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Abstract. Accurate camera motion estimation is a fundamental build-
ing block for many Computer Vision algorithms. For improved robust-
ness, temporal consistency of translational and rotational camera ve-
locity is often assumed by propagating motion information forward us-
ing stochastic filters. Classical stochastic filters, however, use linear ap-
proximations for the non-linear observer model and for the non-linear
structure of the underlying Lie Group SE3 and have to approximate
the unknown posteriori distribution. In this paper we employ a non-
linear measurement model for the camera motion estimation problem
that incorporates multiple observation equations. We solve the underly-
ing filtering problem using a novel Minimum Energy Filter on SE3 and
give explicit expressions for the optimal state variables. Experiments on
the challenging KITTI benchmark show that, although a simple motion
model is only employed, our approach improves rotational velocity esti-
mation and otherwise is on par with the state-of-the-art.

Keywords: Minimum Energy Filter, Lie Groups, Optimal Control, Vi-
sual Odometry

1 Introduction

Camera motion estimation is an important task in autonomous driving for
which the ego-motion of the camera is fully determined by images from cameras
mounted on the car. Most approaches require only temporal correpondences [4]
or additional depth information [8, 12] e.g. obtained from stereo estimation.
Given two frames and a depth map, the underlying motion of the camera can
be determined uniquely. However, two-frame methods are sensitive to noise and
thus past information needs to be propagated with filtering approaches. Stochas-
tic filters require assumptions about the a posteriori distribution, which is often
unknown and thus can not be modeled adequately. Furthermore, an adaption
to Lie groups is unknown for almost all stochastic filters. Application of state-
of-the-art particle filters is limited due to the high amount of required particles.
Mortensen [16] derived a second order deterministic filter for the classical fil-
tering problem on Rn based on classical control theory. This result has been
generalized to Lie groups [17].
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In this article we present a filtering model with state and observation equa-
tions for the camera motion estimation problem. We adapt the approach [17]
to this model on SE3 and generalize it to incorporate multiple measurement
equations depending non-linearly on the camera motion. We also show how the
abstract exponential functor [17] can be computed explicitly and finally derive a
matrix representation of the inverse Hessian operator on se3 using special Kro-
necker products. Numerical experiments show the fast convergence of the filter.

Related work. The task of estimating the current state of a dynamical system
only based on past observations of the system is known as filtering. In the last
century numerous stochastic filters have been developed starting from the semi-
nal work of Kalman [11]. See [3] for an overview and background. Since for non-
linear dynamical systems with non-Gaussian noise processes this problem cannot
be solved exactly, several approaches tried to cope with these non-linearities [6].
In general, as the a-posteriori distribution is unknown, most Gaussian filters
are doomed to fail. State-of-the-art particle filters [7] alleviate the problem of
not knowing the distribution. For large dimensions, however, generating enough
particles becomes infeasible. Brigo et al. [5] use exponential families to model
the a posteriori distribution, but the choice of an admissible sufficient statistic
is critical and too restricted for our multiple measurement model.

For the considered filtering problems on Lie groups we have to take into ac-
count the non-linear geometry of the manifold to find an optimal filter. Markley [15]
worked out a method for filtering problems on SO3 whereas [14] investigates par-
ticle filters on SE3. While the dimension of the embedding space is not excessively
large (e.g, 16 for SE3), the generation of samples on the respective Lie group
is considerably more expensive. Mortensen [16] derived a deterministic and re-
cursive second order optimal filter based on results of control theory and the
dynamic principle. In the last years this approach was generalized to specific Lie
groups [20, 17]. In various scenarios it has been shown that minimum energy fil-
ters have an exponential convergence rate [13] and perform superior to extended
Kalman filters [20].

Contributions.

– Formulation of filtering equations for the camera motion estimation problem
on rigid scenes with constant motion assumption;

– adaptation of the second order Minimum Energy Filter [17] such that it
incorporates multiple and non-linear measurement equations;

– derivation of explicit ordinary differential equations of the optimal state and
the inverse Hessian for which we derive a matrix representation;

– experiments that show the comparable performance in accuracy of the cam-
era motion against a state-of the art-method [8] on the challenging real-life
KITTI benchmark.

Preliminaries. We use the notation SE3 to denote the special Euclidean group
equipped with its tangent space TE SE3 and Lie algebra se3. Tangent vectors
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EΓ ∈ TE SE3 are obtained as evaluations of left-invariant vector fields DLE(I)[Γ ]
that one-to-one correspond to the tangent vector Γ ∈ se3. Here, LEF = EF
denotes left-translation and DLE denotes the differential of LE . SE3 can be
identified with a matrix Lie subgroup of GL(4). We adopt the Riemannian
metric 〈X,Y 〉E := 〈E−1X,E−1Y 〉,∀X,Y ∈ TESE3, where 〈A,B〉 = tr(A>B)
denotes the canonical matrix inner product. The Riemannian gradient grad f
of a differentiable function f : SE3 → R is defined through the directional
derivative Df(E)[EΩ] =: 〈grad f(E), EΩ〉E for all Ω ∈ se3. The Riemannian
Hessian Hess f(E)[·] : TE SE3 → TE SE3 at E ∈ SE3 is defined through the
relation 〈Hess f(g)[EΓ ], EΩ〉 := D(Df(E)[EΩ])[EΓ ]−Df(E)[∇EΓEΩ] for all
Γ,Ω ∈ se3. Here, ∇ denotes the Riemannian (Levi-Civita) connection. The Lie
algebra se3 can be associated with a 6-dimensional vector space and we define
the operation vecse : se3 → R6 given by

vecse

(( 0 −γ3 γ2 γ4
γ3 0 −γ1 γ5
−γ2 γ1 0 γ6
0 0 0 0

))
= (γ1, γ2, γ3, γ4, γ5, γ6)>. (1)

We denote the inverse operation by matse : R6 → se3 and the projection onto
the Lie algebra by Pr : GL(4) → se3. The standard basis of se3 is given by
{Bi = matse(bi)}, where bi, i = 1, . . . , 6 is the standard basis of R6.

2 Minimum Energy Filtering Approach

The classical filtering problem consists of a state equation that describes the
dynamics of an unknown state E(t) and observation equations connecting mea-
surements to the state of the system. These real-valued equations are given by

Ė(t) = ft(E(t)) + δ(t), E(0) = E0, (state) (2)

y(t) = ht(E(t)) + ε(t), (observation) (3)

where the functions ft and ht describe the state and observation dynamics,
respectively, and δ(t), ε(t) are noise processes. Stochastic filters usually under-
stand these equations as stochastic differential equations and try to find for
each t the maximum of the a posteriori distribution P (E(t)|y(s), s ≤ t). In con-
trast, Mortensen [16] investigated (2) and (3) from control theory point of view:
He considered the equation (2) as a dynamical system, controlled by a control
process δ(t) such that the residual ‖ε(t)‖ = ‖y(t)− ht(E(t))‖ is minimized.

2.1 Measurement Model for Ego-Motions

Supported Models. In this section we derive an optical flow observer model
with corresponding state equation on the Lie group SE3 . They support two
models that incorporate two different kinds of given data, i.e.

– temporal optical flow and stereo matches (stereo approach),
– temporal optical flow and depth map (monocular approach).

Since the proposed filter supports both models and shares the same derivation,
we only consider the monocular model in the following.
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Optical Flow Induced by Egomotion. In this work we denote the time space
by T := R≥0 and the image sequence recorded by a camera moving through a
static scene by f = {ft, t ∈ T}. Let (R(t), v(t)) = E(t) ∈ SE3 be the incremental
camera motion from frame ft to ft+1. W.l.o.g. at time t we set the coordinate
system to be identical to the one of the camera recording ft, i.e. the extrinsic
camera parameters are Ct = (I, 0) and Ct+1 = (R(t), v(t)). Let X ∈ R3 be
a scene point and we denote its perspective projection into camera Ct by xt =
(xt1, x

t
2, 1)> = PC(X) where PC((x1, x2, x3)>) := x−13 (x1, x2, x3)>. Furthermore,

we denote by d(xt) ∈ R the depth of X in camera Ct such that the scene point
can be reconstructed by X = xtd(xt), see Fig. 1.

Xxt
Ct = (I,0)

Ct+1 = (R(t), v(t))

xt+1

x̃t+1

d(xt)xt

u(xt)

Fig. 1. Setup for temporal optical flow for either a given depth map or stereo matchings.
Correspondences are given by xt+1 = xt + u(xt,l), and x̃t+1 = v(t) +R(t)xt+1 denotes
the perspective projection of X to the camera plane of Ct+1.

With this relation we obtain the optical flow induced by the camera mo-
tion (R(t), v(t)) and depth d(xt):

u(R(t), v(t), xt, d(xt)) + xt =PC

(
R(t)>(xtd(xt)− v(t))

)
. (4)

We introduce index k to distinguish multiple observations and reformulate the
observer equations in terms of E(t) = (R(t), v(t)) ∈ SE3 yielding

u(E(t), gk(t)) + xtk = PC(ÎE(t)−1gk(t)), Î :=
(

1 0 0 0
0 1 0 0
0 0 1 0

)
(5)

where gk(t) = g(t;xtk, d(xtk)) := (d(xtk)(xtk)>, 1)> ∈ R4 for a single measurement.

3 Minimum Energy Filter Derivation

State and observation equations. As we want to recover the camera motion
from the image data, we cannot incorporate any prior knowledge of the cameras’
kinematics such as data from external acceleration sensors. The only assumption
we make is to demand a constant camera motion E(t) ∈ SE3 that is influenced
by a noise process δ(t) ∈ se3, which also models accelerations. This kinematic
state equation on SE3 without dynamics ft (i.e. ft ≡ 0) is given by

Ė(t) = E(t)δ(t) ∈ TE(t) SE3, E(0) = E0 ∈ SE3 . (6)
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We incorporate multiple flow observations yk(t) := uk(E(t), gk(t), t) + xk at
different image points xk for k ∈ {1, . . . , n} that depend on the ego-motion E(t)
and are corrupted by noise vectors εk(t) ∈ R3. This gives

yk(t) = hk(E(t)) + εk(t) , k ∈ {1, . . . , n} . (7)

Here we used the observation functions hk : SE3×R4 → R3, k ∈ {1, . . . , n} that
we define as is Eq. (5), i.e. hk(E(t)) = hk(E(t), gk(t)) := PC(ÎE(t)−1gk(t)).

Energy function. We want to find the camera motion that describes the ob-
servation process best up to a small error ε, i.e. we want to minimize the resid-
ual ‖εk(t)‖2Q (‖·‖2Q := ·>Q·) for all t such that the dynamical system on E(t)

(6) is also fulfilled. The latter means that also the error term ‖vecse(δ(t))‖2S is
minimized. Here S ∈ R6×6 and Q ∈ R3×3 are symmetric and positive definite
weighting matrices. We define the following energy function

J (ε, δ, t0, t) := m0(E0, t, t0) +

∫ t

t0

c(δ, ε, τ, t) dτ, (8)

where ε := {εk, k = 1, . . . , n}, δ := (δ(τ), τ ≤ t), t ∈ T , c : se3×R3n×T ×T → R
is a quadratic penalty function for δ and ε given by

c(δ, ε, τ, t) := 1
2e
−α(t−τ)

(
‖vecse(δ(τ))‖2S +

n∑
k=1

‖εk(τ)‖2Q
)

(9)

and m0 : SE3×T × T → R≥0, (E0, t0, t1) 7→ 1
2e
−α(t−t0) tr((E0 − 1)>(E0 − 1)),

with 1 being the identity matrix in R4×4, is a penalty function for the initial
condition. Here we also used the idea of a decay rate α ≥ 0 from [17] at which
old information is forgotten. To incorporate the observations (7) we substitute
the error term εk(t) = εk(E(t), t) by yk(t)− hk(E(t)) in Eq. (9).

Optimal control problem. The optimal control theory allows us to determine
the optimal control input δ that minimize the energy J (ε(E(t), t), δ, t0, t) for each
t ∈ T subject to the state constraint (6). To be precise, we want to find δ|[t0,t]
for all t ∈ T and fixed E ∈ SE3 defining the value function

V(E(t), t) := min
δ|[t0,t]

J (ε(E(t), t), δ, t0, t) s.t. Ė(t) = E(t)δ(t), E(0) = E0 . (10)

The optimal trajectory is E∗(t) := arg minE(t)∈SE3
V(E(t), t) for all t ∈ T and

V(E, t0) = m0(E0, t0, t0). This problem is a classical optimal control problem, for
which the classical Hamilton-Jacobi theory [10, 2] gives the well known Hamilton-
Jacobi-Bellman equation. Pontryagin [2] proved that the minimization of the
Hamiltonian gives a solution of the corresponding optimal control problem (Pon-
tryagin’s Minimum Principle).

However, since SE3 is a non-compact Riemannian manifold we cannot apply
the classical Hamilton-Jacobi theory for real-valued problems (cf. [2]). Instead
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we follow the approach of Saccon et al. [17] which derive a left-trivialized optimal
Hamiltonian based on control theory on Lie groups [10], which is given by H̃− :
SE3×se3 × se3 × T → R,

H̃−(E,µ, δ, t) = c(δ, ε(E, t), t0, t)− 〈µ, δ〉 . (11)

The minimization of (11) w.r.t. the variable δ leads [17, Prop. 4.2] to the optimal
HamiltonianH−(E,µ, t) := H̃−(E,µ, δ∗, t), where vecse(δ

∗) = eα(t−t0)S−1 vecse(µ).
H− is given by

H−(E,µ, t) = 1
2e
−α(t−t0)

n∑
k=1

‖yk−hk(E)‖2Q− 1
2e
α(t−t0)〈µ,matse(S

−1 vecse(µ))〉 .

(12)
In the next section we compute explicit ordinary differential equations for the
optimal state E∗(t) for each t ∈ T that consists of different derivatives of the
left trivialized Hamilton function (12).

3.1 Recursive Filtering Principle of Mortensen

In order to find a recursive filter we compute the total time derivative of the
optimality condition on the value function, which is

grad1 V(E∗, t) = 0, (13)

for each t ∈ T. This equation must be fulfilled by an optimal solution of the
filtering problem E∗ ∈ SE3 . Unfortunately, because the filtering problem is in
general infinite dimensional, this leads to an expression containing derivatives
of every order. In practice (cf. [20, 17]) derivatives of third order and higher are
neglected, since they are complicated to compute. Omitting these leads to a
second order approximation of the optimal filter.

Theorem 1. The differential equations of the second order Minimum Energy
Filter for our state (6) and nonlinear observer (7) model is given by

Ė∗ =− E∗matse
(
P vecse(

∑
k

Pr
(
Ak(E∗))

)
), E∗(t0) = E0 , (14)

Ṗ =− αP + S−1 − P
∑
k

(
Γ̃vecse(Pr(Ak(E∗))) +Dk(E∗)

)
P

− Γ̃ ∗
vecse(E∗−1Ė∗)

P + P (Γ̃ ∗
vecse(E∗−1Ė∗)

)>, P (t0) = P0 ,

(15)

where Ak(E) = Ak(E, gk) :=
(
κ−1k Î − κ−2k ÎE−1e3g

>
k Î
)>
Q(yk − hk(E))g>k E

−>,

κk := κk(E) := e>3 ÎE
−1gk and Pr(A) := arg minΩ∈se3〈Ω,A〉. Dk(E) is derived

in the appendix in Eq. (25) and the matrix valued functions Γ̃·, Γ̃
∗
· : R6 → R6×6

come from the vectorization of the connection functions. Their components are
given by (Γ̃z)ij :=

∑6
k=1 Γ̂

i
jkz

k and (Γ̃ ∗z )ik :=
∑6
j=1 Γ̂

i
jkz

j with z ∈ R6 and

Christoffel-Symbols Γ̂ ijk := Γ ikj from [21].

The initial P0 ∈ R6×6 is given by P0 vecse(Ω) = vecse
(
(EHessm0(E0)[EΩ])−1

)
,

and E0 is an initialization in SE3 .
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The sketch of the proof is given at the end of this section. For the proof we need
some lemmas listed below, the proofs of which can be found in the appendix.

We adapt the minimum energy filter for general Lie groups derived in [17] to
our nonlinear measurement model on SE3. Following [17, Eq. (37)] the estimate
of the optimal state E∗ is given by

Ė∗ = −E∗Z(E∗, t)−1
(
grad1H−(E∗, µ, t))

)
, (16)

which contains the second order information matrix Z(E∗, t) : se3 → se3 of the
value function V (cf. (10)), defined by Z(E∗, t)(Ω) 7→ E∗−1 Hess1 V(E∗, t)[E∗Ω].
The gradient of the Hamiltonian in (16) is given in the following lemma.

Lemma 1. The Riemannian gradient on TE SE3 of the Hamiltonian H−(E,µ, t)
with Ak(E) = Ak(E, gk) defined in Theorem 1 is given by

grad1H−(E,µ, t) = e−α(t−t0)
∑
k

E Pr(Ak(E)). (17)

In order to derive a second order filter, we also need a recursive expression of
the operator Z, that has been derived in [17, Eq. (51)] and is approximately

d

dt
Z(E∗(t), t) ≈ ω∗

E∗−1Ė∗ ◦ Z(E∗, t) + Z(E∗, t) ◦ ωE∗−1Ė∗

+ Z(E∗, t) ◦Hess2H−(E∗, 0, t) ◦ Z(E∗, t) + E∗−1 Hess1H−(E∗, 0, t) ◦ E∗,
(18)

where third order derivatives are neglected. For the computation of the Hes-
sian we need implicitly the Riemannian connection ∇ with connection function
ωΩ∆ := E∇Ω∆. The dual operator ω∗Ω · is given by〈ω∗Ω∆,Θ〉 := 〈∆,ωΩΘ〉.

Next, we derive a matrix representation for all terms in Eq. (18) provided by
the vecse−operation defined in section 1 and the following lemmas.

Lemma 2 (Matrix representation of Z). Let Z(E∗, t) : se3 → se3 be the op-
erator in equation (16). Then there exists a matrix K = K(t) ∈ R6×6 such that
we can vectorize Z(E∗, t)(Ω) for each Ω ∈ se3. Then it holds vecse(Z(E∗, t)(Ω)) =
K(t) vecse(Ω), and thus vecse(d/dtZ(E∗, t)(Ω)) = K̇(t) vecse(Ω), as well as

1. vecse(ω
∗
E∗−1Ė∗Z(E∗, t) ◦Ω) = (Γ̃ ∗

vecse(E∗−1Ė∗)
)>K(t) vecse(Ω)

2. vecse(Z(E∗, t) ◦ ωE∗−1Ė∗Ω) = K(t)Γ̃ ∗
vecse(E∗−1Ė∗)

vecse(Ω) ,

3. vecse(Z(E∗, t)(Hess2H−(E∗, 0, t)[Z(E∗, t)(Ω)]))
= −eα(t−t0)K(t)S−1K(t) vecse(Ω) ,

with Γ̃· and Γ̃ ∗· from Thm. 1.

Finally we have to apply the vecse−operation to the last remaining term in (18):

Lemma 3. It holds

vecse(E
∗−1 Hess1H−(E∗, 0, t)[E∗Ω])

= e−α(t−t0)
∑
k

(
Γ̃vecse(Pr(Ak(E∗))) +Dk(E∗)

)
vecse(Ω)

where Dk(·) : SE3 → R6×6 and Γ̃· : R6 → R6×6 are given in the appendix.
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Fig. 2. Comparison of the rotational error (top, in degree) and the translational (bot-
tom, in meters) of our approach and Geiger et al. [8] on the first 250 frames of se-
quence 0 of the Kitti odometry benchmark. We used the parameters (α = 2, S =
diag((s1, s1, s1, s2, s2, s2)), s1 = 10−3, s2 = 10−6, Q = 0.021). The dotted lines indicate
the mean errors. In the translational part (bottom) both methods are competitive. In
the rotational part (top) we outperform [8].

Sketch of proof of Thm. 1. Insertion of (17) into (16) and vecse(Z(E∗, t)(Ω)) =
K(t) vecse(Ω) (cf. Lem. 2) give

Ė∗ = −e−α(t−t0)E∗matse

(
K−1 vecse

(∑
k

E∗ Pr(Ak(E∗))
))
. (19)

By evaluation of (18) at Ω ∈ se3 and application of the vecse−operation to both
sides of (18) we obtain with Lemmas 2 and 3 the following dynamics of K:

K̇ vecse(Ω) =
(

(Γ̃ ∗
vecse(E∗−1Ė∗)

)>K +KΓ̃ ∗
vecse(E∗−1Ė∗)

− eα(t−t0)KS−1K

+
(
e−α(t−t0)

∑
k

(
Γ̃vecse(Pr(Ak(E∗))) +Dk(E∗)

)))
vecse(Ω). (20)

Since Ω was chosen arbitrarily we can neglect vecse(Ω) on both sides of (20).
A change of variables P (t) := e−α(t−t0)K(t)−1 in (19) and (20) gives the ODEs
(14) and (15) in Theorem 1. For brevity we omit the computations here. ut

3.2 Numerical Geometric Integration

In order to solve the differential equations (14) and (15) we use Crouch-Grossman
methods [9]. We adapt the version for right invariant Lie groups from the stan-
dard literature by permuting the order of the factors, i.e.

En+1 = En Exp(h2K
E
1 ) Exp(h2K

E
2 ) , (21)

with KE
1 := φ(En) and KE

2 := φ(En Exp(hKE
1 )) and step size h. We use the

method (21) to integrate equation (14), where E∗−1φ(E∗) is defined by the right
hand side of (14). For the integration of equation (15) we used a standard 2-stage
Runge-Kutta schemes on R6×6, since P does not lie on a non-trivial manifold.
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sequence 0 1 2 3 4 5

Geiger [8] trans. err. (m) 0.023 0.050 0.027 0.017 0.017 0.017
ours trans. err. (m) 0.027 0.84 0.060 0.020 0.024 0.027

Geiger [8] rot. err. (deg) 0.27 0.15 0.26 0.25 0.10 0.22
ours rot. err. (deg) 0.19 0.17 0.28 0.22 0.10 0.22

Table 1. Comparison between our approach and Geiger et al. [8] on the first six
sequences of the KITTI visual odometry benchmark. Our approach is usually better
than [8] in the rotational part, since we model the Lie Group explicitly, but inferior in
the translation since our input data from [18] is often not correct, (cf. seq.1,2).

4 Experiments

Preprocessing. We computed the depth map from stereo images with [19] and
the temporal optical flow between left images by the method [18]. Both methods
are the top ranked on the Kitti Benchmark and the code is publicly available.
To remove outliers in the flow / depth map we computed for each image on 50
points x the energy E(x) := ‖y(x) − h(x,E)‖, and removed all points x with
E(x) < λ, where we selected λ as 80% quantile the energy of all points.

Evaluation on KITTI benchmark. We compare our approach with Geiger et
al. [8] on the challenging KITTI benchmark. We evaluated the first six sequences
of the KITTI benchmark. Both algorithms have as initialization the identity ma-
trix, i.e. E0 = 1 thus it takes some frames until the approaches converge. For
this reason, we omitted the first 10 frames in the evaluations. The translational
and rotational error of our approach and Geiger et al. [8] w.r.t. ground truth ego-
motion in depicted in Tab. 1. Usually, in the rotational component our approach
works better than [8], since we model rotations explicitly on a manifold, as de-
picted in Fig 2. However, our approach less exact in the translational component
because the optical flow estimation by [18] fails on some frames of sequences 1
and 2 yielding a high energy and error.

Synthetic Data. We evaluated our method on synthetic data with known depth
maps and optical flow. Fig. 3 (top) shows the convergence from a wrong initializa-
tion for different weights of the penalty term of δ, i.e. Si = λi diag(s1, s1, s1, s2, s2, s2)
with s1 = 10−3, s2 = 10−6 and λi = 10i for i = 0, . . . , 4, α = 0 and Q = 0.11. In
frames 21 and 51 constant motion assumption is violated, leading to a high error.
However, for small weights of the penalty term of δ the filter converges almost
immediately. Fig. 3 (bottom) shows the performance of the filter on data dis-
torted by multiplicative Gaussian noise. For high noise rates (σ > 0.1) the filter
fails while for small noise rates (σ < 0.05) filter results have an accuracy compa-
rable to state-of-the-art filters on real data. On the other hand this means that
the input data is allowed to be wrong up to 1% in order to reach state-of-the-art
results. For our evaluations on Tab. 1 this was not always the case.
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Fig. 3. Evaluation of our method on synthetic data. In the top row we observe the linear
convergence in the logarithmic scale, which means exponential convergence behavior. In
frames 21 and 31 there is an immediate change of direction which causes errors since the
motion-constancy assumption is violated. However, our method adapts to the change
in the subsequent steps. In the bottom row we consider multiplicative Gaussian noise
with mean 1 and standard deviation σ to the input data (optical flow). For little noise
rates (σ ≤ 0.01) we obtain the accuracy required for practical applications (dotted
lines): (0.1 degree, 0.05 meters).

5 Conclusion

We presented a second order Minimum Energy Filter with non-linear observation
equations for the ego-motion estimation problem and derived explicit differential
equations for the optimal state. Our experiments showed that our approach is
comparable with the state-of-the-art approaches [8]: In the translational com-
ponent our method is inferior but it is superior in the rotational component.
The experiments also confirm the exponential convergence rate and robustness
against multiplicative noise.

In future work, we will generalize our model by allowing an acceleration of
the camera. We expect this generalization to reduce the error in the translational
part. Moreover, we plan to design a filter for monocular depth map estimation.
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A Proofs of Lemmas 1–3

Proof (of Lem. 1). We begin with the directional derivative of hk which is

Dhk(E)[EΩ] = −κ−1k ÎΩE−1gk + κ−2k (e>3 ÎΩE
−1gk)ÎE−1gk, (22)

where κk = κk(E) := e>3 ÎE
−1gk. Then the following holds:

D1H−(E,µ, t)[EΩ] = −e−α(t−t0)
n∑
k=1

tr
(
Dhk(E)[EΩ](yk − hk(E))>Q

)
= e−α(t−t0)

n∑
k=1

〈(
κ−1k Î − κ−2k ÎE−1e3g

>
k Î
)>
Q(yk − hk(E))g>k E

−>, Ω
〉
. (23)
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We obtain the Riemannian gradient on SE3 by projecting (cf. [1, Sec. 3.6.1]) the
left hand side of the Riemannian metric in (23) onto TE SE3, which is

grad1H−(E,µ, t) =e−α(t−t0)
∑
k

E Pr
(
Ak(E)

)
.

with Ak(E) :=
(
κ−1k Î − κ−2k ÎE−1e3g

>
k Î
)>
Q(yk − hk(E))g>k E

−> and Pr is this
mentioned projection. ut

Proof (of Lem. 2). The existence of a matrixK such thatK vecse(Ω) = Z(E∗, t)[Ω]
follows from considering the basis of se3 (cf. Sec. 1) and also its inverse repre-
sentation. The Hessian of the Hamiltonian w.r.t. the second argument evaluated
at zero is vecse(Hess2H−(E∗, 0, t)[Ω]) = −eα(t−t0)S−1 vecse(Ω), thus

vecse(Z(E∗, t)(Hess2H−(E∗, 0, t)[Z(E∗, t)(Ω)])) = −eα(t−t0)K(t)S−1K(t) vecse(Ω).

For left-invariant Lie groups the vectorized representation of affine connection
holds (cf. [1]), i.e.

vecse(ωΩ∆) = Γ̃vecse(∆) vecse(Ω) + vecse(D∆[Ω]) , (24)

where matrix Γ̃vecse(∆) has the components (Γ̃vecse(∆))ij =
∑6
k=1 Γ̂

i
jk∆

k. Note
that we yield the definition in [1] by exchanging i and j. In the case of a constant
function ∆ we have D∆[Ω] = 0. For the dual expression it holds for all Ω,∆ ∈
se3: vecse(ω

∗
Ω∆) = Γ̃ ∗vecse(∆) vecse(Ω) with (Γ̃ ∗vecse(∆))ik =

∑6
j=1 Γ̂

i
jk∆

j . ut

Proof (of Lem. 3). For any matrices A,B ∈ R4×4 and Ω ∈ se3 let ⊗se,⊗>se
denote the operators which extract the vector form of Ω and are defined as
vecse(AΩB) =: (A ⊗se B) vecse(Ω) and vecse(AΩ

>B) =: (A ⊗>se B) vecse(Ω),
respectively, for which explicit expressions exist. By definition of the Hessian,
Lemma 1 and with Eq. (24) we obtain

vecse(E
∗−1 Hess1H−(E∗, 0, t)[E∗Ω]) = vecse(E

∗−1∇E∗Ω grad1H−(E∗, 0, t))

=e−α(t−t0)
∑
k

(
Γ̃vecse(Pr(Ak(E∗))) vecse(Ω) + vecse(DE∗ Pr(Ak(E∗))[Ω])

)
.

It can be shown that we can omit the projection Pr, i.e. vecse(DPr(Ak(E))[Ω]) =
vecse(D(Ak(E))[Ω]) for all Ω ∈ se3. After computing the directional derivative
of Ak(E) in direction Ω we apply the vecse− operation and extract with the
⊗se−,⊗>se− operations the direction Ω. This gives

vecse(DAk(E)[Ω]) =
(
κ−2k Î>Q(yk − hk(E))e>3 ÎE

−1 ⊗se E
−1gkg

>
k E
−>

− 2κ−3k Î>e3e
>
3 ÎE

−1 ⊗se E
−1gkg

>
k E
−>Î>Q(yk − hk(E))g>k E

−>

+ κ−2k Î>e3g
>
k E
−> ⊗>se E−>Î>Q(yk − hk(E))g>k E

−>

−
(
κ−1k Î> − κ−2k Î>e3g

>
k E
−>Î>

)
Q(yk − hk(E))g>k E

−> ⊗>se E−>
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−
(
κ−3k Î> − κ−4k Î>e3g

>
k E
−>Î>

)
ÎE−1gke

>
3 QÎE

−1 ⊗se E
−1gkg

>
k E
−>

+
(
κ−2k Î> − κ−3k Î>e3g

>
k E
−>Î>

)
QÎE−1 ⊗se E

−1gkg
>
k E
−>
)

vecse(Ω)

=:Dk(E) vecse(Ω) . (25)
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