc,0, p ∈ Sc, (8)

with the trivial tangent bundle given by

TSc ∼= Sc × Tc,0 (9)

and the tangent space

Tc,0 := T1Sc
Sc = {v ∈ Rc : 〈1c, v〉 = 0}. (10)

The orthogonal projection onto Tc,0 is denoted by

πc,0 : Rc → Tc,0, πc,0v := v− 1
c
〈1c, v〉1c =

(
Ic − 1c1

>
Sc

)
v. (11)

The mapping defined next plays a major role in all dynamical systems under consider-
ation in this paper.

Definition 1 (replicator operator). The replicator operator is the linear mapping of the tangent space

R : Sc × Tc,0 → Tc,0, Rpv := (Diag(p)− pp>)v, p ∈ Sc, v ∈ Tc,0 (12)

parameterized by p ∈ Sc.

The name ‘replicator’ is due to the role of this mapping in evolutionary game theory;
see Remark 2 on page 9.

Proposition 1 (properties of Rp). Mapping (12) satisfies

Rp1c = 0, (13)

πc,0Rp = Rpπc,0 = Rp, ∀p ∈ Sc. (14)

Furthermore, let f : Sc → R be a smooth function and f̃ : U → R be a smooth extension of f to an
open neighborhood U of Sc ⊂ Rc with f̃ |Sc = f . Then the Riemannian gradient of f with respect
to the Fisher–Rao metric (8) is given by

grad f (p) = Rp∂ f̃ (p). (15)

Proof. Appendix A.1

Remark 1. Equations (15) and (A24) show that the replicator operator Rp is the inverse metric
tensor with respect to the Fisher–Rao metric (8), as expressed in the ambient coordinates.

The exponential map induced by the e connection is defined on the entire space Tc,0
and reads [22]
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Exp: Sc × Tc,0 → Sc, Expp(v) :=
p · e

v
p

〈p, e
v
p 〉

, p ∈ Sc, v ∈ Tc,0. (16)

2.2. Density Matrices

We denote the open convex cone of positive definite matrices by

Pc := {ρ ∈ Cc×c : ρ = ρ∗, ρ � 0} (17)

and the manifold of strictly positive definite density matrices by

Dc := {ρ ∈ Pc : tr ρ = 1}. (18)

where Dc is the intersection of Pc and the hyperplane defined by the trace-one constraint.
Its closureDc is convex and compact. We can identify the spaceDc as the space of invertible
density operators in the sense of quantum mechanics on the finite-dimensional Hilbert
space Cc without loss of generality. Any matrix ensemble of the form

{Mi}i∈[n] ⊂ P c : ∑
i∈[n]

Mi = Ic (19)

induces the probability distribution on [n] via the Born rule

p ∈ ∆n : pi = 〈Mi, ρ〉 = tr(Miρ), i ∈ [n]. (20)

Equation (19) is called the positive operator valued measure (POVM). We refer to [14] for the
physical background and to [25] and references therein for the mathematical background.

The analog of Equation (10) is the tangent space in which at any point, ρ ∈ Dc is equal
to the space of traceless symmetric matrices.

Hc,0 := Hc ∩ {X ∈ Cc×c : tr X = 0}, (21)

where

Hc := {X ∈ Cc×c : X∗ = X}. (22)

Therefore, the manifold Dc has a trivial tangent bundle given by

TDc = Dc ×Hc,0, (23)

with the tangent spaceHc,0 = T1Dc
Dc defined in Equation (21). The corresponding orthog-

onal projection onto the tangent spaceHc,0 reads

Πc,0 : Hc → Hc,0, Πc,0[X] := X− tr X
c

Ic. (24)

Equipping the manifold Dc as defined in Equation (18) with the Bogoliubov–Kubo–Mori
(BKM) metric [26] results in a Riemannian manifold (Dc, g). Using TρDc = Hc,0, this metric
can be expressed by

gρ(X, Y) :=
∫ ∞

0
tr
(
X(ρ + λI)−1Y(ρ + λI)−1)dλ, X, Y ∈ Hc,0, ρ ∈ Dc. (25)

This metric uniquely ensures the existence of a symmetric e-connection ∇ on Dc that is
mutually dual to its m-connection ∇∗ in the sense of information geometry, leading to a
dually flat structure (g,∇,∇∗) [27] and [9] (Theorem 7.1).
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The following map and its inverse, defined in terms of the matrix exponential expm
and its inverse logm = exp−1

m , are convenient.

T : Dc ×Hc → Hc, (26)

Tρ[X] :=
d
dt

logm(ρ + tX)
∣∣
t=0 =

∫ ∞

0
(ρ + λI)−1X(ρ + λI)−1dλ, (27)

T−1
ρ [X] =

d
dt

expm(H + tX)
∣∣
t=0 =

∫ 1

0
ρ1−λXρλdλ, ρ = expm(H). (28)

The inner product (25) may now be written in the form of

gρ(X, Y) = 〈Tρ[X], Y〉, (29)

since the trace is invariant with respect to cyclic permutations of a matrix product as an
argument. Likewise,

〈ρ, X〉 = tr(ρX) = trT−1
ρ [X]. (30)

We also consider two subspaces on the tangent space TρDc,

Tu
ρDc := {X ∈ Hc,0 : ∃Ω = −Ω∗ such that X = [Ω, ρ]}, (31)

Tc
ρDc := {X ∈ Hc,0 : [ρ, X] = 0}, (32)

which yield the decomposition [9]

TρDc = Tc
ρDc ⊕ Tu

ρDc. (33)

In Section 4.5, we use this decomposition to recover the assignment flow for categorical
distributions from the quantum state assignment flow by restriction to a submanifold of
commuting matrices.

2.3. Alternative Metrics and Geometries

The positive definite matrix manifold Pc (We confine ourselves in this subsection to
the case of of real density matrices, as our main references for comparison only deal with
real matrix manifolds) has become a tool for data modelling and analysis during the last
two decades. Accordingly, a range of Riemannian metrics exist with varying properties.
A major subclass is formed by the O(n)-invariant metrics, including the log-Euclidean,
affine-invariant, Bures–Wasserstein and Bogoliubov–Kubo–Mori (BKM) metrics. We refer
to [28] for a comprehensive recent survey.

This section provides a brief comparison of the BKM metric (25) adopted in this paper
with two metrics often employed in the literature: the affine-invariant metric and the log-
Euclidean metric, which may be regarded as ‘antipodal points’ in the space of metrics from
the geometric and the computational viewpoint, respectively.

2.3.1. Affine-Invariant Metrics

The affine-invariant metric has been derived in various ways, e.g., based on the
canonical matrix inner product on the tangent space [29] (Section 6) or as Fisher–Rao metric
on the statistical manifold of centered multivariate Gaussian densities [30]. The metric is
given by

gρ(X, Y) = tr
(
ρ−

1
2 Xρ−

1
2 ρ−

1
2 Yρ−

1
2
)
= tr

(
ρ−1Xρ−1Y

)
, ρ ∈ Pc, X, Y ∈ TρPc. (34)

The exponential map with respect to the Levi–Civita connection reads

exp(aff)
ρ (X) = ρ

1
2 expm

(
ρ−

1
2 Xρ−

1
2
)
ρ

1
2 , ρ ∈ Pc, X ∈ TρPc. (35)
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This Riemannian structure turns Pc into a manifold with negative sectional curvature [31]
(Chapter II.10), which is convenient from the geometric viewpoint due to uniquely defined
Riemannian means and geodesic convexity [32] (Section 6.9). On the other hand, evaluating
Equations (34) and (35) is computationally expensive, in particular when computing the
quantum state assignment flow, which essentially involves geometric averaging.

2.3.2. Log-Euclidean Metric

The log-Euclidean metric introduced in [33] is the pullback of the canonical matrix
inner product with respect to the matrix logarithm and is given by

gρ(X, Y) = tr(d logm(ρ)[X], d logm(ρ)[Y])
(27)
= 〈Tρ[X],Tρ[Y]〉, ρ ∈ Pc X, Y ∈ TρPc. (36)

The exponential map reads

exp(log)
ρ (X) = expm

(
logm(ρ) +Tρ[X]

)
, ρ ∈ Pc X, Y ∈ TρPc (37)

and is much more convenient from the computational viewpoint. Endowed with this
metric, the space Pc is isometric to a Euclidean space. The log-Euclidean metric is not
curved and merely invariant under orthogonal transforms and dilations [28].

2.3.3. Comparison to Bogoliubov-Kubo-Mori Metric

The BKM metric (Equations (25) and (30)) given by

gρ(X, Y) = 〈Tρ[X], Y〉, ρ ∈ Pc X, Y ∈ TρPc, (38)

looks similar to the log-Euclidean metric (36). Regarding them both as members of the class
of mean kernel metrics [28] (Definition 4.1) enables an intuitive comparison. For real-valued
matrices, mean kernel metrics have the form of

gρ(X, X) = gD(X′, X′) = ∑
i,j∈[c]

(X′ij)
2

φ(Dii, Djj)
, ρ = VDV>, V ∈ O(n), X = VX′V>, (39)

with a diagonal matrix D = Diag(D11, . . . , Dcc) and a bivariate function φ(x, y) = a m(x, y)θ ,
a > 0 in terms of a symmetric homogeneous mean m : R+ ×R+ → R+. Regarding the log-
Euclidean metric, φ(x, y) =

( x−y
log x−log y

)2, whereas for the BKM metric, φ(x, y) = x−y
log x−log y .

Taking the restriction to density matrices Dc ⊂ Pc into account, one has the relation

exp(log)
ρ (Y) = Exp(e)

ρ (X), ρ ∈ Dc, X ∈ Hc,0, (40)

Y = X− log
(

tr expm
(

logm(ρ) +Tρ[X]
))

ρ, (41)

as explained in Remark 4. Here, the left-hand side of Equation (40) is the exponential map
(37) induced by the log-Euclidean metric, and Exp(e)

ρ is the exponential map with respect
to the affine e connection of information geometry, as detailed below by Proposition 4.
This close relationship of the e-exponential map Exp(e)

ρ with the exponential map of the
log-Euclidean metric highlights the computational efficiency of using the BKM metric,
which we adopt for our approach. This is also motivated by the lack of an explicit formula
for the exponential map with respect to the Levi–Civita connection [34]. To date, the sign of
the curvature remains unknown.

We note that to the best of our knowledge, the introduction of the affine connections
of information geometry as surrogates of the Riemannian connection for any statistical
manifold predates the introduction of the log-Euclidean metric for the specific space Pc.
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3. Assignment Flows

The assignment flow approach was informally introduced in Section 1. In this section,
we summarize the mathematical ingredients of this approach as a reference for the subse-
quent generalization to quantum states (density matrices) in Section 4. Sections 3.1 and 3.2
introduce the assignment flow on a single vertex and on an arbitrary graph, respec-
tively. A reparameterization turns the latter into a Riemannian gradient flow (Section 3.3).
Throughout this section, we refer to definitions and notions introduced in Section 2.1.

3.1. Single-Vertex Assignment Flow

Let D = (D1, . . . , Dc)> ∈ Rc and consider the task of picking the smallest components
of D. Formulating this operation as an optimization problem amounts to evaluating the
negative support function, in the sense of convex analysis [35] (p. 28), of the probability
simplex ∆c at −D,

min
j∈[c]
{D1, . . . , Dc} = −max

p∈∆c
〈−D, p〉. (42)

In practice, the vector D represents real-valued noisy measurements at some vertex i ∈ V
of an underlying graph G = (V , E) and is therefore in a “general position”, that is, the
minimal component is unique. If j∗ ∈ [c] indexes the minimal component Dj∗ , then the
corresponding unit vector p∗ = ej∗ maximizes the right-hand side of (42). Assignment
vectors assign a label (index) to observed data vectors.

If D varies, the operation (42) is non-smooth. In view of a desired interaction of
label assignments across the graph (cf. Section 3.2), we therefore replace this operation by
a smooth dynamical system whose solution converges to the desired assignment vector.
To this end, the vector D is represented on Sc as a likelihood vector

Lp(D) := expp(−πc,0D)
(14)
= expp(−D), p ∈ Sc, (43)

where

exp : Sc × Tc,0 → Sc, expp(v) := Expp ◦Rp(v) =
p · ev

〈p, ev〉 , p ∈ Sc. (44)

The single-vertex assignment flow equation reads

ṗ = RpLp(D) = p ·
(

Lp(D)− 〈p, Lp(D)〉1c
)
, p(0) = 1Sc . (45)

Its solution p(t) converges to the vector that solves the label assignment problem (42) (see
Corollary 1 below).

Remark 2 (replicator equation). Differential equations of the form (45), with some Rc-valued
function F(p) in place of Lp(D), are known as replicator equation in evolutionary game theory [7].

Lemma 1. Let p ∈ Sc. Then, the differentials of the mapping (44) with respect to p and v are given by

dv expp(v)[u] = Rexpp(v)
u, (46)

dp expp(v)[u] = Rexpp(v)
u
p

, p ∈ Sc, u, v ∈ Tc,0. (47)

Proof. Appendix A.2.

Theorem 1 (single-vertex assignment flow). The single-vertex assignment flow Equation (45)
is equivalent to the system

ṗ = Rpq, p(0) = 1Sc , (48)

q̇ = Rqq, q(0) = L1Sc
(D), (49)
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with solution given by

p(t) = exp1Sc

( ∫ t

0
q(τ)dτ

)
. (50)

Proof. Appendix A.2.

Corollary 1 (single-vertex label assignment). Let J ∗ := arg minj∈[c]{Dj : j ∈ [c]} ⊆ [c].
Then, the solution p(t) to (45) satisfies

lim
t→∞

p(t) =
1
|J ∗| ∑

j∈J∗
ej ∈ arg max

p∈∆c
〈−D, p〉. (51)

In particular, if D has a unique minimal component Dj∗ , then p(t)→ ej∗ as t→ ∞.

Proof. Appendix A.2.

3.2. Assignment Flows

The assignment flow approach consists of the weighted interaction–as defined
below–of single-vertex assignment flows associated with vertices i ∈ V of a weighted
graph G = (V , E , ω) with a non-negative weight function

ω : E → R+, ik 7→ ωik. (52)

The assignment vectors are denoted by Wi, i ∈ V and form the row vectors of a row-
stochastic matrix.

W ∈ Wc := Sc × · · · × Sc︸ ︷︷ ︸
|V| factors

. (53)

The product spaceWc is called the assignment manifold (Wc, g), where the metric g is defined
by applying (8) row-wise,

gW(U, V) := ∑
i∈V

gWi (Ui, Vi), U, V ∈ Tc,0 := Tc,0 × · · · × Tc,0. (54)

The assignment flow equation generalizing (45) reads

Ẇ = RW [S(W)], (55)

where the similarity vectors

Si(W) := ExpWi

(
∑

k∈Ni

ωik Exp−1
Wi

(
LWk (Dk)

))
, i ∈ V (56)

form the row vectors of the matrix S(W) ∈ Wc. The neighborhoods

Ni := {i} ∪ {k ∈ V : ik ∈ E} (57)

are defined by the adjacency relation of the underlying graph G, and RW [·] of Equation (55)
applies Equation (12) row-wise,

RW [S(W)]i = RWi Si(W), i ∈ V . (58)

Note that the similarity vectors Si(W) given by (56) result from geometric weighted averag-
ing of the velocity vectors Exp−1

Wi

(
LWk (Dk)

)
. The velocities represent given data Di, i ∈ V

via the likelihood vectors LWi (Di) given by (43). Each choice of the weights ωik in (56)
associated with every edge ik ∈ E defines an assignment flow W(t) solving (55). Thus,
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these weight parameters determine how individual label assignments by (43) and (45)
are regularized.

Well-posedness, stability and quantitative estimates of basins of attraction to integral
label assignment vectors were established in [4]. Reliable and efficient algorithms for
numerical computation of the assignment flow were devised in [10].

3.3. Reparameterized Assignment Flows

In [36] (Proposition 3.6), the following parameterization of the general assignment
flow Equation (55) was introduced, which generalizes the parameterization (48) and (49) of
the single-vertex assignment flow (45).

Ẇ = RW [S], W(0) = 1Wc , (59)

Ṡ = RS[ΩS], S(0) = S(1Wc), (60)

with the non-negative weight matrix corresponding to the weight function (52),

Ω = (Ω1, . . . , Ω|V|)
> ∈ R|V|×|V|, Ωik :=

{
ωik, if k ∈ Ni,
0, otherwise.

(61)

In terms of (60), this formulation reveals the “essential” part of the assignment flow equa-
tion, since (59) depends on (60) but not vice versa. Furthermore, the data and weights show
up only in the initial point and in the vector field on the right-hand side of (60), respectively.

Henceforth, we solely focus on (60) rewritten for convenience as

Ṡ = RS[ΩS], S(0) = S0, (62)

where S0 comprises the similarity vectors (56) evaluated at the barycenter W = 1Wc .

4. Quantum State Assignment Flows

In this section, we generalize the assignment flow Equations (55) and (62) to the
product manifold Qc of density matrices as state space. The resulting equations have a
similar mathematical form. Their derivation requires:

• Determination of the form of the Riemannian gradient of functions f : Dc → R with
respect to the BKM metric (25), the corresponding replicator operator and exponential
mappings Exp and exp, together with their differentials (Section 4.1);

• Definition of the single-vertex quantum state assignment flow (Section 4.2);
• Determination of the general quantum state assignment flow equation for an arbitrary

graph (Section 4.3) and its alternative parameterization (Section 4.4), which generalizes
Formulation (62) of the assignment flow accordingly.

A natural question is: What does “label” mean for a generalized assignment flow
evolving on the product manifold Qc of density matrices? For the single vertex quantum
state assignment flow, i.e., without interaction of these flows on a graph, it turns out that the
pure state corresponding to the minimal eigenvalue of the initial density matrix is assigned
to the given data point (Proposition 5). Coupling non-commuting density matrices over the
graph through the novel quantum state assignment flow, therefore, generates interesting
complex dynamics, as illustrated in Section 5. In Section 4.5, we show that the restriction
of the novel quantum state assignment flow to commuting density matrices recovers the
original assignment flow for discrete labels.

Throughout this section, we refer to definitions and notions introduced in Section 2.2.

4.1. Riemannian Gradient, Replicator Operator and Further Mappings

Proposition 2 (Riemannian gradient). Let f : Dc → R be a smooth function defined on
the manifold (18) and f̃ : U → R be a smooth extension of f to an open neighborhood U of
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Dc ⊂ Cc×c with f̃ |Dc = f . Then, its Riemannian gradient with respect to the BKM metric (25) is
given by

gradρ f = T−1
ρ [∂ f̃ ]− 〈ρ, ∂ f̃ 〉ρ, (63)

where T−1
ρ is given by (28), and ∂ f̃ is the ordinary gradient with respect to the Euclidean structure

of the ambient space Cc×c.

Proof. Appendix A.3.

Comparing the result (63) with (15) motivates the following:

Rρ : Hc → Hc,0, Rρ[X] := T−1
ρ [X]− 〈ρ, X〉ρ, ρ ∈ Dc (replicator map) (64)

The following lemma shows that the properties (63) extend to (64).

Lemma 2 (properties of Rρ). Let Πc,0 denote the orthogonal projection (24). Then, the replicator
map (64) satisfies

Πc,0 ◦Rρ = Rρ ◦Πc,0 = Rρ, ∀ρ ∈ Dc. (65)

Proof. Appendix A.3.

Lemma 2 shows that the replicator map (64) implicitly comprises the orthogonal
projection onto the tangent space. This allows for the averaging in (109) without the
necessity of explicit projection, which simplifies the notation and explains the larger domain
Hc of Rρ in (64).

Next, using the tangent spaceHc,0, we define a parameterization of the manifold Dc
in terms of the mapping.

Γ : Hc,0 → Dc, Γ(X) :=
expm(X)

tr expm(X)
= expm

(
X− ψ(X)I

)
, (Γ-map) (66)

where

ψ(X) := log
(

tr expm(X)
)
. (67)

The following lemma and proposition show that the domain of Γ extends to Rc×c.

Lemma 3 (extension of Γ). The extension to Cc×c of the mapping Γ defined by (66) is well-defined
and given by

Γ : Cc×c → Dc, Γ(Z) = Γ(Πc,0[Z]). (68)

Proof. Appendix A.3.

Proposition 3 (inverse of Γ). The map Γ defined by (66) is bijective with inverse

Γ−1 : Dc → Hc,0, Γ−1(ρ) = Πc,0[logm ρ]. (69)

Proof. Appendix A.3.

The following lemma provides the differentials of the mappings Γ and Γ−1.

Lemma 4 (differentials dΓ and dΓ−1). Let H, X ∈ Hc,0 with Γ(H) = ρ and
Y ∈ THc,0 ∼= Hc,0. Then,

dΓ(H)[Y] = T−1
ρ

[
Y− 〈ρ, Y〉I

]
, ρ = Γ(H), (70)

dΓ−1(ρ)[X] = Πc,0 ◦Tρ[X]. (71)
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Proof. Appendix A.3.

We finally compute a closed-form expression of the e-geodesic, i.e., the geodesic
resp. exponential map induced by the e connection on the manifold (Dc, g).

Proposition 4 (e-geodesics). The e-geodesic emanating at ρ ∈ Dc in the direction of X ∈ Hc,0
and the corresponding exponential map are given by

γ
(e)
ρ,X(t) := Exp(e)

ρ (tX), t ≥ 0 (e-geodesic) (72)

Exp(e)
ρ (X) := Γ

(
Γ−1(ρ) + dΓ−1(ρ)[X]

)
(exponential map) (73)

= Γ
(
Γ−1(ρ) + Πc,0 ◦Tρ[X]

)
. (74)

Proof. Appendix A.3.

Corollary 2 (inverse exponential map). The inverse of the exponential mapping (72) is given by

(
Exp(e)

ρ

)−1 : Dc → Hc,0,
(

Exp(e)
ρ

)−1
(µ) = dΓ

(
Γ−1(ρ)

)[
Γ−1(µ)− Γ−1(ρ)

]
. (75)

Proof. Appendix A.3.

Analogous to (44), we define the mapping as expρ, where both the subscript and the
argument disambiguate the meaning of “exp”.

Lemma 5 (exp-map). The mapping defined using (73) and (64) by

expρ : H0,c → Dc, expρ(X) := Exp(e)
ρ ◦Rρ[X], ρ ∈ Dc (exp-map) (76)

has the explicit form

expρ(X) = Γ
(
Γ−1(ρ) + X

)
. (77)

Proof. Appendix A.3.

The following lemma provides the explicit form of the differential of the mapping (77),
which resembles the corresponding Formula (46) of the assignment flow.

Lemma 6 (differential d expρ). The differential of the mapping (76) and (77) reads with ρ ∈ Dc,
X ∈ Hc,0 and Y ∈ THc,0 ∼= Hc,0

d expρ(X)[Y] = Rexpρ(X)[Y]. (78)

Proof. Appendix A.3.

Remark 3 (comparing exp-maps–I). Since (78) resembles (46), one may wonder about the
connection between (77) and (44). In view of (66), we define

γ : Tc,0 → Sc, γ(v) :=
ev

〈1, ev〉 = exp1Sc
(v) (79)

and compute with the expression for its inverse (cf. [36])

γ−1(p) = πc,0 log
p
1Sc

= πc,0(log p− log1Sc) = πc,0 log p (80)

(11)
= log p− 〈1Sc , log p〉1c (81)
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which resembles (69). Moreover, in view of (77), the analogous expression using γ instead of Γ reads

γ
(
γ−1(p) + v

)
=

eπc,0 log p+v

〈1, eπc,0 log p+v〉
=
〈1Sc , log p〉p · ev

〈〈1Sc , log p〉p, ev〉 =
p · ev

〈p, ev〉 (82)

= expp(v). (83)

Remark 4 (comparing exp-maps–II). Using the above definitions and relations, we check
Equation (40): exp(log)

ρ (Y) = Exp(e)
ρ (X), where the relation (41) between Y and X can now

be written in the following form:

Y
(67)
= X− ψ

(
logm(ρ) +Tρ[X]

)
ρ. (84)

Direct computation yields

exp(log)
ρ (Y)

(37)
= expm(logm(ρ) +Tρ[Y]) (85)

(41)
= expm

(
logm(ρ) +Tρ[X]− ψ

(
logm(ρ) +Tρ[X]

) =Ic︷ ︸︸ ︷
Tρ ◦T−1

ρ [Ic]︸ ︷︷ ︸
=ρ

)
(86)

(66)
(68)
= Γ

(
Πc,0[logm(ρ)] + Πc,0 ◦Tρ[X]

)
= Γ

(
Γ−1(ρ) + Πc,0 ◦Tρ[X]

)
(87)

= Exp(e)
ρ (X). (88)

4.2. Single-Vertex Density Matrix Assignment Flow

We generalize the single-vertex assignment flow Equation (45) to the manifold (Dc, gρ)
given by (18) with the BKM metric (25).

In view of (43), the likelihood matrix is defined as

Lρ : Hc → Dc, Lρ(D) := expρ(−Πc,0[D]), ρ ∈ Dc, (89)

and the corresponding single-vertex quantum state assignment flow (SQSAF) equation reads

ρ̇ = Rρ[Lρ(D)] (SQSAF) (90)

(64)
= T−1

ρ [Lρ(D)]− 〈ρ, Lρ(D)〉ρ, ρ(0) = 1Dc = Diag(1Sc). (91)

Proposition 5 below specifies its properties after a preparatory Lemma.

Lemma 7. Assume

D = QΛDQ> ∈ Hc and ρ = QΛρQ> ∈ Dc (92)

can be simultaneously diagonalized with Q ∈ O(c), ΛD = Diag(λD), Λρ = Diag(λρ) and
λρ ∈ Sc, since tr ρ = 1. Then,

Lρ(D) = Q Diag
(

expλρ
(−λD)

)
Q>. (93)

Proof. Appendix A.3.
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Proposition 5 (SQSAF limit). Let D = QΛDQ> be the spectral decomposition of D with
eigenvalues λ1 ≥ · · · ≥ λc and orthonormal eigenvectors of Q = (q1, . . . , qc). Assume that the
minimal eigenvalue λc is unique. Then, the solution ρ(t) to (90) satisfies

lim
t→∞

ρ(t) = Πqc := qcq>c . (94)

Proof. Appendix A.3.

4.3. Quantum State Assignment Flow

This section describes our main result, i.e,. the definition of a novel flow of coupled
density matrices in terms of a parameterized interaction of single-vertex flows of the form
(90) on a given graph G = (V , E , ω).

We assume the weight function ω : E → R+ to be non-negative with ωij = 0 if
ij 6∈ E and

∑
k∈Ni

ωik = 1, (95)

where we adopt the notation (57) for neighborhoods Ni, i ∈ V . Analogous to (53), we
define the product manifold as

ρ ∈ Qc := Dc × · · · × Dc︸ ︷︷ ︸
|V| factors

(96)

where Dc is given by (18). The corresponding factors of ρ are denoted by

ρ = (ρi)i∈[c], ρi ∈ Dc, i ∈ V . (97)

where Qc becomes a Riemannian manifold when equipped with the the following metric:

gρ(X, Y) := ∑
i∈V

gρi (Xi, Yi), X, Y ∈ TQc := Hc,0 × · · · ×Hc,0, (98)

with gρi given by (25) for each i ∈ V . We set

1Qc := (1Dc)i∈V ∈ Qc, (99)

with 1Dc given by (91). Our next step is to define a similarity mapping analogous to (56),

S : V ×Qc, Si(ρ) := Exp(e)
ρi

(
∑

k∈Ni

ωik
(

Exp(e)
ρi

)−1(Lρk (Dk)
))

, (100)

based on mappings (73) and (89). Thanks to the use of the exponential map of the e connec-
tion, the matrix Si(ρ) can be rewritten and computed in a simpler, more explicit form.

Lemma 8 (similarity map). Equation (100) is equivalent to

Si(ρ) = Γ
(

∑
k∈Ni

ωik(logm ρk − Dk)
)

. (101)

Proof. Appendix A.3.

Expression (100), which defines the similarity map, looks like a single iterative step
for computing the Riemannian center of mass of the likelihood matrices {Lρk (Dk) : k ∈ Ni}
if(!) the exponential map of the Riemannian (Levi Civita) connection were used. Instead,
when using the exponential map Exp(e), Si(ρ) may be interpreted as carrying out a single
iterative step for the corresponding geometric mean on the manifold Dc.
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Therefore, a natural idea is to define the similarity map to be this geometric mean
rather than just by a single iterative step. Surprisingly, analogous to the similarity map (56)
for categorical distributions (cf. [3]), both definitions are identical, as shown next.

Proposition 6 (geometric mean property). Assume that ρ ∈ Dc solves the equation

0 = ∑
k∈Ni

ωik
(

Exp(e)
ρ

)−1(Lρk (Dk)
)

(102)

which corresponds to the optimality condition for Riemannian centers of mass [32] (Lemma 6.9.4),
except using a different exponential map. Then,

ρ = Si(ρ) (103)

with the right-hand side given by (100).

Proof. Appendix A.3.

We are now in the position to define the quantum state assignment flow along the lines
of the original assignment flow (55),

ρ̇ = Rρ[S(ρ)], ρ(0) = 1Qc , (QSAF) (104)

where both the replicator map Rρ and the similarity map S(·) apply factor-wise,

S(ρ)i = Si(ρ), (105)

Rρ[S(ρ)]i = Rρi [Si(ρ)], i ∈ V (106)

with the mappings Si given by (101) and Rρi given by (64).

4.4. Reparameterization and Riemannian Gradient Flow

The reparameterization of the assignment flow (59) and (60) for categorical distribu-
tions described in Section 3.3 has proven to be useful for characterizing and analyzing
assignment flows. Under suitable conditions on the parameter matrix Ω, the flow performs
a Riemannian descent flow with respect to a non-convex potential [36] (Proposition 3.9)
and has convenient stability and convergence properties [4].

In this section, we derive a similar reparameterization of the quantum state assignment
flow (104).

Proposition 7 (reparametrization). Define the linear mapping as

Ω : Qc → Qc, Ω[ρ]i := ∑
k∈Ni

ωikρk. (107)

Then, the density matrix assignment flow equation (104) is equivalent to the following system:

ρ̇ = Rρ[µ], ρ(0) = 1Qc , (108)

µ̇ = Rµ

[
Ω[µ]

]
, µ(0) = S(1Qc). (109)

Proof. Appendix A.3.

For the following, we adopt the symmetry assumption.

ωij = ωji, ∀i, j ∈ V (110)

j ∈ Ni ⇔ i ∈ Nj, i, j ∈ V . (111)
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As a consequence, the mapping (107) is self-adjoint.

〈µ, Ω[ρ]〉 = ∑
i∈V
〈µi, Ω[ρ]i〉 = ∑

i∈V
∑

k∈Ni

ωik〈µi, ρk〉 = ∑
i∈V

∑
k∈Ni

ωki〈µi, ρk〉 (112)

= ∑
k∈V

∑
i∈Nk

ωki〈µi, ρk〉 = ∑
k∈Ni

〈Ω[µ]k, ρk〉 = 〈Ω[µ], ρ〉. (113)

Proposition 8 (Riemannian gradient QSAF flow). Suppose that the mapping Ω[·] given
by (107) is self-adjoint with respect to the canonical matrix inner product. Then, the solution µ(t)
to (109) also solves

µ̇ = − gradµ J(µ) with
(

gradµ J(µ)
)

i = gradµi
J(µ) (114)

with respect to the potential

J(µ) := −1
2
〈µ, Ω[µ]〉. (115)

Proof. Appendix A.3.

We conclude this section by rewriting the potential in a more explicit, informative form.

Proposition 9 (nonconvex potential). We define

LG : Qc → Qc, LG := id−Ω (116)

with Ω given by (107). Then, the potential (115) can be rewritten as

J(µ) =
1
2
(
〈µ, LG [µ]〉 − ‖µ‖2) (117)

=
1
4 ∑

i∈V
∑

j∈Ni

ωij‖µi − µj‖2 − 1
2
‖µ‖2. (118)

Proof. Appendix A.3.

4.5. Recovering the Assignment Flow for Categorical Distributions

In the following, we show how the assignment flow (62) for categorical distributions
arises as special case of the quantum state assignment flow under suitable conditions, as
detailed below.

Definition 2 (commutative submanifold). Let

Π = {πi : i ∈ [l]}, l ≤ c (119)

denote a set of operators that orthogonally project onto disjoint subspaces of Cc,

π2
i = πi, ∀i ∈ [l], (120)

πiπj = 0, ∀i, j ∈ [l], i 6= j, (121)

and which are complete in the sense that

∑
i∈[l]

πi = Ic. (122)
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Given a family Π of operators, we define

DΠ :=
{

∑
i∈[l]

pi
tr πi

πi : p ∈ Sl

}
⊂ Dc (123)

the submanifold of commuting Hermitian matrices, which can be diagonalized simultaneously.

A typical example for a family (119) is

ΠU = {πi = uiu∗i : i ∈ [c]}, (124)

where U = {u1, . . . , uc} is an orthonormal basis of Cc. The following lemma elaborates the
bijection DΠ ↔ Sl .

Lemma 9 (properties of DΠ). Let DΠ ⊂ Dc be given by (123) and denote the corresponding
inclusion map by ι : DΠ ↪→ Dc. Then,

(a) The submanifold (DΠ, ι∗gBKM) with the induced BKM metric is isometric to (Sl , gFR);
(b) If µ ∈ DΠ, then the tangent subspace TµDΠ is contained in the subspace Tc

µDc ⊆ TµDc
defined by (32);

(c) Let U = {u1, . . . , uc} denote an orthonormal basis of Cc such that for every πi ∈ Π, i ∈ [l],
there are ui1 , . . . , uik ∈ U that form a basis of range(πi). Then, there is an inclusion of
commutative subsets DΠ ↪→ DΠU that corresponds to an inclusion Sl ↪→ Sc.

Proof. Appendix A.3.

Now, we establish that a restriction of the QSAF Equation (109) to the commutative
product submanifold can be expressed in terms of the AF Equation (62). Analogous to the
definition (96) of the product manifold Qc, we set

DΠ,c = DΠ × · · · × DΠ︸ ︷︷ ︸
|V| factors

. (125)

If Π is given by an orthonormal basis as in (124), we define the unitary matrices as

U = (u1, . . . , uc) ∈ Un(c), (126)

Uc = Diag(U, . . . , U)︸ ︷︷ ︸
|V| block-diagonal entries

. (127)

Proposition 10 (invariance of DΠ,c). Let Π and DΠ be given according to Definition 2. Then,
the following holds.

(i) If µ ∈ DΠ,c ⊂ Qc, then R
[
Ω[µ]

]
∈ TµDΠ,c ⊆ TµQc.

(ii) If ΠU has the form (124), then

R
[
Ω[µ]

]
= Uc Diag

[
RS[ΩS]

]
U∗c , (128)

where S ∈ Wc is determined by µi = U Diag(Si)U∗, i ∈ V .

In particular, the submanifold DΠ,c is preserved by the quantum state assignment flow.

Proof. Appendix A.3.

It remains to be verified that under suitable conditions on the data matrices Di, i ∈ V
that define the initial point of (109) by similarity mapping (Lemma 8), the quantum state
assignment flow becomes the ordinary assignment flow.
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Corollary 3 (recovery of the AF by restriction). In the situation of Proposition 10, assume that
all data matrices Di, i ∈ V become diagonal in the same basis U , i.e.,

Di = U Diag(λi)U∗, λi ∈ Rc, i ∈ V . (129)

Then, the solution of the QSAF

µ̇ = Rµ

[
Ω[µ]

]
, µ(0) = S(1Qc) (130)

is given by
µi(t) = U Diag

(
Si(t)

)
U∗, i ∈ V , (131)

where S(t) satisfies the ordinary AF equation

Ṡ = RS[ΩS], S(0) = S(1Wc), (132)

and the initial point is determined by the similarity map (56) evaluated at the barycenter W = 1Wc

with the vectors λi, i ∈ V as data points.

Proof. Appendix A.3.

5. Experiments and Discussion

In this section, we report academic experiments in order to illustrate the novelty of our
approach. In comparison to the original formulation, our approach enables a continuous
assignment without the need to specify explicitly prototypical labels beforehand. The
experiments highlight the following properties of the novel approach, which extend the
expressivity of the original assignment flow approach:

• Geometric adaptive feature vector averaging even when uniform weights are used
(Section 5.2);

• Structure-preserving feature patch smoothing without accessing data at individual
pixels (Section 5.3);

• Seamless incorporation of feature encoding using finite frames (Section 5.3).

In Section 6, we indicate the potential to represent spatial feature context via entan-
glement. However, working out the potential for various applications more thoroughly is
beyond the scope of this paper.

5.1. Geometric Integration

In this section, we focus on the geometric integration of the reparameterized flow
described by Equation (109). For a reasonable choice of a single-step-sized parameter,
the scheme is accurate, stable and amenable to highly parallel implementations.

The e-geodesic from Proposition 4 constitutes a retraction [37] (Definition 4.1.1 and
Proposition 5.4.1) onto the state manifold Qc.

Consequently, the iterative step for updating µt ∈ Qc, t ∈ N0 and step size ε > 0 is
given by

(µt+1)i =
(

Exp(e)
µt

(
εRµt

[
Ω[µt]

]))
i
=
(

Exp(e)
(µt)i
◦R(µt)i

[
ε(Ω[µt])i

])
(133)

(76)
= exp(µt)i

(
ε(Ω[µt])i

)
, ∀i ∈ V . (134)

for all i ∈ V . Using (77) and assuming

(µt)i = Γ
(
(At)i

)
, ∀i ∈ V , (135)
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with At ∈ Tc, we obtain

Γ
(
(At+1)i

)
:= exp(µt)i

(
ε(Ω[µt])i

)
(136)

= Γ
(
Γ−1((µt)i) + ε(Ω[µt])i

)
(137)

= Γ
(
Γ−1 ◦ Γ((At)i) + ε(Ω[µt])i

)
(138)

= Γ
(
(At)i + ε(Ω[µt])i

)
, i ∈ V , (139)

and in view of (68) and (135), we conclude that

At+1 = At + εΠc,0Ω[Γ(At)]. (140)

Remark 5. We note that the numerical evaluation of the replicator operator (64) is not required.
This makes the geometric integration scheme summarized by Algorithm 1 quite efficient.

Algorithm 1: Geometric Integration Scheme
Initialization
Determine an initial A0 ∈ Tc,0 and compute µ0 by (µ0)i = Γ((A0)i) ∈ Qc, ∀i ∈ V
while not converged do

(At+1)i = (At)i + εΠc,0(Ω[µt])i ∀i ∈ V
(µt+1)i = Γ

(
(At+1)i

)
, ∀i ∈ V .

We list a few further implementation details below.

• A reasonable convergence criterion that measures how close the states are to a rank-one
matrix is | tr(µt)i − tr(µ2

t )i| ≤ ε, ∀i ∈ V ;
• A reasonable range for the step size parameter is ε ≤ 0.1;
• In order to remove spurious non-Hermitian numerical rounding errors, we replace

each matrix (Ω[µt]i) with 1
2
(
(Ω[µt])i + (Ω[µt])∗i

)
;

• The constraint tr ρ = 1 of (18) can be replaced by tr ρ = τ with any constant τ > 1.
This ensures that for larger matrix dimensions c, the entries of ρ vary in a reasonable
numerical range and that the stability of the iterative updates.

Up to moderate matrix dimensions, such as c ≤ 100, the matrix exponential in (66) can
be computed using any of the basic established algorithms [38] (Chapter 10) or available
solvers. In addition, depending on the size of the neighborhoodNi induced by the weighted
adjacency relation of the underlying graph in (95), Algorithm 1 can be implemented in a
fine-grained parallel fashion.

5.2. Labeling 3D Data on Bloch Spheres

For the purpose of visual illustration, we consider the smoothing of 3D color vectors
d = (d1, d2, d3)

> interpreted as Bloch vectors, which parameterize density matrices [14]
(Section 5.2).

ρ = ρ(d) =
1
2

(
I + d1

(
0 1
1 0

)
+ d2

(
0 −i
i 0

)
+ d3

(
1 0
0 −1

))
∈ C2×2, ‖d‖ ≤ 1. (141)

Pure states ρ correspond to unit vectors d, ‖d‖ = 1, whereas vectors d, ‖d‖ < 1 parame-
terize mixed states ρ. Given data di = (di,1, di,2, di,3)

>, i ∈ V with ‖di‖ ≤ 1, as illustrated
by Figure 1 and explained in the caption, we initialized the QSAF at ρi = ρ(di), i ∈ V
and integrated the flow. Each integration step involves geometric state averaging across the
graph, causing mixed states ρi(t) = ρ(di(t)), i ∈ V , which eventually converge towards
pure states. Integration was stopped at time t = T, when min{‖di(T)‖ : i ∈ V} ≥ 0.999.
The resulting vectors di(T) are visualized as explained in the caption of Figure 1. We point
out that the two experiments discussed next are supposed to illustrate the behavior of the
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QSAF and the impact of the underlying geometry rather than constitute a contribution to
the literature on the processing of color images.

Figure 1c shows a noisy version of the image in (b) used to initialize the quantum state
assignment flow (QSAF). Panel (d) shows the labeled image, i.e., the assignment of a pure
state (depicted as a Bloch vector) to each pixel of the input data (c). Although uniform
weights were used and any prior information was absent, the result (d) demonstrates
that the QSAF removes the noise and preserves the signal transition fairly well both for
large-scale local image structure (away from the image center) and for small-scale local
image structure (close to the image center). This behavior is quite unusual in comparison
to traditional image denoising methods, which inevitably require adaption of regularization
to the scale of local image structure. In addition, we note that noise removal is ‘perfect’
for the three extreme points (red, green and blue in panel (a)) but suboptimal only for the
remaining non-extreme points.

Panels (f–h) show the same results when the data are encoded in a better way, as de-
picted by (e) using unit vectors not only on the positive orthant but on the whole unit
sphere. These data are illustrated by RGB vectors that result from translating the unit
sphere (e) to the center 1

2 (1, 1, 1)> of the RGB color cube [0, 1]3 and scaling it by 1
2 . This

improved data encoding is clearly visible in panel (g), which displays the same noise level
as shown in panel (c). Accordingly, noise removal while preserving signal structure at all
local scales is more effectively achieved by the QSAF in (h) in comparison to (d).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. (a) A range of RGB unit color vectors in the positive orthant. (b) An image with data ac-
cording to (a). (c) A noisy version of (b): each pixel i ∈ V displays a Bloch vector di = (di,1, di,2, di,3)

>

defined by Equation (141) as an initial density matrix ρi(0), i ∈ V of the QSAF. (d) The labels
(pure states) generated by integrating the quantum state assignment flow using uniform weights.
(e) The vectors depicted by (a) are replaced by the unit vectors corresponding to the vertices of the
icosahedron centered at 0. (f–h) Analogous to (b–d), based on (e) instead of (a) and using the same
noise level in (g). The colors in (f–h) visualize the Bloch vectors by RGB vectors that result from
translating the sphere of (e) to the center 1

2 (1, 1, 1)> of the RGB cube and scaling it by 1
2 . We refer to

the text for a discussion.

5.3. Basic Image Patch Smoothing

Figure 2 shows an application of the QSAF to a random spatial arrangement (grid graph)
of normalized patches, where each vertex represents a patch, not a pixel. Applying vector-
ization taking the tensor product with itself, each patch is represented as a pure state in
terms of a rank-one matrix Di at the corresponding vertex i ∈ V , which constitutes the input
data in the similarity mapping (100). Integrating the flow causes the non-commutative
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interaction of the associated state spaces ρi, i ∈ V through geometric averaging with
uniform weights (95) until convergence towards pure states. The resulting patches are then
simply given by the corresponding eigenvector, possibly after reversing the arbitrary sign
of each eigenvector component, depending on the distance to the input patch.

The result shown in Figure 2 reveals an interesting behavior: structure-preserving
patch smoothing without accessing explicitly individual pixels. In particular, the flow
induces a partition of the patches without any prior assumption on the data.

Figure 3 shows a variant of the scenario depicted in Figure 2 in order to demonstrate
the ability to separate local image structure by geometric smoothing at the patch level in
another way.

Figure 4 generalizes the setup in two ways. First, patches were encoded using the harmonic
frame given by the two-dimensional discrete Fourier matrix. Secondly, non-uniform weights
ωik = e−τ‖Pi−Pj‖2

F , τ > 0 were used depending on the distance of adjacent patches Pi, Pj.
Specifically, let Pi denote the patch at vertex i ∈ V after removing the global mean

and normalization using the Frobenius norm. Then, applying the FFT to each patch and
vectorization formally with the discrete two-dimensional Fourier matrix F2 = F⊗ F (Kro-
necker product) followed by stacking the rows p̂i = F2 vec(Pi), the input data were defined
as Di = F2 Diag(−| p̂i|2)F∗2 , where the squared magnitude | · |2 was computed component-
wise. The flow yields were integrated again against pure states that were interpreted and
decoded accordingly. The eigenvector was used as a multiplicative filter of the magnitude of
the Fourier-transformed patch (keeping its phase), followed by rescaling of the norm and
addition of the mean by approximating the original patch in terms of these two parameters.

Figure 2. Left pair: A random collection of patches with oriented image structure. The colored image
of each patch shows its orientation using the color code depicted by the rightmost panel. Each patch
is represented by a rank-one matrix D in (89) obtained by vectorizing the patch and taking the tensor
product. Center pair: The final state of the QSAF obtained by geometric integration with uniform weighting
ωik =

1
|Ni| , ∀k ∈ Ni, ∀i ∈ V of the nearest neighbor states. It represents an image partition but preserves

image structure due to geometric smoothing of patches encoded by non-commutative state spaces.

(a) (b) (c) (d)
Figure 3. (a) A random collection of patches with oriented image structure. (b) A collection of patches
with the same oriented image structure. (c) Pixel-wise mean of the patches (a,b) at each location.
(d) The QSAF recovers a close approximation of (b) (color code: see Figure 2) by iteratively smoothing
the states ρk, k ∈ Ni corresponding to (c) through geometric integration.
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(a) (b) (c)
Figure 4. (a) A real image partitioned into patches of size 8× 8 and 4× 4 pixels, respectively. Each
patch is represented as a pure state with respect to a Fourier frame (see text). Instead of the nearest
neighbor adjacency on a regular grid, each patch is adjacent to its eight closest patches in the entire
collection. Integrating the QSAF and decoding the resulting states (see text) yield (b) (8× 8 patches)
and (c) (4× 4 patches), respectively. Result (b) illustrates the effect of smoothing at the patch level in
the Fourier domain, whereas the smaller spatial scale used to compute (c) represents the input data
fairly accurately, despite achieving significant data reduction.

The results shown in panels (b) and (c) of Figure 4 illustrate the effect of ‘geometric diffu-
sion’ at the patch level through integration of the flow and how the input data are approximated
depending on the chosen spatial scale (patch size), subject to significant data reduction.

6. Conclusions

We generalized the assignment flow approach for categorical distributions [2] to
density matrices on weighted graphs. While the former flows assign each data point a label
selected from a finite set, the latter assign each data point a generalized “label” from the
uncountable submanifold of pure states.

Various further directions of research are indicated by numerical experiments. This
includes the unusual behavior of feature vector smoothing, which parameterizes complex-
valued, non-commutative state spaces (Figure 1), the structure-preserving interaction of
spatially indexed feature patches without accessing individual pixels (Figures 2 and 3),
the use of frames for signal representation and as observables whose expected values are
governed by a quantum state assignment flow (Figure 4) and the representation of spatial
correlations by entanglement and tensorization (Figure 5). Extending the representation of
the original assignment flow in the broader framework of geometric mechanics to the novel
quantum assignment flow approach as recently developed by [39] is another promising
research project spurred by established concepts of mathematics and physics.

Based on these viewpoints, this paper adds a novel concrete approach based on in-
formation theory to the emerging literature on network design based on concepts from
quantum mechanics, e.g., [40] and references therein. Our main motivation is the def-
inition of a novel class of “neural ODEs” [41] in terms of the dynamical systems that
generate a quantum state assignment flow. The layered architecture of a corresponding
“neural network” is implicitly given by geometric integration. The inherent smoothness
of the parameterization allows weight parameters to be learned from data. This will be
explored in our future work, along the various lines of research indicated above.
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(d) (e) (f)
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Figure 5. (a) A 5× 5 grid graph. (b) Random Bloch vectors di ∈ S2 ⊂ R3 (visualized using pseudocolor)
defining states ρi according to Equation (141) for each vertex of a 32× 32 grid graph. (c) Line graph
corresponding to (a). Each vertex corresponds to an edge ij of the graph (a) and an initially separable
state ρij = ρi ⊗ ρj. This defines a simple shallow tensor-network. The histograms display the norms of
the Bloch vectors of the states trj(ρij) and tri(ρij) obtained by partially tracing out one factor for each
state ρij indexed by a vertex ij of the line graph of the grid graph in (b). (d) Histogram showing that in
the initial state, all states are separable, while (e,f) both display a histogram of the norms of all Bloch
vectors after convergence of the quantum state assignment flow with uniform weights towards pure
states. (g) Using the center coordinates of each edge of the grid graph (b), the entanglement represented
by ρij is visualized by a disk and “heat map” colors (blue: low entanglement, red: large entanglement).
For visual clarity, (h,i) again display the same information after thresholding, using two colors only:
entangled states are marked with red when the norm of the Bloch vectors drops below the thresholds
of 0.95 and 0.99, respectively, and otherwise with blue.
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Appendix A. Proofs

Appendix A.1. Proofs of Section 2

Proof of Proposition 1. We verify (13) and (14) by direct computation. For any p ∈ Sc,

Rp1c =
(

Diag(p)− pp>
)
1c = p− 〈p,1c〉p = 0, (A1)

Rpπc,0 = Rp(I − 1c1
>
Sc
) = Rp, (A2)

πc,0Rp = (I − 1c1
>
Sc
)Rp = Rp −

1
c
1c(Rp1c)

> = Rp. (A3)

Next, we characterize the geometric role of Rp and show (15). Let p ∈ Sc be parameterized
by the local coordinates

p = ϕ(p) := (p1, p2, . . . , pc−1)
> ∈ Rc−1

++ (A4)

p = ϕ−1(p) = (p1, . . . , pc−1, 1− 〈1c−1, p〉)> ∈ Sc. (A5)

Choosing the canonical basis e1, . . . , ec on Sc ⊂ Rc, we obtain a basis of the tangent space Tc,0

ej − ec = dϕ−1(ej), j ∈ [c− 1]. (A6)

Using these vectors, a column of the matrix is

B := (e1 − ec, . . . , ec−1 − ec) =

(
Ic−1
−1>c−1

)
∈ Rc×(c−1), (A7)

one has for any v ∈ Tc,0

v = Bv =

(
v
vc

)
=

(
v

−〈1c−1, v〉

)
, v = (v1, . . . , vc−1)

> (A8)

v = B†v, B† =
(

Ic−1 0
)
πc,0, (A9)

where B† := (B>B)−1B> denotes the Moore–Penrose generalized inverse of B. Substituting
this parameterization and evaluating the metric (8) gives

gp(u, v) = 〈u, B>Diag(p)−1Bv〉 =
〈

u,
(

Ic−1 −1c−1
)

Diag(p)−1
(

Ic−1
−1>c−1

)
v
〉

(A10)

=
〈

u,
(

Diag(p)−1 +
1

1− 〈1c−1, p〉1c−11
>
c−1

)
v
〉

(A11)

=: 〈u, G(p)v〉. (A12)

Applying the Sherman–Morrison–Woodbury matrix inversion formula [42] (p. 9)

(A + xy>)−1 = A−1 − A−1xy>A−1

1 + 〈y, A−1x〉 (A13)

yields

G(p)−1 = Diag(p)− 1
1− 〈1c−1, p〉

Diag(p)1c−11
>
c−1 Diag(p)

1 + 1
1−〈1c−1,p〉 〈1c−1, p〉

(A14)

= Diag(p)−Diag(p)1c−11
>
c−1 Diag(p) = Diag(p)− p p> (A15)

= Rp. (A16)
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Let v ∈ Tc,0. Then, using the equations

pc
(A5)
= 1− 〈1c−1, p〉, (A17)

Rp1c−1 = p− 〈1c−1, p〉p = pc p, (A18)

we have

Rpv =

(
Rp −pc p
−pc p> pc − p2

c

)(
v
vc

)
=

(
Rpv− vcRp1c−1

−〈Rp1c−1, v〉+ vc pc〈1c−1, p〉

)
(A19)

=

(
Rpv

−〈1c−1, Rpv〉

)
− vc

(
Rp1c−1

−〈1c−1, Rp1c−1〉

)
(A20)

(A7)
= BRp(v− vc1c−1). (A21)

Now, consider any smooth function f : Sc → R. Then,

∂pi

(
f ◦ ϕ−1(p)

)
= ∑

j∈[c]
∂j f (p)∂pi

ϕ−1(p)
(A5)
= ∂i f (p)− ∂c f (p), (A22)

∂p
(

f ◦ ϕ−1(p)
)
= ∂ f (p)− ∂c f (p)1c−1. (A23)

Comparing the last equation and (A21) shows that

Rp∂ f (p) = BRp∂p
(

f ◦ ϕ−1(p)
) (A14)

= BG(p)−1∂p
(

f ◦ ϕ−1(p)
)
, (A24)

which proves (15).

Appendix A.2. Proofs of Section 3

Proof of Lemma 1. Let v(t) ∈ Tc,0 be a smooth curve with v̇(t) = u. Then,

d
dt

expp
(
v(t)

)
=

d
dt

p · ev(t)

〈p, ev(t)〉
=

p · u · ev(t)

〈p, ev(t)〉
− 〈p, u · ev(t)〉 p · ev(t)

〈p, ev(t)〉2
(A25)

= expp
(
v(t)

)
· u−

〈
u, expp

(
v(t)

)〉
expp

(
v(t)

)
= Rexpp(v(t))

u. (A26)

Similarly, for a smooth curve p(t) ∈ Sc with ṗ(t) = u, one has

d
dt

expp(t)(v) =
d
dt

p(t) · ev

〈p(t), ev〉 =
ṗ(t) · ev

〈p(t), ev〉 − 〈 ṗ(t), ev〉 p(t) · ev

〈p(t), ev〉2 (A27)

= expp(t)(v) ·
u

p(t)
−
〈 u

p(t)
, expp(t)(v)

〉
expp(t)(v) = Rexpp(t)(v)

u
p(t)

. (A28)

Proof of Theorem 1. Let
q(t) = Lp(t)(D) (A29)

where p(t) solves (45). Using (43), (47) and (A29), we obtain

q̇ = dpLp(t)(D)[ ṗ(t)] = Rq(t)

( ṗ(t)
p(t)

) (45)
= Rq(t)

(
q(t)− 〈p(t), q(t)〉1c

) (13)
= Rq(t)q(t), (A30)

which shows (49). Then, p(t) = exp1Sc
(r(t)), and differentiating (50) yields r(t) =

∫ t
0 q(τ)dτ

ṗ(t)
(46)
= Rexp1Sc

(r(t)) ṙ(t)
(50)
= Rp(t)q(t)

(A29)
= Rp(t)Lp(t)(D), (A31)

which proves the equivalence of (45), (48) and (49).
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Proof of Corollary 1. The solution p(t) to (45) is given by (48) and (49). Proposition 1
and Equation (15) show that (49) is the Riemannian ascent flow of the function Sc 3 q 7→ 1

2‖q‖2.
The stationary points satisfy

Rqq = (q− ‖q‖2) · q = 0 (A32)

and form the set
Q∗ :=

{
q∗ =

1
|J ∗| ∑

j∈J ∗
ej : J ∗ ⊆ [c]

}
. (A33)

The case of J ∗ = [c], i.e., q∗ = 1Sc , can be ruled out if D
〈1c ,D〉 6= Sc, which is always

the case in practice, where D corresponds to real data (measurement and observation).
The global maxima correspond to the vertices of ∆c = S c, i.e., |J ∗| = 1. The remaining
stationary points are local maxima and degenerate, since vectors D with non-unique minimal

components form a negligible null set. In any case, limt→∞ p(t)
(50)
= limt→∞ q(t) = q∗,

depending on the index set J ∗ determined by D.

Appendix A.3. Proofs of Section 4

Proof of Proposition 2. The Riemannian gradient is defined by [43] (p. 337)

0 = d f [X]− gρ(gradρ f , X)
(29)
= 〈∂ f , X〉 − 〈Tρ[gradρ f ], X〉 (A34)

= 〈∂ f −Tρ[gradρ f ], X〉, ∀X ∈ Hc,0. (A35)

Choosing the parameterization X = Y− tr(Y)I ∈ Hc,0 with Y ∈ Hc, we further obtain

0 = 〈∂ f −Tρ[gradρ f ], Y〉 − tr(Y) tr(∂ f −Tρ[gradρ f ]) (A36)

=
〈
∂ f −Tρ[gradρ f ]− tr(∂ f −Tρ[gradρ f ])I, Y

〉
, ∀Y ∈ Hc. (A37)

The left factor must vanish. Applying linear mapping T−1
ρ and solving for gradρ f yields

gradρ f = T−1
ρ [∂ f ]− tr(∂ f −Tρ[gradρ f ])T−1

ρ [I]. (A38)

Since gradρ f ∈ Hc,0, taking the trace on both sides and using trT−1
ρ [I] = tr ρ = 1 yields

0 = trT−1
ρ [∂ f ]− tr ∂ f + trTρ[gradρ f ]. (A39)

Substituting the last two summands into the previous equation yields

gradρ f = T−1
ρ [∂ f ]− (trT−1

ρ [∂ f ])ρ (A40)

= T−1
ρ [∂ f ]− 〈ρ, ∂ f 〉ρ, (A41)

where the last equation follows from (30).

Proof of Lemma 2. The equation Πc,0 ◦Rρ = Rρ follows from Rρ[X] ∈ Hc,0; hence,

trRρ[X]
(64)
= trT−1

ρ [X]− 〈ρ, X〉 tr ρ
(30)
= 〈ρ, X〉 − 〈ρ, X〉 = 0. (A42)

Thus,

Πc,0 ◦Rρ[X] = Rρ[X] = Rρ[X]− tr X
c
(
ρ− 〈ρ, I〉︸ ︷︷ ︸

=1

ρ
)

(A43)

= Rρ[X]− tr X
c

Rρ[I] = Rρ

[
X− tr X

c
I
] (24)

= Rρ ◦Πc,0[X]. (A44)
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Proof of Lemma 3. Using (24), we compute

expm(Πc,0[Z]) = expm

(
Z− tr Z

c
I
)
= e

tr Z
c expm(Z), (A45)

where the last equation holds, since Z and I commute. Substitution into (66) cancels the
scalar factor e

tr Z
c and shows (68).

Proof of Proposition 3. We show Γ ◦ Γ−1 = idDc and Γ−1 ◦ Γ = idHc,0 . As for the first
relation, we compute

Γ ◦ Γ−1(ρ) = expm

(
Γ−1(ρ)− ψ

(
Γ−1(ρ)

)
I
)

(A46)

= expm

(
logm ρ−

tr(logm ρ)

c
I − log

(
tr expm

(
logm ρ−

tr(logm ρ)

c
I
))

I
)

(A47)

and since logm ρ and I commute,

= expm

(
logm ρ−

tr(logm ρ)

c
I − log tr

(
e−

1
c tr(logm ρ)ρ

)
I
)

(A48)

tr ρ=1
= expm(logm ρ) (A49)

= ρ. (A50)

As for the second relation, we compute

Γ−1 ◦ Γ(X) = Πc,0[logm ◦Γ(X)] = Πc,0
[

logm ◦ expm
(
X− ψ(X)I

)]
(A51)

= Πc,0[X]− ψ(X)Πc,0[I] = Πc,0[X] (A52)

= X, (A53)

since X ∈ Hc,0 by assumption.

Proof of Lemma 4. In view of Definition (66) of Γ, we compute using the chain rule

dΓ(H)[Y] =
d
dt

expm
(

H + tY− ψ(H + tY)I
)∣∣

t=0 (A54)

= d expm
(

H − ψ(H)I
)[

Y− dψ(H)[Y]I
]

(A55)

(28)
= T−1

ρ

[
Y− dψ(H)[Y]I

]
. (A56)

Furthermore,

dψ(H)[Y]
(67)
=

1
tr expm(H)

tr(d expm(H)[Y]) (A57)

(28)
=

1
tr expm(H)

tr
(
T−1

expm(H)
[Y]
)
, expm(H)

(66)
=
(

tr expm(H)
)
Γ(H) (A58)

(30)
=

1
tr expm(H)

〈expm(H), Y〉 (A59)

(66)
= 〈Γ(H), Y〉 = 〈ρ, Y〉, (A60)

where the last equation follows from the assumption that ρ = Γ(H). Substitution into (A56)
yields (70). Regarding (71), using expression (69) for Γ−1, we compute

dΓ−1(ρ)[X] = Πc,0 ◦ d logm(ρ)[X] (A61)

(27)
= Πc,0 ◦Tρ[X], (A62)
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which verifies (71).

Proof of Proposition 4. The e-geodesic connecting the two points Q, R ∈ Dc is given by
[24] (Section V)

Γ(K + tA), t ∈ [0, 1], K = logm Q, A = logm R− logm Q. (A63)

Setting Γ−1(ρ) = Πc,0[K] and Tρ[X] = A yields (74), since the orthogonal projections Πc,0
ontoHc,0 are also implicitly carried out in (A63) due to Lemma 3. Expression (73) is equal
to (74) due to (71). It remains to be verified that the geodesic emanates at ρ in the direction
of X. We compute

γ
(e)
ρ,X(0) = Γ(Γ−1(ρ)) = ρ (A64)

d
dt

γ
(e)
ρ,X(0) =

d
dt

Γ
(
Γ−1(ρ) + tdΓ−1(ρ)[X]

)∣∣
t=0 (A65)

= dΓ
(
Γ−1(ρ)

)[
dΓ−1(ρ)[X]

]
= id[X] = X. (A66)

Proof of Corollary 2. Setting

µ = Exp(e)
ρ (X)

(73)
= Γ

(
Γ−1(ρ) + dΓ−1(ρ)[X]

)
(A67)

we solve for X,

Γ−1(µ) = Γ−1(ρ) + dΓ−1(ρ)[X] (A68)

dΓ−1(ρ)[X] = Γ−1(µ)− Γ−1(ρ) (A69)

X = dΓ
(
Γ−1(ρ)

)[
Γ−1(µ)− Γ−1(ρ)], (A70)

which shows (75) and where dΓ(Γ−1(ρ))−1 = dΓ−1(ρ) was used to obtain the last equa-
tion.

Proof of Lemma 5. We compute

Exp(e)
ρ ◦Rρ[X]

(73)
= Γ

(
Γ−1(ρ) + Πc,0 ◦Tρ

[
Rρ[X]

])
(A71)

(64)
= Γ

(
Γ−1(ρ) + Πc,0 ◦Tρ

[
T−1

ρ [X]− 〈ρ, X〉ρ
])

(A72)

ρ=T−1[I]
= Γ

(
Γ−1(ρ) + Πc,0[X− 〈ρ, X〉I]

)
(A73)

= Γ
(
Γ−1(ρ) + X

)
(A74)

and omit the projection map Πc,0 in the last equation due to Lemma 2 or Lemma 3.

Proof of Lemma 6. We compute

d expρ(X)[Y]
(77)
= dΓ

(
Γ−1(ρ) + X)[Y]

(70)
= T−1

expρ(X)
[Y− 〈expρ(X), Y〉I] (A75)

T−1
ρ [I]=ρ
= T−1

expρ(X)
[Y]− 〈expρ(X), Y〉 expρ(X) (A76)

(64)
= Rexpρ(X)[Y]. (A77)
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Proof of Lemma 7. We compute

Lρ(D) = expρ(−Πc,0[D])

(65)
(76)
= expρ(−D) (A78)

(77)
= Γ

(
Γ−1(ρ)− D

) (69)
= Γ

(
Πc,0[logm ρ]− D

)
(A79)

(92)
= Γ

(
Q(logm Λρ)Q> −

1
c
(tr Λρ)Ic −QΛDQ>

)
(A80)

(66)
= Q

Diag(elog λρ−〈1c ,λρ〉1Sc−λD )

〈1c, elog λρ−〈1c ,λρ〉1Sc−λD 〉
Q> = Q Diag

( elog λρ−λD

〈1c, elog λρ−λD 〉

)
Q> (A81)

(44)
= Q Diag

(
expλρ

(−λD)
)
Q>. (A82)

Proof of Proposition 5. Writing ρ0 = ρ(0) = 1Dc and Diag(λD) = ΛD, we have

Lρ0(D) = Q Diag
(

exp1Sc
(−λD)

)
Q>

according to Lemma 7 and

ρ̇(0)
(91)
= T−1

ρ0
[Lρ0(D)]− 〈ρ0, Lρ0(D)〉ρ0 (A83)

(28)
=

∫ 1

0

(1
c

Ic

)1−s
Q Diag

(
exp1Sc

(−λD)
)
Q>
(1

c
Ic

)s
ds (A84)

− 1
c2 tr

(
Q Diag

(
exp1Sc

(−λD)
)
Q>
)

︸ ︷︷ ︸
=1

Ic (A85)

=
1
c

Q Diag
(

exp1Sc
(−λD)

)
Q> − 1

c2 Ic (A86)

=
1
c

Q Diag
(

exp1Sc
(−λD)− 1Sc

)
Q>. (A87)

Comparing this equation to the single-vertex flow (45) at time t = 0,

ṗ(0) =
1
c
(

exp1Sc
(−D)− 1

c
〈1c, exp1Sc

(−D)〉︸ ︷︷ ︸
=1

1c
)
=

1
c
(

exp1Sc
(−D)− 1Sc

)
(A88)

shows that
ρ̇(0) = Q Diag

(
λ̇ρ(0)

)
Q>, (A89)

that is

ρ(t) = Qλρ(t)Q>, (A90)

where λ(t) solves the single-vertex assignment flow Equation (45) of the form

λ̇ρ = Rλρ
Lλρ

(λD). (A91)

Corollary 1 completes the proof.

Proof of Lemma 8. Let

Hi = Γ−1(ρi)
(69)
= Πc,0 logm ρi, i ∈ V . (A92)
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Then,

(
Exp(e)

ρi

)−1(Lρk (Dk)
) (89)

(77)
=
(

Exp(e)
ρi

)−1 ◦ Γ
(
Γ−1(ρk)− Dk

)
(A93)

(75)
= dΓ

(
Γ−1(ρi)

)
[Γ−1(ρk)− Dk − Γ−1(ρi)] (A94)

= dΓ(Hi)[Hk − Dk − Hi]. (A95)

Substituting this expression into (100) yields

Si(ρ)

(73)
(95)
= Γ

(
Hi + dΓ−1(ρi) ◦ dΓ(Hi)︸ ︷︷ ︸

=I

[
∑

k∈Ni

ωik(Hk − Dk)− Hi

])
(A96)

= Γ
(

∑
k∈Ni

ωik(Hk − Dk)
)

. (A97)

Substituting (A92) and omitting the projection map Πc,0 due to Lemma 3 yields (101).

Proof of Proposition 6. Substituting as in the proof of Lemma 8, we obtain

0 = dΓ
(
Γ−1(ρ)

)[
∑

k∈Ni

ωik(Πc,0 logm ρk − Dk)− Γ−1(ρ)
]
. (A98)

Since dΓ is one-to-one, the expression inside the brackets must vanish. Solving for ρ and
omitting the projection map Πc,0 due to Lemma 3 yields (101).

Proof of Proposition 7. Let ρ(t) solve (104) and denote the argument of the replicator
operator Rρ on the right-hand side by

µ(t) := S
(
ρ(t)

)
, (A99)

which yields (108) and (104), respectively, whereas (109) remains to be verified. Differentia-
tion yields

µ̇i = dSi(ρ)[ρ̇] (A100)

(101)
(27)
= dΓ

(
∑

k∈Ni

ωik(logm ρk − Dk)
)[

∑
k∈Ni

ωikTρk [ρ̇k]
]

(A101)

(101)
= dΓ

(
Γ−1(Si(ρ)

))[
∑

k∈Ni

ωikTρk [ρ̇k]
]

(A102)

(70)
= T−1

Si(ρ)

[
∑

k∈Ni

ωikTρk [ρ̇k]−
〈

Si(ρ), ∑
k∈Ni

ωikTρk [ρ̇k]
〉

I
]

(A103)

T−1
ρ [I]=ρ
= T−1

Si(ρ)

[
∑

k∈Ni

ωikTρk [ρ̇k]
]
−
〈

Si(ρ), ∑
k∈Ni

ωikTρk [ρ̇k]
〉

Si(ρ) (A104)

(64)
= RSi(ρ)

[
∑

k∈Ni

ωikTρk [ρ̇k]
] (A99)

= ∑
k∈Ni

ωikRµi

[
Tρk [ρ̇k]

]
(A105)

(108)
= ∑

k∈Ni

ωikRµi

[
Tρk

[
Rρk [µk]

]]
(A106)

(64)
= ∑

k∈Ni

ωikRµi

[
Tρk

[
T−1

ρk
[µk]− 〈ρk, µk〉T−1

ρk
[I]
]]

(A107)
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= ∑
k∈Ni

ωikRµi [µk − 〈ρk, µk〉I]
(65)
= ∑

k∈Ni

ωikRµi [µk] (A108)

(107)
= Rµi

[
Ω[µ]i

]
. (A109)

The initial condition for ρ is given by (104). The initial condition for µ follows from (A99).

Proof of Proposition 8. We compute using (110) and (111)

J(µ) = −1
2 ∑

j∈V

〈
µj, ∑

k∈Nj

ωjkµk

〉
(A110)

∂µi J(µ) = −1
2

(
∑

k∈Ni

ωikµk + ∑
j∈Ni

ωjiµj

) (110)
= −Ω[µ]i. (A111)

Consequently, according to Proposition 2 and (64),

− gradµi
J(µ) = −Rµi [∂µi J(µ)] = Rµi

[
Ω[µ]i

]
(A112)

which shows that the right-hand sides of (114) and (109) are equal.

Proof of Proposition 9. Starting with (115), we compute

J(µ) = −1
2
〈µ, Ω[µ]〉 = 1

2
〈µ, (id−Ω− id)[µ]〉 = 1

2
(
〈µ, LG [µ]〉 − ‖µ‖2). (A113)

The quadratic form involving LG remains to be rewritten.

〈µ, LG [µ]〉 = ∑
i∈V
〈µi, µi −Ω[µ]i〉 = ∑

i∈V

(
‖µi‖2 −

〈
µi, ∑

k∈Ni

ωikµk

〉)
(A114)

= ∑
i∈V

(
∑

k∈Ni

ωik︸ ︷︷ ︸
=1

‖µi‖2 − ∑
k∈Ni

ωik〈µi, µk〉
)
= ∑

i∈V
∑

k∈Ni

ωik
(
〈µi, µi − µk〉

)
(A115)

=
1
2

(
∑
i∈V

∑
k∈Ni

ωik
(
〈µi, µi − µk〉

)
+ ∑

k∈V
∑

i∈Nk

ωki
(
〈µk, µk − µi〉

))
, (A116)

where the last sum results from the first one by interchanging indices i and k. Using the
symmetry relations (110) and (111), we rewrite the second sum as

〈µ, LG [µ]〉 =
1
2

(
∑
i∈V

∑
k∈Ni

ωik
(
〈µi, µi − µk〉

)
+ ∑

i∈V
∑

k∈Ni

ωik
(
〈µk, µk − µi〉

))
(A117)

=
1
2 ∑

i∈V
∑

k∈Ni

ωik
(
〈µi, µi − µk〉+ 〈µk, µk − µi〉

)
(A118)

=
1
2 ∑

i∈V
∑

k∈Ni

ωik‖µi − µk‖2 (A119)

which completes the proof.

Proof of Lemma 9. We start with claim (b).

(b) Let µ ∈ DΠ and X ∈ TµDΠ. Suppose that vector X is represented by a curve η :
(−ε, ε)→ DΠ such that η(0) = µ and η′(0) = X. In view of the definition (123) of DΠ,
we have

η(t) = ∑
i∈[l]

pi(t)
trπi

πi =⇒ X = ∑
i∈[l]

p′i(0)
trπi

πi. (A120)
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Consequently, if U = {u1, ..., uc} is a basis of Cc that diagonalizes µ, then the tangent
vector X is also diagonal in this basis U , and X commutes with µ, i.e., [µ, X] = 0 and
X ∈ Tc

µDc. This proves (b).
(a) The bijection DΠ → Sl is explicitly given by

ΦΠ : DΠ → Sl , ∑
i∈[l]

pi
trπi

πi 7→ (p1, ..., pl). (A121)

This is bijective according to the definition of DΠ. It remains to be shown that it is an
isometry. Consider another tangent vector Y ∈ TµDΠ. We know that µ, X, Y can all
be diagonalized in a common eigenbasis. This basis is denoted again by U . Then, we
can write

µ = ∑
i∈[c]

p̃iuiu∗i , X = ∑
i∈[c]

x̃iuiu∗i , Y = ∑
i∈[c]

ỹiuiu∗i (A122)

and compute

ι∗gBKM,µ(X, Y) =
∫ ∞

0
tr
(

X(µ + λI)−1Y(µ + λI)−1
)

dλ (A123)

= ∑
i∈[c]

∫ ∞

0
tr
(

x̃i ỹi
( p̃i + λ)2 uiu∗i

)
dλ (A124)

= ∑
i∈[c]

x̃i ỹi
p̃i

. (A125)

Note that the vector p̃ = ( p̃1, ..., p̃c) comes from µ ∈ DΠ. Therefore, the value pj/trπj
must occur trπj times in p̃ for every j ∈ [l]. This observation also holds for the vectors
x̃ = (x̃1, ..., x̃c) and ỹ = (ỹ1, ..., ỹc). Thus, the sum above can be reduced to

∑
i∈[c]

x̃i ỹi
p̃i

= ∑
j∈[l]

xjyj

pj
, (A126)

where (p1, ..., pj) = Φ(µ), (x1, ..., xl) = dΦ[X] and (y1, ..., yl) = dΦ[Y]. Taking into
account that (x1, ..., xl) and (y1, ..., yl) are the images of X, Y under the differential dΦ,
we conclude

ι∗gBKM,µ(X, Y) = ∑
i∈[l]

xiyi
pi

(8)
= gFR,Φ(µ)(dΦ(X), dΦ(Y)). (A127)

This proves part (a).
(c) Part (c) is about the commutativity of the diagram.

DΠ DΠU

Sl Sc.

αΠ

ΦΠ ΦΠU
βΠ

(A128)

The horizontal arrows can be described as follows. Recall that Π = {π1, ..., πl}.
ki = trπi represents the dimensions of the images of the projectors πi. For a fixed
p = (p1, ..., pl) ∈ Sl , set

P = (P1, ..., Pc) := (p1/k1, ..., p1/k1︸ ︷︷ ︸
k1 times

, ..., pl/kl , ..., pl/kl︸ ︷︷ ︸
kl times

) ∈ Sc. (A129)
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Then, αΠ is given by

αΠ

(
∑

i∈[l]

pi
ki

πi

)
= ∑

j∈[c]
Pjuju∗j ∈ DΠU and βΠ(p1, ..., pl) = (P1, ..., Pc) (A130)

Diagram (A128) commutes according to the definition of the Φ maps.

Proof of Lemma 10.

(i) Due to the commutativity of the components µi of µ ∈ Q, we can simplify the
expression for the vector field of the QSAF as follows.

Rµ[Ω[µ]]i
(106)
= Rµi

[
Ω[µ]i

]
(A131)

(64)
(28)
= ∑

k∈Ni

ωik

( ∫ 1

0
µ1−λ

i µkµλ
i dλ− tr(µiµk)µi

)
(A132)

= ∑
k∈Ni

ωik
(
µiµk − tr(µiµk)µi

)
. (A133)

Define µ ∈ DΠ,c such that all the components µi can be written as

µi = ∑
r∈[l]

pi
r

trπr
πr, pi = (pi

1, ..., pi
l) ∈ Sl , i ∈ V . (A134)

Then, we can further simplify

µiµk = ∑
r∈[l]

pi
r pk

r
(trπr)2 πr and tr(µiµk) = ∑

r∈[l]

pi
r pk

r
trπr

(A135)

and, consequently,

∑
k∈Ni

ωik

(
µiµk − tr(µiµk)µi

)
= ∑

r∈[l]
∑

k∈Ni

ωik

(
pk

r
trπr

−
(

∑
s∈[l]

pi
s pk

s
trπs

))
pi

r
trπr

πr (A136)

= ∑
r∈[l]

xr

trπr
πr, (A137)

where

xr := ∑
k∈Ni

ωik

(
pk

r
trπr

−
(

∑
s∈[l]

pi
s pk

s
trπs

))
pi

r. (A138)

Thus,
Rµ[Ω[µ]]i = ∑

r∈[l]
xr/(trπr)πr.

This has to be compared with the general form of a tangent vector( X ∈ TµiDΠ given by
(A120). The only condition the vector p′(0) in (A120) has to satisfy is that its components
sum to 0. This also holds for x = (x1, ...xl). We conclude that Rµ[Ω[µ]]i lies in TµiDΠ for
all i ∈ V or, equivalently, Rµ[Ω[µ]] ∈ TµDΠ,c.
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(ii) We write µi = U Diag(Si)U∗ for all i ∈ V with Si ∈ Sc and express Rµ[Ω[µ]] in terms
of S ∈ W as

Rµ[Ω[µ]]i = ∑
k∈Ni

ωik
(
µiµk − tr(µiµk)µi

)
(A139)

= U Diag
(

∑
k∈Ni

ωik
(
Si · Sk − 〈Si, Sk〉Si

))
U∗ (A140)

= U Diag (RS[ΩS])iU
∗. (A141)

Proof of Corollary 3. We write Di = U Diag (λi)U∗ for λi ∈ Rn diagonalized in the U
basis. Then, the initial condition for the QSAF S flow (109) is given by

µ(0)i = S(1Q)i
(101)
= Γ

(
∑

k∈Ni

ωik(−Dk)

)
. (A142)

Then, set D̃i := ∑k∈Ni
ωikDk = U Diag(λ̃i)U∗, where

λ̃i = ∑
k∈Ni

ωikλk ∈ Rc. (A143)

Recall further that Γ is computed in terms of the matrix exponential as specified by (66). Thus,

µ(0)i = Γ(−D̃i) =
expm(−D̃i)

tr expm(−D̃i)
=

U expm(−Diag(λ̃i))U∗

tr(U expm(−Diag(λ̃i))U∗)
= U

Diag(exp(−λ̃i))

tr expm(−Diag(λ̃i))
U∗. (A144)

This shows that all the µ(0)′is are diagonalized by the same basis U and µ(0) ∈ DΠU ,c, and
we can apply Proposition 10 (ii). Therefore, the vector field of the quantum state assignment
S flow is also diagonalized in the U basis, and we solve simply for the diagonal components.
The quantum S-flow equation can be written as

µ̇i = U Diag(RSi [ΩS])U∗, µ(0)i = U Diag(S(1W ))U∗ (A145)

with the classical similarity map S defined in terms of the data vectors λi and µi related to
Si ∈ Sc by µi = Udiag(Si)U∗. The solution to this system is

µi(t) = U Diag(Si(t))U∗, (A146)

where S ∈ W solves the classical S-flow equation Ṡ = RS[ΩS] and S(0) = S(1W ).
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