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Abstract

Particle Image Velocimetry (PIV) denotes a prevailing technique for
imaging turbulent 
uids with high-speed cameras. Corresponding image
sequences provide the basis for estimating such 
ows and related 
ow
patterns through image processing. While so far this technique has been
applied in two dimensions (2D) in terms of an illuminated plane inter-
secting the volume, recent research focuses on imaging 
uids directly in
3D. This paper provides a synopsis of the state-of-the-art and its con-
nections to previous research work on image restoration. Weaddress
the basic problems involved and point out promising research directions
for reconstructing scalar-valued particle functions fromfew tomographi-
cal measurements. Solutions to these problems will providean essential
processing step prior to the estimation of 3D 
ows from reconstructed
volume functions.

1 Introduction

Particle image velocimetry (PIV) is an optical method for measuring velocities
of 
uids [24]. For the purpose of visualization the 
uid is seeded with particles
that follow the 
ow dynamics. From the motion of these seeding particles the
velocity information is obtained. For a recent overview of the history of PIV
techniques, we refer to [1].

Among the di�erent 3D velocimetry techniques presently available, to-
mographic particle image reconstruction (TomoPIV) [11] has recently received
most attention, due to its increased seeding density in comparison to 3D par-
ticle tracking velocimetry (3D PTV) [20], its relatively low costs and complex-
ity of the necessary measurement apparatus in comparison toholographic PIV
[15], and its capability of providing instantaneous 
ow �el d measurements irre-
spective of 
ow velocity, as opposed toscanning PIV [5]. TomoPIV is a novel



experimental technique, based on multiple camera-system,three-dimensional
volume illumination and 3D reconstruction of seeding particles within the 3D
measurement volume. The essential step of this technique isthe 3D particle
reconstruction as a light intensity distribution (3D image ) by optical tomogra-
phy. Thus it reduces to an 3D image reconstruction from projections problem,
which can be formulated as an underdetermined system of linear equations of
the form

Ax = b ;

as will be detailed in Section 2. Such systems, disregardingfor the moment
the inconsistent case, will have in�nitely many solutions. An optimization
criterium has to be speci�ed, according to which a particular solution will be
singled out from all those satisfying the measurements. Theanalysis of such a
solution concept for the 3D particle image reconstruction problem is the main
concern of the present work, focusing more on the adequate choice for the ob-
jective function within the optimization approach for accu rate reconstruction,
and less on algorithmic complexity and e�cient runtimes.

In a subsequent step, provided that two subsequent 3D particle images
have been obtained by means of a robust reconstruction algorithm, a cross
correlation technique [25] returns an estimate of the instantaneous velocity
�eld within the volume in focus.

The present paper is structured as follows. We begin our discussion with
a description of the TomoPIV principle in Section 2. Next, we take a more
detailed look at ART and MART, two of the most well-known algebraic recon-
struction techniques. The algebraic reconstruction technique (ART) and the
multiplicative ART (MART) appeared in [13] for use in computerized tomog-
raphy (CT) scanning reconstruction. The ART algorithm prod uces a least-
squares solution of minimal Euclidian norm. MART is a maximum entropy
(ME) algorithm and de�nes the state-of-the-art of TomoPIV [ 11].

There are important di�erences, however, between tomographic medical
imaging and particle image reconstruction. In medical imaging the observa-
tions are usually made at regular sample angles, and the image is oversam-
pled. TomoPIV sampling, on the other hand, is undersampled to make the
high-speed imaging process feasible, resulting in an ill-posed reconstruction
problem. Moreover, ART and MART do not take advantage of the fact that
the basic shape of the object to be reconstructed is known: a sparse dis-
tribution of small particles of equal size in a speci�ed volume. It will turn
out, mainly because of this characteristic, that `2-minimization is an inade-
quate optimization approach when applied to particle imagereconstruction,
since it provides a much to dense "solution". On the other hand, entropy
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maximization seems to provide satisfactory results for sparse enough particle
distributions. Increasing the seeding density, however, this approach will ex-
hibit a behavior similar to `2-minimization. But higher particle densities are
desirable since they ease subsequent 
ow estimation. Although the treatment
of this paper is mainly theoretic, we will report some experimental results
illustrating some basic points in Section 6.

2 Image Reconstruction within Tomo-PIV

The working principle of TomoPIV as described in [11] is schematically shown
in Fig. 1. Seeding particles within the measurement volume are illuminated
by a pulsed light source, and the scattered light pattern is recorded simulta-
neously from several viewing directions using CCD cameras.The 3D particle
distribution (the object) is reconstructed as a 3D light int ensity distribution
from its projections (2D images) on the CCD arrays. The particle displace-
ment (hence velocity) within the interrogation volume is th en obtained by
the 3D cross-correlation of the reconstructed particle distribution at the two
exposures, similar to the approach in [25].

TomoPIV [11] adopts a simple discretization for an image-reconstruction
problem known as thealgebraic image reconstructionmodel [7], which assumes
that the image consists of an array of unknowns (voxels), andsets up algebraic
equations for the unknowns in terms of measured projection data. The latter
are the pixel entries in the recorded 2D images.

We consider an alternative to the classical voxel discretization and as-
sume that the image I to be reconstructed can be approximated by a linear
combination of Gaussian-typebasis functions Bj ,

I (z) �
nX

j =1

x j Bj (z); 8z 2 
 � R3 ; of the form (1)

Bj (z) = e�
k z � pj k 2

2
2� 2 ; for z 2 R3 : kz � pj k2 � r ; (2)

or value 0, if kz � pj k2 > r , located at a Cartesian equidistant 3D grid pj ; j =
1; : : : ; n within the volume of interest 
. The choice of a Gaussian-typ e basis
function is justi�ed in the TomoPIV setting, since a particl e projection in
all directions results in a so-calleddi�raction spot of approximately 3 pixel
diameter, compare Fig. 2. Based on geometrical optics, the recorded pixel
intensity is the object intensity integrated along the corresponding line of
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Figure 1. (a) TomoPIV principle. (b) Discretization of an 2D volume and corresponding
rays for two orthogonal projections

sight, obtained from a calibration procedure. Thus, the i -th measurement
obeys

bi :�
Z

L i

I (z)dz �
nX

j =1

x j

Z

L i

Bj (z)dz =
nX

j =1

x j aij ; (3)

where aij is the value of the i -th pixel if the object to be reconstructed is
the j -th basis function. The main task is to estimate the weightsx j from the
recorded 2D images, corresponding to basis functions and solve

Ax � b : (4)

We encounter limited-data problems since it is impossible to acquire integral
data from the object at all angles at reasonable costs, due tothe high speed
of the measurement process. Thus the 3D image reconstruction problem is
not straightforward since a single set of projections can result from many
di�erent 3D objects. But knowing roughly what the reconstru cted object
looks like can greatly improve reconstruction accuracy. The determination
of the most likely 3D particle distribution will be discussed in the following
sections, concentrating on two classical approaches.
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3 Solution Concepts and Problem Characteristics

The approximation (4) re
ects possible errors in modeling and measurement.
Thus, a exact solution of the linear system

Ax = b (5)

even if it would exist, and if we could compute it accurately, is not more
desirable with respect to the underlying reconstruction problem, than some
other, di�erently de�ned, "solution". The equations aT

i � x = bi ; i = 1 ; : : : ; m, in
(5) should be used in a way that re
ects our con�dence in the data. A classical
approach, also known asfeasibility approach [7], is to allow a deviation of Ax
from the data b, solving for

bi � " i � aT
i � x � bi + " i ; i = 1 ; : : : ; m; (6)

where " i > 0; i = 1 ; : : : ; m, are some user speci�ed tolerances. The above
linear system of inequalities results in alinear interval feasibility problem [7].
It tries to �nd a solution within the neighborhoods of all hyp erplanesH i :=
f x j aT

i � x = bi g; i = 1 ; : : : ; m, rather than an intersection point as problem (5).
However, by the above relaxation approach the feasible set of (6) will be

enlarged, and an additional criterion has to be applied to single out a unique
solution of (6).

Additional information about the real-world problem provi des additional
inequalities that further restrict the feasible set both in (5) and (6). A common
idea in image reconstruction is to look for solutions satisfying x � 0. Note
that negative weights x j may give by (1) a negative intensity distribution I
around pj .

Throughout the rest of this paper, we make the somehow restrictive as-
sumption that there is no noise corruption of the data, no measurement in-
accuracies and no discretization errors. Thus we concentrate on ill-posedness
of (5) in the sequel and report the investigation of the relaxed model (6)
elsewhere.

Let us consider some special features of the system in (5). Wehave to
handle a underdetermined system withm << n , having very sparse coe�cient
matrix A 2 Rm� n , in general not of full rank. The sparsity structure of
A is due to the fact that only a few basis function are on the lineof sight
of each particular camera pixel. By the nature of the problem, given the
construction of the projection matrix A and the fact that the measured data
represent intensities, we always haveaij � 0 and bi � 0; 8i = 1 ; : : : ; m; 8j =
1; : : : ; n. Often we encounter even zero measurementsbi , compare Fig. 2.
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Figure 2. Typical projection (2D image) of a 3D particle dist ribution (3D image) before
(left) and after (right) preprocessing

As a consequence, it is reasonable to remove equations with zero right-hand
side. This will lead to a feasible set of reduced dimensionality as detailed next.
Consider the feasible polyhedral set with respect toA and b

F := f x j Ax = b; x � 0g (7)

and let us introduce the following partitions of the index sets I := f 1; : : : ; mg
and J := f 1; : : : ; ng:

I 0 := f i 2 I j bi = 0g and �I 0 := I n I 0;

J0 := f j 2 J j 9i 2 I 0 : aij > 0g and �J0 := J n J0:

Further de�ne
F red := f x j A �I 0 �J0

x = b�I 0
; x � 0g: (8)

Then the following holds:

Proposition 1 Let A 2 Rm� n ; b 2 Rm have all nonnegative entries andF
and F red de�ned as in (7) and (8) respectively. Then

F = f x 2 Rn j xJ0 = 0 and x �J0
2 F redg: (9)

Proof. Let S := f x 2 Rn j xJ0 = 0 and x �J0
2 F redg. We �rst show

S � F . Let x 2 S. From this x � 0 follows directly. We just have to showP n
j =1 aij x j = bi ; 8i 2 I . Indeed, for

i 2 �I 0 :
nX

j =1

aij x j =
X

j 2 �J0

aij x j| {z }
= bi

+
X

j 2 J0

aij x j|{z}
=0

= bi ;
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whereas for

i 2 I 0 :
nX

j =1

aij x j =
X

j 2 �J0

aij|{z}
=0

x j +
X

j 2 J0

aij|{z}
>a ij

x j|{z}
=0

= 0 = bi :

Now let x 2 F and consider anyi 2 I 0. Then

0 = bi =
nX

j =1

aij x j =
X

j 2 �J0

aij|{z}
=0

x j +
X

j 2 J0

aij|{z}
>a ij

x j (10)

holds. Sincex � 0, we obtain from (10) that x j = 0 ; 8j 2 J0. To show that
A �I 0 �J0

x �J0
= b�I 0

, consider

i 2 �I 0 :
X

j 2 �J0

aij x j =
X

j 2 �J0

aij x j +
X

j 2 J0

aij x j|{z}
=0

=
nX

j =1

aij x j = bi :

Hence,xJ0 = 0 and x �J0
2 F red . Thus x 2 S. 2

Remark 1 The linear system (5) may have no (nonnegative) solution, in-
�nitely many (nonnegative) solutions or exactly one nonnegative solution. Ac-
cording to [9] the latter case occurs when there is a su�ciently sparse solution
to (5).

However, the common case is an in�nite feasible set. Along with the
feasibility approach, the optimization approach has prevailed in image recon-
struction from limited data. Using this approach, also known asregularization
approach, one has to specify an objective functionf : Rn ! R, according to
which a particular element of (5) or (7) is selected as solution to the original
real-world problem.

Optimizing a (convex) function f with respect to linear constraints can be
handled by a variety of optimization methods. But a general-purpose method
can emerge as impracticable, since in particle image reconstruction there are
millions of voxels resp. basis function in the 3D image and thousands of mea-
surementsm, resulting in matrices A that may be much too big to be stored
in computer memory.

A common and successful class of algorithms used in image reconstruction
from projections are row-action methods [7]. These iterative algorithms do not
change the original matrix A, do not perform operations on the matrix as a
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whole, but require only a single row of the matrix in each stepof the and
only need the predecessorxk in order to compute xk+1 . As a consequence
there is no need to store the entire matrixA in the computer's memory. Thus
row-action methods are able to handle huge problem sizes. Furthermore, they
are well suited for parallel computation.

4 Minimum Energy Solution with ART

In this and the following section we investigate two classical optimization
approaches. Most commonly used is thè 2-norm regularization, also called
minimum energy approach:

(PLS ) min
1
2

kxk2
2 s.t. Ax = b ; (11)

The continuous di�erentiable and strictly convex objectiv e function f LS :=
1
2kxk2

2 selects a unique solution of every instance of consistent equations (5). A
further advantage of the minimum energy approach is the existence of a closed
form solution x � = A+ b to (11), involving the Moore-Penrose pseudo-inverse
A+ . However, computing A+ is not recommended in practical situations.
Besides being error-prone, such a computation results in a dense matrix A+ .
As a consequence the solution is typically nonzero in every component. Hence,
solving for (11) is the wrong principle for our application. Yet, (11) together
with its relaxation (6) is computationally tractable. A com mon and successful
class of iterative algorithms, known as algebraic reconstruction techniques,
exist to solve these problems.

ART was �rst published in [13] in connection with image reconstruction
and was later recognised to be identical to Kaczmarz's algorithm [17] for solv-
ing the linear system (5). ART belongs to the class of row action methods.
The iteration proceeds as follows:

Algorithm 1 (Algebraic Reconstruction Technique (ART) - with relaxati on
and cyclic control)

(S.0) Set x0 := 0 and k := 0 .

(S.1) Set i := ( k mod m) + 1 and

xk+1
j = xk

j + � k
bi � aT

i � xk

kai � k2 aij ; j = 1 ; : : : ; n ; (12)

where � k 2 (0; 2) is a user speci�ed parameter.
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(S.2) If Ax k+1 = b is satis�ed within the tolerance level: STOP.
Otherwise, increase the iteration counterk  k + 1 and continue with
(S.1).

For the above algorithm, we have in the consistent case the following
convergence result:

Theorem 1 [16] Assume that a solution toAx = b exists. For the all-zero
starting vector x0 and for � k 2 (0; 2), any sequencef xkg generated by Algo-
rithm 1 converges to the unique optimum of problem(11), i.e. x �

LS = A+ b.

ART is a simple, intuitive algorithm. If the current guess xk is too large,
then the residual bi � aT

i � xk , will be negative and decrease the value of the
pixel. ART is a particular Projection Onto Convex Sets (POCS) algorithm
[2], where the iterations project the current iterate on the hyperplanes de�ned
by the rows of A and observationsb. ART can be also viewed as a special
instance ofBregman's balancing method[4], which for eachi := ( k mod m)+1
�nds

xk+1 = xk + � k(PH i (x
k ) � xk ) ;

where PH i (x
k ) is the orthogonal projection of xk on the i -th hyperplane H i .

This sequential POCS method converges in the consistent case to a point
in the intersection of the convex sets, see [14, Th. 1]. However, in the incon-
sistent case it does not converge, but convergence of the cyclic subsequences,
called cyclic convergence, can be shown [14, Th. 2].

For ART without relaxation, Kaczmarz [17] proved convergence to the
unique solution of the system, providedA is square and invertible. Herman
et al. showed in [16] that ART with relaxation converges in the consistent
case. The case in which no solution exists has been considered by Tanabe
[26], who proved convergence to a limit cycle of vectors. If,the relaxation
parameter � k goes to zero, the element of the limit cycle approach the same
vector. This has been considered by Censor et al. [6], who show that the
limiting single vector is the least squares solution that is unique provided
A has full rank. A di�erent approach was adopted by Popa et al. in [23],
where a Kaczmarz-type algorithm, calledKaczmarz Extended with Relaxation
Parameters (KERP) , employs a modi�ed right-hand side vector b to deal with
the inconsistent case. Convergence of KERP towards a least-squares solution,
irrespective of a starting point x0, was proved in [22].

However, the least-squares solution may not be positive, even in the case
of only positive entries in A and b. ART can be adapted to involve nonnegativ-
ity constraints by including certain constraining strateg ies [18] in the iterative
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process, e.g. orthogonal projection of the current iterateafter a full cycle on
the positive orthant.

5 Maximum Entropy Solution with MART

Entropy has it's origin in information theory and can be de�n ed as a measure
of probabilistic uncertainty [8]. Entropy optimization ha s been applied to a
wide range of practical problems, varying from transportation and location
problems to speech recognition and image reconstruction. We refer to [12] for
an overview on entropy optimization and its application in various �elds. In
this paper, we consider a �nite-dimensional linearly constrained entropy-like
problem

(PE ) min
nX

j =1

x j log(x j ) s:t : Ax = b; x � 0 ; (13)

in accordance to models used for image reconstruction [13, 7], where E(x) :=
� f E (x) := �

P n
j =1 x j log(x j ) is the Boltzmann-Shannon entropy measure. We

stress that x must be a probability distribution to properly form an entro py
measure. So its interpretation in (13) as entropy is made only by analogy.
Entropy maximization has been established in the �eld of tomographic PIV
in [11].

Adding the constraint x � 0 is not only reasonable, but is also necessary
for the maximum entropy approach, since the log function is de�ned only
for positive values. Taking in account that lim t& 0 t log(t) = 0, we de�ne
0 log 0 := 0 and continuously extend f E . Under our assumption that the
feasible setF 6= ; , we can verify [3, Prop. A.8] that problem (PE ) has a
global solution, sincef E is continuous and coercive.

Further notice that the objective function f E of (PE ) is strictly convex
over Rn

+ , since its Hessian is positive de�nite onRn
++ . Hence (PE ) has a unique

optimal solution. Moreover, if the set

F+ = f x 2 Rn j Ax = b; x > 0g (14)

is nonempty, then the unique optimal solution is strictly positive. However,
in view of Proposition 1, F+ = ; whenever I 0 6= ; . Such an assumption
will therefore be inappropriate in our context. But since we are interested in
analyzing methods (e.g. MART) for solving (PE ), which in general seek this
strictly positive feasible solution, we will consider the reduced problem

min
x2F red

nX

j 2 �J

x j log(x j ); (15)
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under the assumption that F red 6= ; . We stress that problem (15) is equivalent
to (PE ) in the sense that a solution to the reduced problem (15) can be padded
by zeros for all j 2 J0, see Proposition 1. For convenience, we will further
refer to A �I 0 �J0

and b�I 0
by A and b and re-index �I 0 and �J0 by f 1; : : : ; mr g and

f 1; : : : ; nr g to simplify notation throughout this section.
Assuming (F red )+ 6= ; , the strong duality theorem [3, Prop. 5.3.1] tells

us that a necessary and su�cient condition for x � 2 Rn r to be the positive
optimal solution of problem (15), is the existence ofu� 2 Rm r such that

(
x � = eA T u � � 1 ;

Ax � = b
(16)

hold. Moreover, if u� is a global optimum of the unconstrained dual problem

(DE ) max
u2 Rm r

� 1T eA T u� 1 + bT u; (17)

there is no duality gap, i.e. x � log(x � ) = � 1T eA T u � � 1 + bT u� . If A = A �I 0 �J0

is a full rank matrix, the dual optimal solution u� is unique. For a detailed
development of this statement in a more general context, see[12, Th. 5.6].

Conditions (16), which are the K.K.T. conditions for the red uced entropy
problem (15), and the dual problem (DE ) are the basis for developing solution
methods to (15). We refer the reader to [12] for an overview over linearly
constrained entropy problems.

The Multiplicative Algebraic Reconstruction Technique (M ART) was
�rst proposed in [13] is a row-action method analogous to ART. It applies
only to systems in whichb > 0 and A has only nonnegative entries. We ensure
this by reducing the entropy maximization problem according to (9).

Algorithm 2 (Multiplicative Algebraic Reconstruction Technique (MART) -
with relaxation and cyclic control)

(S.0) Choosex0 = e� 1 and setk := 0 .

(S.1) Set i := ( k mod m) + 1 and

xk+1
j = xk

j

�
bi

aT
i � xk

� � k aij

; j = 1 ; : : : ; n ; (18)

where � k 2 (0; 1] is a user speci�ed relaxation parameter.
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(S.2) If Ax k+1 = b is satis�ed within the tolerance level: STOP.
Otherwise, increase the iteration counterk  k + 1 and continue with
(S.1).

Censor et al. [19] showed the convergence of MART within the primal-
dual framework even in the case of analmost cyclic control sequence [19],
providing the starting vector x0 is constant.

Theorem 2 [19, Th. 18] Assume that F red 6= ; , matrix A has only nonneg-
ative entries and Ax = b has been scaled so thataij � 1 for all i 2 �I 0 and all
j 2 �J0. Choose for all iterations k the relaxation parameter � k 2 (0; 1]. Then
any sequencef xkg generated by Algorithm 2 converges to the unique optimum
of problem (15). Moreover, if the relative interior of F red 6= ; , MART exhibits
a linear convergence rate towards the unique (positive) solution.

The linear rate of convergence was shown by Elfving [10]. If the set
(F red )+ = ; the algorithm can converge sublinearly, see Section 6. The last
two assumptions in Theorem 2 are not restrictive at all. The entries positivity
assumption holds by the nature of the problem, whereas the normalization
assumption is also easy to satisfy. We can further assume that the problem
has been scaled so that the column sums ofA are all equal to one. This
amounts to rede�ne A and x by dividing aij by the sum of the j -th column
and multiplying x j by the same sum.

It turns out that besides the theoretical reasoning based onmaximizing
the dual in (17), MART has a geometrical interpretation simi lar to ART. The
new iterate xk+1 is an approximation to the Bregman projection of xk on
the hyperplanes H i . Indeed, f E is a Bregman function [7, Lem. 2.1.3] and
its associated generalized distanceis the Kullback-Leibner distance between
nonnegative vectors, i.e.

KL (x; y) :=
nX

j =1

�
x j log

�
x j

yj

�
+ yj � x i

�
:

Thus xk+1 is an approximation to the minimizer of KL (x; x k ) subject to H i .
Recall that, following Censor [7], the Bregman projection with respect

to a Bregman function f of a point x onto the closed convex setX � Rn is
the (necessarily unique) minimizer overX , denoted P f

X (x), of the functional
D f (�; x) : Rn

++ ! R+ , called generalized or Bregman distance, and de�ned
by

D f (y; x) = f (y) � f (x) � r f (x)T (y � x); 8y > 0;
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i.e.
P f

X (x) = argmin y2X D f (y; x) :

Lemma 2.1.2 in [7] ensures thatP f
X (x) exists.

We conclude by pointing out that the behavior of MART in the ca se of
inconsistent equations, that typically arise in real applications, is not known.
In contrast, the behavior of ART when applied to inconsistent systems is well
understood as discussed above.

6 Some Experiments and Discussion

We demonstrate the feasibility and the typical behavior of the approaches
presented in Section 4 and 5 with two examples of small and medium size.
The �rst is an illustrative example based on the the geometry presented in
Figure 3(a). Three basis functions of the form

Bj (z) =

(
1; if kz � pj k2 � 1

2 ;

0; if kz � pj k2 > 1
2 ;

where z 2 R3, are centred at each vertexpj ; j = 1 ; 2; 3; of an equilateral
triangle of side 1

2 . Two 1-pixel cameras placed at in�nity keep the scene in
focus. The two lines of sight arep1p2 and p1p3 respectively, and intersect two
basis functions each.

The resulting projection matrix is

A =
�

1 1 1
2

1 1
2 1

�
and A+ =

� 4
17

20
17

� 14
17

4
17

14
17

20
17

� T

;

whereA+ denotes the Moore-Penrose inverse ofA. Now suppose that a particle
is positioned at p1. In this case we "measure" the datab = (1 ; 1)T , according
to (3).

The minimum energy solution of (11), which will be denoted by x �
LS

throughout this section, can be computed exactly

x �
LS = A+ b � (0:470588; 0:352941; 0:352941)T :

The maximum energy solution of (13) can be computed exploiting the
relations between the primal problem (PE ) and its dual (DE ). We obtained
the unique global maximum u� := ( u�

1; u�
2) of the dual objective in (17), where

u�
1 := log

0

@ 9
16

+
1
2

p
b�

1
2

s
81
32

�
1
6a

+
8e
3

�
32ae2

3
+

729
64 + 18e

4
p

b

1

A ;
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p1

p2 p3

�rst camerasecond camera

(a) First case (b) First case

Figure 3. (a) Discretization of a particle image and corresp onding ray geometry. (b) Feasible
set by restricting the intersection of two hyperplanes to th e positive cone, together with the

sparsest, the minimal `2-norm and the maximum entropy solution, from left to right.

a := ( 2
e )2=3

(2048e+27 (81+
p

6561+12288e)) 1=3 , b = 81
64 + 1

6a + 4e
3 + 32ae2

3 and u�
2 := u�

1; using

Mathematica. Indeed, performing some exhaustive arithmetics, one can verify
that u� = ( u�

1; u�
2) satis�es the closed-form necessary and su�cient optimality

condition AeA T u � � 1 = b, compare also (16). Note that the set

F+ =
n

t
�

1 0 0
� T

+ (1 � t)
�

0 2
3

2
3

� T
j t 2 (0; 1)

o
; (19)

is nonempty, compare Fig. 3(b). Exploiting (16), we can compute the maxi-
mum energy solution

x �
E = eA T u � � 1 � (0:405918; 0:396055; 0:396055)T :

We consider also a slight modi�cation of the previous example. While
the discretization and particle position remain the same, we change only the
camera positions. This second case considered is schematically represented in
Fig. 4(a). The projection matrix and its pseudoinverse are

A =
�

1 1
2 1

1
2 1 1

�
and A+ =

� 20
17 � 14

17
4
17

� 14
17

20
17

4
17

� T

and the measurement vectorb = (1 ; 1
2)T .
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p1

p2 p3

�rst camera

second camera

(a) Second case (b) Second case

Figure 4. (a) Discretization of a particle image and corresp onding ray geometry. (b) Measure-
ment hyperplanes, single point feasible set w.r.t positivi ty constraints, sparsest = maximal

entropy solution (bottom) and minimal `2 � norm solution (top).

The minimum energy solution x �
LS doesn't belong to the nonnegative

orthant in this case. Exact computation yield

x �
LS = A+ b = � (0:764705; � 0:235294; 0:352941)T :

In this second case, the feasible set involving the positivity constraints
reduces to a single point, see Fig. 4(b), namely the originalsolution x �

orig =
(1; 0; 0)T . Note that the relative interior of F is 0 and F+ is empty.

We tested ART and MART numerically without relaxation, i.e. 8k =
1; 2; : : : ; � k = 1 ; � k = 1, on the above examples. Besides ART and MART we
consider also a modi�cation of ART, which we further call ART+pos , based
on constraining strategies proposed in [18]. This method amounts to project
the current iterate on the positive orthant after each complete sweep of the
ART, through all equations.

We terminate the iteration of the these three algorithms if the condition
kAx k � bk2 < 10� 6 is satis�ed at the current iterate xk . The results are
summarized in Table 1.

Table 1: Numerical results for the two small-sized experi-
ments detailed in the text

Example Method Nr. Iter. Final iterate value
�rst ART 100 x f

LS = (0 :4705884; 0:352942; 0:352940)T

ART+pos 100 x f
LS + = (0 :470588; 0:352942; 0:352940)T
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MART 96 x f
E = (0 :405918; 0:396055; 0:396053)T

second ART 111 x f
LS = (0 :764705; � 0:235293; 0:352941)T

ART+pos 382 x f
LS + = (0 :999997; � 0:000000; 0:000001)T

MART 1997523 x f
E = (0 :999998; 0:000000; 0:000001)T

We stress that within the �rst setting MART converged after 9 6 inner
iterations, within the tolerance level, to the positive maximum entropy solution
x �

E . In the second case MART took 1997523 inner iterations for convergence
towards x �

orig = (1 ; 0; 0)T ; which is also the sparsest possible in both cases.

As next step we turn our attention to particle image reconstruction based
on the Gaussian-blobs discretization. For the purpose of visualization we
consider only an example of reduced dimensionality: We consider 40 and 50
particles in a 2D volume V = [ � 1

2 ; 1
2 ] � [� 1

2 ; 1
2 ]. The grid re�nement was

chosend = 0 :0154, resulting in 4356 gridpoints. At these gridpoint we centre
a Gaussian-type basis function, where� = d. Particle positions were chosen
randomly but at grid positions, to avoid discretization err ors. Four 50� pixel
cameras are positioned as depicted in Fig. 6, resulting in a fan beam geometry.
The obtained projection matrix, after removing zero rows, is depicted in Fig.
6 (right) and we have A 2 R172� 4356. The pixel intensities are computed
according to (3), integrating the particle image exactly along each line of
sight.

In all three cases we reduce systemAx = b according to the methodology
proposed in Proposition 1, see Table 2 for the reduced dimensionalities. We
terminate the iteration of the main algorithm if the conditi on kAx k+1 � bk1 <
10� 4 is satis�ed or if the maximum iteration number is reached, i.e. k � kmax ,
where kmax = 1000mr , i.e. 1000 complete sweeps through the rows of the
reduced matrix A. The relaxation parameters � k and � k are set to 1.

Table 2: Numerical results for the Gaussian-type discretiza-
tion examples

#Particles Method #Iter. mr � nr kxorig � x f k2 kAx f � bk1

40 MART 142000 142� 3352 5.7078 0.0024
40 ART 142000 142� 3352 6.0252 0.0031
40 ART+pos 142000 142� 3352 68.6018 0.0059
50 MART 150000 150� 4081 6.2935 0.0081
50 ART 150000 150� 4081 6.9094 0.0007
50 ART+pos 150000 150� 4081 6.5886 0.0161
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(d) Second case: ART (e) Second case: ART+pos (f) Second case: MART

Figure 5. Evolution of the `2-norm error for ART, ART+pos and MART, for the two exper-
iments detailed in the text. Within the �rst setting the algo rithms behave similarly. Here,
ART and ART+pos generate identical sequences. The oscillat ory behavior in (e) is due to
the projection on R3

+ at every second iteration. (f) MART is substantially slowin g down
with the loss of the nonempty relative interior assumption.
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Figure 6. Four cameras measuring the 2D volume from angles 45o ; 15o ; � 15o ; � 45o (left).
Resulting projection matrix (after zero-rows elimination ) with about 9% nonzero entries

(right)
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In Table 2, the �rst column gives the number of the particles randomly
chosen at the 66� 66� gridpoints; Method gives the name of the algorithm used;
Nr. Iter. denotes the total number of inner iterations; kxorig � x f k2 denotes
the Euclidean distance of the �nal iterate x f from the original particle image
xorig , while kAx f � bk1 amounts to a feasibility test at the �nal iterate.

More signi�cant are the reconstructed particle images, depicted in Fig.
7. The "smearing" of the particles in the lines of the projections is typical
for minimum energy reconstructions. This phenomenon is preserved by ART.
The MART and ART+pos reconstructions show more distinct par ticles. How-
ever, additional spots are visible, termed asghost particles by the TomoPIV
community.

Note that between the reconstructed images via ART, MART etc., the
original image seem to be the sparsest of all, i.e. with less non-zero intensities.
In view of this observation, sparsity maximization seem to be an adequate
optimization approach. We present some preliminary results obtained by a
sequential linearization algorithm (SLA) [21], especially designed to �nd the
sparsest solution. However, the computational costs are considerably higher.
A more detailed motivation for sparsity maximization, alon g with results ob-
tained via SLA will be reported elsewhere. However, we stress that in all
considered examples SLA was able to reconstruct the original image.

7 Conclusion and Further Work

This work focused on tomographic image reconstruction in experimental 
uid
mechanics (TomoPIV), a recently established research direction. A classi-
cal algebraic reconstruction approach that is currently in use, together with
closely related variants, were re-considered in some detail to reveal pros and
cons from the perspective of TomoPIV. Speci�cally, we argued that routinely
using MART ignores some basic problem characteristics. Promising research
directions were outlined to take better into account the needs of the over-
all objective, the estimation of turbulent 
ows from accura tely reconstructed
volume functions.
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