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Self-Certifying Classification by Linearized Deep Assignment
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We propose a novel class of deep stochastic predictors for classifying metric data on graphs within the PAC-Bayes risk
certification paradigm. Classifiers are realized as linearly parametrized deep assignment flows with random initial conditions.
Building on the recent PAC-Bayes literature and data-dependent priors, this approach enables (i) to use risk bounds as training
objectives for learning posterior distributions on the hypothesis space and (ii) to compute tight out-of-sample risk certificates of
randomized classifiers more efficiently than related work. Comparison with empirical test set errors illustrates the performance
and practicality of this self-certifying classification method.
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1 Introduction

1.1 Overview, Related Work

Self-certified learning is the task of using the entirety of available data to find a good model and to simultaneously certify
its performance on unseen data from the same underlying distribution. This is opposed to the classic two-stage paradigm in
machine learning which first finds a model by using part of the data and subsequently estimates its generalization on held-out
test data. Because the true distribution of data is typically unknown, self-certified learning relies on upper-bounding model risk
through statistical learning theory. Recently, the PAC-Bayes (Probably Approximately Correct) paradigm [1,2] has attracted
much attention due to the recent demonstration of tight risk bounds for deep stochastic neural networks in [3]. The authors
exploit a PAC-Bayes risk bound by, firstly, training a prior through empirical risk minimization and, secondly, by training a
Gibbs posterior distribution. The recent work [4] evaluates various relaxed PAC-Bayes-kl inequalities' [5], including a new one.
They show that non-vacuous risk certificates can be determined numerically which are informative of the out-of-sample error
and that using relaxed upper bounds of the risk for training allows to use the whole data set for both learning a predictor and
certifying its risk. Similar to [4], our approach is to find a PAC-Bayes posterior distribution by optimizing the PAC-Bayes-\
inequality introduced by [6]. A key component of PAC-Bayes bounds is the empirical risk of stochastic classifiers. In the
context of deep learning, such classifiers may be obtained by randomizing neural network weights which typically leads to
analytically intractable empirical risk. [7] therefore suggest using an upper bound via Monte-Carlo sampling, which holds with
high probability and still achieves PAC risk certification with modified probability of correctness. In order to train stochastic
classifiers by optimizing PAC inequalities with differentiable surrogate loss, the gradient of empirical risk can similarly be
estimated stochastically. [4] choose the pathwise gradient estimator [8] and call the resulting framework PAC-Bayes with
Backprop, reminiscent of the Bayes-by-Backprop paradigm [9]. Here, we propose a way to achieve computational tractability
of empirical risk in PAC-Bayes without the need for stochastic estimators. Key is the construction of a specific hypothesis
class which separates stochasticity from feature extraction by building on certain geometric neural ODEs called assignment
flows [10]. After suitable parametrization and linearization, the uncertainty quantification approach proposed in [11] allows to
push forward intrinsic normal distributions of initial assignment states in closed form, which can be leveraged to build deep
stochastic classifiers with tractable empirical risk.

1.2 Contribution

We adopt the PAC-Bayes-\ inequality [6] to work out a two-stage method as in [3,4] for evaluating relaxed PAC-Bayes-kl
bounds and achieve favorable computational properties compared to prior work. To this end, we propose a generalized, deep
classification variant of S-assignment flows [12] and compute the corresponding pushforward distribution in closed form,
building on [11]. This enables to compute the pushforward only once and subsequently perform very cheap sampling of a
transformed integrand in Monte-Carlo methods. Finally, we show that for not too large numbers ¢ ~ 10 of classes, much more
efficient deterministic Quasi-Monte-Carlo integration [13] can replace Monte-Carlo estimation when evaluating risk certificates
and computing their gradients. As a consequence, the linearized deep assignment flow approach to classification becomes a
self-certifying learning method. We verify its performance and the tightness of risk certificates by a comparison to the empirical
test error.
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2 Background

2.1 (S-)Assignment Flows

The assignment flow approach [10, 14] denotes a class of dynamical systems for analyzing metric data on a graph G = (Z, ),
|I| = n, that is derived in a straightforward way: represent local decisions as point (‘state’) on a task-specific statistical manifold
and perform contextual structured decisions by the interaction of these states over the underlying graph. For the classification
task considered here, the statistical manifold is the relative interior S, of probability simplex with ¢ vertices equipped with the
Fisher-Rao metric of information geometry [15], and the interaction corresponds to geometric state averaging derived from the
affine e-connection. The resulting dynamical system reads

S(t) = Ry [QS(1)],  S(0) = So (2.1a)

Here S(t) € W C R’{¢ comprises the state at each vertex ¢ € Z as row vector S;(t) € S, 2 < ¢ € N denotes the number
of classes, and W is the n-fold product of S,. 2 is a weighted adjacency matrix of G and Rg defined in (2.1b) is called the
replicator operator. Thus, (2.1) may be seen as a particular system of neural ODEs [16] that represent the layers of a deep
network by time-discrete geometric numerical integration of the flow. In Section 3, we adopt a ‘deep structured’ parametrization
of (2.1) and restrict ourselves to a linearization of the resulting large-scale dynamical system.

2.2 PAC-Bayes Risk Certification

Consider stochastic classifiers, i.e., distributions p over a hypothesis space #, elements of which are functions ¢y mapping a
data space D to the tangent space Ty of WW. Suppose H is parameterized by § € © and identify distributions p over H with
distributions over the parameter space ©. For given loss function ¢: 7o — R and a generally unknown data distribution © over
D x Ty, the goal of learning stochastic classifiers is to find x4 such that the expected risk

Eo~ul€(0)] := Eop [Ew ) l(do(2), )] (2.2)

is minimized. Since © is unknown, the true risk £(0) is difficult to estimate. A tractable related quantity is the empirical risk
£,,(6) which replaces the inner expectation in (2.2) by a mean over m i.i.d. samples (zy, yx) drawn from ©. PAC-Bayesian
theory [1, 2] considers a distribution p called PAC-Bayes posterior which depends on the sample as well as a reference
distribution 7 called PAC-Bayes prior which has access to fewer data. A goal is to construct tight, high-confidence bounds on
(2.2) which only depend on tractable quantities such as empirical risk. In our analysis, we use the following state-of-the-art
bound.

Theorem 2.1 (PAC-Bayes-\ Inequality [6]) For any € > 0 and any A € (0, 2), it holds with probability at least 1 — € over
the i.i.d. sample of size m for all posterior distributions . over parameters 0 simultaneously

 Eonul€n(0)] | KL(u: m) +log 247

EGN#[Q(Q)] — 1 _ % m/\(l _ %) < 9 (23)

Regarding the evaluation of the right-hand side, key issues are the definition of prior and posterior distributions 7, yt over the
hypothesis space and the accurate and efficient computation of the expected empirical risk Eg~.,,[£,,, ()], which typically is a
hard task in practice. We deal with these issues in Sections 4.1, 4.2 and 4.3, 4.4, respectively.

3 Deep Assignment Flows

3.1 Classification Using Deep S-Flows

Motivated by the use of coupled replicator dynamics in game theory [17], we generalize S-flows (2.1) by enabling additional
interaction on the label space. Specifically, we consider the vectorized version of the assignment flow equation (2.1)

§(t) = R, (2@ 1c)s(t), 5(0) = s¢ = vec(Sp) 3.1

and break up the Kronecker product structure of 2 @ I... Re-using the symbol (2 to denote a matrix Q € RN*N_ N = cn we
define the deep assignment flow (DAF) in vectorized form as

§(t) = Ry Qs(t), 5(0) = sp. (3.2)

This class of dynamics is more general than (2.1), while remaining amenable to lifting and linearization with minimal
modifications to other assignment flows [18, 19]. Concerning the PAC-Bayes risk certification, we observe that (3.2) typically
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leads to better generalization and more gain between posterior and prior as compared to (2.1). Unlike typical assignment
flow approaches, our aim is not to perform image labeling (i.e., segmentation) but classification. To this end, we choose the
underlying graph G to be relatively small (n = 50 nodes) and densely connected with learned symmetric matrix 2. We also
designate a single node to carry class probabilities. Through the dynamics (3.2), the state of this node will evolve towards
an integer assignment, i.e., a class decision. By convention, we choose the classification node be the node with index 1 and
set 5] = S1 € S, i.e. s¢(t) is the subvector of the solution s(t) = vec™(S(t)) to the DAF (3.2) corresponding to the
assignment vector .S; indexed by the first vertex ¢ = 1 € Z of the underlying graph.

3.2 Linearized Deep Assignment Flows

A key technical ingredient of our contribution concerns the following approximation of the DAF (3.2) that evolves on the
manifold W, obtained by a /inear parametrization on the tangent space 7.

Proposition 3.1 (Linearized deep assignment flow (LDAF)) The system of equations
s(t) = expg, (v(t)), o) =1I§Q(so + R v(t)),  v(0) =vo =0 (3.3)
closely approximates the deep assignment flow (3.2). The solution is given in closed form by

v(t) = te(tA)vp, A=T1I3QR: , wvp = s, (3.4)

S0?
where o is the analytical matrix function p(z) = ezz_l with matrix argument, expg v = softmax(v + log so) and II{} denotes
orthogonal projection to the tangent space.

The solution s(t) to the linearized deep assignment flow (LDAF) (3.3) can be efficiently solved using Krylov methods for
evaluating (3.4). Moreover, gradient approximations computed in [20] apply without modification. We point out that even
though ¢(tA) acts linearly on vp in (3.4), LDAF dynamics are nonlinear models. This is due to the fact that A = TI[§QRZ
depends on sg. So each input datum is transformed by a different linear operator.

4 Risk Certification of Stochastic LDAF Classifiers

We consider PAC-Bayes risk certificates which bound the expected risk of a stochastic classifier (see Section 2.2). The
evaluation of such a certificate requires evaluation of expected empirical risk which presents a computational challenge. To
mitigate this, one may use Monte-Carlo methods to upper-bound the expected empirical risk with high probability as proposed
in [7]. Here, we propose instead a strategic choice of hypothesis class and shape of stochastic classifiers which allows to directly
compute the expected empirical risk efficiently and precisely while also allowing for the use of deep feature extractors.

4.1 LDAF Hypothesis Space

We define the hypothesis space  of classifiers ¢ built by composing a feature extractor with LDAF dynamics (3.3), (3.4) up to
time 7' > 0. We assume €2 is symmetric and denote the vector of learnable parameters defining {2 by w. For a given data point
x in some vector space D, a corresponding initial point so € W is computed by extracting features using a neural network
Fy: D — To with parameters 1 and setting so = expy,,, (Fy(x)). Following linearization of the DAF vector field, we take
the initialization vy € 7 as additional parameters. Forward integration up to time 7" gives a state s(1') = exp, (v(T)) € W
which contains class probabilities S(T); € S, at the classification node. We collect the described sequence of operations on
W into a function ¢, , and call H = {¢: R - S. | ¢ =0

Measures on # are identified with measures on the parameter space H which contains triples 6§ = (1, w, vg). Denote by P the
class of probability measures ;. on H with shape

w,v0

p= 089 x 6, x N(0,%0) 4.1)

where N(0, %) denotes an intrinsic normal distribution on 7y (cf. chapter 3 in [21]) centered at 0. Each measure in P
corresponds to a stochastic LDAF classifier which operates by taking an independent sample from p for each datum. In order to
compute PAC-Bayes risk certificates, we need to compute the expected empirical risk of stochastic classifiers as well as their

complexity with respect to a reference distribution. Suppose the reference distribution 7 (PAC-Bayes prior) also has shape (4.1).

Further, w and ¥ are fixed and only the distribution of vy differs between 7 and 1 (PAC-Bayes posterior). This ensures that the
posterior is absolutely continuous with respect to the prior (1 < 7) which makes their relative entropy well-defined.

4.2 Data-Dependent Prior

Recently, the use of data for finding a good prior 7 has been identified as critical for obtaining sharp generalization bounds.

This development was sparked by non-vacuous risk bounds for neural networks achieved by [3]. Unlike this work, we do not

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.
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make use of differential privacy to account for sharing data between prior and posterior. Instead, we forego potentially more
efficient use of data in favor of simplicity by splitting the available dataset into a training and a validation set. The training set
is used to compute a PAC-Bayes prior distribution 7 via empirical risk minimization. The validation set is subsequently used to
fine-tune the PAC-Bayes posterior distribution 1 by minimizing a risk bound for a differentiable surrogate loss starting from 7.
In addition, the validation set is also used to evaluate the final classification risk certificate.

4.3 Computing the Expected Empirical Risk

We now aim to leverage the analytical tractability of LDAF forward integration to efficiently compute the empirical risk of
stochastic classifiers in PP. This can be done irrespective of feature extraction because stochasticity only pertains to the LDAF
initialization vy. Key to the construction is the ability to push forward a multivariate normal distribution on 7 under LDAF
dynamics in closed-form. This amounts to an extension of the uncertainty quantification approach [11] to the deep flows
considered here.

Proposition 4.1 (LDAF Pushforward) Consider the LDAF dynamics (3.3) and let v(0) ~ N(0,%0). Then v(t) follows
the multivariate normal distribution n(t) = N (m(t), X(t)) for every t > 0 with moments

m(t) = tp(tA)b, Y (t) = expm(tA)Xg expm(tA) " 4.2)

Proof. For vy # 0, the closed form solution (3.4) is modified to v(t) = expm(tA)vy + tp(tA)b. We see that for fixed
t > 0, v(0) is mapped to v(¢t) by an affine transformation. Therefore, v(¢) still follows a multivariate normal distribution.
Further, analogous to the computation in [11] one finds the moments (4.2). O

The full covariance matrix X(¢) € RV *N is quite large (N = nc) and expensive to compute. However, for the purpose of
classification, we only need the marginal 1) (T") of 7(T') for the classification node. We may now leverage the available closed
form (4.2) to transform the empirical risk of stochastic LDAF classifiers, which is the main technical contribution of this paper.

Theorem 4.2 (LDAF Expected Empirical Risk) Fix (linear) coordinates of TyS. by choosing the columns of

c—1

P.— < I:cL;_l ) c ch(cfl) (43)

as basis vectors. For a given data sample {(xx, Yr.) } ke[m) and loss function £: ToS. x [c] — R, the stochastic classifier with
distribution j1 = 6y x dg x N(0,X¢) on the hypothesis class H has expected empirical risk E~,,[ £, (v0)] given by

1
- kg] /RC?1 Pz 4 Fy(Th), Ye) P (), S () (2)d2- 4.4)

Here, p denotes the density of a multivariate normal distribution with the indicated moments m(xy) = m(T) 1\ (cy and

~

Y(wx) = X(T)1\1e},2\{c} Which are subvectors resp. submatrices of (4.2) for each input datum derived from the marginal
distribution n") (T) of n(T) for the classification node. The last index c is omitted due to the shape of basis (4.3).

Proof. We use Proposition 4.1 to transform the expected empirical risk integral. The basis (4.3) is chosen such that the
sought moments at the classification node can be selected as entries of pushforward moments. O

4.4 Numerical Integration

Previous works on PAC-Bayes risk certification have commonly resorted to approximating the expected empirical risk by a
Monte-Carlo (MC) method. This accounts for very high-dimensional domains of integration, but it is computationally expensive
because it requires evaluation of the integrand at many sample points which entails a separate forward pass for every drawn
sample. Theorem 4.2 proposes a way to circumvent this problem by computing the pushforward distribution only once (at
roughly the cost of ¢ forward passes) and by subsequently performing very cheap sampling of the integrand. This amounts to
large efficiency gains when using MC methods. However, Quasi-Monte-Carlo (QMC) methods can improve on MC in the case
at hand by leveraging smoothness and moderate dimension. The rationale behind QMC methods is to choose a sequence of
deterministic sample points which has lower discrepancy than the uniform random points used in MC. By the Koksma-Hlawka
inequality [13][Theorem 3.9], sequences of low-discrepancy sample points, such as the Sobol sequence, asymptotically lead
to more efficient integration than MC if the integrand has bounded Hardy-Krause variation. In practice, QMC methods are
observed to outperform MC particularly for moderate dimension and smooth integrands [22]. We observe that relatively few
(10K) sample points suffice to compute the empirical risk of stochastic LDAF classifiers with sufficient accuracy. This is not
the case of MC as illustrated in Figure 1.
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Fig. 1 Accuracy of QMC integration ® and MC integration B for com-

[

s 21

- puting the expected empirical risk with varying number of sample points.
E Error bands indicate standard deviation within a batch of 100 CIFAR-

14 10 data points. Because the pushforward distribution of Theorem 4.2 is
computationally tractable, sampling is very efficient and computing the

reference solution by drawing 100M MC samples only takes minutes on

500 1600 2()'00 50'00 20(']00 50(')00 a single GPU. In our proposed QMC method, we compute the pushfor-
eg a val a io ward distribution and subsequently perform 10K integrand evaluations at
negligible computational cost.

Table 1 Out-of-sample CIFAR-10 classification error
(%) and risk certificates compared to [4] (PBB). Certifi-
LDAF 20.54 £ 0.58  20.89 20.46 21.55 1.09 cates (€ = 0.035) computed using 150k MC samples for
PBB [4] 19.46 21.69  20.81 23.77 2.96 PBB (multiple GPU hours) and 100k QMC samples for
LDAF (~ 90 GPU seconds).

Deterministic ~Prior  Posterior Certificate Tightness

Table 2  Out-of-sample error (%)
and risk certificates of LDAF clas-
CIFAR-10 5.28 + 0.06 549 531 6.36 6.19 sifiers with ResNet18 features on
FashionMNIST 5.13 £ 0.16 5.13  5.12 6.07 5.90 CIFAR-10 and FashionMNIST.

Deterministic  Prior Posterior Cert. (e = 0.01) Cert. (¢ = 0.05)

5 Benchmarks and Discussion

As empirical support for the applicability of the proposed self-certifying approach to classification, we perform image
classification on CIFAR-10 [23] and FashionMNIST [24].

5.1 Training Stochastic LDAF Classifiers

Stochastic classifiers 7 and y are implemented as distributions with shape (4.1) over the hypothesis space H. The graph G is
chosen relatively small (n = 50 nodes) and densely connected with symmetric adjacency matrix 2. Both PAC-Bayes prior ™
and posterior p are implemented by randomizing LDAF initialization vg on the tangent space 7, according to a zero-mean
multivariate normal distribution with covariance parameterized as diagonal matrix plus rank-one update. To train stochastic
classifiers, we proceed in two steps. First, we train a deterministic LDAF classifier on the training split. This defines the mean
of stochastic classifiers in H. For the PAC-Bayes prior 7, we fix the covariance Y. Initializing p at 7, we subsequently train p
by minimizing the r.h.s. of the bound (2.3), alternating between optimization of ; and A after each epoch on the validation set.

For direct comparison with [4] on CIFAR-10 (Table 1), we use the same 9-layer CNN feature extractor and a simple SGD
training regime (70 epochs, learning rate 0.01, momentum 0.95, dropout rate 0.2) without data augmentation. Our deterministic
classifier performs slightly worse, likely due to a lack of hyperparameter tuning, while stochastic classifiers built on the same
features within the proposed framework slightly outperform the related work. By comparing to posterior test set error, we
find that our risk certificate is slightly tighter in this particular benchmark. However, our main contribution is not to improve
tightness, but fo provide a novel method that enables a more computationally efficient way to compute risk certificates. Because
pushing forward an intrinsic normal distribution of initial LDAF assignment states is only marginally more expensive than an
single forward pass, sampling the empirical risk integrand is very cheap (O(m) = 15k forward passes) and can be realized
within few minutes on a single GPU. By comparison, drawing 150k MC samples to compute the certificate in the framework
of [4] requires many GPU hours for a 9-layer CNN model (O(m - ¢) = 2.25B forward passes). In addition, fewer samples are
required when opting for QMC integration.

For deeper models, more computational effort is required per forward pass, leading to even larger runtime gains by choosing
the proposed framework. To illustrate scalability, we chose ResNet18 [25] features with an adapted training and light data
augmentation regime as in [26]. The resulting feature extractors are much stronger, leading to higher classification scores in
Table 2 while still achieving tight, high confidence risk certificates very efficiently.

5.2 Discussion and Conclusion

We use cross-entropy as a differentiable surrogate loss for training PAC-Bayes posteriors. This appears problematic because the
bound (2.3) only certifies risk w.r.t. bounded loss functions. [4] address this by modifying cross-entropy to obtain a closely
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related bounded loss function which is amenable to risk certification. We do not perform this modification and therefore do not
obtain valid risk certificates for surrogate loss. However, for classification (0/1 loss) the bound (2.3) holds for all posterior
distributions, regardless of how they have been computed. Therefore, using unbounded surrogate loss for training does not touch
the validity of risk certificates for the bounded 0/1 loss reported in Tables 1 and 2. Accordingly, no certificate for surrogate
loss is reported. A key component of the proposed approach are linearized deep assignment flows (LDAF's). We view them as
uniquely suitable due to the combination of two factors. (1) The pushforward of normal distributions under LDAF dynamics
has a closed form and efficient numerics exist to approximate its moments. (2) Unlike trivial maps which have the first property,
the LDAF still has nontrivial representational power. In addition, the low-rank numerics used to compute the pushforward
under the LDAF reveal information about learned parameters that we will exploit in future work.
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