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Abstract

Particle Image Velocimetry (PI1V) denotes a prevailing technique for
imaging turbulent uids with high-speed cameras. Correspamding image
sequences provide the basis for estimating such ows and raled ow
patterns through image processing. While so far this techmjue has been
applied in two dimensions (2D) in terms of an illuminated plane inter-
secting the volume, recent research focuses on imaging ugldirectly in
3D. This paper provides a synopsis of the state-of-the-art ad its con-
nections to previous research work on image restoration. Weddress
the basic problems involved and point out promising researa directions
for reconstructing scalar-valued particle functions fromfew tomographi-
cal measurements. Solutions to these problems will providan essential
processing step prior to the estimation of 3D ows from recorstructed
volume functions.

1 Introduction

Particle image velocimetry (PIV) is an optical method for measuring velocities
of uids [24]. For the purpose of visualization the uid is seeded with particles
that follow the ow dynamics. From the motion of these seeding particles the
velocity information is obtained. For a recent overview of the history of PIV
techniques, we refer to [1].

Among the dierent 3D velocimetry techniques presently available, to-
mographic particle image reconstruction (TomoPIV) [11] has recently received
most attention, due to its increased seeding density in comarison to 3D par-
ticle tracking velocimetry (3D PTV) [20], its relatively low costs and complex-
ity of the necessary measurement apparatus in comparison tholographic PIV
[15], and its capability of providing instantaneous ow el d measurements irre-
spective of ow velocity, as opposed toscanning PIV [5]. TomoPIV is a novel



experimental technique, based on multiple camera-systemthree-dimensional
volume illumination and 3D reconstruction of seeding particles within the 3D
measurement volume. The essential step of this technique ithe 3D particle
reconstruction as a light intensity distribution (3D image ) by optical tomogra-
phy. Thus it reduces to an 3Dimage reconstruction from projections problem,
which can be formulated as an underdetermined system of lireg equations of
the form
AX = b;

as will be detailed in Section 2. Such systems, disregardinfpr the moment
the inconsistent case, will have in nitely many solutions. An optimization
criterium has to be speci ed, according to which a particular solution will be
singled out from all those satisfying the measurements. Thanalysis of such a
solution concept for the 3D particle image reconstruction goblem is the main
concern of the present work, focusing more on the adequate ofce for the ob-
jective function within the optimization approach for accu rate reconstruction,
and less on algorithmic complexity and e cient runtimes.

In a subsequent step, provided that two subsequent 3D partile images
have been obtained by means of a robust reconstruction algidhm, a cross
correlation technique [25] returns an estimate of the instantaneous velocity
eld within the volume in focus.

The present paper is structured as follows. We begin our disgssion with
a description of the TomoPIV principle in Section 2. Next, we take a more
detailed look at ART and MART, two of the most well-known algebraic recon-
struction techniques The algebraic reconstruction technique (ART) and the
multiplicative ART (MART) appeared in [13] for use in computerized tomog-
raphy (CT) scanning reconstruction. The ART algorithm prod uces a least-
squares solution of minimal Euclidian norm. MART is a maximum entropy
(ME) algorithm and de nes the state-of-the-art of TomoPIV [ 11].

There are important di erences, however, between tomograpic medical
imaging and particle image reconstruction. In medical imagng the observa-
tions are usually made at regular sample angles, and the imagis oversam-
pled. TomoPIV sampling, on the other hand, is undersampled 6 make the
high-speed imaging process feasible, resulting in an illgsed reconstruction
problem. Moreover, ART and MART do not take advantage of the fact that
the basic shape of the object to be reconstructed is known: apsrse dis-
tribution of small particles of equal size in a specied volume. It will turn
out, mainly because of this characteristic, that “>-minimization is an inade-
guate optimization approach when applied to particle imagereconstruction,
since it provides a much to dense "solution”. On the other ham, entropy



maximization seems to provide satisfactory results for spese enough particle
distributions. Increasing the seeding density, however, his approach will ex-
hibit a behavior similar to ~,-minimization. But higher particle densities are
desirable since they ease subsequent ow estimation. Althegh the treatment
of this paper is mainly theoretic, we will report some experimental results
illustrating some basic points in Section 6.

2 Image Reconstruction within Tomo-PIV

The working principle of TomoPIV as described in [11] is schmatically shown
in Fig. 1. Seeding particles within the measurement volume ee illuminated
by a pulsed light source, and the scattered light pattern is ecorded simulta-
neously from several viewing directions using CCD camerasThe 3D patrticle
distribution (the object) is reconstructed as a 3D light int ensity distribution
from its projections (2D images) on the CCD arrays. The particle displace-
ment (hence velocity) within the interrogation volume is then obtained by
the 3D cross-correlation of the reconstructed particle digribution at the two
exposures, similar to the approach in [25].

TomoPIV [11] adopts a simple discretization for an image-reonstruction
problem known as thealgebraic image reconstructionmodel [7], which assumes
that the image consists of an array of unknowns (voxels), andets up algebraic
equations for the unknowns in terms of measured projection dta. The latter
are the pixel entries in the recorded 2D images.

We consider an alternative to the classical voxel discretiation and as-
sume that the imagel to be reconstructed can be approximated by a linear
combination of Gaussian-typebasis functions B;,

X
| (2) x;Bj(z); 8z2 R3: of the form 1)
i=1
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Bi(zx=e 22 ; forz2R3:kz pky r; 2)

orvalue O, ifkz pk2 >r, located at a Cartesian equidistant 3D gridp; ; | =

function is justied in the TomoPIV setting, since a particl e projection in
all directions results in a so-calleddi raction spot of approximately 3 pixel
diameter, compare Fig. 2. Based on geometrical optics, theecorded pixel
intensity is the object intensity integrated along the corresponding line of
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Figure 1. (a) TomoPIV principle. (b) Discretization of an 2D  volume and corresponding
rays for two orthogonal projections

sight, obtained from a calibration procedure. Thus, the i-th measurement
obeys
Z x £ X
b I (z)dz X; Bj(z)dz = Xj ajj ; )
Li j=1 Li j=1
where a;j is the value of the i-th pixel if the object to be reconstructed is

the j -th basis function. The main task is to estimate the weightsx; from the
recorded 2D images, corresponding to basis functions and lse

AX b: 4)

We encounter limited-data problems since it is impossible & acquire integral
data from the object at all angles at reasonable costs, due tdhe high speed
of the measurement process. Thus the 3D image reconstructioproblem is
not straightforward since a single set of projections can rsult from many
di erent 3D objects. But knowing roughly what the reconstru cted object
looks like can greatly improve reconstruction accuracy. Tk determination
of the most likely 3D particle distribution will be discussed in the following
sections, concentrating on two classical approaches.



3 Solution Concepts and Problem Characteristics

The approximation (4) re ects possible errors in modeling and measurement.
Thus, a exact solution of the linear system

Ax = b (5)

even if it would exist, and if we could compute it accurately, is not more
desirable with respect to the underlying reconstruction problem, than some

(5) should be used in a way that re ects our con dence in the dda. A classical
approach, also known adeasibility approach [7], is to allow a deviation of Ax
from the data b, solving for

b "ioalx b+t i=linm (6)

where"; > 0;i = 1;:::;m, are some user specied tolerances. The above
linear system of inequalities results in alinear interval feasibility problem [7].
It tries to nd a solution within the neighborhoods of all hyp erplanesH; :=

However, by the above relaxation approach the feasible setfd6) will be
enlarged, and an additional criterion has to be applied to angle out a unique
solution of (6).

Additional information about the real-world problem provi des additional
inequalities that further restrict the feasible set both in (5) and (6). A common
idea in image reconstruction is to look for solutions satisfing x 0. Note
that negative weights x; may give by (1) a negative intensity distribution |
around p;.

Throughout the rest of this paper, we make the somehow restdtive as-
sumption that there is no noise corruption of the data, no meaurement in-
accuracies and no discretization errors. Thus we concentta on ill-posedness
of (5) in the sequel and report the investigation of the relaxed model (6)
elsewhere.

Let us consider some special features of the system in (5). Weave to
handle a underdetermined system withm << n , having very sparse coe cient
matrix A 2 R™ " in general not of full rank. The sparsity structure of
A is due to the fact that only a few basis function are on the lineof sight
of each particular camera pixel. By the nature of the problem given the
construction of the projection matrix A and the fact that the measured data
represent intensities, we always have; Oandb 0;8i =1;:::;m;8) =
1;:::;n. Often we encounter even zero measurementy, compare Fig. 2.
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Figure 2. Typical projection (2D image) of a 3D particle dist ribution (3D image) before
(left) and after (right) preprocessing

As a consequence, it is reasonable to remove equations witlero right-hand
side. This will lead to a feasible set of reduced dimensiongy as detailed next.
Consider the feasible polyhedral set with respect toA and b

F:=fxjAx =b;x O0Og )
and let us introduce the following partitions of the index ses | := f1;:::;mg
andJ :=f1;:::;ng

lo:=fi21 jh=0g and lg:= 1 nlg;
Jo=1f] 2391 21lp:3 > 0g and Jo = J nJg:
Further de ne
Frea = fXJ A5, Xx=b,x 0g (8)

Then the following holds:

Proposition 1  Let A 2 R™ ";b2 R™ have all nonnegative entries andr
and F,eq de ned as in (7) and (8) respectively. Then

F=1fx2R"jxy, =0 and x;, 2 Feq0: 9)

Proof. Let S := fx 2 R" j x5, = 0 and X3, 2 Fredd. We rst show
F . Let x 2 S. From this x 0 follows directly. We just have to show
(=1 @j%j = b;8i 2 1. Indeed, for

X X X o
i21g: aj Xj = i Xj + ajj po= )
=1 j Fl:{i} 230 |£(Z(')}

230
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whereas for
xn X X
i21lg: aj Xj = i Xj +

=1 j230 H?(J)}

B 70T

230 >aj =0
Now let x 2 F and consider anyi 2 1o. Then

o X X X
O0=h = aj Xj = i X+
j=1 i2J3o |E£()}

holds. Sincex 0, we obtain from (10) that x; = 0;8] 2 Jo. To show that
A|,1,X3, = by, consider

By % (10)

i2J0 >a

_ X X X X
i21o: | ainj:- aj Xj + aijlé}:._ ajXj=h:
i2Jo j2Jo j2J0 -0 i=1
Hence,x;, =0 and X;, 2 Freq. Thus x 2 S. 2

Remark 1 The linear system (5) may have no (nonnegative) solution, in-
nitely many (nonnegative) solutions or exactly one nonnegtive solution. Ac-
cording to [9] the latter case occurs when there is a su cienty sparse solution
to (5).

However, the common case is an in nite feasible set. Along wh the
feasibility approach, the optimization approach has prevailed in image recon-
struction from limited data. Using this approach, also known asregularization
approach one has to specify an objective functionf : R" ! R, according to
which a particular element of (5) or (7) is selected as solutin to the original
real-world problem.

Optimizing a (convex) function f with respect to linear constraints can be
handled by a variety of optimization methods. But a generalpurpose method
can emerge as impracticable, since in particle image recommsction there are
millions of voxels resp. basis function in the 3D image and tbusands of mea-
surementsm, resulting in matrices A that may be much too big to be stored
in computer memory.

A common and successful class of algorithms used in image mtstruction
from projections are row-action methods [7]. These iteratve algorithms do not
change the original matrix A, do not perform operations on the matrix as a
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whole, but require only a single row of the matrix in each stepof the and
only need the predecessox¥ in order to compute xk*1. As a consequence
there is no need to store the entire matrixA in the computer's memory. Thus
row-action methods are able to handle huge problem sizes. Rihermore, they
are well suited for parallel computation.

4  Minimum Energy Solution with ART

In this and the following section we investigate two classial optimization
approaches. Most commonly used is th€ ,-norm regularization, also called
minimum energy approach:

(P,s)  min %kxk% st. Ax=b; (11)

The continuous di erentiable and strictly convex objectiv e function f g :=
%kxk% selects a unique solution of every instance of consistent agtions (5). A
further advantage of the minimum energy approach is the exitence of a closed
form solution x = A" bto (11), involving the Moore-Penrose pseudo-inverse
A*. However, computing A* is not recommended in practical situations.
Besides being error-prone, such a computation results in aeghse matrix A* .
As a consequence the solution is typically nonzero in everyatnponent. Hence,
solving for (11) is the wrong principle for our application. Yet, (11) together
with its relaxation (6) is computationally tractable. A com mon and successful
class of iterative algorithms, known as algebraic reconstiction techniques,
exist to solve these problems.

ART was rst published in [13] in connection with image reconstruction
and was later recognised to be identical to Kaczmarz's algathm [17] for solv-
ing the linear system (5). ART belongs to the class of row acthn methods.
The iteration proceeds as follows:

Algorithm 1 (Algebraic Reconstruction Technique (ART) - with relaxation
and cyclic control)

(S.0) Setx®:=0 and k :=0.
(S.1) Seti:=(k modm)+1 and

T ok
kel _ Uk h & x .

X=X ks
J ) kay k2

=1;::::n; (12)
where | 2 (0;2) is a user speci ed parameter.
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(S.2) If Ax¥*1 = bis satis ed within the tolerance level: STOP.
Otherwise, increase the iteration counterk k +1 and continue with
(S.1).

For the above algorithm, we have in the consistent case the fmwing
convergence result:

Theorem 1 [16] Assume that a solution toAx = b exists. For the all-zero
starting vector x° and for 2 (0;2), any sequencef x*g generated by Algo-
rithm 1 converges to the unique optimum of problen(11), i.e. x g = A*h.

ART is a simple, intuitive algorithm. If the current guess xX is too large,
then the residual b a' x*, will be negative and decrease the value of the
pixel. ART is a particular Projection Onto Convex Sets (POCS) algorithm
[2], where the iterations project the current iterate on the hyperplanes de ned
by the rows of A and observationsh. ART can be also viewed as a special
instance ofBregman's balancing method[4], which for eachi := (k mod m)+1
nds

XK= (P, () X9

where Py, (x¥) is the orthogonal projection of x on the i-th hyperplane H;.

This sequential POCS method converges in the consistent cago a point
in the intersection of the convex sets, see [14, Th. 1]. Howev, in the incon-
sistent case it does not converge, but convergence of the dicsubsequences,
called cyclic convergence can be shown [14, Th. 2].

For ART without relaxation, Kaczmarz [17] proved convergence to the
unique solution of the system, providedA is square and invertible. Herman
et al. showed in [16] that ART with relaxation converges in the consistent
case. The case in which no solution exists has been considérby Tanabe
[26], who proved convergence to a limit cycle of vectors. Ifthe relaxation
parameter | goes to zero, the element of the limit cycle approach the same
vector. This has been considered by Censor et al. [6], who sWothat the
limiting single vector is the least squares solution that isunique provided
A has full rank. A dierent approach was adopted by Popa et al. in [23],
where a Kaczmarz-type algorithm, calledKaczmarz Extended with Relaxation
Parameters (KERP), employs a modi ed right-hand side vector bto deal with
the inconsistent case. Convergence of KERP towards a leastguares solution,
irrespective of a starting point x°, was proved in [22].

However, the least-squares solution may not be positive, @n in the case
of only positive entries in A and b. ART can be adapted to involve nonnegativ-
ity constraints by including certain constraining strategies [18] in the iterative



process, e.g. orthogonal projection of the current iterateafter a full cycle on
the positive orthant.

5 Maximum Entropy Solution with MART

Entropy has it's origin in information theory and can be de n ed as a measure
of probabilistic uncertainty [8]. Entropy optimization ha s been applied to a
wide range of practical problems, varying from transportation and location
problems to speech recognition and image reconstruction. W/ refer to [12] for
an overview on entropy optimization and its application in various elds. In
this paper, we consider a nite-dimensional linearly constained entropy-like
problem
X
(Pg) min Xjlog(xj) st: Ax=Db;x O; (13)
j=1
in accordanc%to models used for image reconstruction [13],Awhere E (x) :=
fe(x):= j”=1 X;j log(x;) is the Boltzmann-Shannon entropy measure. We
stress that x must be a probability distribution to properly form an entro py
measure. So its interpretation in (13) as entropy is made onf by analogy.
Entropy maximization has been established in the eld of tomographic PIV
in [11].

Adding the constraint x 0 is not only reasonable, but is also necessary
for the maximum entropy approach, since the log function is & ned only
for positive values. Taking in account that limg ogtlog(t) = 0, we de ne
Olog0 := 0 and continuously extend fg. Under our assumption that the
feasible setF & ;, we can verify [3, Prop. A.8] that problem (Pg) has a
global solution, sincefg is continuous and coercive.

Further notice that the objective function fg of (Pg) is strictly convex
over R}, since its Hessian is positive de nite onR", . Hence Pg) has a unique
optimal solution. Moreover, if the set

F: =fx2R"jAx = b;x> 0g (14)
is nonempty, then the unique optimal solution is strictly positive. However,
in view of Proposition 1, F, = ; wheneverlg 6 ;. Such an assumption

will therefore be inappropriate in our context. But since we are interested in
analyzing methods (e.g. MART) for solving (Pg), which in general seek this
strictly positive feasible solution, we will consider the reduced problem

X
min Xj log(x;); (15)
2F red .

j23d

X
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under the assumption that F,eq 8 ;. We stress that problem (15) is equivalent
to (Pg) in the sense that a solution to the reduced problem (15) can b padded
by zeros for allj 2 Jg, see Proposition 1. For convenience, we will further

Assuming (Freq)+ 6 ;, the strong duality theorem [3, Prop. 5.3.1] tells
us that a necessary and su cient condition for x 2 R" to be the positive
optimal solution of problem (15), is the existence ofu 2 Ry, such that

(

x = ety 1
AXx =D (16)

hold. Moreover, if u is a global optimum of the unconstrained dual problem

(De)  max 1TA™u 14 Ty (17)
uz2Rmr

there is no duality gap, i.e. x log(x ) = 1TeA™ L+ blu. If A= A,
is a full rank matrix, the dual optimal solution u is unique. For a detailed
development of this statement in a more general context, segl2, Th. 5.6].

Conditions (16), which are the K.K.T. conditions for the red uced entropy
problem (15), and the dual problem (Dg) are the basis for developing solution
methods to (15). We refer the reader to [12] for an overview osr linearly
constrained entropy problems.

The Multiplicative Algebraic Reconstruction Technique (M ART) was
rst proposed in [13] is a row-action method analogous to ART. It applies
only to systems in whichb > 0 and A has only nonnegative entries. We ensure
this by reducing the entropy maximization problem according to (9).

Algorithm 2 (Multiplicative Algebraic Reconstruction Technique (MART) -
with relaxation and cyclic control)

(S.0) Choosex®= e ! and setk := 0.

(S.1) Seti:=(k modm)+1 and

ng (18)

where X 2 (0;1] is a user speci ed relaxation parameter.
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(S.2) If Ax¥*1 = bis satis ed within the tolerance level: STOP.
Otherwise, increase the iteration counterk k +1 and continue with
(S.1).

Censor et al. [19] showed the convergence of MART within the pmal-
dual framework even in the case of amlmost cyclic control sequence [19],
providing the starting vector x° is constant.

Theorem 2 [19, Th. 18] Assume thatF,eq 6 ;, matrix A has only nonneg-
ative entries and Ax = b has been scaled so thad; 1foralli2lgandall

j 2 Jo. Choose for all iterations k the relaxation parameter 2 (0;1]. Then
any sequencd xkg generated by Algorithm 2 converges to the unique optimum
of problem (15). Moreover, if the relative interior of F,qq 6 ;, MART exhibits

a linear convergence rate towards the unique (positive) sotion.

The linear rate of convergence was shown by Elfving [10]. Ifte set
(Freq)+ = ; the algorithm can converge sublinearly, see Section 6. Theat
two assumptions in Theorem 2 are not restrictive at all. The entries positivity
assumption holds by the nature of the problem, whereas the nwnalization
assumption is also easy to satisfy. We can further assume thahe problem
has been scaled so that the column sums oA are all equal to one. This
amounts to rede ne A and x by dividing a; by the sum of the j-th column
and multiplying x; by the same sum.

It turns out that besides the theoretical reasoning based onmaximizing
the dual in (17), MART has a geometrical interpretation similar to ART. The
new iterate x¥*1 is an approximation to the Bregman projection of x¥ on
the hyperplanesH;. Indeed, fg is a Bregman function [7, Lem. 2.1.3] and
its associated generalized distanceis the Kullback-Leibner distance between
nonnegative vectors, i.e.

X] X.
KL (x;y) := xjlog == +y X
=1 Y

Thus x¥*1 is an approximation to the minimizer of KL (x;x¥) subject to H;.
Recall that, following Censor [7], the Bregman projection wth respect
to a Bregman function f of a point x onto the closed convex seX R" is
the (necessarily unique) minimizer overX, denoted P;( (x), of the functional
D¢(;x): R"++ ! R4, called generalized or Bregman distance, and de ned
by
De(y;)=f(y) f() r f0QT(y x); 8y>0;

12



ie.
P>f< (X) = argmin yox D (y;X):

Lemma 2.1.2 in [7] ensures thaiP;( (x) exists.

We conclude by pointing out that the behavior of MART in the ca se of
inconsistent equations, that typically arise in real applications, is not known.
In contrast, the behavior of ART when applied to inconsisternt systems is well
understood as discussed above.

6 Some Experiments and Discussion

We demonstrate the feasibility and the typical behavior of the approaches
presented in Section 4 and 5 with two examples of small and medm size.
The rst is an illustrative example based on the the geometry presented in
Figure 3(a). Three basis functions of the form

1L, ifkz pko

Bj(z) =
8= 6 ik p ko >

NI N[

where z 2 RS, are centred at each vertexp;;j = 1;2;3; of an equilateral
triangle of side % Two 1-pixel cameras placed at in nity keep the scene in
focus. The two lines of sight arepipz and p1ps respectively, and intersect two
basis functions each.

The resulting projection matrix is

1 1 ¢ . 4 20 _14 T
A= 11 i and A" = Y H ¥ :
2 17 17 17

whereA* denotes the Moore-Penrose inverse @&. Now suppose that a particle
is positioned at p;. In this case we "measure" the datab= (1;1)", according
to (3).

The minimum energy solution of (11), which will be denoted by x, ¢
throughout this section, can be computed exactly

X.s = A*b (0:4705880:3529410:352941J :

The maximum energy solution of (13) can be computed exploitng the
relations between the primal problem (Pg) and its dual (Dg). We obtained
the unique global maximumu := (u4;u,) of the dual objective in (17), where

0 s 1
9 1P- 1 8 1 8 32 2
- b + +

16 2 2 32 6a 3 3 5
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second camerarst camera

(a) First case (b) First case

Figure 3. (a) Discretization of a particle image and corresp onding ray geometry. (b) Feasible
set by restricting the intersection of two hyperplanes to th e positive cone, together with the
sparsest, the minimal “2-norm and the maximum entropy solution, from left to right.

Q= () = 8ly 1, de, 32a¢?

(2048e+27 (81+ " 6561+12288¢)) ™’ 64 a3 3
Mathematica. Indeed, performing some exhaustive arithmeics, one can verify
that u = (uy;u,) satis es the closed-form necessary and su cient optimality
condition AeA'U 1 = p, compare also (16). Note that the set

n (0]
F,= t 100 ' +@ t) 02 2 Tjt201) ; (19

and u, := uy; using

is nonempty, compare Fig. 3(b). Exploiting (16), we can compte the maxi-
mum energy solution

xg = 'Y 1 (0:4059180:396055 0:396055]

We consider also a slight modi cation of the previous exampé. While
the discretization and particle position remain the same, ve change only the
camera positions. This second case considered is schematig represented in
Fig. 4(a). The projection matrix and its pseudoinverse are

1 11 . 20 14 4 T
A= ] i 1 and A" = Yo 28" Y
2 17 17 17

and the measurement vectorb = (1; %)T.
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second camera

rst camera

(a) Second case (b) Second case

Figure 4. (a) Discretization of a particle image and corresp onding ray geometry. (b) Measure-
ment hyperplanes, single point feasible set w.r.t positivi ty constraints, sparsest = maximal
entropy solution (bottom) and minimal "> norm solution (top).

The minimum energy solution x, 5 doesn't belong to the nonnegative
orthant in this case. Exact computation yield

X.s = A*b= (0:764705 0:2352940:352941Y :

In this second case, the feasible set involving the positity constraints
reduces to a single point, see Fig. 4(b), namely the originasolution X, =
(1;0;0)". Note that the relative interior of F is 0 andF, is empty.

We tested ART and MART numerically without relaxation, i.e. 8k =
1,2;:::; k=1; k=1, on the above examples. Besides ART and MART we
consider also a modi cation of ART, which we further call ART+pos, based
on constraining strategies proposed in [18]. This method amwunts to project
the current iterate on the positive orthant after each complete sweep of the
ART, through all equations.

We terminate the iteration of the these three algorithms if the condition
kAxX bk, < 10 © is satis ed at the current iterate xX. The results are
summarized in Table 1.

Table 1. Numerical results for the two small-sized experi-
ments detailed in the text

Example | Method | Nr. lter. | Final iterate value
rst ART 100 le_s = (0:47058840:352942 0:352940)
ART+pos 100 xf_s+ = (0:4705880:352942 0:352940)

15



MART 96 xfE = (0:4059180:396055 0:396053f
second | ART 111 x,f_S = (0:764705 0:2352930:352941)

ART+pos 382 x,f_S+ =(0:999997 0:0000000:000001)

MART 1997523 xfE = (0:999998 0:000000 0:000001f

We stress that within the rst setting MART converged after 9 6 inner
iterations, within the tolerance level, to the positive maximum entropy solution
Xg. In the second case MART took 1997523 inner iterations for cavergence
towards Xiq = (1;0; 0)"; which is also the sparsest possible in both cases.

As next step we turn our attention to particle image reconstruction based
on the Gaussian-blobs discretization. For the purpose of \@ualization we
consider only an example of reduced dimensionality: We cotider 40 and 50
particles in a 2D volume V = [ 3;3] [ 3;3]. The grid re nement was
chosend = 0:0154, resulting in 4356 gridpoints. At these gridpoint we catre
a Gaussian-type basis function, where = d. Particle positions were chosen
randomly but at grid positions, to avoid discretization errors. Four 50 pixel
cameras are positioned as depicted in Fig. 6, resulting in aah beam geometry.
The obtained projection matrix, after remaoving zero rows, is depicted in Fig.
6 (right) and we have A 2 R172 4356 The pixel intensities are computed
according to (3), integrating the particle image exactly along each line of
sight.

In all three cases we reduce systerAx = baccording to the methodology
proposed in Proposition 1, see Table 2 for the reduced dimemmalities. We
terminate the iteration of the main algorithm if the conditi on kAx**1 bk, <
10 4 is satis ed or if the maximum iteration number is reached, i.e. K Kmax,
where Kmax = 1000m,, i.e. 1000 complete sweeps through the rows of the
reduced matrix A. The relaxation parameters , and  are set to 1.

Table 2: Numerical results for the Gaussian-type discretia-
tion examples

#Particles | Method | #lter. | m; n; | Kkxoig X'kp | KAXT  bkg
40 MART 142000| 142 3352 5.7078 0.0024
40 ART 142000| 142 3352 6.0252 0.0031
40 ART+pos | 142000| 142 3352 68.6018 0.0059
50 MART 150000| 150 4081 6.2935 0.0081
50 ART 150000| 150 4081 6.9094 0.0007
50 ART+pos | 150000| 150 4081 6.5886 0.0161
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Figure 5. Evolution of the “,-norm error for ART, ART+pos and MART, for the two exper-

iments detailed in the text. Within the rst setting the algo rithms behave similarly. Here,

ART and ART+pos generate identical sequences. The oscillat ory behavior in (e) is due to

the projection on R3 at every second iteration. (f) MART is substantially slowin g down
with the loss of the nonempty relative interior assumption.

500 1000 1500 2000 2500 3000 3500 4000

Figure 6. Four cameras measuring the 2D volume from angles 48;15°; 15°; 45° (left).
Resulting projection matrix (after zero-rows elimination ) with about 9% nonzero entries

(right)
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In Table 2, the rst column gives the number of the particles randomly
chosen at the 66 66 gridpoints; Method gives the name of the algorithm used;
Nr. Iter. denotes the total number of inner iterations; KkXorig xf k, denotes
the Euclidean distance of the nal iterate x' from the original particle image
Xorig » While kAx" bk; amounts to a feasibility test at the nal iterate.

More signi cant are the reconstructed particle images, depcted in Fig.
7. The "smearing" of the patrticles in the lines of the projections is typical
for minimum energy reconstructions. This phenomenon is prserved by ART.
The MART and ART+pos reconstructions show more distinct par ticles. How-
ever, additional spots are visible, termed agghost particles by the TomoPIV
community.

Note that between the reconstructed images via ART, MART etc., the
original image seem to be the sparsest of all, i.e. with lessam-zero intensities.
In view of this observation, sparsity maximization seem to ke an adequate
optimization approach. We present some preliminary resuls obtained by a
sequential linearization algorithm (SLA) [21], especially designed to nd the
sparsest solution. However, the computational costs are cwsiderably higher.
A more detailed motivation for sparsity maximization, alon g with results ob-
tained via SLA will be reported elsewhere. However, we stresthat in all
considered examples SLA was able to reconstruct the originamage.

7 Conclusion and Further Work

This work focused on tomographic image reconstruction in egerimental uid
mechanics (TomoPlV), a recently established research dirgtion. A classi-
cal algebraic reconstruction approach that is currently in use, together with
closely related variants, were re-considered in some detatio reveal pros and
cons from the perspective of TomoPIV. Speci cally, we argue that routinely
using MART ignores some basic problem characteristics. Pnmising research
directions were outlined to take better into account the neeals of the over-
all objective, the estimation of turbulent ows from accurately reconstructed
volume functions.
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