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Organizational Matters
Time/Location 


Lecture  SR 6 - Mathematikon INF 205

              Wed. 9:00 - 11:00 

Tutorial  SR 2 - Mathematikon INF 205

              Thu. 16:00 - 18:00


Evaluation Oral exam         50% programming exercises

Creditpoints 6CP + 2CP optional programming project

Media forms blackboard / lecture notes / slides

Previous knowledge   Linear algebra, analysis I + II

                                   (+ basic tools from probability theory, 

                                    convex analysis & optimization)
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Web
Check your email and


http://ipa.iwr.uni-heidelberg.de/dokuwiki/
doku.php?id=teaching 

for announcements and updates of

● exercise sheets

● handouts

● lecture notes


Please also sign up using MÜSLI

https://muesli.mathi.uni-heidelberg.de
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Literature

main reference 

S. Foucart, H. Rauhut

Birkhäuser, 2013
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covers: 2000 - 2012
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Content
Theory 
sparse reconstruction via l0/l1-minimization; 

basic properties: coherence, nullspace property, restricted 
isometry property; random sensors; phase transitions; 

basic tools from convex analysis, probabilities and integral 
geometry

	 	 	 	 	 	 

Algorithms 
orthogonal matching pursuit; thresholding based methods; 
primal-dual methods


Applications 
sparse approximation; image processing (tomographic 

inversion, deblurring, etc.); low-rank completion 

      
     
    
   

	 	 	 	 	 




Overview
CS principles

applications

applications

surveillance single pixel camera

idealized scenarios

classical MRI

non-standard tomography

ultrasound PIV

established theory

applies

enable
applies

RIP fails

RIP fails
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applications

applications



Academic 

Examples


Applications

Type 2

Applications


Principles


Applications

Type 1


Compressed 
Sensing
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Classical Sampling vs Compressed Sensing

Claude 
Shannon

Harry 
Nyquist

Terence 
Tao

Emmanuel 
Candés

David 
Donoho
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Classical Sampling

Shannon-Nyquist theorem

… but “big data’’

correct sampling rate 
correct (continuous) recovery

incorrect sampling rate 
severe artefacts

finite support in 
the Fourier domain
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Compressed Sensing

encoding below the Nyquist rate:

,

observation measurement matrix (“sensor”)
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Compressed Sensing

encoding below the Nyquist rate:

,

observation measurement matrix (“sensor”)

nonlinear decoding by convex programming, e.g.

performance of en-/decoding pair:
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(1)Signals are sparse ... 
  

  
… or have a sparse representation  
    (basis, dictionary; henceforth for simplicity:            ) 

small support in some 
transformed domain

Compressed Sensing: Basic Requirements

When does it (provably) work?!
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Compressed Sensing: Basic Requirements

When does it (provably) work?!

(1)Signals are sparse ... 
  

  
… or have a sparse representation  
    (basis, dictionary; henceforth for simplicity:            ) 

(2)Sensor matrix A is an isometry on 

“restricted isometry property (RIP)”

small support in some 
transformed domain
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● Can we trust our model to return an intended sparse 
signal?


● Does the model have a unique solution? (otherwise, 
different algorithms may return different answers)


● Is the solution exactly equal to the original sparse 
signal?


● If not (due to noise), is the solution a faithful 
approximation of it?


● How much effort is needed to numerically solve the 
model?


Some Basic Questions



Compressed Sensing: Stable Recovery

Candés, Romberg, Tao 2006

(bounded noise)

(RIP)

Stable recovery guarantee

ε → 0 and k-sparsity   ⇒   perfect reconstruction

decoding
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Some basic aspects that distinguish different types of 
guarantees:

● Recoverability (exact) vs stability (inexact)

● General A or special A?

● Universal (all sparse vectors) or instance (certain sparse 

vector(s))? Uniform/non uniform recovery guarantees? 

● General optimality? or specific to model/algorithm?

● Required property of A: spark, NSP, coherence, RIP, 

dual certificate?

● If randomness is involved, what is its role?


How to Read Recovery Guarantees



Sparsity in Coordinate Basis

!19



Sparsity in Orthonormal Basis
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Sparsity vs Compressibility
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Sparsity vs Compressibility
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● Sparse structure in Wavelet domain: few large coeffs, many 
small coeffs


● Basis for JPEG2000 image compression standard

● Do not confuse image compression with CS




b

● preserve structure and 
information in sparse/ 
compressible signals 
models with high probability


● the number of samples 
should be minimal


● each measurement carries 
the same amount of 
information


Good Sensors?
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b

b

b

1 

2 

3 

m

Surprise 
● measurements do not match image structure at all

● measurements  look like random noise

● same measurements can be used for any compressible signal 

class (universal)



Mathematical ways to design good sensor matrices A enjoying RIP 
include 

● Gaussian i.i.d. entries                        ,  Bernoulli, … 
● random partial Fourier (DFT) matrices

Random Sensors: Sufficient RIP Conditions
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Mathematical ways to design good sensor matrices A enjoying RIP 
include 

● Gaussian i.i.d. entries                        ,  Bernoulli, … 
● random partial Fourier (DFT) matrices

Then such that
# measurements

provided the number of measurements satisfies

(          sparsity !) 

Random Sensors: Sufficient RIP Conditions
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Known Phase Transitions: Gaussian A

✔

✘

exponential search

(Donoho, Tanner  2010, Amelunxen et al. 2014) 
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Weak recovery 
(for most signals)

Strong recovery 
(for any signals)

https://images.search.yahoo.com/search/images;_ylt=A0SO8yTgGstVefkAqgRXNyoA;_ylu=X3oDMTByNWU4cGh1BGNvbG8DZ3ExBHBvcwMxBHZ0aWQDBHNlYwNzYw--?p=Amelunxen+Tropp&fr=yfp-t-603


Academic 

Examples


Applications

Type 2

Applications


Principles


Applications

Type 1


Compressed 
Sensing
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Academic Example

deviation of the     th coin 
from the correct mass

th weighting

        max. 3

weighings!!!

  

One coin is false. Which one?
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Weigh Random Subsets
Example: coins, weighings

Bernoulli underdetermined !

!29



!30

Academic Example

Gaussian
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Academic Example
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Academic Example

●        can be used as a proxy for

●  This is a convex program and can be  

       solved in polynomial time   



Academic 

Examples


Applications

Type 2

Applications


Principles


Applications

Type 1


Compressed 
Sensing 

(RIP based)
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Single Pixel Camera

DSP RICE

decoding
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Single Pixel Camera
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Rapid Sparse Magnetic Resonance Imaging
Lustig, Donoho, Pauly 2007 
(Google Scholar: 3105 citations

 October 2016)

signal

Fourier domain

random subsampling

nonlinear (convex) 
decoding & recovery

compression & 

speed-up factor: 8
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Compressed Video Sensing  © Baraniuk et al.,  
NIPS’11

video = low-rank  +  sparse signal

illum. changes motion
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Compressed Video Sensing  

video = low-rank  +  sparse signal

Recovery by convex programming

subject to

low-rank sparse sampling
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Scientific Imaging: 2007 - 2018
Medical Imaging 
● Magnetic Resonance Imaging 
● Computerized Tomography 

Imaging in other Sciences 
● Thermoacoustic Tomography 
● Photoacoustic Tomography 
● Electrical Impedance Tomography 
● Electron Tomography 
● Seismic Tomography 
● Fluorescence Microscopy 
● Radio Interferometry

Established RIP-based 
CS-theory cannot 

explain much better 
empirical performance 

Significant gap between 
mathematical theory and 

applied fields

⟹ dispense with RIP and universal sensing operators 
⟹ exploit structured sparsity

Major recent trend (mathematics)
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Academic 

Examples


Applications

Type 2

Applications


Principles


Applications

Type 1


Compressed 
Sensing 
(RIP less)
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Example (© A. Hansen, 2014)
Cambridge Advanced Imaging Center (CAIC) 

Fluorescence Microscopy: zebra fish cells 

raster scan recovery from 6.25 % established scheme
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CS and Non Standard Tomography

Tomo PIV

Experiments in Fluids 

DFG SPP 1147
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Sparsity in Tomo PIV

key parameter:  seeding density
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Motivation

key parameter:  seeding density

✔

✘

pp
p
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Imaging Set-Up
  Few measurements

problem size, resolution

projections

particles  
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Poor CS-Sensor
Our sensors have poor strong recovery properties.

RIP,  neighborly polytopes, 
mutual coherence, …

(P. & Schnörr, PMA 
2009)

Recovery of any vector from

very small
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CS Theory Does Not Apply
Our sensors have poor strong recovery properties.

      average case analysis

RIP,  neighborly polytopes, 
mutual coherence, …

(P. & Schnörr, PMA 
2009)

Recovery of any vector from

very small
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✘

✔

Practice Matches Theory

of       particles
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Non-Destructive Testing (NDT) 

        key parameter:  cosparsity,          
sparse

“object complexity”        material 
interfaces
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 Recovery Performance
(Needell, Ward 2013)

decoding
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 Recovery Performance
(Needell, Ward 2013)

and

(bounded noise)

Stable recovery guarantee

ε → 0 and k-sparsity of               ⇒   perfect reconstruction

decoding
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Worst Case vs Practical 
Recovery

Thm. (Needell, Ward 2013) 
    our scenario, 8 views

Image gradient   

can be at most 6-sparse

But: perfect recovery from 
8 views, 
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Cosparsity & Recovery 
(Nam et al, 2013)

cosparsity

cosupport

key quantity
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Cosparsity & Recovery 
(Denitiu et al, 2014)

upper bound

empirical value

for random cosupport
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Recovery for Solid Objects

4 views
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 Compressed Motion Sensing 

(Bodnariuc et al, EMMCVPR 2014)

entire 
    video

Few trajectories

ultrasound imaging
Echo PIV
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 Compressed Motion Sensing 

entire 
    video

column in adaptive dictionary 
sparsity

(Bodnariuc et al, EMMCVPR 2014)
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Overview
CS principles

applications

applications

surveillance single pixel camera

idealized scenarios

classical MRI

non-standard tomography

ultrasound PIV

established theory

applies

enable
applies

RIP fails

RIP fails
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2. Sparse Solutions of Underdetermined Linear Systems  

2.1. Vector Spaces  

2.2. Sparsity and Compressibility  

2.3. Unique Recovery of Sparse Vectors  

2.4. NP Hardness of l0-Minimization  

2.5. l0- vs. lp-Minimization for Bounded Systems of Linear 
Equalities and Inequalities

Content
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4.1. Stability and Robustness  

4.2. RIP and Measurement Bounds


5. Coherence  

5.1. Relation to Spark and RIP
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