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Abstract. We present a novel approach to detect the trajectories of par-
ticles by combining (a) adaptive dictionaries that model physically con-
sistent spatio-temporal events, and (b) convex programming for sparse
matching and trajectory detection in image sequence data. The mutual
parametrization of these two components are mathematically designed
so as to achieve provable convergence of the overall scheme to a fixed
point. While this work is motivated by the task of estimating instanta-
neous vessel blood flow velocity using ultrasound image velocimetry, our
contribution from the optimization point of view may be of interest also
to related pattern and image analysis tasks in different application fields.
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1 Introduction
Overview. Ultrasound Image Velocimetry (Echo PIV) has evolved into an active
research interest primarily due to its ability to measure instantaneous flow veloc-
ity and wall shear stress in a non-intrusive manner [1,2] with a wide range of ap-
plications (e.g. from arterial wall shear stress measurements for atherosclerosis-
related studies to two-phase flow quantification for industrial studies such as
dredging).

Currently available sensors, however, severely limit the spatial and tem-
poral resolution of measurements. Computational cross-correlation techniques,
adopted from the traditional laser-based optical PIV and used in different fields
of experimental fluid mechanics [3], suffer from poor signal to noise in the recon-
structed image sequences. Moreover, the established cross-correlation methods
make it difficult to mathematically quantify motion information over an entire
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image sequence in a consistent frame-by-frame analysis of the spatio-temporal
flow characteristics. As such, it becomes important, but yet challenging, to in-
corporate the physical principles governing the imaged fluid flow.

In this paper we present a novel approach that directly addresses these short-
comings in terms of adaptive spatio-temporal dictionaries of particle trajectories.
These dictionaries are based on a basic physical model of vessel blood flow and
are integrated into a standard sparse convex programming framework.

Related Work, Contribution. Research in connection with Echo PIV con-
cerns (i) sensor design image reconstruction and (ii) image analysis. Since re-
search on sensor design is rapidly evolving [4,5], we ignore this inverse modelling
aspect and focus on (ii) with context to PIV wherein we derive a mathematical
abstraction of “particles”, to be understood as coefficients of a basis expansion,
that discretises a realistic imaging operator in our future work.

Echo PIV employs the standard cross-correlation technique for motion esti-
mation [1,2]. In this paper, we propose a novel approach radically different from
this standard protocol with the following objectives:

1. Any imaging operator model discretized by suitable basis functions can be
incorporated later on.

2. Particle trajectories are detected by a comprehensive spatio-temporal anal-
ysis of entire image sequences in terms of dictionaries of trajectories. This
copes better with noise in comparison to techniques that merely analyse sub-
sequent image pairs. Furthermore, physical models of vessel blood flow [6,7]
can be directly exploited.

3. The computational costs for the aforementioned spatio-temporal analysis are
subdivided by adapting a smaller collection of dictionaries until convergence.

While the novelty of our approach is obvious from the viewpoint of Echo PIV, our
main contribution from the optimization point of view concerns the consistent
integration of adaptive dictionaries into a standard sparse convex programming
framework. This is accomplished by carefully modelling the mutual interaction of
dictionary parametrization and sparse convex particle matching so as to obtain
a provably converging fixed point scheme. These mathematical aspects of our
approach might be of interest also to related computational image and pattern
analysis tasks in different application fields.

Organization. The application and the corresponding imaging techniques are
sketched in Section 2. Section 3 details the model-based definition of dictionaries
together with the variational approach for motion estimation through particle
trajectory detection. Section 4 provides a convergence analysis of the adaptive
variational approach. Properties of our approach are validated experimentally in
Section 5.

Basic Notation. We set [n] = {1, 2, . . . , n} for n ∈ N. Vectors are column
vectors and indexed by superscripts. 〈x, z〉 denotes the standard scalar product
in Rn, and ‖x‖1 =

∑n
i=1 |xi| and ‖x‖ := ‖x‖2 =

√∑n
i=1 x

2
i . 1 = (1, 1, . . . , 1)>



denotes the one-vector whose dimension will always be clear from the context.
∆d = {x ∈ Rd+ : 〈1, x〉 = 1} denotes the probability simplex in Rd.

2 Ultrasound Imaging and Echo PIV

We briefly sketch the state-of-the-art in imaging and motion analysis in Echo
PIV to highlight the novelty of our own methodological approach compared to
the established computational PIV techniques.

Particle Image Velocimetry (PIV). PIV is an optical method for measuring
fluid flows. For the purpose of imaging, the fluid is seeded with particles that
follow the flow dynamics. The region of interest is illuminated with a laser sheet
and a high-speed camera takes successive images. In a subsequent step, a cross
correlation technique is applied to every pair of two subsequent images and
returns an estimate of the instantaneous velocity field. For a recent overview of
the history of PIV techniques, we refer to [8].

Ultrasound Microbubble Imaging. Echo PIV, first introduced in [1], is a

Fig. 1. A schematic representation of an Echo PIV setup. The left image, adapted from
[2], overviews geometry and orientation of the transducer. Velocity is estimated from
a sequence of B-mode images (middle). Flow motion is estimated from the motion of
tracer particles injected in the medium (right), which follow the flow dynamics – here,
a steady laminar flow.

technique based on the same PIV principles. Instead of the high-speed cameras
used in optical PIV, an ultrasound transducer is used in Echo PIV to capture
tracer images with the ability to image opaque media. Another major difference
to optical 2D PIV is the generation of so-called B-mode images, as sketched in
Figures 1 and 2. These 2D images are acquired via the conventional pulse-echo
technique that concatenates a series of scan lines within the field of view (FOV),
as depicted in Fig. 2. This severely limits the spatio-temporal resolution of flow
measurements.

One way to overcome this problem is to replace multiple line measurements
by a single plane wave illumination of the medium [4]. Plane wave imaging was
very recently applied to Echo PIV [5] and allows for measuring higher velocities,



Fig. 2. B-mode imaging in Echo PIV: images are not recorded as snapshots, but are
usually constructed line-by-line, due to the shifting of the ultrasound beam (a). The
data – RF signals (b) – can be converted (offline) to so-called B-mode images (e) by
means of envelope detection (c) and log compression (d). This scanning procedure
results in a blurred, smeared image due to moving particles between consecutive mea-
surements.

since the frame rate is only limited by the propagation time of the waves, rather
than by the number of consecutive measurements necessary to obtain a single
B-mode image. This motivates us to ignore inter-line delay in our present work.

Motion Estimation. Standard Echo PIV setups estimate the velocity field
by matching image patterns across consecutive image pairs within the acquired
image sequence, as in conventional PIV [8,9]. Such PIV methods fail to

(i) exploit the entire spatio-temporal context of a corresponding volume of
image sequence data, and

(ii) take into account the physical prior knowledge in a mathematically more
principled way.

Our present work addresses both aspects for the specific setting of Echo PIV
as summarized in Section 1.

3 Spatio-Temporal Motion Model and Estimation

3.1 Dictionary of Moving Particles

As mentioned in Section 2, ultrasound images of the seeded flow for Echo PIV are
composed of vertical scan lines within the FOV acquired at different time steps.
This scheme limits the fame rate and consequently the maximum resolvable ve-
locity. In the present work, we propose a different acquisition protocol motivated
by current research on image acquisition [4,5] in which the whole image/frame
is recorded at the same point in time.

With index n we label the image of the FOV recorded at time τn = (n−1)∆t,
n ∈ [NI ], where NI is the total number of frames. All images have size Lx×Lz in
length units or lx× lz in pixels. We introduce a 2D rectangular grid with lattice
spacing ∆x = Lx/lx, ∆z = Lz/lz in x and z respectively in the plane of FOV,
induced by discrete pixel representation of images.



Below we describe how to build a flow dictionary corresponding to steady
laminar flow with maximal velocity along the cylinder axis equal to vm.

Image 1 Image 2 Image 3 Image 4 Image NI
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NI Lz

Image 1 Image 2 Image 3 Image 4 Image NI
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Fig. 3. Each column of the dictionary D is an image of an undersampled discrete
line, and describes a possible trajectory in the NI acquired images concatenated along
the tube axis (left). Each such column depends on the discretization of Ω, acquisition
process and flow model. Here the Poiseuille flow model leads to straight lines. The
input data (right) is given by all NI frames concatenated along the tube axis. The
problem is to sparsely match imaged particles to trajectories in D parametrized by the
unknown maximal velocity vm.

Dictionary of a single velocity profile. The dictionary of trajectories
D is a sparse matrix with binary entries {0, 1} and it describes the position of
particles at time τn, n ∈ [NI ] relative to the FOV. Each column inD is associated
to the trajectory of a single particle j, j ∈ [NP ], where NP denotes the number of
particles. The number of columns in D equals the number of possible trajectories.
Due to the discretization, in the limit when a particle is located at all grid points,
there is an upper bound for NP < lx lz + (NI − 1)∆t vm lxLx/lz. The number of
rows in D is independent of vm and equals NI lxlz.

According to the adopted model sketched in Figure 1 (right panel), the mo-
tion of particle j with initial coordinates (xj1, z

j
1) at time τ1 is governed byxjn = xj1 + (n− 1)∆t vm
(

1−
(
rj

R

)2
)
,

zjn = zj1 = const.
(1)

where rj = |zj1 − R|, z
j
1 ∈ [0, 2R] is the distance from the axis and R the inner

radius R of the cylinder.
If at time τn particle j is present in the FOV, i.e. xjn ∈ (0, Lx], then its pixel

coordinates in image n is (mj
xn
,mj

zn
), where mj

xn
= d x

j
n

∆xe, m
j
xn
∈ [lx] (dae is the

smallest integer larger then a) and since coordinates z remain unchanged over
time we set zj1, ∀ j ∈ [NP ], to have the form

zj1 = zjn = (mj
zn
− 1

2)∆z, (2)

mj
zn
∈ [lz]. Further, we select the row index

ijn = (n− 1) lx lz +mj
zn
lx −mj

xn
+ 1 (3)



and define the entries in the j column of the dictionary as

Dij = Dij(vm) =
{

1, if i = ijn,
0, otherwise. (4)

We stress the fact that, with all discretization parameters fixed, a dictio-
nary D of particle trajectories corresponding to a single velocity profile (1) is
parametrized by the single scalar maximal velocity vm.

The above definition implies that the number of non vanishing entries in any
column j does not exceed the number of images NI . This is consistent with
the physical picture that a particle appears only once in a measured image, or
it does not appear at all. We note that two columns D•,j , D•,j′ will be equal
if and only if the initial coordinates for two different particles are equal, i.e.
(xj1, z

j
1) = (xj

′

1 , z
j′

1 ). Consequently D will not contain redundant (equal) columns.
Another consequence is the orthogonality of the columns of D, as formally stated
next.
Proposition 1. For any two columns D•,j and D•,j′ in D corresponding to
particles with initial coordinates (xj1, z

j
1) and (xj

′

1 , z
j′

1 ) we have

〈D•,j , D•,j′〉 = 0 ⇐⇒ (xj1, z
j
1) 6= (xj

′

1 , z
j′

1 ). (5)

Proof. We show 〈D•,j , D•,j′〉 6= 0 ⇐⇒ (xj1, z
j
1) = (xj

′

1 , z
j′

1 ).
”⇐” Clear, in view of (1) and the construction of D.
”⇒” Assume 〈D•,j , D•,j′〉 6= 0. We show that this implies (xj1, z

j
1) = (xj

′

1 , z
j′

1 ).
The assumption implies that there exists an index in = in′ such that Din′ j

′ =
Din j = 1, i.e. by (3)

n lx lz +mj
zn
lx −mj

xn
= n′ lx lz +mj′

zn′
lx −mj′

xn′
. (6)

From mj
zn

= {1, . . . , lz} and mj
xn

= {1, . . . , lx}, we have 0 ≤ mj
zn
lx −mj

xn
≤

lx lz − 1, and similarly for j′, i.e. 0 ≤ mj′

zn′
lx −mj′

xn′
≤ lx lz − 1. Dividing (6)

through lx lz, we get

n︸︷︷︸
∈N

+
mj
zn
lx −mj

xn

lx lz︸ ︷︷ ︸
∈[0,1)∩Q

= n′︸︷︷︸
∈N

+
mj′

zn′
lx −mj′

xn′

lx lz︸ ︷︷ ︸
∈[0,1)∩Q

(7)

from which we conclude n = n′ and mj
zn
lx −mj

xn
= mj′

zn′
lx −mxn′ . Rewriting

the latter expression as

mj
zn

= mj′

zn
+ (mj

xn
−mj′

xn
)/lx, (8)

we infer mj
xn
−mj′

xn
= 0 as follows: The relation |mj

xn
−mj′

xn
| ≤ lx − 1, mj

zn
,

mj′

zn
∈ N and n = n′ implies mj

xn
= d x

j
n

∆xe. Since this equality must hold for any
∆x, we conclude xjn = xj

′

n .
As a consequence, (8) implies mj

zn
= mj′

zn
and hence zj1 = zj

′

1 by (2). This
together with (1) and xjn = xj

′

n finally implies xj1 = xj
′

1 . ut



3.2 Variational Motion Estimation

Given noisy measurements F of particles {(xjn, zjn)}j∈[NP ],n∈[NI ] for a collection
of NI subsequent frames at points of time τn = (n − 1)∆t, n ∈ [NI ], we set up
an adaptive variational approach for localizing these particles in F .

To this end, we exploit the motion model (1) that describes particles’ trajec-
tories parametrized by the unknown maximal velocity vm and unknown initial
coordinates (xj1, z

j
1). Aggregating potential local detections over time in this way

is our approach (i) to suppress noise, (ii) to discriminate particles from each
other, and (iii) to estimate the unknown velocity vm that is the ultimate goal
from the viewpoint of the application area.

We make the reasonable assumption of knowing an interval

vm ∈ [vmin, vmax], vmin > 0 (9)

that contains the unknown parameter vm. Every velocity value v′m ∈ [0, vmax]
defines a dictionary D(v′m) by (4) that exhaustively enumerates trajectories gen-
erated by (1) with vm = v′m, that could have been observed in the image se-
quence. If we knew the true velocity vm, we could detect trajectories in the data
F by sparsely matching D(vm)u to F , where u corresponds to a sparse indicator
vector selecting active trajectories in D(vm).

Since vm is not given, we have to estimate it from the data F as well. Since
a single dictionary D(v′m) is quite large, setting up a collection of dictionaries

D(v) :=
(
D(v1), D(v2), . . . , D(vd)

)
, 0 < v1 < v2 < · · · vd < vmax (10)

with closely spaced values {vi}i∈[d] is computationally infeasible. We therefore
limit d to a reasonable value (see Section 5 for the setup) and estimate vm by
an adaptive sequence of dictionaries defined by a sequence of velocity vectors

D(k) := D(v(k)), v(k) = (v(k)
1 , . . . , v

(k)
d )> ∈ [vmin, vmax]d, k ∈ N (11)

that localizes vm ∈ [v(k)
1 , v

(k)
d ] in intervals of shrinking sizes: |v(k)

d − v
(k)
1 | <

|v(k−1)
d − v(k−1)

1 |. At each iterative step k, we match trajectories and data by
solving

u(k) := argmin
u∈[0,1]N

‖D(k)u−F‖1+α

2 ‖u‖
2+ 1

2λ‖u−u
(k−1)‖2, α > 0, λ > 0. (12)

We stress that nonnegativity constraints enforce sparse recovery without explicit
sparse regularization [10]. In order to additionally cope with sparse outliers we
decided to use an `1-based data/linear model discrepancy term, since minimizing
‖D(k)u − F‖1 is better suited for sparse error recovery, see [11]. Subsequently,
we subdivide u(k) into subvectors conforming to the structure (10) of D(k),

u(k) = (u1,(k), . . . , ud,(k)), (13)



and estimate vm as convex combination of the velocity values v(k) defining the
current dictionary D(k),

v(k)
m :=

∑
i∈[d]

w
(k)
i v

(k)
i = 〈w(k), v(k)〉, w

(k)
i := 1

‖u(k)‖1
‖ui,(k)‖1, i ∈ [d]. (14)

Iteration step k is completed by updating the velocity vector

v(k+1) = Vτ (u(k), v(k)), v
(k+1)
i := v(k)

m + τ(v(k)
i − v

(k)
m ), i ∈ [d], (15)

with τ ∈ (0, 1). In the next section, it is shown that for any choice of the
parameters λ > 0 and τ ∈ (0, 1), the sequence of non-stationary mappings
(i.e. depending on k)

v(k) Eqn. (12)−−−−−−→ u(k) Eqn. (15)−−−−−−→ v(k+1) (16)

is a fixed point iteration that converges to a constant vector v(∞) = vm1, that
constitutes the estimate of vm. The quality of this estimate from the applied
viewpoint as outlined in Section 2, will be assessed in Section 5.

4 Convergence Analysis

We next show the convergence of the scheme (16) under mild conditions. The
proof reveals how the scheme can be modified from the viewpoint of the intended
application without compromising convergence. We describe a promising variant
in the next paragraph.

Convergence. We write for the proximal mapping u(k−1) → u(k) defined by
(12)

u(k) = Pλf(u(k−1), v(k)) := argminu f(u, v(k)) + 1
2λ‖u− u

(k−1)‖2, (17a)

f(u, v(k)) := ‖D(k)u− F‖1 + α

2 ‖u‖
2 + δC(u), C = [0, 1]N , (17b)

eλf(u, v(k)) := inf
w
f(w, v(k)) + 1

2λ‖w − u‖
2, (17c)

in order to exhibit the parametrization by v(k) defining the dictionary (11).
Eq. (17c) additionally introduces the Moreau envelope eλf of f [12, Def. 1.22],
that we need in the proof of Prop. 2 below.

Likewise, we regard the mapping v(k) 7→ v(k+1) defined by (15) as parametrized
by u(k). These mutual dependencies of the sequences (u(k))k∈N and (v(k))k∈N and
their convergence are addressed next.

Proposition 2. Let the sequences (u(k))k∈N, (v(k))k∈N be given by (12) and (15),
respectively. Suppose the mapping v 7→ D(v) is continuous. Then, for any ini-
tializations v(0) ∈ [vmin, vmax]d ⊂ Rd++ and u(0) ∈ C, the sequence v(k) k→∞−−−−→



v(∞) = v
(∞)
m 1 converges to a constant vector as fixed point, and the sequence

u(k) k→∞−−−−→ u(∞) = argmin f(u, v(∞)) converges to the corresponding minimizer
of f .

Proof. The mapping (15) reads in view of (14)

Vτ (u, v) = τv + (1− τ)vm1 =
(
τI + (1− τ)1w>(u)

)
v =: Vτ (u)v. (18)

We observe for every fixed u ∈ C:

(i) w(u) ∈ ∆d and hence constant vectors c1, c > 0, constitute fixed points:
Vτ (u)(c1) = τc1 + (1− τ)〈w(u), c1〉1 = c1.

(ii) The matrix Vτ (u) has eigenvalues τ ∈ (0, 1) with multiplicity d − 1 and
1, where the constant vectors are the eigenvectors corresponding to the
largest eigenvalue 1.

As a consequence, Vτ constitutes a contraction for any non-constant vector v,
‖Vτ (u, v′) − Vτ (u, v)‖ < ‖v′ − v‖, independent of u. Conversely, if we fix any
feasible v and consider any sequence u(k) → u, then we have Vτ (u(k), v) →
Vτ (u, v) due to the continuity of Vτ (·, v).

As a consequence of these properties, a variant of Banach’s fixed point theo-
rem [13, Prop. 1.2] asserts that the equation vu = Vτ (u, vu) has exactly one posi-
tive solution in the unit sphere (Sd−1∩[vmin, vmax]d) ⊂ Rd++ and that vu(k) → vu.

Next, we consider the mapping u(k−1) 7→ u(k), given by the proximal mapping
(17), that is parametrized by v(k). We have to show convergence of the sequence
of minima (17a), which is best covered by the epi(graphical)-convergence [12,
Def. 7.1] of the sequence (17b) of functions f (k) := f(·, v(k)), whose analysis
simplifies due to f being proper, lower semicontinuous and (strongly) convex as
follows.

By [12, Thm. 7.37], pointwise convergence eλf
(k)(u) → eλf

(∞)(u) of the
Moreau envelopes (17c) for some λ > 0, which holds due to the continuity of
v 7→ D(v) by assumption, already yields epi-convergence of the sequence f (k) to
f (∞). This in turn assures by [12, Thm. 7.33] convergence of the unique minima
u(k) → u(∞), where uniqueness is due to the strict convexity of the objective
function of (17a), and finally u(∞) = argmin f (∞). ut

As a result, the sequence v(k) converges to a constant vector v(∞) = vm1 in
connection with the convergence of minima u(k) 7→ u(∞) that finally determines
the constant vm which is the estimate we are primarily interested in, by matching
the dictionaryD(v(∞)) to the given data F through minimizing ‖D(v(∞))u−F‖1.

Remark 1. The assumption of continuity of the mapping v 7→ D(v), made in
Prop. 2, does not strictly hold true for our current implementation described
in Section 3.1, but only “up to (small) discretization effects”. Our experiments
show however that this does not compromise convergence. A more refined dis-
cretization using smooth compactly supported basis functions will remove this
(minor) deficiency in our future work.



Variants of the Estimation Scheme. The proof of Proposition 2 shows that
the assertion holds for any smooth mapping

u(k) 7→ w(k) = w(u(k)) ∈ ∆d. (19)

As a consequence, we can investigate alternatives to the mapping (14). Attractive
candidates are mappings that are more sensitive to the subvector ui,(k) in (13)
with maximal support maxi∈[d] ‖ui,(k)‖1. A natural candidate for such a smooth
mapping is

w
(k)
i := 1∑

j∈[d] e
sj/ε

esi/ε, si := ‖ui,(k)‖1, ε > 0, i = 1, 2, . . . , d. (20)

This results in a strictly positive vector w(k) ∈ ∆d that, for ε→ 0, concentrates
its mass at the component i ∈ [d] corresponding to maxi∈[d] ‖ui,(k)‖1.

We summarize the performance of this variant in numerical experiments in
Section 5.

5 Numerical Experiments

In this section, we illustrate the performance of our approach (see Section 3 and
Alg. 1 below, for a compact summary), in noisy and non-noisy environments.
Experimental Setup. The experimental verification was done using data sim-
ulated as follows.

(a) first, randomly distribute a fixed number of microbubbles in the cross section
of a tube with length L (100cm) and radius R (5cm);

(b) select an arbitrary value for v∗m between vmin = 0.001 and vmax = 5;
(c) calculate the position of every microbubble according to Eq. (1) at each time

step τn = (n− 1)∆t, ∆t = 0.2s;
(d) scan simultaneously the field of view Ω = [0, Lx]×[0, Lz] at each time τn and

store NI = 20 binary 2D images of size lx × lz (in pixels) and microbubbles
position therein. Lx = Lz = 10 cm and lx = lz = 100;

(e) sort all NI images and form the larger image Fideal =: F of size lx × NI lz
(see Figure 4);

(f) add noise to mimic ghost particles or error in the position of particles in
the form of outliers or perturbing positions in a random direction of random
particles. The amount of noise is given by

# fraction of corrupted entries = ‖Fideal − Fnoise‖12‖Fideal‖1
.

We set the particle density to 10 particles/cm. For practical reasons we precom-
pute and store in advance dictionary blocks corresponding to a single velocity
profile for all velocity values in [vmin, vmax] in steps of ∆v = 0.001. The velocity
resolution on this particular grid is of the order of ∆v. Thus dictionary blocks
D(v1) and D(v2) corresponding to v1 and v2 coincide if |v1 − v2| < ∆v.
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Fig. 4. Typical input (top) and output (bottom) of Alg. 1, but here using only 1%
of the actual particle density for the purpose of visualization (better viewed in color).
20% (red dots) of input data are corrupted. All points should ideally belong to 84
unknown trajectories. Our proposed algorithm assigns microbubbles in the input frames
to particle trajectories from a sparsifying dictionary. Correctly matched trajectories
are displayed by thin black lines, wrong ones with magenta. The slopes of matched
trajectories yield the velocity of each particle. Quantitative performance statistics for
the full data sets are listed in Table 1.

Optimization. For the two proposed variants mapping velocities (according to
(14) or (20)), we run Alg. 1 below until the accuracy ∆v was reached. The large-
scale optimization task of Alg. (1) is the application of the proximal mapping and
solving (12) at each iteration. To perform this task we currently use the CVX
package for disciplined convex programming [14]. The average runtime for solving
(12) is 5 minutes. Currently each D is a highly sparse

(
2 · 105)×(NP (vki ) · d

)
≈ 2·

105×106 matrix, with d = 11 and i ∈ [d]. EachNP depends on each velocity value
vki and NP (vki ) < lx lz + (NI −1)∆t vki lxLx/lz = 105 + 38vki . For processing real
data a dedicated numerical optimization algorithm is necessary as CVX cannot



Algorithm 1: Fixed Point Algorithm with two variants of mapping veloc-
ities according to (14) or (20).

Data: concatenated frames F , d ∈ N initial estimates for velocity profiles
v(1) = (v(1)

1 , . . . , v
(1)
d ), parameters ∆v > 0, λ > 0, α > 0, ε > 0, τ ∈ (0, 1)

Result: vm, Np
k = 1 ;
while |v(k)

d − v
(k)
1 | < ∆v do

D(k) = (D(v(k)
1 ), D(v(k)

1 ), . . . , D(v(k)
d ));

u(k) = arg min
u∈[0,1]

‖D(k) u− F ‖1 + α
2 ‖u‖

2 + 1
2λ‖u− u

(k−1)‖2 ;

Compute weights from (14) / (20): ;
∀j ∈ [d] : w

(k)
j = sj

‖u(k)‖1
, sj := ‖uj,(k)‖1 / w

(k)
j := 1∑

`∈[d]
es`/ε e

sj/ε;

v
(k)
m =

∑
i∈[d]

w
(k)
i v

(k)
i ;

∀j ∈ [d] : v
(k+1)
j = v

(k)
m + τ(v(k)

j − v
(k)
m );

k = k + 1;

vm = v
(k)
m , NP = ‖u(k)‖0;

handle much larger problem sizes. We emphasize that by ignoring the quadratic
terms in (12) the problem can be recast as a linear program. Thus (12) can be
seen as a perturbed linear program. Our future work from the algorithmic point
of view will exploit this fact along with the structure and sparsity of D consisting
of d building blocks having each orthogonal columns due to Proposition 1.
Results and Discussion. Fig. 4 illustrates the detection and particle trajecto-
ries after convergence to the fixed point according to Prop. 2. The convergence
behavior is depicted by Fig. 5 along with a discussion in the caption. Finally
Fig. 6 demonstrates a remarkable robustness of our approach against data noise
over a wide range of values of the parameters τ ∈ (0, 1), λ > 0 and ε in (20), due
to the aggregation of all information over the entire spatio-temporal volume.

6 Conclusion

We have reformulated the velocity estimation problem for a steady laminar flow
via Echo PIV as a sparse and global spatio-temporal estimation problem, using
a physical flow model. The input data was the whole image sequence assumed to
be well approximated by the sum of few elements from a flow dictionary. Since
the dictionary was parametrized by the unknown velocity profile, we updated the
dictionary in each iteration, thereby refining the unknown quantity. We showed
convergence to a fixed point of the overall scheme under weak assumptions to
a sparsifying dictionary that robustly estimated velocity even in the presence of
high levels of noise. Numerical examples demonstrated this robustness, conver-
gence and estimation accuracy of our approach.
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Fig. 5. Convergence performance of the fixed point Alg. 1 and its two variants for 20%
noise, for large (v∗m = 3.2463, top row) and small true (unknown) velocity (v∗m = 0.4321,
bottom row). Both variants of the algorithm for estimating v∗m converged in 10 (top)
and 25 (bottom) iterations. However, computing the weights wi according to (20) based
on the softmax function – softmax-weights – (right) leads to a more accurate estimate
of v∗m than computing weights according to (14) – `1-weights – (left). Further numerical
values are given in Table 1 based on averaged results over 20 runs.
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Fig. 6. Estimating the velocity v∗m via Alg. 1 is robust (left) to corrupting a large
fraction of the input data, although the fraction of correctly detected trajectories de-
creases (right). This fraction suffices to define a “correct” dictionary D(v(k)) due to the
convergence of v(k) to a uniform vector vm1. Results are consistent for different values
of τ ∈ [0.4, 0.8], τ ∈ [0.2, 0.4] and ε ∈ {50, 100, 150, 200}.



v∗m = 3.2463; N∗p = 1526; τ = 0.4
0 % 10 % 20 %

vm Np vm Np vm Np

`1-weights 3.2437± 0.003 1526 3.2438± 0.0003 1513± 3 3.2437± 0.005 1478± 8
softmax-weights 3.2450± 0.006 1526 3.2456± 0.007 1519± 3 3.2460± 0.0006 1493± 5

v∗m = 0.4321; N∗p = 1035; τ = 0.8
0 % 10 % 20 %

vm Np vm Np vm Np

`1-weights 0.4416± 0.016 1031 0.4688± 0.0037 754± 11 0.5291± 0.0227 360± 64
softmax-weights 0.4300± 0.020 1035 0.4296± 0.0007 1032± 2 0.4299± 0.0008 731± 24

Table 1. Estimated velocity and number of particles for ideal and noise data. The
velocity value to be estimated is v∗m. The number of true trajectories is N∗p . We averaged
results over 20 runs. Velocity estimates are stable against noise, and the results reveal
better estimates for the softmax-weights in the case of small velocities.

Further work will concentrate on adapting the dictionary using more general
physical fluid flow models, and incorporating models of the real imaging sensor
with proper discretization.
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