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Abstract. Recently, a smooth geometric approach to the image labeling
problem was proposed [1] by following the Riemannian gradient flow of a
given objective function on the so-called assignment manifold. The app-
roach evaluates user-defined data term and additionally performs Rie-
mannian averaging of the assignment vectors for spatial regularization.
In this paper, we consider more elaborate graphical models, given by
both data and pairwise regularization terms, and we show how they can
be evaluated using the geometric approach. This leads to a novel infer-
ence algorithm on the assignment manifold, driven by local Wasserstein
flows that are generated by pairwise model parameters. The algorithm
is massively edge-parallel and converges to an integral labeling solution.
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1 Introduction

Overview. Let G = (V, E) denote a grid graph embedded into the image domain
Ω ⊂ R2. Vertices i, j, . . . ∈ V index grid positions. A random variable xi ∈ X
is assigned to each position i, which takes values in a finite set X of so-called
labels. Image labeling commonly denotes the minimization problem

min
x∈X |V|

E(x), E(x) =
∑

i∈V
Ei(xi) +

∑

ij∈E
Eij(xi, xj) (1.1)

for a given objective function that comprises local functions Ei, Eij , which define
a data term and a regularizer, respectively. The data term is typically based on
local predictors of the labels, that are trained offline based on observed image
features. The latter pairwise terms measure the similarity of labels assigned to
adjacent pixel positions and thus enforce spatially smooth label assignments.

The image labeling problem covers a broad range of applications. Accord-
ingly, methods for approximately solving the combinatorial problem (1.1) have
attracted a lot of research activities – see [7] for a recent survey.
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The basic convex relaxation of (1.1) is based on a reformulation of the objec-
tive function in terms of local vectors

θi =
(
θi(xi)

)
xi∈X ∈ R|X |, θij =

(
θij(xi, xj)

)
xi,xj∈X ∈ R|X |2 , (1.2)

whose components are equal to the function values Ei(xi), Eij(xi, xj). Defining
in a similar way local indicator vectors µi ∈ {0, 1}|X |, µij ∈ {0, 1}|X |2 yields
the linear representation Ei(xi) = ⟨θi, µi⟩ and Eij(xi, xj) = ⟨θij , µij⟩. Collecting
all local terms into vectors θ and µ, respectively, and relaxing the integrality
constraint, yields the so-called local polytope relaxation [14,16]

min
µ

⟨θ, µ⟩ subject to µ ∈ P, P =
{
µ :

∑

xi∈X
µij(xi, xj) = µj(xj), (1.3a)

∑

xj∈X
µij(xi, xj) = µi(xi), µij ≥ 0, µi ∈ ∆c, ∀i ∈ V, ∀ij ∈ E

}
, (1.3b)

where ∆c ⊂ Rc, c = |X | denotes the (c − 1)-dimensional probability simplex. It
is well known [17] that this relaxation is only exact for acyclic graphs G. For
cyclic graphs and image grid graphs, in particular, minimizers µ∗ ̸∈ {0, 1}dim(µ)

are not integral, in general. As a consequence, some rounding method is applied
to µ∗ as postprocessing.

The recent work [1] proposed a smooth non-convex approach to the image
labeling problem. It is entirely defined in terms of local vectors Wi ∈
rint(∆c), i ∈ V that live on the relative interior of the simplex which is turned
into a simple manifold (see Sect. 2). These vectors are determined by local infor-
mation, analogous to the data terms Ei(x) of (1.1). In addition, spatial regular-
ization is enforced by computing Riemannian means of the vectors Wi within a
local neighborhood around each pixel location i. By construction, the algorithm
returns integral solutions that make a postprocessing step obsolete. The work
[2] studies the multiplicative numerical scheme used in [1], along with a variant,
and provides a convergence analysis.

Contribution. The objective of the present paper is to adopt and extend the
approach of [1] in order to evaluate established graphical models of the form
(1.1), which abound in the literature. This raises the question as to how to
take into account the regularizing terms of (1.1). This will be accomplished
(i) by regularized Wasserstein distances between adjacent assignment vectors
Wi,Wj , ij ∈ E (these vectors replace µi, µj in our approach) that are directly
based on the given model parameters θij , and (ii) by evolving the corresponding
Riemannian gradient on the assignment manifold, as proposed in [1]; see Fig. 1
for an illustration. The resulting approach adds a novel inference algorithm for
the image labeling problem to the literature [7]. It may be seen as a sparse interior
point algorithm that is exact on acyclic graphs (Lemma1), and simultaneously
performs relaxation and rounding to integrality in a smooth geometric fashion on
cyclic graphs. See the Remarks 1, 2 and Sect. 3 for additional detailed comments
that classify and position our work.
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Related Work. Optimal transport and the Wasserstein distance have become a
major tool of image modeling and analysis [8]. Regarding the finite-dimensional
formulation in terms of linear programs, we apply the standard device of enhanc-
ing convexity through entropic regularization, which increases smoothness in the
dual domain. We refer e.g. to [13] and [3, Ch. 9] for basic related work and the
connection to matrix scaling algorithms and the history. A smoothed version of
the basic Sinkhorn algorithm has become popular in machine learning due to [4],
and smoothed Wasserstein distances have been comprehensively investigated in
[5,10] for computing Wasserstein barycenters and interpolation. Our approach
to image labeling, in conjunction with the geometric approach of [1], is novel.

Fig. 1. Illustration of a key aspect of our approach for a given graph G = (V, E).
Marginals Wv ∈ S, v ∈ {i, j, k, l} ⊂ V assigned to pixel positions v evolve on the
assignment manifold S. Regularization parameters θe, e ∈ {ij, ik, il} ⊂ E of a given
graphical model define Wasserstein distances between pairs of marginals that are inci-
dent to edge e. These distances generate Wasserstein messages νv(θe) that drive the
evolution of Wi, in addition to ordinary local data terms based on observed data.

Organization. Section 2 introduces components of the approach of [1] on which
our approach is based on. Our approach is detailed in Sect. 3. Numerical exper-
iments validate and illustrate our approach in Sect. 4.

Basic Notation. ⟨·, ·⟩ denotes the canonical inner product inducing the Euclid-
ean norm ∥v∥ = ⟨v, v⟩1/2 for vectors or the Frobenius norm ∥A∥F = ⟨A,A⟩1/2
in the cases of matrices. 1 = (1, 1, . . . , 1)⊤ of appropriate dimension. Functions
apply componentwise to vectors, e.g. ev = (ev1 , . . . , evn)⊤. The componentwise
multiplication of vectors is denoted as p · q = (p1q1, . . . , pnqn)⊤. Likewise, we
write q

p := p−1 · q for the componentwise subdivision by a strictly positive vec-
tors. The set Lc = {e1, . . . , ec} collects the c unit vectors as extreme points of the
probability simplex ∆c = {p ∈ Rc

+ : ⟨1, p⟩ = 1}. The indicator function of a closed
convex set C is denoted by δC(x) = 0 if x ∈ C, and δC(x) = +∞ otherwise. We
set n = |V| and [c] = {1, 2, . . . , c} for c ∈ N.

2 Image Labeling on the Assignment Manifold

We collect components of the approach [1] that are required to introduce our
approach in Sect. 3.
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Analogous to the vectors µi of (1.3), the basic variables are vectorsWi ∈ S :=
rint(∆c), i ∈ V, with S denoting the relative interior of the probability simplex
equipped with the Fisher-Rao metric. A label is assigned to pixel i whenever the
vectors Wi are ε-close to some unit vector from the set Lc.

Let fi, i ∈ V denote observed data and f∗
j , j ∈ [c] given labels. The choice

of a distance function d(·, ·) defines the distance vectors

Di =
(
d(fi, f∗

1 ), . . . , d(fi, f
∗
c )

)⊤ ∈ Rc (2.1)

and in turn the likelihood vectors

Li(Wi) = expWi
(−Ui/ρ) :=

Wi · e−Ui/ρ

⟨Wi, e−Ui/ρ⟩ ∈ S, Ui = Di − 1
c
⟨1, Di⟩1, (2.2)

at every pixel i ∈ V, where ρ > 0 is a user parameter. Next similarity vectors

Si(W ) = meanS{Lj}j∈N (i) (2.3)

are computed as approximate Riemannian means of the likelihood vectors over
closed local neighborhoods N (i) = N (i)∪ {i} containing the center pixel i. The
matrix W ∈ W ∈ Rn×c collects the vectors Wi as row vectors and is an element
of the so-called assignment manifold W = S × · · ·×S (n = |V| times). Similarly,
the vectors Si(W ) are collected as rows of the similarity matrix S(W ) ∈ W.

The counterpart of the convex relaxation (1.3) for determining a labeling is
the smooth non-convex problem

sup
W∈W

J(W ), J(W ) = ⟨S(W ),W ⟩, Ẇ (t) = ∇WJ(W ), W (0) =
1
c
11⊤, (2.4)

together with the Riemannian gradient flow on the right-hand side of (2.4):
The objective is to determine the assignment matrix W so as to maximize the
correlation (inner product) with the similarity matrix, that incorporates the
given data and spatial regularization depending on W , too.

Numerical approximations of the gradient flow (2.4) yield assignment vectors
Wi, i ∈ V that are ε-close to some unit vector from the set Lc, which holds in
all experiments. For further details we refer to [1]. A postprocessing step for
rounding, as with the convex approach (1.3), is not required.

3 Application to Graphical Models

Our approach to the evaluation of a given graphical model of the form (1.1), using
the geometric approach of Sect. 2, involves the steps: (1) smooth approximation
of the LP relaxation (1.3), (2) adopting the geometry of the assignment manifold,
and (3) labeling through numerical optimization. Finally, (4), we reconsider and
discuss again Fig. 1.
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(1) Smooth Approximation of the LP Relaxation. Setting

PV = {µV = (µ1, . . . , µn) : µi ∈ ∆c, i ∈ V}, (3.1a)
Π(µi, µj) = {µij ≥ 0: µij satifies the marginal. constraints (1.3)} (3.1b)

we rewrite problem (1.3) in the form

min
µV∈PV

(∑

i∈V
⟨θi, µi⟩ +

∑

ij∈E
min

µij∈Π(µi,µj)
⟨θij , µij⟩

)
, (3.2)

which involves the local Wasserstein distances

dW (µi, µj ; θij) = min
µij∈Π(µi,µj)

⟨θij , µij⟩, ij ∈ E . (3.3)

Lemma 1. Problems (3.2) and (1.3) are equivalent, that is (3.2) is the convex
local polytope relaxation of the graphical model (1.1).

Proof. This follows from the equation

min
µ∈P

⟨θ, µ⟩ = min
µ∈P

(
⟨θV , µV⟩ + ⟨θE , µE⟩

)
(3.4a)

= min
µV

(
⟨θV , µV⟩ +min

µE

∑

ij∈E
(⟨θij , µij⟩ + δΠ(µi,µj)(µij)) (3.4b)

where µE = (. . . , µij , . . .) and similarly θE collect the local vectors indexed by
edges, analogous to µV given by (3.1a) and θV for the vertices. ⊓.

Using the entropy function H(µij) = −
∑

xi,xj
µij(xi, xj) log µij(xi, xj), where µ

satisfies (3.1), our approach is to smooth the convex but non-smooth (piecewise-
linear) local functions dW (µi, µj ; θij) by entropy regularization,

dW,τ (µi, µj ; θij) = min
µij∈Π(µi,µj)

{
⟨θij , µij⟩ − τH(µij)

}
, ij ∈ E , τ > 0, (3.5)

and to minimize the resulting smooth convex functional

min
µV∈PV

Eτ (µV), Eτ (µV) =
{∑

i∈V
⟨θi, µi⟩ +

∑

ij∈E
dW,τ (µi, µj ; θij)

}
(3.6)

by adopting and suitably extending the geometric approach of Sect. 2.

Remark 1. The role of smoothing employed here should not be merely consid-
ered as a pure numerical techniqe (cf. e.g. [9]) for handling the non-smooth
convex programs (1.3) and (3.2), because solving the non-tight relaxation (1.3)
is not our focus. Rather, we are interested in approximately solving the original
combinatorial labeling problem (1.1), which will be achieved by applying a geo-
metric optimization strategy to (3.6) that converges to integer-valued solutions,
i.e. labelings. Thus, smoothing in the case of (3.6) is a strategy for taming the
combinatorial labeling problem, that is independently applied and does not con-
flict with the geometric numerical strategy for computing integral (non-fuzzy)
labelings.
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(2) Geometric Minimization Approach. In this section, we will consider (i)
the computation of the partial gradients ∇µiEτ (µV) and (ii) a natural way for
incorporating this information into the geometric approach of Sect. 2.

Regarding (i), we use the following classical result, which is an extension of
Danskin’s theorem due to Rockafellar.

Theorem 1 [6,11]. Let f(z) = maxw∈W g(z, w), where W is compact and
the function g is differentiable and ∇zg(z, w) depending continuously on
(z, w). If in addition g(z, w) is convex in z, and if z is a point such that
argmaxw∈W g(z, w) = {w}, then f is differentiable at z with

∇f(z) = ∇zg(z, w). (3.7)

We apply Theorem1 to the function dW,τ of (3.6). To this end, let

A : Rc2 → Rc, Aµij = ( µi
µj ) (3.8)

denote the linear mapping so that (3.8) is equal to the marginalizations con-
straints (3.1b). Furthermore, we introduce the projection

Π0 : Rc → TS, Π0(v) = (I − 1
c
11⊤), TS = {v ∈ Rc : ⟨1, v⟩ = 0} (3.9)

onto the tangent space of the manifold S of Sect. 2, i.e. the subspace of zero-mean
vectors (which does not depend on a base point of S).

Corollary 1. Let µi, µj be given. Then the gradient ∇dW,τ (µi, µj ; θij) of the
function (3.5) is given by the unique solution (νi, νj) of the equation

(
µi

µj

)
= A exp

[1
τ

(
A⊤

(
νi

νj

)
− θij

)]
, νi, νj ∈ TS. (3.10)

Proof. The function dW,τ is defined by the convex problem

dW,τ (µi, µj ; θij) = min
µij

(
⟨θij , µij⟩ + fτ (µij)

)
s.t. Aµ = ( µi

µj ) (3.11)

with fτ (µij) = −τH(µij) + δRc2
+
(µij) and dual problem

max
νi,νj

g(µi, µj , νi, νj) = max
νi,νj

[
⟨µi, νi⟩ + ⟨µj , νj⟩ − f∗

τ

(
A⊤ ( νi

νj ) − θij
)]

(3.12)

and convex conjugate function f∗
τ (νij) = τ

∑
xi,xj

e
νij(xi,xj)−τ

τ . Compactness of
the set of maximizers follows from the continuity of f∗

τ (closed level sets) and
limτ→0 f∗

τ (νij) = δRc2
−
(νij), and uniqueness is due to the constraint νi, νj ∈ TS,

which removes the ambiguity (νi + c1, νj − c1) in the argument of f∗
τ of (3.12),

for arbitrary constants c ∈ R. Since g is linear in µi, µj , Theorem1 applies, and
Eq. (3.7) becomes (3.10), where we omitted the immaterial scaling factor caused
by τ in the numerator of f∗

τ . ⊓.
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We wish to point out that strong duality between the primal (3.11) and its dual
(3.12) holds since µi in fact are Wi ∈ W, i ∈ V which are strictly positive.

It remains to explain how we apply the geometric approach from Sect. 2.

For clarity, we adopt the corresponding notation and replace in the remain-
der of this paper the local vectors µi by Wi, i ∈ V.

Equation (2.2) defines likelihood vectors Li(Wi) = expWi

(
− Π0(Di)/ρ

)
in

terms of some vector of distances Di of the data point fi to given labels. Since
the local energy ⟨θi, µi⟩ plays a similar role in the functional (3.6), i.e. measuring
a local distance to the labels, it is natural to project the gradient to the tangent
space and to define the likelihood vectors

Li(Wi) = expWi

(
− Π0(θi)/ρ

)
= expWi

(−θi/ρ), i ∈ V, (3.13)

where the projection can be omitted because the mapping expWi
defined by (2.2)

is invariant against the addition of constant vectors c1, c ∈ R.
Regarding the pairwise energy terms of (3.6), we proceed in a similar way.

For every edge ij ∈ E , we determine the gradient of the corresponding summand,
given by the solution (νi, νj) to (3.10) (with µi, µj on the left-hand side replaced
by Wi,Wj) and define the likelihood vectors

Lij;i(Wi) = expWi
(−νi/τ), Lij;j(Wj) = expWj

(−νj/τ), ij ∈ E . (3.14)

At this point, we have taken into account the pairwise parameters of the graph-
ical model (1.1), and we continue with adapting the final steps of the app-
roach proposed in [1]. Assuming an arbitrary but fixed orientation for every edge
(i.e. ij ∈ E implies ji ̸∈ E), we define for every node i the sets of neighbors of i
given by edges incoming and outgoing to/from i,

I(i) = {j ∈ V : ji ∈ E}, O(i) = {j ∈ V : ij ∈ E}. (3.15)

Then, based on the likelihood vectors associated with each node i,

Li(W ) = {Li(Wi)} ∪
(

∪j∈I(i) Lji;i(Wj)
)

∪
(

∪j∈O(i) Lij;i(Wj)
)
, i ∈ V, (3.16)

we compute analogous to (2.3) the similarity vectors

Si(W ) = meanS
(
Li(W )

)/〈
1,meanS

(
Li(W )

)
⟩, i ∈ V (3.17)

and solve the optimization problem (2.4).

Remark 2. The reader may wonder: Why do we not simply encode the pair-
wise energy terms Eij(xi, xi) by ⟨Wi, θijWj⟩ and generate likelihood vectors by
the corresponding partial gradients θijWj and θ⊤

ijWi? The reason is that this
would closely correspond to the naive mean field approach to labeling, which
is plagued by the local minima problem, as the generally non-convex quadratic
form ⟨Wi, θijWj⟩ indicates. By contrast, our approach couples the marginals
Wi,Wj in terms of the given parameters θij through the convex local smoothed
Wasserstein distance dW,τ (Wi,Wj ; θij).
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(3) Numerical Optimization. Defining the local model parameter matrices

Θij ∈ Rc×c, E(Θij) = e
−Θij

τ , (Θij)kl = θij(xk, xl), xk, xl ∈ X , (3.18)

where the edge-indexed matrix θij is not necessarily symmetric, Eq. (3.10) takes
the form

(
Wi
Wj

)
= Diag(e

νi
τ )E(Θij)Diag(e

νj
τ ), where Diag(·) denotes the diago-

nal matrix with the argument vector as entries. The vectors νi, νj can be deter-
mined by Sinkhorn’s algorithm, up to a common multiplicative constant. Setting

vi := e
νi
τ , vj := e

νj
τ , (3.19)

the corresponding fixed point iterations read

v(k+1)
i =

Wi

E(Θij)
(

Wj

E(Θij)⊤v(k)
i

) , v(k+1)
j =

Wj

E(Θij)⊤
(

Wi

E(Θij)v
(k)
j

) , (3.20)

which are iterated until ∥v(k+1)
i − v(k)i ∥ ≤ 10−16, ∥v(k+1)

j − v(k)j ∥ ≤ 10−16, which
for a reasonable range of Θij ∈ [0, 1]c×c happens quickly after few iterations.
Denoting the iterates after convergence by v(∞)

i , v(∞)
j , resubstitution into (3.19)

and projection onto TS using (3.9) gives the vectors

νi = τΠ0(log v
(∞)
i ), νj = τΠ0(log v

(∞)
j ). (3.21)

which are used to compute the edge likelihood vectors (3.14). These likelihood
vectors together with the corresponding vectors (3.13) generated by the data
term define (3.16) and in turn the similarity vectors (3.17), which are integrated
into the multiplicative scheme of [1] to evolve the marginals by

W (k+1)
i =

(
W (k)

i · Si(W
(k))
)/

⟨Wi, Si(W
(k))⟩, i ∈ V, ∀j, k ∈ N (i). (3.22)

We adopt the following approximations from [1]: In case an entry of W (k+1)
i

drops below ε = 10−10, we set W (k+1)
i = ε and hence let ε play the role of

0. Furthermore, we approximate the Riemannian mean by the geometric mean,
which due to [1, Prop. 3.1] provides a closed form first-order approximation of
the geodesics of S in terms of the mapping expWi

(·) defined by (2.2). Finally, we
terminate the update scheme (3.22) when the average of the entropies of W (k+1)

i
over i ∈ V drops below 10−3.

Wasserstein Messages. The rationale behind (3.14) becomes more apparent
when rewriting the fixed point Eq. (3.20) after convergence in the form

v(∞)
i = Wi/(E(Θij)v

(∞)
j ), v(∞)

j = Wj/(E(Θij)⊤v
(∞)
i ). (3.23)

This shows that the variables νi, νj which generate the likelihood vectors
(3.14), are passed along the edges indicent to pixel i (see Fig. 1). Taking
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Original data

Noisy data

τ = 0.001 0.01 0.1

4
co

n
3

×
3

N
(i

)
=

5
×

5

Fig. 2. A 4-connected neighborhood denotes the pixels (x ± 1, y) and (x, y ± 1) for
image coordinates (x, y) at i, and 3 × 3 and 5 × 5 mean fully connected neighborhoods
with 9 and 25 pixels involved in geometric averaging (cf. (3.17)). For ρ = 1, we see that
the regularization changes slowly within each scale N with increasing τ , and increasing
the neighborhood sizes increases the spatial regularization.

the log of both sides of the first equation results due to (3.21) in νi =
τΠ0

(
logWi − log(E(Θij)v

(∞)
j )

)
, and in a similar expression for νj . Compar-

ing this to the general formula for solving Eq. (2.2) for Ui due to [1, App. B.2],
Ui = ρΠ0(logWi − logLi), suggests to identify likelihood vectors that are gen-
erated along the edges, as given by (3.14).

Since νi, νj are the dual variables corresponding to the local marginalization
constraints of (1.3) resp. (3.1b), we call these vectors Wasserstein messages,
in view of the established message passing schemes [17] that aim at solving the
dual LP of (1.3) by fixed point iteration. Unlike the latter schemes, our approach
satisfies the marginalization constraints all the time during the numerical opti-
mization process, rather than only after convergence to a fixed point (provided
this happens with common belief propagation on an acyclic graph).

4 Experiments

Parameter Influence, Convergence Rate. In order to better assess the para-
meter influence we defined 35 unit vectors, each corresponding to one label,
encoded on the simplex. This assures that the unary (or distance function,
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Fig. 3. Entropy as a function of iterations for τ = 0.1 and ρ = 1. With an increasing
neighborhood size we observe slower convergence which, however, gives a more spatially
coherent labeling, as seen in Fig. 2.

cmp. (2.1)) defined as d(fi, f∗
j ) = ∥fi − f∗

j ∥1 is not biased towards any sin-
gle label. Figure 2 shows the influence, for fixed ρ = 0.2 for increasing neigh-
borhood size and increasing selectivity τ . In all experiments the termination
criteria of 10−3 was reached. Figure 3 depicts that the average entropy decrease
rapidly for smaller neighborhood sizes. This is reflected in a “noisy” labeling
as seen in Fig. 2 since noise is treated as structure due to more conservative
information propagation as the regularization is smaller. Increasing the neigh-
borhood size increases the number of iterations until convergence, because the
algorithm resolves the ‘label competition’ through stronger geometric averaging,
which results in a smoother labeling. Overall, however, the number of iterations
is small.

Inference on Cyclic Graphs. We focus next on the performance of our app-
roach for difficult inference problems on cyclic graphs. To this end, we consid-
ered the binary labeling problem on the triangle with three nodes as minimal
complete graph, together with many instances of model parameters where the
convex LP relaxation (1.3) fails completely : It returns the fractional solution
(1/2, 1/2) as optimal extreme point of the local polytope for every node, which

0.
00

1
τ

0.
05

L
o w

H
ig

h

0.001 ρ, 0.05 (b) (c) (d)(a)

Fig. 4. Energy values for optima computed for the ‘frustrated triangle’ problem, for
various values of τ and ρ. Dark blue color indicates that the globally optimal integral
solution was found. The results indicate the existence of an optimal parameter regime
for all problem instances. White color indicates that the convergence rate slowed down
significantly. The panel labels correspond to the ones in Table 1. (Color figure online)
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thus necessitates a postprocessing step to find the optimal binary 0/1 solution,
that is equivalent to the original combinatorially hard problem.

Table 1 shows some instances of unary potentials that we used, together with
the pairwise potential

(
0 −0.1

−0.1 0

)
that favors different labels on adjacent nodes.

The latter is impossible on a triangle, which explains the difficulty of this labeling
problem. Table 1 shows the energy LPfrac of the convex relaxation as lower
bound, together with the energy LPint of the optimal binary labeling, determined
by exhaustive search.

It is clear that our geometric approach can only find a local binary optimum
for this NP-hard problem. Figure 4 shows for 4 problem instances the “energy
landscape” resulting after convergence, for varying values of the parameters τ
and λ, where the lowest energy corresponding to LPint is encoded with blue.
Table 1 displays in the rightmost column the energy within the blue region, which
confirms that the optimal binary solution was found without rounding. The shape
of the energy landscape looked roughly the same for all problem instances. A
better understanding of how to find parameter values corresponding to the blue
region in applications, will be the subject of future work.

Table 1. Unary potentials for the ‘frustrated triangle’ problem constructed such that
the LP relaxation yields a fractional solution (1/2, 1/2) at each vertex. The three
right-most columns show the energies LPfrac of the LP relaxation, the energy LPint

of the globally optimal integral solution, and the energy obtained with our geometric
approach within the blue region of parameter values, as displayed by Fig. 4.

Unary LPfrac LPint Geometric

(a) (0.13, 0.10, 0.86, 0.95, 1.03, 1.06) 1.77 1.79 1.79

(b) (1.68, 1.67, 0.10, 0.16, 1.21, 1.27) 2.75 2.78 2.78

(c) (0.99, 0.90, 1.49, 1.46, 0.10, 0.16) 2.25 2.26 2.26

(d) (1.53, 1.49, 0.10, 0.12, 0.25, 0.19) 1.54 1.58 1.58

(e) (0.10, 0.10, 1.49, 1.40, 0.86, 0.93) 2.14 2.16 2.16

(f) (1.08, 0.94, 0.12, 0.10, 1.12, 1.14) 1.95 1.96 1.96

Denoising by Labeling. We competitively compared the performance of our
approach for the labeling problem depicted by Fig. 5, using a standard data
term together with an Ising prior. To this end, we also evaluated the mean field
method [14] and loopy belief propagation [15] (Loopy-BP) based on the UGM
package [12], and local rounding was used for these methods as a post-processing
step to obtain an integral solution. Figure 5 shows the visual reconstruction as
well as the corresponding energy values and percentage of correct labels, which
reveals a superior performance of our approach.
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Original Noisy Geometric Mean field Loopy-BP
Energy/Acc 13534.50/98.35  15089.97/95.09 15240.92/94.83

Fig. 5. Noisy binary image recovery. Compared to standard message passing algo-
rithms, our geometric approach shows competitive performance regarding both optimal
energy and labeling accuracy. The parameter configuration was τ = 0.05 and λ = 1,
and a 4 connectivity neighborhood was used for geometric spatial regularization.

5 Conclusion

We presented a novel approach which evaluate established graphical models in a
smooth geometric setting. Taking into account pairwise potentials, we formulated
a novel inference algorithm that propagates “Wasserstein messages” along edges.
These messages are lifted to the assignment manifold and drive a Riemannian
gradient flow, that terminates at an integral labeling. Our work adds a new
inference method to the literature, that simultaneously performs relaxation and
rounding to integrality in a smooth geometric fashion.
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