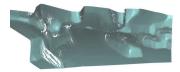
Estimating Vehicle Ego-Motion and Piecewise Planar Scene Structure from Optical Flow in a Continuous Framework

<u>Andreas Neufeld</u>, Johannes Berger, Florian Becker, Frank Lenzen and Christoph Schnörr

Image and Pattern Analysis Group, Heidelberg University


GCPR 2015

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

- monocular reconstruction
 - + low-cost sensor
 - + no calibration
 - pose needs to be estimated
 - less beneficial parallax
- from two frames
 - + fast response
- piecewise planar structure
 - $+ \,$ suitable for urban scenes
- in a *continuous* framework
 - + does not require discrete plane candidates

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

- monocular reconstruction
 - + low-cost sensor
 - + no calibration
 - pose needs to be estimated
 - less beneficial parallax
- from two frames
 - + fast response
- piecewise planar structure
 - $+ \,$ suitable for urban scenes
- in a *continuous* framework
 - + does not require discrete plane candidates

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

- monocular reconstruction
 - + low-cost sensor
 - + no calibration
 - pose needs to be estimated
 - less beneficial parallax
- from two frames
 - + fast response
- piecewise planar structure
 - $+ \,$ suitable for urban scenes
- in a *continuous* framework
 - + does not require discrete plane candidates

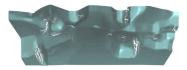


Image and Pattern Analysis Group, Heidelberg University

- monocular reconstruction
 - + low-cost sensor
 - + no calibration
 - pose needs to be estimated
 - less beneficial parallax
- from two frames
 - + fast response
- piecewise planar structure
 - + suitable for urban scenes
- in a *continuous* framework
 - + does not require discrete plane candidates



Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

- monocular reconstruction
 - + low-cost sensor
 - + no calibration
 - pose needs to be estimated
 - less beneficial parallax
- from two frames
 - + fast response
- piecewise planar structure
 - + suitable for urban scenes
- in a *continuous* framework
 - + does not require discrete plane candidates

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

- monocular reconstruction
 - + low-cost sensor
 - + no calibration
 - pose needs to be estimated
 - less beneficial parallax
- from two frames
 - + fast response
- piecewise planar structure
 - + suitable for urban scenes
- in a *continuous* framework
 - + does not require discrete plane candidates

Image and Pattern Analysis Group, Heidelberg University

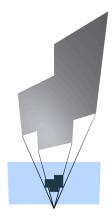
Related Work

- F. Becker, F. Lenzen, J. H. Kappes, and C. Schnörr. Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences. *Int J Comput Vision*, 105 (3):269–297, 2013.
- C. Vogel, S. Roth, and K. Schindler. An Evaluation of Data Costs for Optical Flow. In *German Conference on Pattern Recognition* (*GCPR*), 2013.
- K. Yamaguchi, D. A. McAllester, and R. Urtasun. Efficient Joint Segmentation, Occlusion Labeling, Stereo and Flow Estimation. In ECCV, 2014.

Problem Statement

Input

 optical flow, computed with DataFlow by Vogel et al. [2013]


Output

• planes
$$\{v_i \in \mathbb{R}^3\}$$
, $v^{ op} \tilde{x} = 1$

- on superpixels $\{\Omega_i \subset \Omega \mid i \in [1, n]\}$
- camera movement (up to scale)

$$R \in SO(3)$$

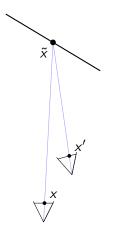
$$t \in S^2$$

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

Workflow

$$\min_{R,t,v} E_u(R,t,v) + E_{\rm reg}(v)$$


The data energy reads

$$E_u(R, t, v) = \sum_{i=1}^n \sum_{x \in \Omega_i} w_{\hat{u}} \| u(x; R, t, v^i) - \hat{u}(x) \|_2^2$$
$$w_{\hat{u}} = \exp\left(-\frac{\|x - (\hat{u}^{-1} \circ \hat{u})(x)\|_2^2}{2\sigma_{\hat{u}}^2}\right)$$

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

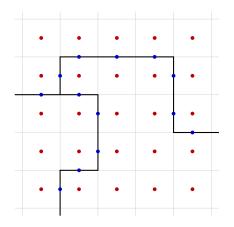
Motion Field from Scene Parameters

Neufeld et al.

camera intrinsics are knownapply camera motion

$$ilde{x}' = \mathsf{R}^ op(ilde{x} - t)$$

project onto image plane,


$$x' = \pi(R^{\top}(\tilde{x} - t)), \quad \pi(x) = \frac{1}{x_3}x$$

using
$$\tilde{x} = d(x)x$$
 and $v^{\top}x = \frac{1}{d(x)}$

$$u(x; R, t, v) = \pi(R^{\top}(I_3 - tv^{\top})x) - x$$

Image and Pattern Analysis Group, Heidelberg University

Superpixel Domain

- *N*_Ω contains neighboring superpixel pairs
- ∂^{ij} border between superpixels i and j
- xⁱ_c center (average) point of superpixel i
- z(x) denotes inverse depth

Image and Pattern Analysis Group, Heidelberg University

Regularity

$$E_{\rm reg}(v) = \lambda_z E_z(v) + \lambda_v E_v(v) + \lambda_\rho E_\rho(v)$$

- *E_z* smooths depth
- E_v smooths plane parameters
- E_p enforces positive depth
 - a soft hinge-loss function is applied to $z(x_c^i)$, the inverse depth at superpixel center

Image and Pattern Analysis Group, Heidelberg University

Piecewise Planar Regularization

penalize differences of inverse depth on superpixel edges

$$E_{z}(v) = \sum_{(i,j)\in\mathcal{N}_{\Omega}}\sum_{x\in\partial^{ij}}\rho_{C}(\underbrace{x^{\top}v^{i}}_{z(v^{i};x)} - \underbrace{x^{\top}v^{j}}_{z(v^{j};x)})^{2}$$

penalize jumps of plane parameters

$$E_{\mathbf{v}}(\mathbf{v}) = \sum_{(i,j)\in\mathcal{N}_{\Omega}} \rho_{\mathcal{C}}(\mathbf{v}^{i} - \mathbf{v}^{j})^{2}$$

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

9/28

Piecewise Planar Regularization

penalize differences of inverse depth on superpixel edges

$$E_{z}(v) = \sum_{(i,j)\in\mathcal{N}_{\Omega}}\sum_{x\in\partial^{ij}}\rho_{C}(\underbrace{x^{\top}v^{i}}_{z(v^{i};x)} - \underbrace{x^{\top}v^{j}}_{z(v^{j};x)})^{2}$$

penalize jumps of plane parameters

$$E_{\mathbf{v}}(\mathbf{v}) = \sum_{(i,j)\in\mathcal{N}_{\Omega}} \rho_{C}(\mathbf{v}^{i} - \mathbf{v}^{j})^{2}$$

choose the robust pseudo-Huber or Charbonnier function

$$\rho_C(x) = (x^2 + \epsilon)^{\alpha} - \epsilon^{\alpha}$$

with $\alpha = \frac{1}{4}$ (approximation to *L*1 norm)

9/28

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

Optimization

Overall energy function

$$E(X) = ||F(X)||_2^2, \quad X = (R, t, v),$$

Optimization: Levenberg-Marquardt algorithm.

$$X^{k+1} = X^k + (J^{\top}J + \mu^k I)^{-1} (J^{\top}F), \quad J = \frac{\partial F}{\partial X}$$

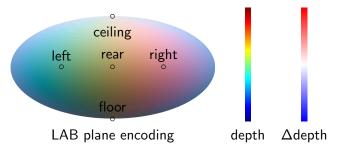
- for the rotation, we have $R^{k+1} = R^k \exp(\omega)$, $\omega \in \mathfrak{se}(3)$
- *t* is projected onto the sphere after each update
- v is not constrained

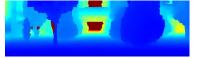
Neufeld et al.

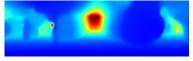
Image and Pattern Analysis Group, Heidelberg University

Evaluation

- we compare against SPS-St by Yamaguchi et al. [2014] on the KITTI stereo/flow dataset
- a quantitative evaluation as in Becker et al. [2013] is done in the paper
- we provide scenes with reference normal information
- the following color representations are used




Image and Pattern Analysis Group, Heidelberg University

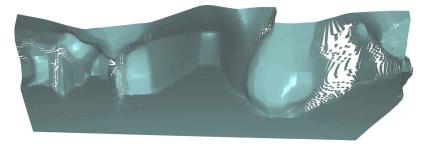

reference frame

depth difference

depth (SPS-St, stereo)

depth (ours, monocular)

normals (SPS-St)



normals (ours)

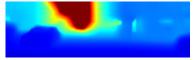
12/28

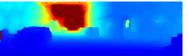
Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

rendered reconstruction

Neufeld et al.


Image and Pattern Analysis Group, Heidelberg University

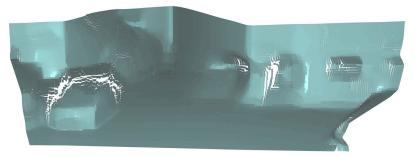


reference frame

depth difference

depth (SPS-St, stereo)

normals (ours)

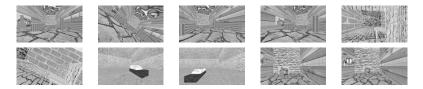


normals (SPS-St)

14/28

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

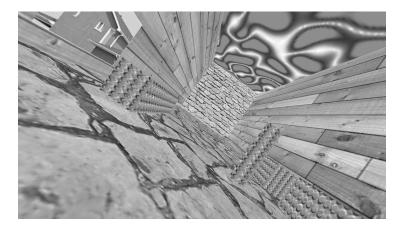

rendered reconstruction

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

Rendered Scenes

- 10 sequences
- 25 frames per sequence
- ground truth depth and normals

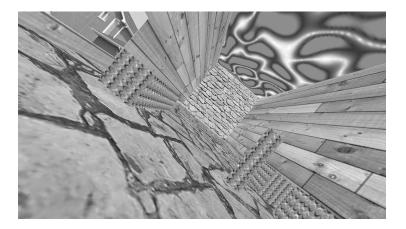


16/28

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

Scene 2, Frame 9

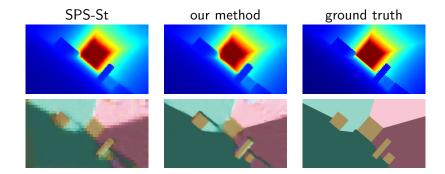


17/28

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

Scene 2, Frame 10

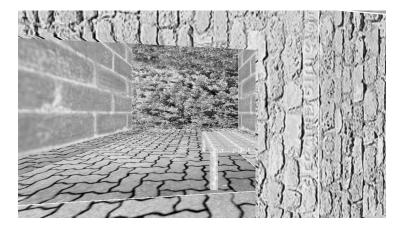


18/28

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

Scene 2, Frame 10 Results

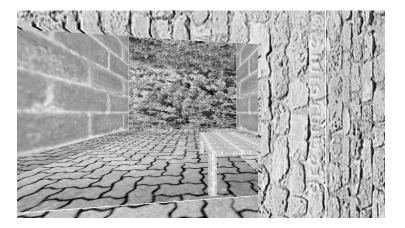


19/28

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

Scene 5, Frame 9

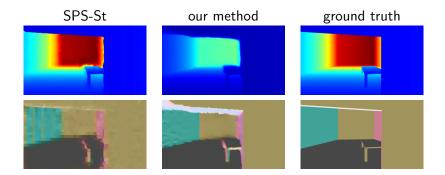


20/28

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

Scene 5, Frame 10

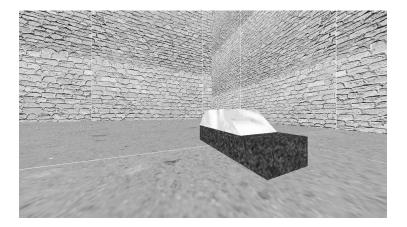


21/28

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

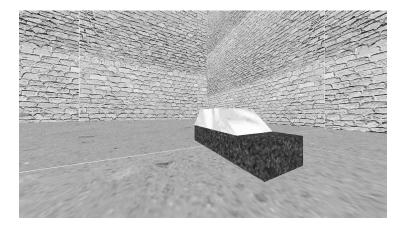
Scene 5, Frame 10 Results



22/28

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University


Scene 2, Frame 9

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

Scene 2, Frame 10

24/28

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

Scene 7, Frame 10 Results

25/28

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

Normal Reconstruction Error

	mean [deg.]	$p_{ m 1deg.}$ [%]	$p_{ m 5deg.}$ [%]	$p_{10 { m deg.}}$ [%]
SPS-St	14.8	79.4	46.4	33.4
our method	11.5	58.4	31.1	22.7

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University

Conclusion and Future Work

- we presented a two-frame monocular reconstruction method
- both camera movement and scene are unknown
- scene reconstruction accuracy is similar to state of the art stereo approaches
- method can be extended to image sequences
- operate on image gray values rather than optical flow
- detection of dynamic objects

Estimating Vehicle Ego-Motion and Piecewise Planar Scene Structure from Optical Flow in a Continuous Framework

<u>Andreas Neufeld</u>, Johannes Berger, Florian Becker, Frank Lenzen and Christoph Schnörr

Image and Pattern Analysis Group, Heidelberg University

GCPR 2015

Neufeld et al.

Image and Pattern Analysis Group, Heidelberg University