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(a) recordedframe (b) reconstructeddisplacement�eld

Fig. 2. Particle Image Velocimetry (PIV): (a) Detail of an image frame
recorded in a real �uid experiment (see Sect. IV-D), showing particles
(polyglycol diluted in water) in an air �o w. The imageis 100px � 100px in
size,correspondingto 7:5 mm� 7:5 mmin theilluminatedplane.Theparticles
have adiameterof lessthan10µmi.e. lessthanapixel in theprojection,which
preventstheapplicationof standarddifferentialoptical �o w techniques.Image
noiselevel is high. (b) Exampleof a reconstructeddisplacement�eld. Each
arrow describesthe motion vectorestimatedat its origin.

Fig. 3. Estimateddisplacement�eld in a real turbulent PIV experiment
(arrows) andsomeof theadaptedcorrelationwindows (representedby ellipse-
shapedlevel contours).For eachmeasurement,ourapproachbalancestheerror
causedby a high amountof imagenoisecomparedto the supportingregion,
andviolation of the assumption,that the �o w is constantwithin the window,
suchas in the upperleft region, wherehigh gradientsdominate.In contrast,
windows canbechosenlarger in homogeneousregions(right). This spatially-
dependentadaptivity of windows emergesfrom our variationalapproach.

Variationalapproachesbasedon the linearised optical �o w
constraint,originatingfrom thework of HornandSchunck[4],
have also beenapplied to measuremotion in PIV [5]. The
densevector �eld representationallows to incorporateprior
knowledge on the vector �eld, such as incompressibility,
seee.g. [6], [7]. However, the implied brightnessconstancy
assumptionoftendoesnot hold in realPIV datawhich is taken
into accountin [8] by modifying the dataterm.

In [9], cross-correlationis consideredas one of three
similarity measurementsbetweenimagepairs. Basedon this
and additional spatial regularisation,a variational approach
for imageregistration is formulatedand solved using partial
differentialequations.

The two-scaleapproachin [10] combinestheadvantagesof

optical �o w basedmethodsand cross-correlation:an optical
�o w approachwith physically sound regularisation terms,
which penaliselarge variationsin the rotationanddivergence
of the�o w, is endowedwith anadditionaldataterm.Similarity
to a coarsevector �eld originating from a local correlation
approachis enforced.The displacement�eld estimatedusing
cross-correlationis usedto initialise a variationaloptical �o w
approachin [11]. For a comprehensive synopsison variational
methodsfor �uid �o w measurementwe refer to [12].

Much effort hasbeenput into improving the spatialresolu-
tion of cross-correlationmethods[13], [14] by replacingthe
�x edsquareinterrogationwindowsby appropriatealternatives.
Theauthorsof [15] investigatea classof cone-shapedweight-
ing functionsandoptimisethe shapeparametersby meansof
the frequency-response,however not with respectto a speci�c
image data set. In [16], [17] the size of squarewindows is
locally adaptedto the signal quality and spatial �uctuations
in the �o w. Window adaptationis usedin [18] at interfaces
to �x ed objectsin the scene.The authorsof [19] proposea
criterion basedon the �o w gradientsand image quality to
select the optimal shapeof an elliptical window. In [20] a
Gaussianweighting function is stretchedand rotated along
the measuredmeandisplacement.Gaussianweightsare used
both in a local [21] andglobal context [22] for smoothingthe
optical �o w constraint,however with isotropic windows of
�x ed sizecommonfor all positions.In our work, the correla-
tion window is alsodescribedby a “soft” Gaussianweighting
function. However, we formulate a sound criterion for the
location-dependentchoice of the window shapeparameters
by meansof an error model function.The window adaptation
consistsof �nding the window shapewhich minimises the
predictedmeasurementerror.

Our contribution is a variational formulation for a
correlation-basedapproachfor measuringmotion in PIV im-
agepairs.A Gaussianweighting function controlsthe image
region consideredin the displacementestimation.The shape
of the window is controlled by meansof a function which
approximatesthe expectedmeasurementerror. Minimisation
leadsto the optimal window shapewith respectto this error
model.Displacementmeasurementandwindow adaptationare
formulatedasa pair of interdependentoptimisationproblems.
It is solved via a multiscalegradient-basedalgorithm.

This work summarisesand extendsthe resultsin [23]. An
abridgedversion was published in [24] with the focus on
image processing.In [25] we investigate our approachfrom
the applied�uid mechanicspoint of view.

C. Organisation

In Sect.II we formulateour approachto adaptive �uid �o w
measurementasacontinuousoptimisationproblem.SectionIII
details on the discretisationand the employed optimisation
method.We verify both in theexperimentalsection(Sect.IV)
andconcludein Sect.V.

II . APPROACH

A. ProblemDe�nition

Given a pair of images,g1; g2, de�ned on the image do-
main 
 � R2, we are interestedin a vector �eld u : 
 7! R2
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on the window size by de�ning the constraint set S :=�
� 2 S2

++

�
� � min I � � � � max I

	
. I denotesthe identity ma-

trix of appropriatesize and S � T indicatespositive semi-
de�nitenessof T � S for symmetricmatricesS; T.

The error model function E(� ; u; x) is composedof the
following two terms:

a) HomogeneityTerm: The �rst part of the objective (9)
describesthe error causedby the violation of the assumption
that the observed motion within the chosenwindow is homo-
geneous:

Ehomog (� ; u; x):=
Z

R2
w(y � x; �) e(x; y; u) dy (10)

e(x; y; u):=
�

ku(y) � u(x)k2
2 if y 2 


e2
outside otherwise

(11)

The function e(x; y; u) measuresthe squaredEuclideandis-
tance of u(y) to the displacementin the point of interest,
u(x), while a constanterrorvalueis assumedfor usingregions
outsidethe imagedomain
 . The errorsare weightedby the
window function which is parameterisedby � .

b) Noise Term: The secondterm in (9) describesthe
impact of image sensornoise and unpairedparticleson the
accuracy. We de�ne it as

Enoise (�)=
� 2

2�
p

det �
; (12)

where� is a parameterwhich describesthe imagenoiselevel.
Intuitively spoken, this term describesthe expectationthat the
error reduceswhenthemeasurementsupport,

R
w(x; �) dx =

2�
p

det � increasesfor larger windows � . A more detailed
derivation of this term canbe found in the Appendix.

c) Global Window Adaptation: Finally, we extend the
local window estimationto

min
� 2S

E(� ; u) with E(� ; u) :=
Z



E(� (x); u; x) dx ;

which optimisesthe window shapesglobally in termsof the
matrix-valuedfunction � 2 S.

D. Joint Approach

In Sect.II-B we introduceda motion estimationapproach
and presumedthat the window parametersare given. In con-
trast, in Sect.II-C we �x ed a displacement�eld andadapted
the correlationwindows to it. We describethis chicken-and-
egg-dependency asa mathematicallytractableproblem:

u � 2 argmin
u 2U

C(u; � � ) and � � 2 arg min
� 2S

E(� ; u � ) (13)

The two optimisation problems have non-linear and non-
convex objective functions each,are interconnectedthrough
the variables� � andu � , and thushave to be solved jointly.

Note,thatC(u; � � ) is only minimisedwith respectto u, but
not � � , as the window shapesshouldonly be steeredby the
error modelfunction andnot by the correlationmeasurement.
If imagedatashouldbe consideredin the window choice,an
additionalterm shouldbe incorporatedinto E(� ; u � ).

III . DISCRETISATION AND OPTIMISATION

A numberof carefully chosenapproximationsand relax-
ations were applied to make the optimisationproblem (13)
tractable.

A. Discretisation

The functionsu and � are discretisedcomponent-wiseon
a regular grid X V with spacingaV at coordinatesx i 2 X V .
Furthermore,we de�ne u i := u(x i ) and � i := � (x i ). Using
�nite elementswith piecewiselinearbasisfunctions' i (x), we
approximatethe functionsas

u(x) �
X

x i 2 X V

' i (x)u i and � (x) �
X

x i 2 X V

' i (x)� i :

Note that it is possibleto extendthemethodto arbitrarygrids,
e.g. irregular onesthat adaptto the seedingdensity, as it is
usedin [26]. The integrals in C and E are also discretised
using the introduced�nite elements:

C(u; � )�
X

x i 2 X V

Z



' i (x) dx C(u i ; � i ; x i )

E (� ; u)�
X

x i 2 X V

Z



' i (x) dx E(� i ; u; x i )

Note that A i :=
R


 ' i (x) dx evaluatesto a2
V almost every-

where.Thenestedintegralsin C(u; � ; x) andEhomog (� ; u; x)
arediscretisedaccordingly.

For windows of reasonablesizethe functionw(x; �) incor-
poratedin both termsweightsonly few termswith consider-
able impact.In orderto reducecomputationaleffort, we limit
evaluationto a boundingbox which containsall y 2 
 , such
that w(y � x; �) � 10� 3.

The image data g1, g2 is given on a regular grid with a
spacingtypically smallerthanaV . They aretransferredinto a
cubic spline representationwith all valuesoutsidethe image
domainde�ned to be zero.Using an ef�cient implementation
basedon [27], it is possibleto evaluatethe function valuegi ,
its gradientr gi andsecondderivativesH gi .

B. Optimisation

1) Barrier Function: The constraints� 2 S are incorpo-
ratedinto the energy function using logarithmic barriers,

BS (�) := � � (log det(� � � min ) + logdet(� max I � �)) :

The penaltyweight is � := 10� 2 throughoutthe work. Then
we minimise ES (� ; u; x) := E(� ; u; x) + BS (�) instead
of (9), which is – upto thesymmetryof � – anunconstrained
problem.

2) Single Scale Optimisation: A major simpli�cation of
the problem is to replaceboth minimality objectives by the
stationaryconditions

r u i C(u; � )= 0 8x i 2 X V (14a)

andr � i E(� ; u)= 0 8x i 2 X V : (14b)

A Newton stepwith respectto all displacementand window
shapevariablesis employed to �nd a setof � 2 S andu 2 U
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that satisfy theseconditions.It is extendedby a line search
methodto avoid local maximaandsaddlepoints.

Note, that althougheachequality constraintin (14a)-(14b)
is a nonlinearandnon-convex function in both u and� , they
stronglysimplify to

r u i C(u; � )= r u i A i C(u i ; � i ; x i )= 0 8x i 2 X V

andr � i E(� ; u)= r � i A i E(� i ; u; x i ) = 0 8x i 2 X V :

Thus,thedisplacementscanbeupdatedindependentlyof each
other which is a consequenceof the fact that we did not
add a spatial regularisationterm on u. In the sameway, the
re�nementof the window shapeparametersis independentin
the coordinates.The optimisationloop canbe summarisedas:

procedure SINGLESCALESOLUTION(u (1) ,� (1) )
k  1
repeat
for all x i 2 X V do
u (k+1)

i  VA RIABLEUPDATE(C(u; � ); u i ; (u (k ) ; � (k ) ))
� (k+1)

i  VA RIABLEUPDATE(E (� ; u); � i ; (� (k ) ; u (k ) ))
end for
k  k + 1

until stoppingcriterion ful�lled
return (� (k ) ; u (k ) )

end procedure
An upper bound on the changeof the variablesis usedas
stoppingcriterion. The function VA RIABLEUPDATE improves
the solution x0 with respectto f by updating a subsetof
variablesy.

procedure VA RIABLEUPDATE(f ,y,x0)
g  r y f (x0), H  Hy f (x0) . gradient,Hessian
� y  � (H + �I ) � 1g . Newton stepdirectionw.r.t. y
�  � max , x �  x0

while � � � min do . line search
x � jy  x0jy + � � y . updateonly variablesy
if f (x � ) < f (x0) then
return x � . updatesuccessful

end if
�  � �

end while
return x0 . updatefailed

end procedure
The parameterswere chosenconservatively: � min = 10� 9,
� max = 1 � 10� 3, � = 10� 1 and � = 100.

3) Multiscale Optimisation: As indicated by Fig. 4, the
problem has many local minima which we intend to cir-
cumnavigateby wrappinga multiscaleframework aroundthe
optimisationloop.To this end,we representtheproblemat the
original as well as a coupleof coarserresolutions.The grid
spacings(data and variable) enlarge by factor s > 1 when
descendingone level. E.g. for a 5-level dyadic pyramid, we
have s = 2 andwe denotethe resolutionscales– from �nest
to coarsest– as f 1; 2; 4; 8; 16g.

The multiscaleframework �rst recursively transfersimage
andinitial variablevaluesfrom the �nest to thecoarsestlevel.
Then at each resolution the estimatedsolution of the next
coarserlevel act as initialisation for the variable re�nement
in SINGLESCALESOLUTION.

Displacementvariablesare re-sampledto �ner or coarser
grids usingcubic spline interpolation.A small binomial low-
pass �lter is used to avoid aliasing while down-sampling.
The multiscaleimagerepresentationis createdwith the same
technique.The re-sampling processof the window shape
parameteris slightly more complex, as the constraint� 2 S
has to be conserved. However, simple component-wisebi-
linearinterpolationguaranteesthatthere-sampledvaluelies in
the convex hull of the interpolatedvalues,andthusin S. The
sameargumentholds for applying low-pass�lters as long as
their coef�cients addup to one,suchas it is the casefor the
employed binomial �lters before down-sampling.Given the
imagedataand (a possiblyzero) initial solution, the overall
optimisationcanbe summarisedas:

procedure MULTISCALESOLUTION(g[1]
1 ,g[1]

2 ,u [1] ,� [1] )
for l = 2; 3; : : : ; lmax do . �ne to coarse
createg[l ]

i by downsamplingg[l � 1]
i , for i 2 f 1; 2g

createu [l ] and� [l ] by down-samplingu [l � 1] and� [l � 1]

end for
for l = lmax ; lmax � 1; : : : ; 2 do . coarseto �ne
(u [l ]; � [l ])  SINGLESCALESOLUTION(u [l ]; � [l ])
createu [l � 1] and � [l � 1] by up-samplingu [l ] and � [l ]

end for
(u [1] ; � [1] )  SINGLESCALESOLUTION(u [1] ; � [1] )
return (u [1] ,� [1] )

end procedure
Furtherdetailson the implementationcanbe found in [23].

IV. EXPERIMENTS

In our experimentswe investigatedthe basicpropertiesof
the window adaptation(Sect.IV-A, IV-B), and evaluatedthe
joint approachwith syntheticbenchmarkdata(Sect.IV-C) as
well as real-world data(Sect.IV-D).

The proposedmethodswas implementedmostly in MAT-
LAB. Geometricpropertiesof a window � , suchasradius,re-
fer to the level contourf x 2 R2jw(x; �) = exp(� 1)g, which
is alsousedfor visualisation.No additionaldisplacement�lters
(e.g.vectormedian)wereapplied.

A. Window AdaptationStrategies

The following experimentswere designedto estimate the
potentialof theproposederrormodelto improve theaccuracy
of the variationalcorrelationmethod.As we want to concen-
trateonthesuitabilityof errormodelfunction andnotonerrors
causedby thecontinuousoptimisationprocess,wesimplify the
methodasfollows: in orderto avoid sub-optimallocalminima,
the optimisationof the correlationis initialised by the ground
truth displacement.For the samereason,we do not adaptthe
window continuouslybut evaluatethe deviation from ground
truth for 975 window shapesusing(8) with varying radiusr ,
orientation� andanisotropy a,

S:=

8
>><

>>:
�( r; a; � )

�
�
�
�
�
�
�
�

r 2
n

2
i
2

�
�
� i 2 f� 4; � 3; : : : ; 10g

o
;

a 2
n

1 � 2
i
4

�
�
� i 2 f 0; 1; : : : ; 8g

o
;

� 2
�

i
8 �

�
� i 2 f 0; 1; : : : ; 7g

	

9
>>=

>>;
:
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(a) vertical displacementcomponent (b) detail
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(c) pro�le of the vertical displacementcomponent

Fig. 6. Syntheticvector �eld, PIV-Challenge 2005, CaseA4: (a) vertical
displacementcomponent(-3px (black) to +3px (white) upwards),a detailed
view of the highlighted region is given in (b); (c) plot of the vertical
componentof the displacementscommonfor both datasets,SinusoidsI and
SinusoidsII . The vector �eld has a zero horizontal component,while the
vertical componentis piecewise describedby sine functionswith decreasing
wavelength(400 to 20px) and varying amplitude(around2px). While the
�rst datasetcontainsno imagedistortions,3% pixel noiseand20% unpaired
particleswereaddedto the secondone.

Thecorrelationmethodwasappliedto 160locationsX � 

in two syntheticdata setswith motion gradientsof varying
degree.Both have a commonmotion pattern,which is illus-
tratedin Fig. 6, but differ in the amountof imagedistortions.
Thedeviation of theestimateddisplacementfrom groundtruth
at position x 2 X using the (�x ed) window shape� 2 S
is then measuredby their Euclideandistanceand is denoted
by "(x; �) .

We consideredour adaptationapproachas one of three
strategies(indexedby i 2 f 1; 2; 3g) which choosethewindow
shape� i (x) from the set S for a position x. Their perfor-
manceis comparedon the basis of the mean error � i :=

1
jX j

P
x 2 X " (x; � i (x)) . The threestrategiesare in detail:

Strategy 1 (Oracle): Thishypotheticalstrategy “magically”
knows the values"(x; �) a priori andcanalways choosethe
optimal window:

� 1(x) := argmin
� 2 S

" (x; �)

Thus,the meanerror of this strategy, denotedas� �
1, provides

a lower boundfor all strategiesunderthis conditions.
Strategy 2 (Err or Model): The secondstrategy represents

the proposedwindow adaptationmethod.For eachposition,
thewindow shapeis chosensuchthatit is optimalwith respect
to the de�ned error model function:

� 2(x) := argmin
� 2 S

E(� ; u; x)

This optimisationproblem is solved by enumeratingall el-
ementsof S. Furthermore,the ground truth vector �eld is
usedfor u to excludein�uencescausedby inaccuraciesin the

displacementestimation.The meanerror is denotedas � 2(� )
anddependson the choiceof � , while the parametereoutside

wasset to zero.
Strategy 3 (Fixed Radius): A naive strategy is to choose

the window radiusr a priori anduniformly for all position.

� 3(x) := �( r; 0; 0)

The associatedquality measurementis denotedby � 3(r ).
For the latter two strategies we also de�ne � � and r �

which minimise the correspondingmean errors and de�ne
thesevaluesas � �

2 := � 2(� � ) and � �
3 := � 3(r � ), respectively.

Figure 7 visualisesand lists the results. For both data
sets,error rate improves by approximately50% comparedto
the �x ed-radiusstrategy if window adaptationbasedon the
proposederror model is used.Furthermore,the meanerror �
is lesssensibleto the choiceof the parameter� than to the
window radiusr .

B. SyntheticVector Fields

For arbitrary vector �elds, the optimal window shapewith
respectto the proposederror model can form complex struc-
tures.To demonstratethe behaviour of the window adaptation
methods,we investigate a couple of simple syntheticvector
�elds. Only windows wereupdated,while displacementswere
kept �x ed after initialisation. If not mentionedotherwise,in
all experimentsthe initial window radius was 5, the upper
radiuslimit wasr max = 6 pixels ( px), andno lower limit was
imposed.Furthermorewe chose� = 1 andeoutside = 0.

Figure 8 illustrates the adaptedwindows in the presence
of an af�ne �ow , i.e. when u(x) can be written as an af�ne
function in x. If thereare no further in�uences (suchas the
boundaryterms in (b)), the resultingshapesonly dependon
the Jacobianof u, morepreciselyon its outerproduct.

In transition zones, e.g. where �o ws of different direc-
tion meet, �x ed windows are disadvantageous,becausethey
smoothover high velocity gradientsandthuswipe out details.
Thus,we investigatethis situationin four simpli�ed scenarios.
It becomesclear, that the window adaptationis invariant
againsta constant offset (Fig. 9a vs. 9b) androtation(Fig. 9a
vs. 9c) of thevector�eld, but only dependson theorientation
of the gradient.The sinusoid-shapedvector �eld in Fig. 9c is
motivatedby the dataset introducedin Fig. 6.

Finally, we investigatescenarioswith sharpmotionbound-
aries where it is of great importancefor the measurement
accuracy that thewindow adaptationprocessrespectsthe �o w
discontinuities.The experimentsin Fig. 10 combine round
andsquareshapedboundarieswith constantandaf�ne vector
�elds. In any case,the adaptedwindow shapesrespectthe
boundarieswell.

C. SyntheticPIV BenchmarkData Set

The data set shown in Fig. 6 and already investigated in
Sect.IV-A wascreatedfor the PIV Challenge 2005andused
to evaluatethe spatialresolutionof 19 PIV algorithms.

First experimentsshowed that it is essentialto have a
goodinitialisation for theproposedadaptive approach.To this
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(c) SinusoidII: �x ed radius
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Fig. 7. Comparisonof window selectionstrategies:meanerrorof the �x ed radius(dottedline), oracle(dashedline) andtheerrormodelbasedstrategy (solid
line). (a) Resultsfor SinusoidsI, comparingthe �x ed radius� 3 (r ) strategy for varying radii to the bestvaluesof the alternative strategies.(b) Sameas(a),
but for the error model strategy andvarying parameter� . Best resultsare � �

1 = 0:00627, � �
2 = 0:0421 (for � � = 10) and � �

3 = 0:0796 (r � = 2). (c)-(d):
Sameas(a)-(b), but for the datasetSinusoidsII , with � �

1 = 0:0255, � �
2 = 0:109 (� � = 107=4 ), � �

3 = 0:206 (r � = 25=2 ).

(a) constantvector �eld (b) constantvector�eld, adaptationto
imageboundaries

(c) af�ne vector �eld with isotropic
gradient

(d) af�ne vector�eld with anisotropic
gradient

Fig. 8. Syntheticdisplacement�elds (arrows) andsomeof the adaptedwindows (ellipses). Constant vector �elds: (a) The window radii would approach
in�nity due to the lack of a gradient,but is limited by the constraintr � 6. (b) The windows are additionally constrainedto adaptto the boundariesof
the imagedomainby settingeoutside = 10. Af�ne vector �elds: (c) Rotational�eld with isotropic gradientsleadsto roundwindows. (d) Vector �eld with
anisotropicgradientsleadsto ellipse-shapedwindows.

endwe �rst estimateda roughdisplacement�eld using �x ed
windows and thenprocessthe datawith window adaptation.

For the caseSinusoidsI the initial vector �eld was calcu-
latedwith 5 multiscalelevels,usinga scalingfactorof

p
2 and

roundwindowswith radius6. Theadaptiveapproachusedonly
3 multiscalelevels.We set� = eoutside = 20, andconstrained
the windows radii to the range2 to 40px.

The resultsin Fig. 6 demonstratethat �x ed windows can

recover the overall structurebut smooth over small details.
In view of the following processingstep,we favour a rough
reconstructionover a more detailedbut de�nitely noisy one
which can be achieved using smaller windows. With the
window adaptationenabled,eventhestructuresat thesmallest
scalecan be reconstructedwell up to few outliers, as win-
dows align perpendicularto the velocity gradientsand along
regionsof homogeneousmotion. Additional disturbancescan
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(a) displacementgradientperpendicu-
lar to the �o w

(b) sameas (a) with a constant�o w
superimposed

(c) displacementgradient along the
�o w

(d) sinusoid

Fig. 9. Syntheticdisplacement�elds (arrows) andsomeof the adaptedwindows (ellipses).Constantvector �elds (upper and lower region) enclosea
transitionzone(middle). Af�ne transition zone: Identical window shapesfor different vector �elds: (a) displacementgradientsperpendicularto the �o w,
(b) superimposedby a constant�eld, and(c) gradientsparallel to �o w. Sinusoid: (d) Transitionzoneis sinus-shaped([0; � ]). The adaptationschemealigns
the windows perpendicularto the displacementgradientandreducesthe sizealong the transitiondirection to avoid smoothingout the boundary.

(a) constant vector �elds, square
boundaries

(b) constant vector �elds, round
boundaries

(c) af�ne vector �elds, squarebound-
aries

(d) af�ne vector �elds, round bound-
aries

Fig. 10. Syntheticdisplacement�elds andsomeof the adaptedwindows (ellipses),with sharpdiscontinuitiesbetweenthe inner andoutermotion regions.
Constant �o ws: Constant�o w (red) interruptedby a zero �o w (blue) with (a) squareand(b) round inner region. Rotational (af�ne) � ows: Two contrarily
rotating (af�ne) �o ws with (a) squareand (b) round inner region. The adaptationschemereducesthe window sizesnear the region boundariesto avoid
smoothingover motion discontinuities.

beobservedneartheupperandlower imageboundaries,where
windows areextremelycompressed.

Additive imagenoiseandunpairedparticlesin combination
with the small structuresrendersthe data set SinusoidsII
a challengefor any motion measurementalgorithm. Again
we estimateda coarsedescriptionusing �x ed windows (ra-
dius 8px). Initialised by this result, we run the adaptive
approachwith the sameparametersas for the previous data
set,but doubled� anddid not usemultiscalecalculation.

Figure12 visualisestheresultingdisplacementsandadapted
windows. Justas for SinusoidsI, the �x ed-window approach
canonly capturetheroughmotionstructures,but thefollowing
adaptive approachcomplementsthedetails evenfor thesmall-
est wavelength.However, more outliers than for SinusoidsI
canbeobserved,wherealsotheadaptedwindowsdeviatefrom
their expectedvertical alignment.

Finally, we compareour resultsfor SinusoidsII to 19 ap-
proachesfor �o w measurement,which were describedand
benchmarked in [28]. For this purpose we evaluated our
methodwith the samecriterion, which is de�ned as follows:
for each sinusoid wavelength � , we gained a motion pro-
�le u� (x) by averagingthe displacements along the vertical

axis. Stripesof 10 px at the upperand lower boundarywere
excludedbefore.Then using the groundtruth pro�le u�

� , the
amplituderatio wascalculatedas

A(� ) :=

R+ �= 4
� �= 4 u� (x) dx

R+ �= 4
� �= 4 u�

� (x) dx
:

The characteristiccurve was accurately included into a
copy of the comparisonplots of the evaluationpaperand is
presentedin Fig. 13. Especiallyat the lowestwavelength,cor-
respondingto the smalleststructuresin the data,our adaptive
approachoutperformsmostof thecompetingimplementations.

D. RealTurbulent ExperimentalData

Finally, we apply the proposedapproachto real PIV data,
provided by JohanCarlier in [29] and available at [30]. The
experimentdescribesthe turbulent �o w behinda cylinder. We
chosethe image pair number600 of the data set, recorded
with a time differenceof 200� s. Each has a resolution of
1280px� 1024px and dynamicsof 12bit . In Fig. 2aa detailed
view of the image data atteststhe low image quality. An
overview over the �o w is presentedin Fig. 14. As in the
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Fig. 11. Syntheticvector �eld, PIV-Challenge 2005, CaseA4, SinusoidsI
(no image distortions), full and detailed view of the estimatedvertical
displacementcomponent(colour mapidenticalto Fig. 6): Row 1: Variational
correlationwith �x edwindows (r = 6) canonly resolve thegeneralstructures
but smoothesover details.Row 2: Using the previous resultas initialisation,
joint correlationand window adaptation (� = 20) can signi�cantly improve
the accuracy even for the smalleststructures.Row 3: statistics(along the
completeverticalaxis,but 10 pxexcludedat theupperandlower boundary)of
the resultsin row 2: meandisplacement(thick line), rangeof � onestandard
deviation (shadedgray) andgroundtruth (thin line, cf. Fig. 6c). Row 4: The
adaptedwindows align perpendicularto the velocity gradient.

previousexperiments,we calculateda coarsevector�eld using
�x ed windows (r = 30) on the scalesf 1; 2; 4; 8; 16; 32g,
seeFig. 15a. Initialised by this result, the adaptive approach
delivers a more detailedestimation(Fig. 15b). The windows
were constrainedto r 2 [3; 50], and � was chosenas 100.
Only the �nest scalewasused.

Lacking ground truth data,we employ a vector �eld cal-
culatedby the Lavision (http://www.lavision.de/en/)company
usingtheir PIV-softwareDavisasreference(Fig. 15c).Our ap-
proachsmoothesthedisplacementsin regionsof homogeneous
motion, while the referencesolution exhibits somenoise. In
turbulent regions,however, thewindows areadaptedsuchthat
gradientsin the vector �eld areprevailed.

In order to separateeffectsof the window adaptationfrom
the in�uence of initialisation, we rerun the adaptive method
with the sameparameterbut initialised with the reference
solution. The result in Fig. 15d shows the sameproperties
asdiscussedfor the one in Fig. 15b. Furthermore,the coarse
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Fig. 12. Syntheticvector �eld, PIV-Challenge 2005, CaseA4, SinusoidsII
(with additive image noise and unpairedparticles), full and detailed view
of the estimatedvertical displacementcomponent(colour map identical to
Fig. 6): Row 1: The high amountof imagenoisenecessitateslarge windows
(r = 8) for theapproachbasedon �x edwindows. Thus,detailsaresmoothed
out, but the generalstructurescan be resolved. Row 2: Using the previous
resultas initialisation, joint correlationandwindow adaptation(� = 40) can
signi�cantly improve the accuracy even for the smalleststructures,however
interruptedby local outliers. Row 3: statistics(along the completevertical
axis, but 10 px excludedat the upperand lower boundary)of the resultsin
row 2: meandisplacement(thick line), rangeof � one standarddeviation
(shadedgray) andgroundtruth (thin line, cf. Fig. 6c), Row 4: The windows
align perpendicularto the gradientwith exceptionof the vicinity of outliers.

structure is almost identical in all three solutions, which
suggeststheir correctness,and shows the robustnessof our
approachwith respectto local optima.

Finally, Fig. 14 marks the location of three regions for
which we give detailed views of the vector �eld together
with some of the adaptedwindows. Figure 3 demonstrates
how windows sizesreducein vicinity of a vortex compared
to a homogeneousregion. The ability to continuouslycontrol
the window orientationis bene�cial, for examplearoundthe
vortex in Fig. 16a. As already demonstratedin Fig. 9, the
windows do not necessarilyalign with the direction of the
�o w, but with its gradientas in Fig. 16b.

V. CONCLUSION

An adaptive approachto measuremotion in PIV image
data was presented.It is basedon the correlationsimilarity
measure,which has proven to be robust also for noisy data.
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Fig. 13. Syntheticvector �eld, PIV-Challenge 2005, CaseA4, region SinusoidsII : Part 1 and 2 of the comparisonof the amplituderesponsedepending
on the structurewavelength� . We included the measurementof our experimentsinto the plot hard-copiedfrom [28, Fig. 21a] (we redraw the numbers
of the horizontalaxis for betterreadability)where19 �o w measurementimplementationswere compared.Most approachesusecross-correlationwhile the
methodslabelledby CLIPS-8andCEMAGREF-16arebasedon optical �o w. ESI and � -PTV areparticle trackingvelocimetrymethods.For a descriptionof
the competingapproacheswe refer to [28]. Our approachoutperformsmost of the other implementations,especiallythe accuracy for very small structures
was improved by usingadaptive windows.

Fig. 14. Real2D PIV experiment:Overview over the �uid �o w, determined
by our adaptive correlationmethod.A meanvector�eld of about12px to the
right wassubtractedeverywhere.Therectanglesmark the locationof detailed
views in – from left to right – Fig. 3, 16a and16b.

In contrastto classicalmethodswhich usea discretesearchto
�nd theoptimaldisplacement,we formulateit asa variational
problem and use continuousoptimisationmethods.Further-
more,we employ Gaussian-shapedweightingfunctionswhose
shapecan be continuouslycontrolled and proposea sound
adaptationcriterion which is basedon an error model. Both
thedisplacementmeasurementandthewindow adaptationare
formulatedas two interdependentoptimisationproblems.

In our experimentswe demonstratedthe ability of the error
model to improve the measurementaccuracy and demon-
strated the basic behaviour of the adaptationmethod. We
applied our approachto a synthetic PIV benchmarkdata
set and outperformedmost of 19 implementationsof motion
estimators.Finally we showed, that our approachis capable
of handling noisy image data from a real experiment.The
window adaptationimproves the reconstructedvector �eld in

both homogeneousand turbulent regions.
Furtherwork includesto improve the error modelfunction,

e.g. to incorporatespatialvarying in�uences(seedingdensity,
image noise level) and further expert knowledge. Regular-
isation terms could be added to the motion estimation to
incorporateprior knowledge,e.g. non-compressibility, on the
observed physical process.

APPENDIX

DERIVATION OF THE NOISE TERM

The term Enoise (�) in (9) describesthe impact of image
sensor noise and unpaired particles on the accuracy. For
this purpose we assumethat the measurementin x is a
least-squaredsolution û of independentmeasurementsu(y),
weightedwith thesamewindow functionastheoneuseddur-
ing correlation.For simplicity, andwithout lossof generality,
we assumethat the estimation is centredin x = 0. Further-
more,hereweassumeanunboundedvariabledomain
 = R2.

û :=arg min
u2 R2

Z

R2
w(y; �) ku � u(y)k2

2 dy

=

R
R2 w(y; �) u(y) dy
R

R2 w(y; �) dy
=

Z

R2
G(� ; y) u(y) dy (15)

The noise term should only describethe in�uence of dis-
turbancesin the image data, but not the error caused by
inhomogeneousmotion. Thus,we assumeeachmeasurement
to bedistributedaroundthetruedisplacementu� , but disturbed
by additive Gaussiannoise, i.e. u(y) � N

�
u� ; � 2

jA j I
�

. The
constant� is the relative expectederror with respectto the
size of the domainA on which a single estimationis based
on. Then we de�ne the noiseterm to be the expectedsquare
deviation of (15) from the true solution:

Enoise (�):= E
�

kû � u� k2
2

	
(16)

It is possibleto derive aclosedform expressionfor this term.
To this end we representthe integral in (15) over an in�nite
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(a) correlationonly

(b) with window adaptation,initialised by (a)

(c) referencesolution

(d) with window adaptation,initialised by (c)

Fig. 15. Real2D PIV experiment,Left: horizontalcomponentof the mea-
sureddisplacements(scale:8px (black) to 16 px (white) to the right), Right:
verticalcomponent(-4px (black)to +4px (white) upwards):(a) Our approach
with �x ed windows requiresa large support(r = 30) to copewith the low
imagequality andthussmoothesout �ne structures.(b) Combinedcorrelation
and window adaptation(� = 100), initialised by (a). In comparisonto (c)
the solutionobtainedby a commercialcorrelationsoftware(LavisionDavis),
our approachpreservesdetailsin turbulent regions (middle) andat the same
time reducessmall disturbancesin homogeneousregions (upper and lower
boundary)by adaptingwindows accordingly. (d) Initialising our approach
with (c) (andusingthe sameparametersasin (b)) shows the robustnesswith
respectto local minima.

domainasa Riemannintegral,

û = lim
jA j!1

lim
n !1

ûn ;

which is the limi t of the Riemannsumsûn . For simplicity,
we assumea squareA which is decomposedinto Nn := n2

regionsof equalsizejAni j = jAj=Nn . Samplecoordinatesare

chosenasyni 2 Ani . Thenwe cande�ne

ûn :=
N nX

i =1

jAni jG(� ; yni ) u(yni ) =
N nX

i =1

wni u(yni )

with wni := jAni jG(� ; yni ). In this formulation, the esti-
mateddisplacement̂un is a linear combinationof normally
distributed variablesand thus is normally distributed as well,
i.e. ûn � N (� n ; sn ) with:

� n := Ef ûn g =
N nX

i =1

wni u� = u�
N nX

i =1

jAni jG(� ; yni )

sn := E
�

(ûn � � n )( ûn � � n )> 	
=

N nX

i =1

w2
ni

� 2

jAni j
I

= � 2I �
N nX

i =1

G(� ; yni )2 jAni j

UsingG(� ; x)2 = (2�
p

det(2�)) � 1G
�

1
2 � ; x

�
(see,e.g.,[31,

eq. (348)]) we obtain

sn =
� 2

4�
p

det �
I

 
N nX

i =1

G
�

1
2

� ; yni

�
jAni j

!

:

We assumethat for large n the distribution of ûn describes
the distribution û � N

�
�̂; �̂

�
well. Passingthe limit, we get

the expectedresult for the mean,

�̂ := lim
jA j!1

lim
n !1

� n = u� lim
jA j!1

Z

A
G(� ; y) dy = u� ;

and– more importantly– the variance

�̂ := lim
jA j!1

lim
n !1

sn =
� 2

4�
p

det �
I lim

jA j!1

Z

A
G

�
1
2

� ; y
�

dy

=
� 2

4�
p

det �
I :

Then the de�nition (16) simpli�es to (using [31, eq. (357)])

Enoise (�)= E
�

kû � u� k2
2

	
= tr �̂ =

� 2

2�
p

det �
:

The noiselevel � is the only parameterfor this term.
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