
4 S. PETRA

2. SPARSE SOLUTIONS OF UNDERDETERMINED LINEAR SYSTEMS

2.1. Vector Spaces. We recall that a vector space V is a set that is closed under finite vector addition and scalar
multiplication.

The basic example is the Euclidean space Rn, where every element is represented by a list of n real numbers,
scalars are real numbers, addition is componentwise, and scalar multiplication is multiplication on each term
separately. The canonical unit vectors in Rn are denoted by e

1

, . . . , e
n

. They have entries

(e
i

)

j

= �
i,j

=

(

1, i = j,

0, i 6= j.

We can consider the standard inner product in Rn, which we denote

hx, yi = x>y =

n

X

i=1

x
i

y
i

. (2.1)

With the inner product from above Rn becomes a (real) Hilbert space. This gives us the notion of orthogonality.
When two vectors x, y 2 Rn are orthogonal we often write

x ? y , hx, yi = 0.

Remark 2.1. The notions which we will introduce during this lecture, can be transferred to the n-dimensional
complex space. The differences in statement and proofs come from the fact that the scalar product of x, y 2 Cn

is defined by

hx, yi = x>y =

n

X

i=1

x
i

y
i

. (2.2)

where z is the complex conjugate of z 2 C. For the sake of simplicity we consider finite-dimensional signals in
Rn and sensor matrices A 2 Rm⇥n.

2.1.1. Bases, ONB. For simplicity we will be concerned with signals which are sparse with respect to the
canonical basis {e

i

}. In practice, however, the signal has a sparse representation with respect to a different
basis, e.g. to the wavelet basis. Let us recall some terminology. A set of vectors {�i} 2 Rn, which is linearly
independent and which spans the whole space Rn is called a basis. It follows that such a set necessarily has n
elements. Furthermore, every x 2 Rn can be expressed uniquely as a linear combination of the basis vectors,
i.e. there is a unique z = (z

1

, . . . , z
n

)

>, such that

x =

n

X

i=1

�iz
i

. (2.3)

Note that if we denote by � 2 Rn⇥n the matrix with columns given by �i, then we can write x = �z.
A basis is called orthonormal, if it satisfies the orthogonality relations

h�i,�ji =
(

1, if i = j

0, if i 6= j.

An orthonormal basis has the advantage that the coefficients z can be easily calculated as

z
i

= hx,�ii, i 2 [n]

or

z = �

>x.

Indeed, the orthonormality of the columns gives �>
� = I , where I denotes the identity matrix in Rn⇥n.
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2.1.2. Four Fundamental Subspaces, Singular Value Decomposition. We will be concerned with linear oper-
ators between the finite-dimensional spaces Rn and Rm. These can be represented with the help of matrices
A 2 Rm⇥n. We denote the transpose of A by A>. For a given matrix A 2 Rm⇥n, N (A) denotes the nullspace
or kernel of A, and R(A) the range or image of A, that is the linear subspace spanned by the column vectors
of A. N (A)

?, R(A)

? denote the orthogonal complements, that is the linear subspaces orthogonal to N (A)

resp. R(A). These four subspaces are also called the four fundamental subspaces. We refer to Fig. 2.1 for an
illustration.

FIGURE 2.1. Dimensions and orthogonality of the four fundamental subspaces for any m⇥n
matrix A of rank r.

The solution set to a linear system of equations

Ax = b , A 2 Rm⇥n, b 2 R(A), (2.4)

is the affine subspace
x
0

+N (A) , (2.5)

where x
0

is any particular solution Ax0

= b. Recall the formula

n = dimR(A) + dimN (A), dimR(A) = rank(A) = dimR(A>
). (2.6)

Proposition 2.1 (Singular Value Decomposition (SVD)). Let A 2 Rm⇥n with rank r = dimR(A). Then
there are orthogonal matrices

U = (u1, . . . , um

) 2 O(m), U>U = UU>
= I

m

V = (v1, . . . , vn) 2 O(n), V >V = V V >
= I

n

such that

U>AV =

✓

U>
1

AV
1

U>
1

AV
2

U>
2

AV
1

U>
2

AV
2

◆

= D =

✓

D
r

0

r⇥(n�r)

0

(m�r)⇥r

0

(m�r)⇥(n�r)

◆

,

and D
r

= Diag

�

s
1

(A), . . . , s
r

(A)

�

, where U
1

:= (u1, . . . , ur

), V
1

:= (v1, . . . , vr), U
2

:= (ur+1, . . . , um

)

and V
2

:= (vr+1, . . . , vn). The SVD is unique if the singular values s
1

(A) � · · · � s
r

(A) > 0 are simple.

We denote by PL the orthogonal projection onto a linear subspace L. Recall that the orthogonal projection
on a closed and convex set always exists.
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Proposition 2.2. (Orthogonal Projection onto Closed Convex Sets) Let C ⇢ Rn be nonempty, closed, convex.
Then, for any x

0

2 Rn, there exists a unique point x̂
0

= P
C

x
0

2 C, the orthogonal projection of x
0

onto C,
such that

kx
0

� x̂
0

k
2

= inf

x2C

kx
0

� xk
2

.

The vector x̂
0

satisfies the variational inequality

hx
0

� x̂
0

, x� x̂
0

i  0, 8x 2 C. (2.7)

Conversely, if y 2 C satisfies (2.7), then y = P
C

x
0

.

Corollary 2.3. (Orthogonal Projection onto Subspaces) Let L ⇢ Rn be a nonempty linear subspace. Then
the orthogonal projection PLx0

of x
0

2 Rn onto L is characterized by

hx
0

� PLx0

, x� PLx0

i = 0, 8x 2 L. (2.8)

Moreover, x
0

= PLx0

+ PL?x
0

.

Proposition 2.4 (Properties of the SVD, Pseudoinverse). Let A = UDV > 2 Rm⇥n. Then,

A>Avi = s2
i

(A)vi, AA>ui

= s2
i

(A)ui,

Avi = s
i

(A)ui, A>ui

= s
i

(A)vi,

span{v1, . . . , vr} = N (A)

?
= R(A>

), span{vr+1, . . . , vn} = N (A),

span{u1, . . . , ur} = R(A), span{ur+1, . . . , um} = R(A)

?,

V
1

V >
1

= PN (A)

? , V
2

V >
2

= PN (A)

,

U
1

U>
1

= PR(A)

, U
2

U>
2

= PR(A)

? ,

A = UDV >
=

r

X

i=1

s
i

(A)ui

(vi)>, A+

= V D+U>
=

r

X

i=1

1

s
i

(A)

vi(ui

)

>,

where A+ is called the pseudoinverse of A.

We have

kAk2
F

=

r

X

i=1

s2
i

(A). (Frobenius norm) (2.9)

and
kAk

2

:= s
1

(A) = sup

kxk2=1

kAxk
2

= sup

x 6=0

kAxk
2

kxk
2

(spectral norm), (2.10)

i.e. the largest singular value is equal to the spectral norm of A, which is the operator norm induced by the
Euclidean vector norm. Another matrix norm is

kAk⇤ =

r

X

i=1

s
i

(A)

that is called nuclear norm and plays an important role in recovering low rank matrices by convex optimization.

2.1.3. Norms and Quasinorms. Throughout this lecture, we will treat signals as vectors in an n-dimensional
Euclidean space, denoted by Rn. We will typically be concerned with normed vector spaces, i.e., vector spaces
endowed with a norm.

Definition 2.1 (Norm). A norm on Rn is a real-valued function x 7! kxk such that for all elements x, y 2 Rn

and any scalars � 2 R the following condition
(i) (homogeneity) k�xk = |�|kxk,

(ii) (triangle inequality) kx+ yk  kxk+ kyk,
(iii) (definiteness) kxk = 0 if and only if x = 0
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hold. If only (i) and (ii) hold, so that kxk = 0 does not necessarily imply x = 0, then k · k is called seminorm.
If (i) and (iii) hold, but (ii) is replaced by the weaker quasi-triangle inequality

kx+ yk  C (kxk+ kyk) ,
for some constant C � 1, then k · k is called quasinorm. The smallest constant C is called quasinorm constant.

When dealing with vectors in Rn, we will make frequent use of the `
p

-norms, which for p 2 [1,1] are
defined as

kxk
p

=

(

�

P

i2[n]

|x
i

|p�1/p, p 2 [1,1),

max

i2[n]

|x
i

|, p = 1.
(2.11)

The inner product 2.1 leads to the `
2

-norm: kxk
2

=

phx, xi. In some contexts it is useful to extend the notion
of `

p

-norms to the case where p < 1. In this case, the ”norm” defined in (2.11) fails to satisfy the triangle
inequality, so it is actually a quasinorm. Indeed, we will see that

kx+ yk
p

 2

1/p�1

(kxk
p

+ kyk
p

) ,

kx+ ykp
p

 �kxkp
p

+ kykp
p

�

.

hold (Exercises). Therefore, the `
p

-quasinorm induces a metric via d(x, y) = kx � ykp
p

for 0 < p < 1. We
recall the definition of a metric.

Definition 2.2. Let X be a set. A function d : X ⇥X ! [0,1) is called metric if
(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x) for all x, y 2 X ,
(iii) d(x, z)  d(x, y) + d(y, z) for all x, y, z 2 X .

The `
p

(quasi-)norms have different properties for different values of p. To illustrate this, in Fig. 2.2 we
show the unit sphere, i.e., {x : kxk

p

= 1} induced by each of these norms in R2. We use norms as a measure

FIGURE 2.2. Unit spheres in R2 for the `
p

norms with p = 1, 2,1, and for the `
p

quasinorm
with p = 1/2.

of the length of a vector (strength of a signal), or the size of an error. For example, suppose we are given a
signal x 2 R2 and wish to approximate it using a point in a one-dimensional affine subspace A. If we measure
the approximation error using an `

p

-norm, then our task is to find the x̂ 2 A that minimizes kx � x̂k
p

. The
choice of p will have a significant effect on the properties of the resulting approximation error. An example is
illustrated in Fig. 2.3. We observe that for larger p the error tends to spread out more evenly among the two
coefficients, while smaller p leads to an error that is more unevenly distributed and tends to be sparse. This
intuition generalizes to higher dimensions.
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FIGURE 2.3. Best approximation of a point in R2 by a one-dimensional affine subspace A
using the `

p

-norms for p = 1, 2,1, and the `
p

-quasinorm with p = 1/2. To compute the
closest point to x in A using each `

p

”norm”, we can imagine ”inflating” an `
p

-sphere centered
in x until it intersects A. This will be the point x̂ 2 A that is closest to x in the corresponding
`
p

”norm”.

2.2. Sparsity and Compressibility.

Definition 2.3 (Support, sparsity). The support of a vector x 2 Rn is the index set of its nonzero entries, i.e.

supp(x) := {i 2 [n] : x
i

6= 0} .

The vector x 2 Rn is called s-sparse if at most s of its entries are nonzero, i.e. if

kxk
0

:= | supp(x)|  s.

The set of all s-sparse vectors is denoted by

⌃

s

:= {x 2 Rn

: kxk
0

 s}.
Remark 2.2. k ·k

0

is not a norm and ⌃

s

is not a subspace. We observe that k�xk
0

= kxk
0

. Hence homogeneity
fails to hold for any � 2 R, |�| 6= 1. The latter can be seen by observing that given a pair of s-sparse signals,
a linear combination of the two signals will in general no longer be s-sparse, since their supports may not
coincide. That is, for any x, y 2 ⌃

s

, we do not necessarily have that x + y 2 ⌃

s

(although we do have that
x + y 2 ⌃

2s

). ⌃
s

consists of the union of all possible
�

n

s

�

canonical subspaces. This is illustrated in Fig. 2.4
for n = 3 and s = 2.

Further note that k · k
0

is not even a quasinorm, but one can show that

lim

p!0

kxkp
p

= | supp(x)|,

justifying this choice of notation.

FIGURE 2.4. Illustration of the set ⌃
2

⇢ R3 of all 2-sparse signals in R3, which is can be
seen as a union of subspaces. Thus ⌃

s

is not a subspace.
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In real applications, sparsity can be a strong assumption to impose, and we may prefer the weaker concept
of compressibility. E.g., we can consider vectors that are nearly s-sparse, as measured by the best s-term
approximation.

Definition 2.4 (Best s-term approximation). For p > 0, the `
p

-error of best s-term approximation to a vector
x 2 Rn is defined by

�
s

(x)
p

= inf

y2⌃

s

ky � xk
p

. (2.12)

The best s-term approximation is the vector x̂s that minimizes this error

x̂s

= arg min

y2⌃

s

ky � xk
p

. (2.13)

FIGURE 2.5. Sparsity versus compressibility. The 256⇥ 256 sky image (top left) is a signal
that is compressible in space. If we sort the pixel in decreasing order, there is a sharp descent
(bottom left) from nonzero values to zero values. The 256 ⇥ 256 hibiscus image (top right)
is not compressible in space, but it is compressible in the wavelet domain since its wavelet
coefficients sorted in decreasing corresponding to their absolute values exhibit a power law
decay (bottom right).

Example 2.1. The best 3-term approximation x̂3 of x = (1, 3, 0, 2,�2) is x̂3

= (0, 3, 0, 2,�2) and �
3

(x)
p

= 1.
What is the 2-term approximation of x? Is this unique?

If x 2 ⌃

s

, then clearly �
s

(x)
p

= 0 for any p. Moreover, one can show that the infimum is achieved and
the procedure of keeping only the s largest coefficients in magnitude - also called thresholding - results in the
optimal approximation as measured by (2.12) for all `

p

-norms. It is useful to introduce the following notion.
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Definition 2.5 (Decreasing rearrangement). For any vector x = (x
1

, . . . , x
n

)

> 2 Rn, the decreasing rearrange-
ment of x

x# := (x
[1]

, . . . , x
[n]

)

>, x
[1]

� · · · � x
[n]

, (2.14)

denotes the vector with components of x rearranged in decreasing order.

Proposition 2.5. For x 2 Rn, define |x| 2 Rn

+

as |x|
i

= |x
i

|, i 2 [n] and set x⇤
:= |x|#. Then we have

(i)

�
s

(x)
p

=

(

�

P

n

i=s+1

(x⇤
i

)

p

�

1/p

, p 2 (0,1),

x⇤
s+1

, p = 1.

(ii)

�
s

(x)
q

 1

s1/p�1/q

kxk
p

, for any q > p > 0.

Proof. (i) Exercise! Observe that sorting the components of x does not make a difference.
(ii) If x⇤ 2 Rn

+

is the decreasing rearrangement of x 2 Rn we obtain in view of

x⇤
i

 x⇤
s

, 8i � s+ 1

and decrease of p 7! (x⇤
i

/x⇤
s

)

p for each i � s+ 1,

�
s

(x)q
q

=

n

X

i=s+1

(x⇤
i

)

q  (x⇤
s

)

q�p

n

X

i=s+1

(x⇤
i

)

p 
 

1

s

s

X

i=1

(x⇤
i

)

p

!

q�p

p

n

X

i=s+1

(x⇤
i

)

p


✓

1

s
kxkp

p

◆

q�p

p

kxkp
p

=

1

sq/p�1

kxkq
p

.

Now we can take the 1/q power of both sides of the above inequality.
⇤

Definition 2.6. Let 1  q < 1 and r > 0. The signal x 2 Rn is called q-compressible (or compressible w.r.t.
the `

q

-norm) with constant C and rate r if there exist constants C, r > 0 such that

�
s

(x)
q

 C · s�r

holds for all s 2 [n].

Informally, we call x 2 Rn a compressible vector if �
s

(x)
q

decays quickly in s. According to Prop. 2.5(ii),
this happens in particular if x belongs to the unit `

p

-ball for some small p > 0, where the unit `
p

-ball is defined
by

B
`

p

:= {y 2 Rn

: kyk
p

 1}.
Remark 2.3. One can show [FR13, Thm. 2.5] that for any q > p > 0 and any x 2 Rn, the inequality

�
s

(x)
q

 c
p,q

s1/p�1/q

kxk
p

holds with

c
p,q

:=

"

✓

p

q

◆

p/q

✓

1� p

q

◆

1�p/q

#

1/p

 1.

Note that for p = 1 and q = 2 this leads to

�
s

(x)
2

 1

2

p
s
kxk

1

. (2.15)
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An alternative way to think about compressible signals is to consider the rate of decay of their coefficients.
For many important classes of signals there exist bases such that the coefficients obey a power law decay, com-
pare Fig. 2.5. In such cases signals are highly compressible. Specifically, if x = �z and we sort the coefficients
z
i

in decreasing order of their absolute value according to Def. (2.5), then we say that the coefficients obey a
power law decay if there exist constants C, r > 0 such that

|z|
[i]

 Ci�r, 8i 2 [n].

The larger r is, the faster the magnitudes decay, and the more compressible the signal x is in �. Because the
magnitudes of their coefficients decay so rapidly, compressible signals can be represented accurately by s ⌧ n
coefficients.


