Exercises - Sheet 1

Exercise 1

Consider $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ two normed spaces. Show that for a linear mapping $F: X \rightarrow Y$ the following statements are equivalent
(a) F is continuous on X;
(b) F is continuous in $0 \in X$;
(c) F is bounded, i.e. there exists a constant $C>0$ with

$$
\|F x\|_{Y} \leq C\|x\|_{X}, \quad \forall x \in X
$$

Exercise 2

Consider

$$
C^{0}([0,1])=\{f:[0,1] \rightarrow \mathbb{R} \mid f \text { is continuous }\},
$$

the space of continuous real-valued functions defined on the unit interval. Set $X=Y=C^{0}([0,1])$, but equip X with the L^{1} norm and Y with the supremum norm. Show that the embedding of X into Y is discontinuous.

Hint: Consider the sequence

$$
f_{n}(x)= \begin{cases}-n^{2} x+n, & 0 \leq x \leq 1 / n \\ 0, & \text { otherwise }\end{cases}
$$

and compute $\left\|f_{n}\right\|_{L^{1}}$ and $\sup _{x \in[0,1]}\left|f_{n}(x)\right|$.

Exercise 3

Consider the map $F: \ell^{2} \rightarrow \ell^{2}$ defined by

$$
F x=\left(x_{1}, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \frac{x_{4}}{4}, \ldots\right) .
$$

Show that F is bounded, but that the range of F is not closed.

Exercise 4

Use the corollary 1.3 of the Hahn-Banach theorem to show that if $f(x)=f(y)$ for all $f \in X^{*}$ we necessarily have $x=y$.

Exercise 5

Show the following basic properties of weak convergence
(a) If $x^{k} \rightarrow x$ than $x^{k} \rightharpoonup x$.
(b) The weak limits are unique.

Hint: To show (b) you can use the previous exercise 4.

Exercise 6

Can you specify a closed unit ball that is not compact?

Exercise 7

This is the first practical exercise that you are required to solve ${ }^{1}$
(a) Load image "input1.jpg" in Python (imread from matplotlib.pyplot) from Teams or the tutorial webpage https://ipa.math.uni-heidelberg.de/dokuwiki/doku.php?id=teaching:st21: ueb:mb. What are the spatial dimensions, data type and range of the image? How many color channels has the image?
(b) Scale the colour values in the range $[0,1]^{3}$ and display the new scaled image (imshow from matplotlib.pyplot).
(c) Calculate the mean colour value (should be a vector with three values) over all pixels.
(d) What is the colour of the pixel at position $(299,11)$?

Note: the top left pixel has the coordinate $(0,0)$.
(e) Convert the image in grayscale and display it. The gray value h can be calculated from the RGB values using $h=0.3 r+0.59 g+0.11 b$. What are the minimum and maximum gray values in the image?
(f) Save the grayscale image in the PNG-format (imsave from matplotlib.pyplot).
(g) Create a histogram of the grayscale image (hist from matplotlib.pyplot).

[^0]
[^0]: ${ }^{1}$ Please upload your solution to Teams or send it to Matthias Zisler zisler@math.uni-heidelberg.de before the next tutorial on the 28th of April. You can use either Python or Matlab.

