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Abstract

We present an approach to jointly estimating camera mo-
tion and dense scene structure in terms of depth maps from
monocular image sequences in driver-assistance scenarios.
For two consecutive frames of a sequence taken with a sin-
gle fast moving camera, the approach combines numeri-
cal estimation of egomotion on the Euclidean manifold of
motion parameters with variational regularization of dense
depth map estimation. Embedding this online joint esti-
mator into a recursive framework achieves a pronounced
spatio-temporal filtering effect and robustness. We report
the evaluation of thousands of images taken from a car mov-
ing at speed up to 100 km/h. The results compare favorably
with two alternative settings that require more input data:
stereo based scene reconstruction and camera motion esti-
mation in batch mode using multiple frames. The employed
benchmark dataset is publicly available.

1. Introduction
Overview and Motivation. Computer vision research has
a strong impact on driver assistance technology. Besides de-
signing dedicated detectors for specific object classes [4, 7],
current major trends include low-level estimation of dense
scene structure from stereo sequences [22], the transition to
monocular imaging sensors [23, 15], and context-based 3D
scene representation and labeling supported by high-level
assumptions and constraints [24].

This paper focuses on the low-level task to jointly esti-
mate dense scene structure and egomotion under minimal
assumptions, adverse conditions and requirements, that are
typical for driver assistance scenarios – see Fig. 1:
• Online joint estimation from only two consecutive

frames in view of on-board implementations later on;
• No assumptions about scene structure in order to cope

with arbitrary scenes;
• No additional input (e.g. odometer readings) besides

internal camera parameters estimated offline (calib.);

Figure 1. Best viewed in color. Upper row: Two consecutive
frames (size 656 × 541 pixels) of the Bend sequence with large
displacements up to 35 pixels induced by a fast moving camera.
Lower row: Our approach jointly estimates, from sparse noisy
displacement estimates, dense depth maps (left) and camera mo-
tion in an online recursive framework. Right: Reconstruction of
dense scene structure based on the depth maps from the camera’s
viewpoint, and the corresponding camera track.

• Ability to cope with large displacements induced by a
fast moving camera;
• Comprehensive evaluation using image sequences re-

corded in real scenarios.

In this connection, the major issue to be addressed concerns
the design of an integrated approach that ensures sufficient
regularization to achieve robust and accurate estimation,
without compromising real-time capability through unreal-
istically complex computations.

Our approach therefore combines highly accurate nu-
merics on the low-dimensional Euclidean manifold in order
to disambiguate and track translational and rotational ego-
motion from ill-posed two-frame displacement estimates,
with less accurate variation models for estimating high-
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dimensional scene structure, leading to efficient overall
inference. Applying the resulting online joint estimator
within a recursive prediction-estimation loop to an image
sequence achieves favorable spatio-temporal filtering and
increased robustness.

The estimates computed with our approach provide a ba-
sis for subsequent tasks like obstacle and collision warning,
and further related problems of advanced scene analysis, to
be considered in future work.

Related Work. Most approaches to scene reconstruction
rely on stereo imaging or multiple view reconstructions in
batch mode.

Stereo set-ups [22, 6] are only relevant for sensing close-
up ranges at low speeds, due to the small baseline in driver
assistance scenarios, and are less attractive than just a single
camera from the technological system oriented viewpoint.

Factorization [19] and bundle adjustment [21] have be-
come a mature technology for jointly determining camera
and scene structure from tracked features. While this re-
quires to accumulate several frames and more expensive nu-
merics, recent local and more efficient approaches, e.g. for
visual odometry [12, 14], entail only sparse representations
of scene structure.

Further recent work on the reconstruction of accurate
depth maps from arbitrary multiple views includes [15, 18].
These works however require the camera motion to be de-
termined in a preceding step using feature tracking. Other
related approaches only allow for camera translation but no
rotation [23], or estimate the epipole but require images to
be aligned with respect to a common reference plane [10].

An attractive alternative would employ direct feature-
to-depth mappings, learned offline from ground truth da-
tabases [17]. Besides the tremendous effort necessary to
compile a sufficiently large set of – in particular, far field –
ground truth data, we don’t currently know how such an ap-
proach generalizes to arbitrary scenes, and if it can compete
with reconstructions that rely on measurements efficiently
estimated online, as in our case.

Contribution and Organization. We present an ap-
proach that estimates from a monocular high-speed image
sequence of arbitrary static scenes both camera motion and
dense scene structure (depth maps), using noisy sparse dis-
placements computed from two consecutive frames at each
instant of time. The approach combines, by joint opti-
mization, geometric integration over the Euclidean mani-
fold SE 3 for incremental motion parameter estimation, with
large-scale variational depth map estimation, subject to spa-
tial and short-time temporal regularization. The novelty of
our approach is due to the ability to recover dense scene
structure and egomotion from monocular sparse displace-
ment estimates within a truly recursive online estimation

framework.
Sect. 2 provides an overview of the overall approach

and specifies underlying assumptions and approximations,
followed by detailing each component of our method in
Sect. 3. We report in Sect. 4 results of an evaluation of
our approach using thousands of real images provided by
a novel database [13], that aims at providing a benchmark
for computer vision algorithms in the context of automotive
applications. All image data is available online1.

Moreover, we show that our approach compares favor-
ably to results computed with less restricted approaches
(stereo, bundle adjustment) using public implementations
(Voodoo Camera Tracker2 v1.1.0b) and [20, 6], to ensure
reproducibility of all results.

2. Problem Statement, Approach (Overview)
Preliminaries. We adopt the common concepts of mul-
tiple view geometry [8]. We assume the internal camera
parameters to be known (offline calibration) and denote in-
cremental external parameters corresponding to frame k by
Ck = (Rk, hk), moving the camera from its position at
time k − 1, see Fig. 2.

The manifoldM := SE 3 of Euclidean transformations
C = (R, h) ∈M, parametrized by rotations R and transla-
tions h, is identified with the matrix Lie group

G :=

{
Q =

(
R h
0> 1

)
: R ∈ SO3, h ∈ R3

}
, (1)

and SO3 denotes the group of proper rotations. TCM and
TQG denote the tangent spaces ofM, G at C ∈ M, Q ∈
G, respectively. The Lie algebra se3 of SE 3 is given by

se3 =
{
W =

(
ω̂ v

0> 0

)
:ω, v ∈ R3

}
, ω̂ :=

( 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

)
,

(2)
where so3 3 ω̂ denotes the Lie algebra of SO3 identified
with the linear subspace of skew-symmetric matrices. We
equip SE 3 with the Riemannian metric

〈W 1,W 2〉G := 〈ω̂1, ω̂2〉+ cG〈v1, v2〉, cG > 0, (3)

for all W i ∈ se3, i = 1, 2, where 〈·, ·〉 on the right-hand
side denotes the canonical matrix and vector inner product,
respectively, and cG is a constant parameter scaling the ro-
tational vs. the translational part. Note that unlike for gen-
eral Riemannian metrics, the metric (3) does not depend on
Q ∈ G, hence is the same for all tangent spaces TQG, jus-
tifying the notation 〈·, ·〉G.

The exponential mapping Exp: se3 → SE 3 that diffeo-
morphically maps tangent vectors close to 0 onto the man-
ifold within a neighborhood of the group identity I , can be

1http://hci.iwr.uni-heidelberg.de/VSFM
2http://www.digilab.uni-hannover.de/docs/manual.html
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Figure 2. A scene point is defined by image coordinates x and
depth dk(x) in the coordinate system of camera k. Its projection
moves by −uk(x) to x′ when the camera is rotated and translated
backward by Ck = (Rk, hk).

computed in closed form,

Exp
[(

ω̂ v
0> 0

)]
=
(
R(ω) Q(ω)v

0> 1

)
, (4)

R(ω) = I +
sin(‖ω‖)
‖ω‖

ω̂ +
1− cos(‖ω‖)
‖ω‖2

ω̂2, (5)

Q(ω) = I +
1− cos(‖ω‖)
‖ω‖2

ω̂ +
‖ω‖ − sin(‖ω‖)

‖ω‖3
ω̂2. (6)

Problem Statement. Let Ω ⊂ R2 be the image domain
and I0:k := {I0, I1, . . . , Ik} a given image sequence of
frames Ii : Ω → R, measured at times i ∈ {0, . . . , k}
with cameras C0:k. We wish to jointly estimate in a recur-
sive manner both C0:k and a sequence d0:k of depth maps
di : Ω → R+ that assign to each image point x ∈ Ω its
depth di(x) along the viewing ray, up to a common global
unknown scale factor – see Fig. 2.

The difficulty of this problem is (i) due to a monocular
driver assistance scenario (see Fig. 1) inducing less favor-
able motion parallax, (ii) a fast moving camera leading to
displacements of consecutive frames up to 35 pixels (frame
size 656× 541 pix.), and (iii) a recursive online processing
mode that updates the camera parameters and depth map
based on two consecutive frames only.

Approach: Overview. The natural approach to this prob-
lem is to consider sequences of state variables X0:k =
(C0:k, d0:k) and observations Y 0:k = u0:k, together with
probabilistic models of state transitions p(Xk|Xk−1) and
the observation process p(Y k|Xk) under Markovian as-
sumptions, in order to recursively estimate Xk based on the
posterior marginal distribution p(Xk|Y 0:k) (cf., e.g. [2]).

Approximations to this general approach are inevitable,
however, due to the nonlinearity of the underlying pro-
cesses, due to the high dimensionality of depth maps dk and

displacement fields uk (cf. Fig. 2), and due to a strict re-
quirement for computational efficiency imposed by the sce-
nario shown by Fig. 1. We adopt therefore the variational
modeling perspective as accepted alternative in situations
where sampling based approaches are too time consuming
(cf., e.g. [11]).

Accordingly, as detailed in Sect. 3, we devise Gaus-
sian approximations p(Y k|Xk) = N (uk;µku,Σ

k
u) and

N (dk; µ̂kd, Σ̂
k
d) for the high-dimensional observations Y k =

uk and states dk, respectively, that sufficiently take into
account uncertainties due to the aperture problem and the
viewing geometry (regions around the epipole). Evaluat-
ing the former Gaussian entails routine parallel coarse-to-
fine signal processing, whereas the latter additionally takes
into account spatial and temporal context (regularization)
in term of predictions µ̂kd , Σ̂kd .
N (dk; µ̂kd, Σ̂

k
d) is complemented by a local Gaussian

model NM(Ck;Ck−1, σ2
CI) of motion parameters on the

tangent space of the Euclidean manifold M at Ck−1 (cf.
[16]), to form together an approximation of the state tran-
sition p(Xk|Xk−1), Xk = (Ck, dk) = (Rk, hk, dk).
Putting all components together, we define and compute
our update as mode of the posterior marginal approximation
p(Xk|Y 0:k) ∝ p(Y k|Xk)p(Xk|Xk−1). Concerning the
motion parameters Ck, we prefer working directly on M
using established concepts of numerics [1], rather than to
represent the two-view geometry by the essential matrix and
to recover C by additional factorization [9].

3. Approach: Details

Our approach jointly estimates egomotion and a dense
depth map from a monocular image sequence. The recur-
sive formulation requires constant amount of storage and
aims at real-time applications. Large displacements in-
evitable in the considered scenario are handled in the com-
mon coarse-to-fine manner [5]. Uncertainty of observations
and depth estimates are handled by probabilistic models.

3.1. Observation Process

We detail the observation process p(Y k|Xk), with state
variablesXk = (Ck, dk) (camera, depth map) and the cam-
era Ck given by Ck−1 in the previous frame and the ego-
motion parameters (Rk, hk). To simplify notation, we refer
to frame k − 1 with primes (e.g. C ′) and temporarily drop
indices k and k − 1.

Using the known internal camera parameters, we undo
the corresponding affine transformation of the image plane
(cf. [8]) and denote the normalized image coordinates by
x ∈ Ω ⊂ R2. Note that all related quantities like displace-
ments, means and covariance matrices have to be trans-
formed as well. To keep the notation simple, however, we
only refer to normalized quantities in what follows.

c© 2011 IEEE Published by the IEEE Computer Society



Any scene point d(x) ( x1 ) at depth d along the viewing
ray ( x1 ) projects to the image point with inhomogeneous
coordinates x. We denote this projection of scene points
(X1, X2, X3)> in camera C by PC ,

PC(X1, X2, X3) :=
1

X3

(
X1

X2

)
. (7)

Consider any two subsequent points in time and the cam-
era motion C ′→C given by parameters (R, h). The motion
induces an apparent motion (R>,−R>h) of scene points

d′(x′)

(
x′

1

)
→ d(x)

(
x
1

)
= R>

(
d′(x′)

(
x′

1

)
−h
)
. (8)

Now we define the displacement u(x) in the image plane
(see Fig. 2) by

x′ = x− u(x). (9)

Using eqns. (7) and (8) we obtain

u(x;R, h, d) = x− PC
(
d(x)R

(
x
1

)
+ h

)
. (10)

Simple transformations show that x and x′ are correspond-
ing points w.r.t. the essential matrix (cf. [8]) E = R>ĥ, i.e.

( x1 )
>
E
(
x′

1

)
= 0 , (11)

which implicitly defines the epipolar line in C ′ correspond-
ing to x for fixed R, h.

Observations Y correspond to estimates û(x) of the dis-
placements (10) for all x ∈ Ω using the Lucas-Kanade
method [3],

û(x) := Σu(x)
(
Gρ(x) ∗

((
∂tI(x)

)(
∇I(x)

)))
, (12a)

Σu(x) :=
(
Gρ(x) ∗

((
∇I(x)

)(
∇I(x)

)>))−1

. (12b)

Here, Gρ(x)∗ denotes element-wise Gaussian convolution
of the subsequent matrix comprising partial derivatives ∂t,
∇ :=

(
∂x1

∂x2

)
of the image sequence function I(x, t). They

are estimated by 3 × 3 binomial filters and first-order dif-
ferences derived by linearizations at time k. Likewise, we
choose a rather small smoothing kernel of size ρ = 2 pix.,
leading to a fast processing stage. We point out that stronger
regularization (smoothing) is not necessary as the embed-
ding multiscale framework and the state prediction (see
Sect. 3.2) ensure small incremental displacements u(x).

As for the unknown observation process p(Y k|Xk), our
ansatz is

p(Y k|Xk) = N (ûk;µku,Σ
k
u), (13)

where µku is composed position-wise of µku(x) :=
u(x;Rk, hk, dk(x)) due to eqn. (10), and Σku is a block-
diagonal covariance matrix with component matrices (12b).

Figure 3. Detailed view of an image frame and an ellipse represen-
tation of the estimated flow uncertainty Σk

u(x). Highly textured
regions (upper right) can be correctly distinguished from locations
with low confidence due to low signal-to-noise ratio (left) and im-
age edges (aperture problem; middle).

Note that the definition of µku makes explicit the condition-
ing on the state parameters Xk = (Ck, dk) = (Rk, hk, dk).

Model (13) only approximates the true unknown obser-
vation process (12a). The uncertainty of observations uk is
modelled by Σku and internally represented by the precision
matrices (Σku)−1 (cf. eqn. (12b)). Hence, homogeneous im-
age regions and the aperture problem are represented as
rank-0 and rank-1 matrices, respectively, (see Fig. 3) and
thus can be correctly accounted for within the overall recur-
sive estimation framework – see Sect. 3.3.

3.2. State Transition and Prediction

We detail the state transition model p(Xk|Xk−1) for the
state variables X = (C, d).
Camera. We take Ck−1 =: Ĉk both as prediction Ĉk of
Ck and as mean of the probabilistic model

Ck ∼ p(Ck|Ck−1) = NM(Ck;Ck−1, σ2
CI) (14)

∝ exp
(
− 1

2σ2
C

distM(Ck−1, Ck)2
)
, (15)

where distM(·, ·) denotes the geodesic distance on the Eu-
clidean manifoldM = SE 3. The prediction Ĉk = Ck−1 is
justified by the fast frame rate. Distribution (14) represents
an isotropic Gaussian distribution of random pointsC ∈M
around Ck−1 ∈ M (cf. [16]). σC is a user parameter
that we set and keep constant throughout all experiments.
Model (14) will be further detailed in connection with in-
ference in Sect. 3.3.
Depth Map. The predicted depth map d̂k is computed by
transporting dk−1 by the motion parameters (R̂k, ĥk) =

(Rk−1, hk−1). To obtain predicted depth values d̂k(x) at
grid positions x in frame k, we approximately infer cor-
responding positions x′ in frame k − 1 using eqns. (9)
and (10),

x′ ≈ PC
(
dk−1(x)Rk−1

(
x
1

)
+ hk−1

)
. (16)

We bilinearly interpolate dk−1 at x′ to obtain d′(x′) and
the according space point d′(x′)

(
x′

1

)
in camera C ′. Its

c© 2011 IEEE Published by the IEEE Computer Society



x
x
′

R̂

ĥ

d̂(x)
(

x
1

)

= (R̂)T
(

d
′(x′)

(

x
′

1

)

− ĥ

)

1. Step: map x to x
′
≈ PC

(

d
′(x)R′

(

x
1

)

+ h
′
)

2. Step: estimate d̂(x)
(

x
1

)

= (R̂)T
(

d
′(x′)

(

x
′

1

)

−ĥ
)

Figure 4. Prediction d̂ of the state variable d. Using (R̂, ĥ) :=
(R′, h′) and depth estimation d′, we can map the coordinate sys-
tem x of the current camera set up to the previous x′. With this
mapping, we approximate d̂ using (8) with (R, h) = (R̂, ĥ).

transition to camera C is given by (8), and we define the
depth d(x) as prediction d̂k(x). Figure 4 illustrates this pro-
cess. Note that eqn. (16) only is an approximation because
we do not know the correct argument dk(x) as required by
eqn. (10), and that

d̂k = d̂k(x;Xk−1) = d̂k(x;Rk−1, hk−1, dk−1) (17)

is a function of Xk−1 = (Ck−1, dk−1).
We assume that a local variance map σk−1

d of dk−1 in the
previous frame is known. In Sect. 3.3 we will detail on how
this information is obtained. Prediction errors of the depth
map are accounted for by assuming a constant increase σd
of the local variance, which is transported identical to dk−1,
i.e. (σ̂kd(x))2 = (σk−1

d (x′))2 + σ2
d. Experiments confirm

this assumption, see Fig. 7.
Based on this relationship, we make a Gaussian ansatz

as approximate probabilistic model of dk,

p(dk|Xk−1) ∝ exp
(
− fd(dk; d̂k, σ̂kd)

)
. (18)

The energy functional fd includes a prior penalizing the
deviation from the prediction d̂k and a spatial smoothness
prior,

fd(d
k; d̂k, σ̂kd) =

1

2

∫
Ω

(
dk(x)− d̂k(x)

σ̂kd(x)

)2

+‖∇dk(x)‖2dx.

(19)
Here, we used continuous notation to facilitate interpreta-
tion of the terms. After discretization, dk, d̂k, σ̂kd ∈ R|Ω| are
vectors indexed by grid positions x ∈ Ω, and we re-use the
symbol ∇ to denote the matrix ∇ : R|Ω| → R2|Ω| approx-
imating the gradient mapping. Furthermore, we define the
predicted covariance matrix of d̂k as Ŝkd := Diag(σ̂kd(x))2.

Inserting the discretized functional fd (19) into (18) and
ignoring normalizing constants, we obtain after multiplying
out and rearranging terms using some basic matrix algebra,

p(dk|Xk−1) ∝ N (dk; µ̂kd, Σ̂
k
d), with (20a)

µ̂kd = Σ̂kd
(
Ŝkd
)−1

d̂k, Σ̂kd =
((
Ŝkd
)−1

+∇>∇
)−1

. (20b)

Notice that the prior d̂k fixes a single, but arbitrary global
scale of d and h that cannot be inferred from monocular
sequences.

3.3. State Update

Having observed Y k = ûk in terms of the displacement
vector field (13) that depends on the unknown state vari-
ables Xk = (Ck, dk) = (Rk, hk, dk), we update the state
by estimating Xk as mode of the distribution

p(Xk|Y 0:k) ∝ p(Y k|Xk)p(Xk|Xk−1)

= N (ûk;µku,Σ
k
u) NM(Ck;Ck−1, σ2

CI) N (dk; µ̂kd, Σ̂
k
d)

based on eqns. (13), (14) and (20). Accordingly, the ob-
jective function f(d,C) := − log p(Xk|Y 0:k) decomposes
into f(d,C) = fu(d,C) + fC(C) + fd(d) with

fu(d,C) =
1

2
(ûk − µku)>

(
Σku
)−1

(ûk − µku), (22a)

fC(C) =
1

2σ2
C

distM(Ck−1, Ck)2, (22b)

fd(d) =
1

2
(dk − µ̂kd)>

(
Σ̂kd
)−1

(dk − µ̂kd). (22c)

Note that µku(x) = u(x;Rk, hk, dk(x)) depends non-
linearly on Rk, hk and dk.

Our approach to solving

min
C,d

f(d,C), C ∈ SE 3, d ∈ R|Ω|≥0 (23)

consists in alternating update steps for C and d, detailed be-
low, embedded into a multiscale framework.
Camera Motion Parameter. We consider the partial mini-
mization of any functional f specified by (22) with respect
to the motion parameters C = (R, h). Adopting the identi-
fication (1), the problem reads

min
Q

f(Q), Q ∈ G. (24)

Let Q(i), i = 0, 1, 2, . . . denote the minimizing sequence
to be determined. Given Q(i) for some i, we determine
Q(i+1) = ϕ(t;Q(i)) in terms of a step size t and an one-
parameter flow ϕ(t;Qi) ⊂ G, with ϕ(0;Qi) = Q(i) and
ϕ̇(0;Q(i)) ∈ TQ(i)G, given by

ϕ(t;Q(i)) := Q(i)Exp(tW (i)), W (i) ∈ se3. (25)

Step size t is computed by line search along ϕ(t;Qi)
(cf. [1]) in order to locally minimize f ,

t ≈ arg min
t>0

f
(
ϕ(t;Q(i))

)
. (26)

Matrix W (i) determining the flow (25) is computed by con-
sidering

d

dt
f
(
ϕ(t;Q(i))

)∣∣∣
t=0

=
〈
∇f
(
ϕ(0;Q(i))

)
, ϕ̇(0;Q(i))

〉
=〈∇f(Q(i)), Q(i)W (i)〉, (27)
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where∇f denotes the (ordinary) gradient of f with respect
to the ambient matrix space R4×4. The gradient ∇Gf on
the manifold G is obtained from the equation (cf. [1])

〈∇Gf(Q(i)), Q(i)W 〉G = 〈∇f(Q(i)), Q(i)W 〉,∀W ∈ se3,
(28)

which is equivalent to 〈Q(i)>∇Gf(Q(i)),W 〉G =

〈Q(i)>∇f(Q(i)),W 〉 for arbitrary W ∈ se3. Hence,

∇Gf(Q(i)) = (Q(i))−>
(
â 1

cG
b

0> 0

)
, (29)(

â b
0> 0

)
= Πse3

(
Q(i)>∇f(Q(i))

)
, (30)

where Πse3 denotes the orthogonal projection onto the lin-
ear subspace (2). Choosing W (i) = −

(
â 1

cG
b

0> 0

)
in (27)

shows due to the equalities in (28) and (29),

d

dt
f
(
ϕ(t;Q(i))

)∣∣∣
t=0

= −
∥∥∥( â 1

cG
b

0> 0

)∥∥∥2

G
≤ 0, (31)

i.e. that the flow ϕ(t;Q(i)) given by (25) decreases f .
Depth Map. A descent direction of f(d) = f(C, d) in (23)
is given by

δ
(i)
d := −

(
B(i)

)−1∇df(d(i)) (32)

with some positive definite, symmetric perturbation ma-
trix B(i). Then for any ‖∇df‖2 > 0, there is a t > 0,
such that f(d(i) + tδ

(i)
d ) < f(d(i)), see e.g. [1].

To ensure the element-wise non-negativity of d(i),
we define a quality function q(d) := f(d) + χ≥0(d),
where χ≥0(d) is the characteristic function of the set R|Ω|≥0,
and utilize a line search method to determine a near-
optimal t such that t ≈ arg mint>0 q(d

(i) + tδ
(i)
d ).

The choice of B(i) is crucial. Gradient descent, i.e.
B(i) = I , turned out to be unsatisfactorily slow due to the
high dimension of d and the spatial variable interactions due
to (20). Positive definiteness of the Hessian Hf of the ob-
jective is not guaranteed due the non-convexity of the pro-
jections (10) in the observation term (13). Thus, a standard
Newton method (B(i) = Hf ) might diverge. Therefore, we
propose the choice (with ε > 0)

B(i) := γ(Hfu(d(i), C(i))) + Hfd(d
(i)) + εI, (33)

where γ(S) adjusts the eigenvalues of the matrix S by re-
placing them by their absolute values to guarantee positive
semi-definiteness. Due to the form of (20) and the third
term in (33), the positive definiteness of B(i) is guaranteed.
Figure 5 demonstrates the fast convergence of our method
within only few iterations under real conditions. Along with
the results in Sect. 4, this justifies the choice (33).

Note that due to (11), searching along d parameterizes a
search along the epipolar lines defined by fixed R, h.

Figure 5. Representative performance of the minimization ap-
proach (32), (33) in a real scenario. The objective function is
effectively minimized after few iterations at each resolution level
(solid curve), as opposed to gradient descent that converges slowly
(dashed curve).

Figure 6. Best viewed in color. Left: input frame, right: cal-
culated depth map, bottom: triangulation of the scene, camera
position and direction (green camera symbol), camera track (red,
dots indicate subsequent positions). Due to the moving trees, ho-
mogeneous sky regions between trees are naturally assigned to the
trees (in terms of depth) in the temporal context, rather than to the
horizon and in contrast to the center region.

Local Depth Variance. We approximate the local vari-
ance σkd of the depth map by the second derivatives of f
in (Ck, dk), bounded to ≥ 0,

(σkd(x))2 = max{0, ∂2

∂d(x)2
fu(Ck, dk)}+

∂2

∂d(x)2
fd(d

k) .

Along with the computed dk, this information is incorpo-
rated as prior (cf. Sect. 3.2) in the estimation of dk+1 to
identify regions with high uncertainty caused by the paral-
lax and/or the lack of image features.
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Figure 7. Histogram p̂dfΩ(σk
d) of depth variance σk

d for increas-
ing k, displayed as contour plot. The lines tend to the left and thus
indicate that estimation uncertainty is effectively reduced, despite
online processing with only two frames at each instant of time.

Figure 8. Best viewed in color. Importance of regularization over
time (prediction prior) demonstrated for two different scenes, top
and bottom row; left without prior, right with prior. Exploiting
temporal context through the prior is essential, in particular around
the epipole. Omitting the prior leads to corrupted estimates.

4. Experiments
4.1. Data Sets and Performance Measures

Data Sets. We evaluated the algorithm proposed in Sect. 3
by means of a novel database [13] of image sequences
recorded from of a car driving at high speed in an everyday
environment. This database was compiled for the evaluation
of stereo reconstruction algorithms and is available online.
Thus, two camera recordings from a stereo rig are available,
one of which only was used as input to our algorithm. Each
image sequence consists of up to 400 gray-value frames of
size 656× 541 pix., taken at 25 Hz.

Below, we refer to the ’Bend’ (Fig. 1) and to the ’Av-
enue’ sequence (Fig. 6). They are available online3 along
with further sequences and results compiled as videos.
Performance Measures. As a baseline for depth estima-
tion, we applied two different stereo reconstruction meth-

3http://hci.iwr.uni-heidelberg.de/VSFM

ods to our dataset, see Sect. 4.3. Concerning egomotion,
we applied the ’Voodoo Camera Tracker’ (VCT) that, un-
like our approach, works in batch mode and therefore can
be expected to return more precise results, see Sect. 4.4.

4.2. Results

Depth Maps and Egomotion. Figures 1 and 6 show rep-
resentative reconstructions. Comments are given in the cap-
tions. Further results are available online3 as videos.
Uncertainty Reduction. Figure 7 depicts several fixed
levels of the histogram p̂dfΩ(σkd) of the variance σkd of
depth dk, taken over the whole image plane, as a function
of the frame index k (ordinate). The resulting lines tend to
the left and thus demonstrate that our approach significantly
reduces uncertainty of the depth estimation within a period
of about 50 frames.
Temporal Filtering. The prediction step exploited by (dk−
d̂k)2 in (19) is essential for robust depth estimation. Fig-
ure 8 shows for two different scenes depth maps estimated
without and with prior in the left and right column, respec-
tively. The differences are striking and show that just rely-
ing on the observations yields corrupted estimates.

4.3. Comparison to Stereo

As a baseline for depth estimation, we used an imple-
mentation of [20] included in the Middlebury MRF Li-
brary4 (parameters: Birchfield-Tomasi method with α-β-
swap, 80 disparities, L1-regularization parameter 0.5), and
alternatively the LIBELAS library, see [6] (default param.).

Figure 9 (and further results3) reveals that our monocular
approach provides a competitive reconstruction.

4.4. Comparison to Voodoo Camera Tracker (VCT)

To evaluate egomotion estimation, we applied the VCT
(parameters: free move, bundle adjustment with previous
images, fixed internal parameters), that estimates camera
parameters using bundle adjustment and tracked features.
Figure 10 demonstrates for the Bend and Avenue sequences
a remarkable agreement of our monocular online estimates.

5. Conclusion and Further Work
We presented an approach to the estimation of dense

scene structure and camera motion from monocular image
sequences, taken from a camera positioned inside a fast
moving car. The approach optimizes the tradeoff between
model expressiveness and computational efficiency. In par-
ticular, it works in an online two-frame mode and competes
well with less desirable settings (stereo, bundle adjustment),
as demonstrated by a comprehensive evaluation using real
data in different scenarios.

4http://vision.middlebury.edu/MRF/code/
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Figure 9. Best viewed in color. Comparison of two stereo im-
plementations ([20]: top row, [6]: center row) to our monocular
approach (bottom row). Left column: individually rescaled color
maps for best depth visualization. Right column: same color
maps for all three approaches. Stereo approaches suffer from low
resolution (discrete displacements), resulting in erroneous parti-
tions (e.g. trees and sky) and stair-casing effects (road) that may
cause problems at subsequent processing stages (scene analysis).

Figure 10. Left&middle: camera trajectories for Avenue and
Bend sequences, resp., returned by VCT (gray) and our approach
(black). The tracks are uniformly scaled to the overall camera
movement (first to last frame). No rotational fitting was applied.
Right: Euclidean distances between the trajectories, relative to the
trajectory length. Differences are upper-bounded by 3%.

Our further work will focus on occlusion handling and
reliable segmentation of independently moving objects, and
related mid-level tasks of traffic scene analysis.
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