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ABSTRACT. We introduce a novel generative model for the representation of joint probability distributions of
a possibly large number of discrete random variables. The approach uses measure transport by randomized as-
signment flows on the statistical submanifold of factorizing distributions, which enables to represent and sample
efficiently from any target distribution and to assess the likelihood of unseen data points. The complexity of
the target distribution only depends on the parametrization of the affinity function of the dynamical assignment
flow system. Our model can be trained in a simulation-free manner by conditional Riemannian flow matching,
using the training data encoded as geodesics on the assignment manifold in closed-form, with respect to the
e-connection of information geometry. Numerical experiments devoted to distributions of structured image la-
belings demonstrate the applicability to large-scale problems, which may include discrete distributions in other
application areas. Performance measures show that our approach scales better with the increasing number of
classes than recent related work.
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1. INTRODUCTION

1.1. Overview, Motivation. Generative models in machine learning define an active area of research [KPB21,
PNR+21, RH21]. Corresponding research objectives include

(i) the representation of complex probability distributions,
(ii) efficient sampling from such distributions, and

(iii) computing the likelihoods of unseen data points.

The target probability distribution is typically not given, except for a finite sample set (empirical measure).
The modeling task concerns the generation of the target distribution by transporting a simple reference mea-
sure, typically the multivariate standard normal distribution, using a corresponding pushforward mapping.
This mapping is realized by a network with trainable parameters that are optimized by maximizing the likeli-
hood of the given data or a corresponding surrogate objective which is more convenient regarding numerical
optimization. This class of approaches are called normalizing flows in the literature.

Discrete joint probability distributions abound in applications, yet have received less attention in the lit-
erature on generative models. The recent survey paper [KPB21] concludes with a short paragraph devoted
to discrete distributions and the assessment that “the generalization of normalizing flows to discrete distribu-
tions remains an open problem”. Likewise, the survey paper [PNR+21] briefly discusses generative models
of discrete distributions in [PNR+21, Section 5.3]. The authors state that “compared to flows on RD, dis-
crete flows have notable theoretical limitations”. The survey paper [RH21] does not mention at all generative
models of discrete distributions.
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This paper introduces a novel generative approach for the significant subclass of discrete (categorial)
probability distributions of n random variables yi taking values in a finite set {1, 2, . . . , c},

y = (y1, . . . , yn)
⊤ ∈ [c]n, yi ∈ [c] := {1, 2, . . . , c}, i ∈ [n], c, n ∈ N. (1.1)

A corresponding distribution p is a look-up table which specifies for any realization α of the discrete random
vector y the probability

p(α) = p(α1, . . . , αn) := Pr(y = α) = Pr(y1 = α1 ∧ · · · ∧ yn = αn), α ∈ [c]n. (1.2)

Any such look-up table is a nonnegative tensor with the combinatorially large number

N := cn (1.3)

of entries p(α), α ∈ [c]n. Furthermore, since p(α) ≥ 0, ∀α, and
∑

α∈[c]n p(α) = 1, any distribution p also
corresponds to a point p ∈ ∆N of the probability simplex

∆N := {p ∈ RN≥0 : ⟨1N , p⟩ = 1}, p = (pα)α∈[c]n , pα := p(α), (meta-simplex) (1.4)

where 1N := (1, 1, . . . , 1)⊤ ∈ RN .
Thus, we denote with p discrete joint probability distributions using any of the equivalent representations

• as functions p : [c]n → [0, 1], cf. Eq. (1.2);
• as nonnegative tensors with cn components p(α1, . . . , αn);
• as discrete probability vectors p ∈ ∆N with N = cn components pα, where each component speci-

fies the probability pα = p(α) = Pr(y = α), cf. Eq. (1.4).

In particular, the N vertices (extreme points)

eα ∈ {0, 1}N (1.5)

of ∆N are the unit vectors which encode the discrete Dirac measures δα concentrated on the realizations
α ∈ [c]n.

Figure 1.1 illustrates the approach for the toy distribution of two binary variables, i.e. c = 2 and N =
22 = 4,

p(α1, α2) :
α1/α2 0 1

0 0.45 0.05
1 0.05 0.45

(1.6)

The simplex ∆4 ⊂ R4 (1.4) is visualized in R3 in local coordinates as tetrahedron (Figure 1.1(a); see Ex-
ample 2.1 (p. 8) for details). The generative model only uses the submanifold of factorizing discrete distri-
butions which ensures computational efficiency of both training and sampling. Figure 1.1(a) shows that this
submanifold connects all extreme points of ∆4.

Figure 1.1(b) illustrates how sampling from p is accomplished after training, by computing on the sub-
manifold the integral curves of a generating flow which emanates from initial random points, such that each
curve converges to a vertex of the simplex which represents a realization α ∼ p(α) by (1.5). In this way, a
simple reference distribution is pushed forward to p. Figure 3.1 (p. 10) gives a more detailed account of the
ingredients of our approach.

Training concerns the parameters of the vector field of the dynamical system, which generates the afore-
mentioned flow on the submanifold. This is achieved by matching the flow to closed-form geodesics on the
submanifold which encode given training data. This flow matching approach has been recently proposed by
[LCBH+23, CL23]. Our paper elaborates this approach for discrete joint probability distributions using the
geometric approach outlined above.
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(a) (b)

FIGURE 1.1. (a) The simplex ∆N (1.4), for N = 4, depicted in local coordinates, and
the submanifold of factorizing discrete distributions which connects all extreme points of
∆4. (b) Visualization of 1000 samples from the target distribution p(α1, α2) given by (1.6),
corresponding to the blue point p ∈ ∆4. Each sample corresponds to an integral curve
of a flow which evolves on the submanifold and can be computed efficiently by geometric
integration. The parametrized vector field of the dynamical system which generates the flow
has been trainined by matching the flow to geodesics on the submanifold which encode
given training data. As a result, each component pα of the target distribution corresponds
to the relative frequency of integral curves converging to the vertex eα, such that the entire
distribution p is represented by the convex combination

∑
α pαeα = p. In this way, the flow

realizes the pushforward of a simple reference distribution, centered at 0 in the tangent space
at the barycenter (red point), to the discrete target distribution p. Figure 3.1 (p. 10) provides
a more detailled illustration of the approach.

1.2. Related Work. The central theme of our paper are large joint distributions of discrete random variables
which has been a core topic in multivariate and algebraic statistics, with numerous applications in terms
of discrete graphical models in various fields. In addition, our paper contributes to research on generative
models in machine learning. Related work is accordingly reported in Sections 1.2.1 and 1.2.3, respectively, in
view of own prior work briefly reported in Section 1.2.2 which combines both viewpoints. The recent related
work discussed in Section 1.2.3 reflects the fact that generative models for discrete probability distributions
has become an active field of research recently.

1.2.1. Statistics. Joint distributions of discrete random variables have a long history in multivariate statis-
tics [Agr13]. This includes the study of subsets of such distributions known as discrete graphical models
[Lau96, CDLS99, KF09]. Here, conditional independency assumptions encoded by the structure of an un-
derlying graph [Stu05] effectively reduce the degree of freedoms (1.3) of general discrete distributions p
and imply their factorization of once realizations of conditioning variables are observed. From the algebraic
viewpoint, such statistical assumptions about p give rise to monomial constraints. The study of the topology
and geometry of the resulting algebraic varieties which support corresponding subfamilies of distributions,
is the subject of the fields of algebraic statistics [GMS06, LSX09, DSS09, Zwi16, Sul18]. The special case
of fully factorizing discrete distributions

p(α) =
∏
i∈[n]

pi(αi) (1.7)
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is particularly relevant for this paper. For example, the subfamily of all such distributions for the toy case
n = c = 2, depicted by Figure 1.1, is known as Wright manifold in mathematical game theory [HS98] and
more generally as Segre variety Σ1,1 in algebraic geometry [Har92, Lan12].

1.2.2. Own Prior Work. Our approach utilizes assignment flows [ÅPSS17] that evolve on the relative inte-
rior of the product of n probability simplices ∆c, called assignment manifold, one factor for each random
variable yi, i ∈ [n] conforming to the factorization (1.7). As summarized in Section 2.1, the restriction
to strictly positive discrete distribution with full support enables to turn these domains into elementary sta-
tistical manifolds equipped with the Fisher-Rao geometry and the e-connection of information geometry
[AN00]. The corresponding exponential map and the geodesics can be specified in closed form.

Assignment flows are turned into a generative model for discrete random variables as illustrated by Figure
3.1, which generalizes the toy example (1.6) and Figure 1.1: Geometric integration of the assignment flow re-
alizes a map which pushes forward a standard reference measure on the tangent space at the barycenter to the
extreme points of the (closure) of the assignment manifold. By embedding the assignment manifold into the
simplex (1.4) of all discrete joint distributions, the pushforward measure concentrates on the extreme points
and hence represents a more complex non-factorizing discrete joint distribution by convex combination of
Dirac measures.

Our recent work [BCA+24] characterizes assignment flows as multi-population games and studies multi-
game dynamics via the aforementioned embedding approach. Some results established in this work regarding
the embedding map will be employed in Section 3.3.

1.2.3. Machine Learning. The lack of work on generative models for discrete distributions stated in the
survey papers [KPB21, PNR+21] has stimulated corresponding research recently.

The paper [SJW+24] employs the parametric Dirichlet distribution on the probability simplex [Fer73,
JK77, Ait82] as intermediate conditional distributions in a flow matching approach. A similarity to our
method is the use of infinite transport time, which achieves favorable scaling in the regime of many classes.
A detailed comparison is discussed in Section 3.2.5.

The paper [DKP+24] refers to [ÅPSS17] and a preliminary version [BGAS24] of our generative model
and uses geodesics with respect to the Riemannian connection rather than the e-connection, corresponding to
α = 0 and α = 1 in the family of α-connections, respectively [AN00]. By virtue of the sphere map [ÅPSS17,
Def. 1] as isometry, the former geodesics on the simplex correspond to the geodesics (great circles) on the
sphere with radius 2, restricted to the intersection with the open positive orthant. The authors of [DKP+24]
argue that their approach avoids numerical instability at the boundary of the manifold, which is indeed
relevant when working on the sphere. However, this issue does not arise on the simplex either, provided
that proper geometric numerical integration schemes are used, as demonstrated in [ZSPS20]. The focus of
[DKP+24] is on improving the training dynamics using optimal transport, due to the close relation on the
simplex of the geometry induced by the Wasserstein distance and the Fisher-Rao geometry [LM18].

Another line of research, called dequantization, concerns the approximation of discrete probability distri-
butions by continuous distributions [UML13, TvdOB16, DSDB17, SKCK17, HCS+19]. A dequantization
approach for general discrete data, i.e. similar in scope to our approach, was recently proposed by [CAN22].
We discuss this paper in Section 3.6 and point out differences by showing that our approach can be character-
ized as dequantization procedure. In particular, we indicate that a key component of the approach [CAN22],
learning an embedding of class configurations, can be replicated using our approach, by defining an payoff
function of our generative assignment flow approach accordingly.

Regarding the training of our generative model, our approach builds on the recent work [LCBH+23,
CL23]. The authors introduced a flow-matching approach to the training of continuous generative models
which enables more stable and efficient training and hence an attractive alternative to established maximum
likelihood training. We adopt this criterion and adapt it to our generative model for discrete distributions
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and the underlying geometry. In particular, we encode given training data as e-geodesics on the assignment
manifold which makes flow matching convenient and effective.

1.3. Organization. Section 1.4 fixes the basic notation. Section 2 summarizes the assignment flow ap-
proach and specifies the flow embedding into the simplex (1.4), along with mappings and their properties
required in the remainder of this paper.

The core Section 3 introduces and details our approach. Section 3.1 introduces the generative model.
The flow-matching approach is described in Section 3.2 and how it relates to the recent work [LCBH+23,
CL23] which inspired the training component of our approach. Section 3.4 details the particular geometric
integration used in all experiments for computing the assignment flow, based on the methods worked out by
[ZSPS20]. Section 3.5 explains how the trained generative model is evaluated for computing the likelihoods
of a novel unseen data points. Section (3.6) explains dequantization and characterizes our approach from
this viewpoint.

Experimental results are presented and discussed in Section 4. We conclude in Section 5.

1.4. Basic Notation, List of Main Symbols. We set [n] := {1, 2, . . . , n} for n ∈ N. The canonical
Euclidean inner product as well as the matrix inner product which induces the Frobenius norm, are denoted
by ⟨·, ·⟩. The mapping Diag(·) takes a vector to the diagonal matrix with the vector component as main
diagonal entries. ek, k ∈ N, denotes a unit vector with single non-zero k-th component equal to 1 and
dimension, that is clear from the context.

Data, labelings. G = (V, E), with vertex set V = [n], denotes an arbitrary graph on which data xi are
observed at every vertex i ∈ V . c ∈ N possible class labels of the data xi are represented by discrete random
variables yi ∈ [c]. Realizations of the variables yi are denoted by αi ∈ [c]. This results in N = cn labelings
configurations α = {α1, . . . , αn} for given data x = {x1, . . . , xn}.

Assignment flows, dynamical labelings. The probability simplex is denoted by

∆n = {p ∈ Rn≥0 : ⟨1n, p⟩ = 1}, (1.8)

where 1n = (1, 1, . . . , 1)⊤ ∈ Rn. Assignment flows (Section 2.1) work with the relative interior ∆̊c of ∆c,
denoted by Sc := ∆̊c, containing the strictly positive probability vectors of dimension c, and with the n-fold
product conforming to V ,

Wc := Sc × · · · × Sc, (n = |V| factors) (assignment manifold) (1.9)

Points on W are denoted by

W = (W1, . . . ,Wn)
⊤ ∈ Wc ⊂ Rn×c>0 , Wi ∈ Sc, i ∈ [n]. (1.10)

The evolution W (t) of these assignment vectors, obtained by integrating the assignment flow equation,
determines the label assignments αi to the data point xi at every i ∈ V , by convergence to the corresponding
unit vectors

lim
t→∞

Wi(t) = eαi ∈ {0, 1}c, i ∈ V, (1.11)

which are the extreme points of the closure of the assignment manifold Wc. Further spaces and mappings
defined in connection with assignment flows in Section 2.1 are: The tangent spaces T0, T0 to Sc,Wc with
orthogonal projections π0,Π0, the barycenters 1S ,1W of Sc,Wc, the Fisher-Rao metric gp, gW on T0, T0,
the replicator maps Rp, RW and the lifting maps expp, expW which play the role of exponential maps.

Besides the underlying geometry, the essential part of the assignment flow equation, whose integration
results in (1.11), is the

Fθ : Wc → Rn×c, (affinity function) (1.12)

whose parameters θ are learned from data.
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Meta-simplex, assignment manifold embedding. We overload the symbol p to denote discrete probabil-
ity distributions using any of the equivalent representations specified after Eq. (1.4), as well as discrete prob-
ability vectors whose dimension should be unambigous from the context. Major examples are p ∈ Sc ⊂ Rc≥0
and p ∈ ∆N (cf. (1.4)).

Since the embedding

T := T (Wc) ⊂ SN := ∆̊N (meta-simplex embedding) (1.13)

of the assignment manifold defined in Section (2.2) yields the submanifold of factorizing distributions in
∆N , as depicted for a toy scenario by Figure 1.1(a), we call ∆N as defined by (1.4) “meta-simplex”, to
distinguish the product of simplices Wc (1.9) before and after the embedding T (Wc) (1.13).

We denote by
P(Sc), P(Wc), etc. (1.14)

the set of probability measures supported on the space Sc,Wc, etc.

2. BACKGROUND

Section 2.1 defines spaces and mappings required in the remainder of the paper. Section 2.2 defines a
key ingredient of our approach, the embedding (1.13) and related mappings. We refer to the basic notation
introduced in Section 1.4.

2.1. Assignment Flows. The basic state space of discrete distributions is the relative interior of the proba-
bility simplex

Sc := ∆̊c = {p ∈ Rc : pj > 0, ⟨1c, p⟩ = 1, ∀j ∈ [c]} (2.1a)

with its

1S :=
1

c
1c ∈ Sc, (barycenter) (2.1b)

which becomes the Riemannian manifold (Sc, g) with trivial tangent bundle TSc = Sc×T0, comprising the

T0 := T1SSc := {v ∈ Rc : ⟨1c, v⟩ = 0} (tangent space) (2.1c)

with the orthogonal projection

π0 : Rc → T0, π0 := Ic − 1c1
⊤
S (orthogonal projection) (2.1d)

and carrying the

gp(u, v) := ⟨u,Diag(p)−1v⟩, u, v ∈ T0, p ∈ Sc. (Fisher-Rao metric) (2.1e)

This naturally extends to the product manifold (Wc, g) given by (1.9), with trivial tangent bundle TWc =
Wc × T0, and

1W = (1S , . . . ,1S)
⊤, (barycenter) (2.2a)

T0 := T1WWc := T0 × · · · × T0, (n = |V| factors) (tangent space) (2.2b)

with points denoted by

V = (V1, . . . , Vn)
⊤ ∈ Rn×c ∈ T0, Vi ∈ T0, i ∈ [n], (2.2c)

the orthogonal projection

Π0 : Rn×c → T0, Π0U := (π0U1, . . . , π0Un)
⊤ (orthogonal projection) (2.2d)
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and the

gW (U, V ) =
∑
i∈[n]

gWi(Ui, Vi), U, V ∈ T0, W ∈ Wc. (Fisher-Rao metric) (2.2e)

Assignment flows are dynamical systems of the general form

Ẇ (t) = RW (t)

[
Fθ

(
W (t)

)]
, W (0) =W0 ∈ Wc, (assignment flow) (2.3)

parametrized by an affinity function (1.12) and comprising the linear mappings

Rp : Rc → T0, Rp = Diag(p)− pp⊤, p ∈ Sc (replicator map) (2.4a)

RW : Rn×c → T0, RW [Fθ] = (RW1Fθ,1, . . . , RWnFθ,n)
⊤, W ∈ Wc. (replicator map) (2.4b)

The exponential maps with respect to the e-connection reads

Expp(v) =
p · e

v
p

⟨p, e p
v ⟩
, p ∈ Sc, v ∈ T0, (2.5a)

ExpW (V ) =
(
ExpW1

(V1), . . . ,ExpWn
(Vn)

)⊤
W ∈ Wc, V ∈ T0, (2.5b)

where both the multiplication · and the exponential function apply componentwise. Composition with the
replicator maps (2.4) yields the

expp : T0 → Sc, expp := ExpP ◦Rp, p ∈ Sc, (lifting map) (2.6a)

expW : T0 → Wc, expW := ExpW ◦RW , W ∈ Wc. (lifting map) (2.6b)

2.2. Meta-Simplex, Flow Embedding. The embedding (1.13) is defined by the map

T : Wc → T = T (Wc) ⊂ SN , T (W )α :=
∏
i∈[n]

Wi,αi , α ∈ [c]n. (2.7)

Denoting the tangent space to SN defined by (1.13) by

T0SN := {z ∈ RN : ⟨1N , z⟩ = 0}, (meta-tangent space) (2.8)

we also require the map

Q : Rn×c → RN , Q : T0 → T0SN , (QV )α :=
∑
i∈[n]

Vi,αi , α ∈ [c]n. (2.9)

The mappings T,Q have been studied by [BSGA+23, BCA+24].
Every point W ∈ W on the assignment manifold is represented through (2.7) by the combinatorially

large vector T (W ) with N = cn components T (W )α, consisting of monomials of degree n in the variables
Wi,αi ∈ (0, 1). A labeling determined by the assignment flow by (1.11) corresponds to

lim
t→∞

T
(
W (t)

)
= T

(
(eα1 , . . . , eαn)

⊤) = eα, (2.10)

that is, the unit vector (vertex) of the meta-simplex ∆N = SN corresponding to the Dirac measure δα
concentrated on the labelling α ∈ [c]n.

Example 2.1. We reconsider the toy scenario (1.6) of joint distributions of two binary variables. Such
distributions correspond on the assignment manifold to points of the form

W =
( ( w1

1−w1

)
,
( w2
1−w2

) )⊤
, w1, w2 ∈ (0, 1). (2.11)

Embedding this point by (2.7) yields the vector

T (W ) =
(
w1w2, w1(1− w2), (1− w1)w2, (1− w1)(1− w2)

)⊤
, (2.12)
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with components T (W )α indexed by the four possible labeling α ∈ {(1, 1), (1, 0), (0, 1), (0, 0)}. Since
any distribution on the assignment manifold factorizes, this vector is determined by merely two parame-
ters w1, w2. Accordingly, the embedded assignment manifold T = T (Wc) ⊂ SN is the two-dimensional
submanifold depicted by Figure 1.1(a).

In mathematics, such embedded sets are known as Segre varieties at the intersection of algebraic geometry
and statistics [LSX09, DSS09].

The following proposition highlights the specific role of the submanifold of SN corresponding to the
embedded assignment manifold T = T (W) ⊂ SN .

Proposition 2.2 ([BCA+24, Prop. 3.2]). For every W ∈ Wc, the distribution T (W ) ∈ SN has maximum
entropy

H
(
T (W )

)
= −

∑
α∈[c]n

T (W )α log T (W )α (2.13)

among all p ∈ SN subject to the marginal constraint

Mp =W, (2.14a)

where the marginalization map is given by

M : RN → Rn×c, (Mp)i,j :=
∑

α∈[c]n : αi=j

pα, ∀(i, j) ∈ [n]× [c]. (2.14b)

As a consequence, any general distribution p ∈ SN \ T (Wc) which is not in T (Wc), has non-maximal
entropy and hence is more informative by encoding additional statistical dependencies [CT06].

Our approach for generating such general distributions p ∈ SN , by combining simple factorizing distri-
butions W ∈ Wc via the embedding (2.7) and assignment flows (2.3), is introduced in following Section
3.

3. APPROACH

Section 3.1 introduces our generative model for representing and learning a discrete joint distribution
p = p(α) ∈ SN of label configurations α = (α1, . . . , αn) as realizations of discrete random variables
y = (y1, . . . , yn) ∼ p. The approach is illustrated by Figure 3.1. The training procedure for simulation-
free training of the generative model is worked out in Section 3.2. Section 3.3 specifies precisely how
the approximation of p is achieved in the meta-simplex by measure transport on the embedded nonlinear
submanifold of factorizing distributions.

We conclude with short Sections 3.4–3.6 on the geometric integration method that we employed for the
discretization of our time-continuous generative model in numerical experiments, on the computation of the
likelihood p̃(α) of arbitrary label configurations using the learned generative model, and on the characteri-
zation of our approach as a dequantization procedure.

3.1. Generative Model.

3.1.1. Goal. The goal is to learn an approximation

p̃ ≈ p, (approximation) (3.1)

as convex combination of factorizing joint distributions. The submanifold T = T (Wc) ⊂ SN shown
in Figure 1.1(a) spans all factorizing distributions T (W ) ∈ SN , which are efficiently represented by their
marginalsW ∈ Wc due to (2.14a). In particular, since the dimension of Wc only grows linearly in the number
of variables n, factorizing distributions are tractable to work with numerically. However, only independent
random variables follow factorizing distributions, posing the question of how statistical coupling between
such variables can be represented through convex combination.
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FIGURE 3.1. Overview of the approach: The standard Gaussian reference measure
N (0, I) is pushed forward by the lifting map expW from the flat tangent product space
T0 to the assignment manifold Wc, and further to the meta-simplex SN via the embedding
map T (2.7), by geometrically integrating the assignment flow equation (2.3). Since the
assignment flow converges to the extreme points of Wc which after embedding agree with
the extreme points of ∆N = SN , an approximation p̃(α) of a general discrete target mea-
sure p(α) can be learned in terms of a corresponding convex combination of extreme points.
This is achieved by matching the flow of e-geodesics which encode given training samples
to the generating assignment flow, by empirical expectation, and by learning the parameters
of the affinity function Fθ (1.12). Since factorizing distributions T (W ), W ∈ Wc, are only
required, the approach is computationally feasible also in high dimensions.

3.1.2. Representation of General Distributions. Note that the submanifold of factorizing distributions T ⊆
SN is nonconvex. Thus, convex combinations of two factorizing distributions T (W1) and T (W2) generally
lie outside of T and hence form a non-factorizing distribution.

In addition, we observe that every Dirac measure eα factorizes. Intuitively, this is because each variable
has a deterministic value, independent of all others. Because Dirac measures are the extreme points of the
convex set SN , every joint distribution p̃ ∈ SN representing an arbitrary coupling between variables can be
written as a convex combination of Dirac measures

p̃ =
∑
α∈[c]n

p̃αeα. (3.2)

This particular representation of p̃ is intractable, however, because it involves a combinatorially large number
of mixture coefficients p̃α. To tame this complexity, the key idea is to represent mixtures p̃ ∈ SN of
factorizing distributions as measures ν ∈ P(Wc) by

p̃ = EW∼ν [T (W )]. (3.3)

This shifts the problem of parameterizing useful subsets of combinatorially many mixture coefficients in
(3.2) to the problem of parameterizing a preferably large subset of measures ν ∈ P(Wc), supported on
the comparatively low-dimensional manifold Wc. The latter can be achieved by parameterized measure
transport on the assignment manifold Wc.

Specifically, a simple reference measure

ν0 ∈ P(Wc) (reference measure) (3.4a)
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is chosen and transported by the assignment flow (2.3), reaching

ν = ν∞ for t→ ∞. (transported measure) (3.4b)

Parameterization of measures

νθ ∈ P(W) (parametrized measure) (3.4c)

is achieved by choosing an appropriate class of affinity functions Fθ : W → Rn×c (1.12) driving the assign-
ment flow (2.3). Note that, while the support of p̃ in (3.2) was directly associated with the number of mixture
coefficients, the complexity of representing p̃ via the ansatz (3.3) is no longer associated with its support.

The simplest example of (3.3) is the representation of

p̃ = 1SN
(3.5)

by choosing Fθ ≡ 0 and a product reference distribution

ν0 =
∏
i∈[n]

ν0;i ∈ P(Wc) (3.6)

with mean EWi∼ν0;i [Wi] = 1Sc , which through the embedding (3.3) yields (3.5), which has full support on
the very high-dimensional space [c]n. We make this connection more explicit.

Lemma 3.1 (convex combination of embedded nodewise measures). Suppose the reference measure ν0
has the product form (3.6) with νi ∈ P(Sc). Then the joint distribution represented by the mixture (3.3)
reads

p̃ = EW∼ν [T (W )] = T (Ŵ ), Ŵi = EWi∼νi [Wi], i ∈ [n]. (3.7)

Proof. Let α ∈ [c]n be an arbitrary multi-index. Since ν factorizes in the described manner, W ∼ ν is
independently distributed on each node which implies

p̃α = EW∼ν [T (W )α] = EW∼ν

[ ∏
i∈[n]

Wi,αi

]
=

∏
i∈[n]

EW∼νi [Wi,αi ] = T (Ŵ )α. (3.8)

□

Lemma 3.1 shows that, if ν is independent on every node, then p̃ ∈ T . In particular, coupling between
variables, to be represented by the joint distribution p̃, has necessarily to be induced by the interaction of
node states over the course of integrating the assignment flow.

3.1.3. Model Learning and Model Evaluation (Sampling). The target distribution p is unknown, in practice,
and only independently drawn training samples β ∼ p are available. After choosing a class of payoff
functions Fθ, the task is to learn parameters θ such that

p̃ = EW∼νθ [T (W )], (3.9)

i.e. a parametrization of the right-hand side of (3.3), approximates the empirical distribution of samples. To
this end, we identify samples β with the corresponding extremal points Meβ ∈ Wc (Section 3.2.1) and use
flow matching on Wc to learn θ in a numerically stable and efficient way (Section 3.2).

After learning has converged, new samples β ∼ p̃ from the approximate distribution p̃ ≈ p can be drawn
by a two-stage process:

(i) First, an initialization W0 ∼ ν0 is drawn and evolved over time W (t) ∈ Wc by integrating the learned
assignment flow until either the desired time tmax is reached, or W (t) approaches an extreme point of
Wc.

(ii) The new data is subsequently drawn from the factorizing distribution T (W (tmax)). At extreme points
Meβ′ , this distribution is a Dirac measure and sampling from it always yields β′.
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3.2. Riemannian Flow Matching. in this section, we work out details of the procedure for training gener-
ative assignment flows.

3.2.1. Representation of Labelings as Training Data. Our approach to training the generative model utilizes
labelings as training data of the form

W ∈ Wc, W i = eαi , αi ∈ [c], ∀i ∈ [n]. (3.10)

Any such point W assigns a label (category) αi to each vertex i ∈ V in terms of a corresponding unit vector
eαi ∈ {0, 1}c. The flow-matching criterion, specified in the following section, is optimized to find θ such
that Fθ drives the assignment flow to labelings in the limit limt→∞W (t) = W . In practice, the assignment
flow is integrated up to a sufficiently large point of time

tmax > 0 (3.11)

followed by trivial rounding of Wi(tmax) 7→ eαi at every vertex i.

3.2.2. Training Criterion. This section details the approach schematically depicted by Figure 3.1. In the
following,

β ∼ p (3.12)
denotes labeling configurations for training, drawn from the unknown underlying discrete joint data distri-
bution p. β corresponds to the Dirac measure eβ ∈ SN (extreme point) of the meta-simplex SN and to a
corresponding point W β =Meβ ∈ Wc, to which the assignment flow (2.3) may converge.

The idea of flow matching is to directly fit the model vector field, in our case the assignment flow vector
field (2.3),

Vθ(W, t) := RW [Fθ(W, t)], (3.13)
to a vector field whose flow realizes a desired measure transport. Let ν0 ∈ P(W) be a simple reference
measure and define conditional probability paths

νt(β) (3.14)

satisfying

ν0(β) := ν0 (3.15a)

ν∞(β) := lim
t→∞

νt(β) = δWβ
(W ) for all β ∈ [c]n, (3.15b)

where W β = (eβ1 , . . . , eβn)
⊤ ∈ {0, 1}n×c is the extreme point of Wc corresponding to β, such that

T (W β) = eβ ∈ SN . Then the marginal probability path

νt = Eβ∼p[νt(β)] (3.16)

represents the target data distribution p in the limit t→ ∞ by ν∞ and

EW∼ν∞ [T (W )] = Eβ∼p[eβ] = p. (3.17)

In principle, we can now define a vector field

ut : Wc → T0 (3.18)

which generates the path t 7→ νt in the sense that the flow of ut pushes forward ν0 to νt, for all times t ≥ 0.
Let ρ ∈ P([0,∞)) be a distribution with full support on the non-negative time axis. Regression of the
assignment flow vector field (3.13),

Vθ(·, t) : Wc → T0, (3.19)
with respect to ut, amounts to minimizing the Riemannian flow matching criterion

LRFM(θ) = Et∼ρ,W∼νt

[∥∥ut(W )− Vθ(W, t)
∥∥2
W

]
, (3.20)
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where ∥ · ∥2W = gW (·, ·) (cf. (2.2e)).
In this form, flow matching is intractable, however, because we do not have access to the required field

ut. On the other hand, since we are at liberty to define conditional paths that conform to the constraints
(3.15), we can choose νt(β) that are generated by conditional vector fields ut(·|β) with known form. The
key insight in [CL23], based on [LCBH+23] and provided that each νt(β) is generated by ut(·|β), is that the
loss function (3.20) has the same gradient with respect to θ as the Riemannian conditional flow matching
criterion

LRCFM(θ) = Et∼ρ,β∼p,W∼νt(β)

[∥∥ut(W |β)− Vθ(W, t)
∥∥2
W

]
(3.21a)

(3.13)
= Et∼ρ,β∼p,W∼νt(β)

[∥∥ut(W |β)−RW [Fθ(W, t)]
∥∥2
W

]
. (3.21b)

By contrast to (3.20), conditional vector fields ut(W |β) generating a path

t 7→ νt(β) (3.22)

with the required properties (3.15) can be specified in closed form (cf. Proposition 3.28 below), and the
conditional loss function (3.21) can be evaluated efficiently. Ultimately, by minimizing (3.21), the measure
νt generated from the reference measure ν0 by the assignment flow vector field RW [Fθ(W, t)] approximates
ν∞ in the limit t→ ∞, which represents the unknown data distribution p through (3.17).

3.2.3. Constructing Conditional Fields. This section specifies the conditional vector fields ut(W |β) that
generate the paths (3.22) conforming to (3.15) and define the conditional flow matching objective (3.21).

Let
N0(V ) := N (V ; 0,Π0) (3.23)

denote the standard Gaussian centered in the tangent space at 0 ∈ T0, with the orthogonal projection (2.2d)
respresenting the identity map on T0 ⊂ Rn×c. Pushing forward N0 by the lifting map (2.6b) at the barycenter
yields a simple reference distribution

ν0 = (exp1W )♯N0 ∈ P(W). (3.24)

The distribution (3.24) is simple in the sense that it is easy to draw samples and the conditions of Lemma 3.1
are satisfied; in particular, ν0 factorizes node-wise. For each labeling β ∈ [c]n and the corresponding extreme
point W β = (eβ1 , . . . , eβn) ∈ Wc, and a

λ > 0, (rate parameter) (3.25)

define the probability path

t 7→ Nt,β := N (·; tλVβ,Π0) ∈ P(T0), Vβ := Π0W β, (3.26)

and lift it to Wc, defining
νt(β) := (exp1W )♯Nt,β. (3.27)

The parameter λ controls the rate at which νt(β) moves probability mass closer to W β . Small values of λ
move the mass slowly; this is useful in settings with many labels c ≫ 1, enabling the process to make class
decisions during a longer time period. Figure 3.2 illustrates quantitatively the influence of λ.

The following proposition makes explicit the conditional vector field ut(W |β) that generates (3.27) and
hence defines the training objective function (3.21). Recall the notation of Section 2.2 and the first paragraph
of Section 3.2.2 explaining the one-to-one correspondence between

• a labelling configuration β,
• the corresponding Dirac measure eβ ∈ SN of the meta simplex, and
• the corresponding point W β ∈ Wc of the closure of the assignment manifold.



14 B. BOLL, D. GONZALEZ-ALVARADO, S. PETRA, C. SCHNÖRR

0 2 4 6 8 10 12 14
Time

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
of

 ta
rg

et
 la

be
l

= 0.1 
c = 5
c = 20
c = 60
c = 120
c = 160

0 2 4 6 8 10 12 14
Time

= 0.3 

c = 5
c = 20
c = 60
c = 120
c = 160

0 2 4 6 8 10 12 14
Time

= 0.5 

c = 5
c = 20
c = 60
c = 120
c = 160

0 2 4 6 8 10 12 14
Time

= 0.8 

c = 5
c = 20
c = 60
c = 120
c = 160

FIGURE 3.2. Influence of the parameter λ controlling in (3.26) and (3.30), respectively, the
rate of assignment of mass of the pushforward probability measure (3.27) to a target label,
depending on the number c of labels (classes, categories).

Proposition 3.2 (conditional vector fields). The probability paths defined in (3.27) are generated through
the smooth flow

ψ·(·|β) : R≥0 × T0 → Wc, ψt
(
V |β

)
= exp1W (V + tλVβ). (3.28)

It is invertible and has the smooth inverse

ψ−1
t (W |β) = exp−1

1W
(W )− tλVβ. (3.29)

In particular, the conditional vector field that generates (3.27) is given by

ut(W |β) = RW [λVβ]. (3.30)

Proof. See Appendix A.1, page 25. □

Proposition 3.3 (conditional path constraints). The conditional probability paths νt(β) defined by (3.27)
satisfy the constraints (3.15).

Proof. See Appendix A.1, page 26. □

The path Nt is generated on the tangent space T0 by the constant vector field V 7→ λVβ given by (3.26).
The related vector field on Wc, which generates the path (3.27), is given by (3.30). Comparing the shape of
this field to (2.3) makes clear that assignment flows are natural candidate dynamics for matching conditional
paths of the described form. The Riemannian conditional flow matching objective (3.21) consequently reads

LRCFM(θ) = Et∼ρ,β∼p,W∼νt(β)

[∥∥RW [λVβ − Fθ(W, t)]
∥∥2
W

]
. (3.31)

We point out that this criterion is ‘simulation free’, i.e. no integration of the assignment flow is required
for loss evaluation, which makes training computationally efficient.

Our approach (3.31) constitutes a novel instance of the flow-matching approach to generative modeling,
introduced by [LCBH+23] and recently extended to Riemannian manifolds by [CL23]. This instance uses
the assignment manifold (1.9) and the corresponding Riemannian flow (2.3), along with the meta-simplex
embedding (2.7), to devise a generative model whose underlying information geometry tailors the model to
the representation and learning of discrete joint probability distributions.
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FIGURE 3.3. Norms ∥v(s)∥ of the tangent vectors v(s) = exp−1
1S

(
p(s)

)
with p(s) =

( s−1
s , 1

(c−1)s , . . . ,
1

(c−1)s

)
→ e1 ∈ Rc if s → ∞, for numbers of labels c ∈

{3, 10, 100, 1000}. Since ∥e1 − p(s)∥ =
(

c
c−1

)1/2 1
s ≈ 1

s , the simplex ∆c is covered,
up to a very small distance to its boundary, by exp1S (B0(r)) ⊂ Sc and tangent vectors
v ∈ B0(r) ⊂ T0 within a ball B0(r) centered at 0 ∈ T0 with radius r = 15.

3.2.4. Infinite Integration Time. A notable difference between our approach and previous Riemannian flow
matching methods is that the target distribution is reached for t → ∞ rather than after finite time. This
corresponds to the fact that e-geodesics do not reach boundary points of Wc after finite time and thus avoids
two problems faced in prior work.

First, unlike the preliminary version presented in [BGAS24], data points β ∈ [c]n do not need to be
smoothed in order to present targets in the interior of W . Instead, we can directly approach extreme points
W β ∈ Wc, even though they are at infinity in the tangent space T0 at 1W . Figure 3.3 shows that working
within a ball in T0 with radius 15 suffices to represent ‘infinity’ in practice.

Second, by not moving all mass of the reference distribution (close) to W β in finite time, we avoid a
pathological behavior which can arise in flow matching on the simplex. Denote by

rβ =
{
W ∈ Wc : βi ∈ argmax

j∈[c]
Wi,j , ∀i ∈ [n]

}
(3.32)

the subset of points in W which assign their largest probability to the labels β. [SJW+24, Proposition 1]
lays out that moving all mass of the reference distribution (close) to W β in finite time forces the model to
make class decisions very early because the probability of rβ under νt(β) increases too quickly. The effect
is exacerbated by increasing the number of classes c that the model is asked to discriminate.

However, by opting for large integration time t → ∞ and a corresponding construction (3.27) of con-
ditional probability paths, our approach is able to scale to many classes c ≫ 1, avoiding the pathology
described in [SJW+24, Proposition 1]. Formally, this is because νt(β) defined in (3.27) has full support on
Wc for every t ≥ 0. In practice, the parameter λ in (3.26) can be used to control the speed at which the
probability of rβ under νt(β) increases, allowing the model to make class decisions gradually over time.

Figure 4.5 (page 24) displays probability density paths for illustration. The corresponding impact on
model accuracy is quantitatively shown in Figure 4.1 (page 20), with experimental details elaborated in
Section 4.1.

3.2.5. Relation to Dirichlet Flow Matching. The construction of [SJW+24] specifically addresses patholog-
ical behavior of flow matching on the simplex, by choosing conditional probability paths νt(β) as paths of
Dirichlet distributions. They demonstrate that this approach scales to at least c = 160 classes, by allowing
the model to make class decisions gradually over time. However, the explicit definition of νt(β) as paths
of Dirichlet distributions makes it non-trivial to find corresponding vector fields ut(·|β) for flow matching,
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which leads them to make an ansatz for fields which move mass along straight lines in the ambient Euclidean
space in which the probability simplex is embedded.

While we also make an explicit choice for νt(β) in (3.27), our construction is notably simpler than the
approach of [SJW+24], allowing to easily compute the vector fields ut(·|β) by pushforward (Proposition
3.2). The resulting flow moves mass along e-geodesics on W , which is much more natural with respect to
the information geometry of discrete probability distributions. To illustrate this point, consider a straight
path p̂(t) ∈ Rn with direction d

dt p̂(t) = v ∈ Rn at all times t. The trajectory p̂(t) is generated by maximizing
⟨v, p̂⟩ along its gradient direction. On Wc, the quantity ⟨Vβ,W ⟩ can be interpreted as correlation between
W ∈ Wc and the direction Vβ . The Riemannian gradient of this correlation with respect to the product
Fisher-Rao geometry on Wc is RW [Vβ], i.e. precisely the direction of the conditional vector field (3.30).

3.3. Learning Interaction between Simplices. Our prior work [BCA+24] has studied the relationship be-
tween assignment flows on the product manifold Wc and replicator dynamics on the meta-simplex SN . We
now use core results of [BCA+24] to derive the flow matching approach of Section 3.2 from first princi-
ples of flow matching in SN , that is in the combinatorially large space of all discrete joint distributions. This
demonstrates, in particular, that the proposed approach is suitable for structured prediction settings, in which
multiple coupled random variables are of interest.

The result is surprising because direct flow matching of joint distributions in SN is intractable due to
the combinatorial dimension N = cn. However, by leveraging the submanifold T (defined by (1.13) and
illustrated by Figure 1.1) and the compatibility of assignment flows with its geometry, we show that our con-
struction can effectively break down combinatorial complexity and define a numerically tractable method.

The map T : Wc → SN defined in (2.7) associates a marginal distribution of n discrete random variables
W ∈ Wc with a factorizing joint distribution T (W ) ∈ SN . Define with slight abuse of notation1 the
orthogonal projection

π0 : RN → T0SN (3.33)
and formally denote the scaled standard normal distribution on T0SN with variance cn−1 by

N SN
0 = (

√
cn−1π0)♯N (0, IN ) = N (0, cn−1π0π

⊤
0 ) = N (0, cn−1π0). (3.34)

Analogous to the construction of conditional measures in Section 3.2.3, we define the path of conditional
measures

N SN
t (·|β) = N (·; tcn−1λπ0eβ, c

n−1π0) (3.35)
given a labeling β ∈ [c]n and a rate parameter λ > 0, scaled by the constant cn−1. It follows from Proposi-
tion 3.3 that

νSN
t (β) = (exp1SN

)♯N SN
t (·|β) (3.36)

satisfies the conditions (3.15) on SN and is thus suitable for flow matching on SN with reference distribution
νSN
0 = N SN

0 . Formally, the Riemannian conditional flow matching criterion analogous to (3.31) reads

LSN
RCFM(θ) = E

t∼ρ,β∼p,q∼νSN
t (β)

[∥∥Rq[λπ0eβ − fθ(q, t)]
∥∥2
w

]
(3.37)

for an affinity function fθ : SN × [0,∞) → T0SN .
The task of minimizing (3.37) is numerically intractable, because we are not even able to easily represent

general points q ∈ SN \ T in the complement of the embedded assignment manifold T = T (Wc) given by
(2.7). To break down this complexity, we will define a projection onto T by using the lifting map lemma
[BCA+24, Lemma 3.3], which states

exp1SN
(QV ) = T

(
exp1W (V )

)
(3.38)

1π0 is defined by (2.1d) as orthogonal projection onto the tangent space T0Sc of the single simplex Sc with trivial tangent bundle
Sc × T0. Here, to simplify notation, we overload π0 to denote analogously the orthogonal projection onto the tangent space T0SN .
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for all tangent vectors V ∈ T0W , with the mappings T and Q defined by (2.7) and (2.9). We start with an
orthogonal projection T0SN → img(Q) ∩ T0SN .

Lemma 3.4 (orthogonal projection onto img(Q) ∩ T0SN ). The orthogonal projection proj0 of tangent
vectors in T0SN to the subspace imgQ ∩ T0SN reads

proj0 : T0SN → imgQ ∩ T0SN , proj0(v) := QcΠ0Qc
⊤, v for v ∈ T0SN , (3.39)

in terms of the linear operator

Qc :=
1√
cn−1

Q. (3.40)

Since (3.38) ensures that exp1SN
(imgQ) ⊆ T , we can now define the projection

projT := exp1SN
◦ proj0 ◦ exp−1

1SN
: SN → T . (3.41)

Under this projection, the conditional measures νSN
t (β) ∈ P(SN ) precisely induce the conditional proba-

bility paths νt(β) ∈ P(Wc) defined by (3.27). Note that every extreme point of SN lies in (the closure of)
T . Thus, projecting to T preserves the Dirac measures δeβ reached by the conditional distributions (3.36) in
the limit t → ∞. In particular, the projection transforms the intractable conditional flow matching criterion
(3.37) on SN into the numerically tractable criterion (3.31).

Theorem 3.5 (projected flow matching on SN ). For any β ∈ [c]n, the pushforward of the conditional
measure νSN

t (β) defined in (3.36) under the projection projT : SN → T defined in (3.41) is

(projT )♯ν
SN
t (β) = T♯νt(β) (3.42)

with νt(β) ∈ P(Wc) defined in (3.27) and the embedding map T given by (2.7). Furthermore, the flow
matching criterion on T , induced by the conditional paths (3.42), reads

LT
RCFM(θ) = E

t∼ρ,β∼p,q∼(projT )♯ν
SN
t (β)

[∥∥Rq[λπ0eβ − f̃θ(q, t)]
∥∥2
w

]
(3.43)

and, using the ansatz f̃θ = Q ◦ Fθ ◦M with Q and M defined by (2.9) and (2.14b) , (3.43) is equal to the
criterion (3.31) for matching assignment flows on Wc.

Theorem 3.5 shows that the constructed flow matching on Wc, which operates separately on multiple
simplices, is induced by flow matching in the single meta-simplex SN , with conditional distribution paths
and vector fields projected to the submanifold T = T (Wc).

This result provides a geometric justification of the fact that interaction between simplices is learned
through flow matching, even though all conditional probability paths νt(β) used for training can be sepa-
rately constructed on individual simplices.

3.4. Numerical Flow Integration. We point out again that learning our generative model by Riemannian
flow matching is ’simulation free’: numerical integration is not required since only vector fields have to
be matched which are defined on the tangent bundle of the assignment manifold and on the corresponding
tangent-subspace distribution of the meta simplex (Prop. 3.5), respectively. On the other hand, numerical
integration of the flow is required for evaluating the learned generative model, in order to sample as illustrated
by Figure 1.1, or for likelihood computation (Section 3.5).

Since the flow corresponds to an ODE on a Riemannian manifold, geometric numerical integration utilizes
various representations of the ODE on the tangent bundle in order to apply established methods for numer-
ical integration on Euclidean spaces [HLW06]. In the case of the assignment flow, this has been thoroughly
studied by [ZSPS20] using the extension of the lifting map (2.6a) to the product manifold (2.6b), regarded
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as action of the respective tangent space (regarded as additive abelian Lie group) on the assignment mani-
fold. From the general viewpoint of geometric numerical integration, the resulting schemes for geometric
numerical integration categorize as Runge-Kutta schemes of Munthe-Kaas type [MK99].

Specifically, in this paper, numerical integration was carried out using the classical explicit embedded
Dormand & Prince Runge-Kutta method [DP80] of orders 4 & 5 with stepsize control (cf. [ZSPS20, Section
5.2] and [HNW08, Section II.5]).

3.5. Likelihood Computation. The likelihood of test data under the model distribution p̃ is commonly
used as a surrogate for Kullback-Leibler divergence between p̃ and the true data distribution p, due to the
relationship

KL(p, p̃) = Ep
[
log

p

p̃

]
= −H(p)− Ep[log p̃]. (3.44)

The entropy H(p) is a property of the data distribution, which is not typically known, but can be treated as
a constant which does not depend on the model used to approximate p̃. For continuous normalizing flows,
likelihood under the model is directly used as a training criterion, for this reason. Using the instantaneous
change-of-variables formula [CRBD18]

∂

∂t
log νt(x) = − tr J(x, t), (3.45)

log-likelihood under continuous normalizing flows can, on continuous state spaces, be computed by integrat-
ing (3.45) backward in time. In (3.45), J(x, t) denotes the vector field Jacobian, whose trace is commonly
approximated by using Hutchinson’s estimator [Hut89]

tr J = Ev[⟨v, Jv⟩] (3.46)

with v drawn from a fixed normal or Rademacher distribution. The use of this estimator in the context of
likelihood under continuous normalizing flows was proposed by [GCB+19]. The authors use a single sample
v for each integration of (3.45), which yields an unbiased estimator for log-likelihood of independent test
data. In order to use likelihood as a training criterion, numerical integration of (3.45) is required. This entails
many forward and backward passes through the employed network architecture in order to compute a single
parameter update.

Therefore, we do not use likelihood as a training criterion, opting instead for the simulation-free flow
matching approach of Section 3.2. Since the learned model is still a normalizing flow, (3.45) remains a
useful tool for computing likelihoods under our model. However, because we are modeling discrete data
while working on continuous state spaces, likelihood of discrete data can not be computed as a point estimate
on Wc. Further details are provided in Appendix C.

3.6. Dequantization. Approximation of discrete data distributions by continuous distributions has been
studied through the lens of dequantization. Choose a latent space Fn and an embedding of class label
configurations β ∈ [c]n as prototypical points f∗β ∈ Fn. Suppose the choice of these points is fixed before
training and associate disjoint sets Aβ ⊆ Fn with label configurations such that they form a partition of Fn

and f∗β ∈ Aβ . We can then define the continuous surrogate model

ϑ =
∑
β∈[c]n

pβUAβ
∈ P(Fn) (3.47)

which represents p ∈ SN as a mixture of uniform distributions UAβ
, supported on the disjoint subsets Aβ .

The underlying idea is that

Pϑ(Aβ) =
∫
Aβ

ϑ(y)dy = pβ

∫
Aβ

UAβ
(y)dy = pβ (3.48)
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due to the disjoint support of mixture components in (3.47). Denote a continuous model distribution by
ν ∈ P(Fn). Using Jensen’s inequality, we find

−H(ϑ)−KL(ϑ, ν) =

∫
ϑ(y) log ν(y)dy =

∑
β∈[c]n

pβ

∫
Aβ

log ν(y)dy (3.49a)

≤
∑
β∈[c]n

pβ log

∫
Aβ

ν(y)dy (3.49b)

= −H(p)−KL(p, q) (3.49c)

for the discrete model distribution q defined by

qβ =

∫
Aβ

ν(y)dy = Pν(Aβ). (3.50)

Thus, fitting ν to ϑ by maximizing log-likelihood of smoothed data drawn from ϑ implicitly minimizes an
upper bound on the relative entropy KL(p, q). In practice, drawing smoothed data from ϱ amounts to adding
noise to the prototypes f∗βk ∈ Fn of discrete data {βk}k∈[m].

The above dequantization approach was first proposed by [TvdOB16]. Their reasoning justifies the pre-
viously known heuristic of adding noise to dequantize data [UML13]. It has thenceforth become common
practice for training normalizing flows as generative models of images [DSDB17, SKCK17] and was gener-
alized to non-uniform noise distributions by [HCS+19]. These authors focus on image data which, although
originally continuous, are only available discretized into 8-bit integer color values for efficient digital stor-
age. In this case, the underlying continuous color imparts a natural structure on the set of discrete classes.
Similar colors are naturally represented as prototypes which are close to each other with respect to some
metric on the feature space Fn.

For the general discrete data considered here, such a structure is not available. As a remedy, [CAN22]
present an approach to learn the embedding jointly with likelihood maximization and defining the partition
of Fn into subsets Aβ through Voronoi tesselation. The rounding model variant (C.1) of our approach can
be seen as dequantization on the space Fn = Wc with prototypical points f∗β =W β . The sets Aβ generated
by Voronoi tesselation then coincide with the sets rβ defined by (3.32). However, our approach differs
from [CAN22] by using flow matching instead of likelihood-based training and by explicit consideration of
information geometry on Wc.

A natural question is whether the ability to learn an embedding of class configurations as prototypical
points f∗β , thereby representing similarity relations between classes, can be replicated in our setting. Indeed,
because points in Sc have a clear interpretation as categorical distributions, it is easy to achieve this goal by
extending the affinity function Fθ of the assignment flow (2.3).

For some L > 0, let E ∈ RL×c be a learnable embedding matrix. The columns of E can be seen
as prototypical points in the Euclidean latent space RL. The action of E on an integer probability vector
ej ∈ Sc precisely selects one of these points, associating it with the class j ∈ [c]. Learning E now allows
to represent relationships between classes in the latent space RL. Let E : Rn×c → Rn×c denote the linear
operator which applies E nodewise. We now choose a parameterized function F̃θ : RL → RL that operates
on RL and define the extended payoff function

Fθ = E⊤ ◦ F̃θ ◦ E : Wc → Rn×c. (3.51)

4. EXPERIMENTS AND DISCUSSION

As outlined in Section 3, we perform Riemannian flow-matching (3.20) via the conditional objective
(3.31) to learn assignment flows (2.3). These in turn approximate p∞ in the limit t → ∞ and thereby the
unknown data distribution p through (3.17).
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4.1. Class Scaling. First, we replicate the experiment of [SJW+24, Figure 4] to verify that our model is
able to make decisions gradually over longer integration time and can scale to many classes c. Details of the
training procedure are relegated to Appendix B.1. For each c, the data distribution is a randomly generated,
factorizing distribution on n = 4 simplices.

Figure 4.1 shows the relative entropy between the learned models (histogram of 512k samples) and the
known target distribution. Our proposed approach is able to outperform our earlier method [BGAS24]
(green) as well as Dirichlet flow matching [SJW+24] (orange) and the linear flow matching baseline (blue)
in terms of scaling to many classes c. In Figure 4.1, the linear flow matching baseline scales better to many
classes than in [SJW+24, Figure 4], but the qualitative statement that linear flow matching is ill-suited to
this end is still supported by our empirical findings. Our preliminary approach [BGAS24] (green) also scales
comparatively well, even outperforming Dirichlet flow matching. Figures 4.5 and 4.6 illustrate probability
paths νt(β) for our approach (cf. (3.27)) and Dirichlet flow matching [SJW+24] at different time scales.

A property of assignment flow approaches, possibly linked to observed performance, is to transport prob-
ability mass relative to the underlying Fisher Rao geometry (recall Section 3.2.5). For example, this leads to
little probability mass in regions close to the simplex boundaries (Figure 4.5).
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FIGURE 4.1. Relative entropy between learned models (histogram of 512k samples) and a
known, factorizing target distribution on n = 4 simplices with varying number of classes c.
By leveraging information geometry and gradual decision-making over time, our proposed
approach (red) is able to outperform our earlier method [BGAS24] as well as Dirichlet flow
matching [SJW+24] in terms of scaling to many classes c.

4.2. Generating Image Segmentations. In image segmentation, a joint assignment of classes to pixels is
usually sought conditioned on the pixel values themselves. Here, we instead focus on the unconditional
discrete distribution of segmentations, without regard to the original pixel data. These discrete distributions
are very high-dimensional in general, with N = cn increasing exponentially in the number of pixels.

To this end, we parametrize Fθ by the UNet architecture of [DN21] and train on downsampled segmenta-
tions of Cityscapes [COR+16] images, as well as MNIST [LCB10], regarded as binary c = 2 segmentations
after thresholding continuous pixel values at 0.5. Details of the training procedure are relegated to Appen-
dix B.2.

Figures 4.2 and 4.3 show samples from the learned distribution of binarized MNIST and Cityscapes seg-
mentations respectively, next to the closest training data. This illustrates that our model is able to interpolate



GENERATIVE ASSIGNMENT FLOWS 21

the data distribution, without simply memorizing training data. Additional samples from our Cityscapes
model are shown in Figure 4.4.

FIGURE 4.2. Comparison of model samples to the closest training data. Left with red bor-
der: samples drawn from our model of the binarized MNIST distribution. Right: training
data closest to the sample in terms of pixel-wise distance.

4.3. Likelihood Evaluation. We compute the likelihood of test data from the MNIST dataset (binarized by
thresholding) using the method described in Section 3.5. We use 100 priority samples per datum and, as is
common practice for normalizing flows, only a single Hutchinson sample. The result is shown in Table 1,
compared to our earlier approach [BGAS24] (t → 1). For comparison, we show likelihood of MNIST
test data (from the continuous, non-binarized distribution) under several normalizing flow methods from the
literature which were trained using likelihood maximization.

Note that, although much prior work on generative modelling has been applied to continuous gray value
MNIST images, binarization (in our case through thresholding) substantially changes the data distribution.
Thus, likelihood of test data, which is commonly used as a surrogate for relative entropy to the data distribu-
tion in normalizing flows, is not comparable between these methods and ours. In addition, since we do not
use likelihood maximization as a training criterion, it is not to be expected that our model is competitive on
this measure. Still, the results of Table 1 indicate that the proposed model (t→ ∞) fits the binarized MNIST
data distribution better in terms of relative entropy than our previous approach [BGAS24] (t→ 1).
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FIGURE 4.3. Comparison of model samples to the closest training data. Left with black
border: samples drawn from our model of the Cityscapes segmentation distribution. Right:
training data closest to the sample in terms of pixel-wise distance.

TABLE 1. Likelihood of binarized MNIST test data under our proposed model (t → ∞)
and the earlier version [BGAS24] (t → 1). Both methods are trained by flow matching
rather than likelihood maximization.

Method AF (t→ ∞) AF (t→ 1)

Likelihood (bits / dim) 1.01 ± 0.17 4.05 ± 0.83

5. CONCLUSION

We introduced a novel generative model for the representation and evaluation of joint probability dis-
tributions of discrete random variables. The approach employs an embedding of the assignment manifold
in the meta-simplex of all joint probability distributions. Corresponding measure transport by randomized
assignment flows approximates joint distributions of discrete random variables in a principled manner. The
approach enables to learn the statistical dependencies of any set of discrete random variables and using the
resulting model for structured prediction, independent of the area of application.

Inference using the approach is computationally efficient, since sampling can be accomplished by parallel
geometric numerical integration. Training the generative model using given empirical data is computation-
ally efficient, since matching the flow of corresponding e-geodesics is used as training criterion, which does
not require sampling as a subroutine.
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FIGURE 4.4. Left: Samples from our model of the Cityscapes segmentation distribution.
Right with blue border: randomly drawn training data.

Numerical experiments showed superior performance in comparison to recent related work, which we at-
tribute to consistently using the underlying information geometry of assignment flows and the corresponding
measure transport along conditional probability paths. On the other hand, the fact that even our preliminary
approach [BGAS24] can outperform Dirichlet flow matching [SJW+24] with respect to scaling to many
classes in Figure 4.1, is surprising, because the approach [BGAS24] uses a finite integration time and moves
all mass of the reference distribution to a Dirac measure close to W β within this finite time. The core as-
sumptions of [SJW+24, Proposition 1], therefore, apply to this approach, and the fact that it still performs
well empirically suggests that further inquiry into this topic is warranted.
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FIGURE 4.5. Plots of conditional densitities νt(β) for different points of time t. Darker
colors indicate higher concentration within the densities. From top to bottom: Linear Flow
Matching [SJW+24, Equation 11], the approach [BGAS24, Equation 18], Dirichlet Flow
Matching [SJW+24, Equation 14], our approach (3.27) using two different values of the
rate parameter λ. Note the different time periods t ∈ [0, 0.77] used for the first two and
t ∈ [0, 8] for the latter approaches. See Section 4.1 for a discussion.
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FIGURE 4.6. Top row: Plots of conditional densitities paths t 7→ νt(β) for various models.
Bottom row: Impact of the rate parameter λ of our approach (replication of Figure 3.2 to
ease visual comparison).

APPENDIX A. PROOFS

A.1. Proofs of Section 3.2.3.

Proof of Proposition 3.2. Since Vβ is determined by β and does not depend on V , the map V 7→ V +λtλVβ
is affine. Hence, Eq. (3.28) conforms to (3.27), because affine transformations of normal distributions are
again normal distributions. The mapping exp1W (·) : W → T0 is a diffeomorphism. Consequently, the
inverse of (3.28) can be computed from

W := ψt(V |β) = exp1W

(
V + tλVβ

)
(A.1a)

⇔ ψ−1
t (W |β) = V = exp−1

1W
(W )− tλVβ, (A.1b)

which verifies (3.29). Regarding (3.30), recall that the conditional flow is determined by the conditional
vector field through the ODE

d

dt
ψt(V |β) = ut

(
ψt(V |β)

∣∣β), ψ0(V |β) = ψ0(V ) = exp1W (V ). (A.2)

On the other hand, direct computation of the time derivative of (A.1a) using the closed-form expression

d expW (V )[U ] = RexpW (V )[U ] (A.3)
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for the differential of the lifting map (2.6b), yields
d

dt
ψt(V |β) = Rψt(V |β)[λVβ]. (A.4)

Equating (A.2) and (A.4) and using W = ψt(V |β) from (A.1b) proves (3.30).
□

Proof of Proposition 3.3. Equation (3.15a) is immediate due to (3.23), (3.24) and (3.27). Writing short

ψt := ψt(·|β) (A.5)

for the flow map defined by (3.28), it remains to show that

lim
t→∞

νt(β) = lim
t→∞

(ψt)♯ν0 = δWβ
. (A.6)

To this end, we demonstrate that every marginal of the conditional probability path (A.6) converges to a
Dirac measure supported on the assignment vector corresponding to the labeling configuration β, i.e.

lim
t→∞

νt;i(β) = lim
t→∞

(ψt;i)♯ν0;i = δWβ;i
, i ∈ [n], (A.7)

where ν0;i, i ∈ [n] denote the marginals of ν0 given by (3.24).
First, we observe that by fixing an orthonormal basis of T0 as column vectors of the matrix B, every

marginal ν0;i of (3.24) with Gaussian N0 defined by (3.23) can be expressed as the lifted image measure of
a standard normal distribution N

(
0c−1, Ic−1

)
on Rc−1 with respect to the basis B,

ν0;i = (exp1S )♯B♯N
(
·; 0c−1, Ic−1

)
= (exp1S )♯N (·; 0c, π0), (A.8)

since BB⊤ = π0. Consequently, by Proposition 3.2,

νt;i(β) =
(
ψt;i

)
♯
N (·; 0c, π0) (A.9)

and hence using the change-of-variables formula and (A.1b), one has for any p ∈ Sc,
νt;i(p|β) = N

(
exp−1

1S
(p)− tλVβ;i; 0c, π0

)
|det dψ−1

t;i |. (A.10)

Equation (3.29) shows that the differential dψ−1
t;i does not depend on t. Neither does the normalizing factor

of the normal distribution, due to the covariance matrix π0 = idT0 . Consequently, since ψ−1
t;i maps to T0,

νt(p|β) ∝ exp
(
− 1

2

〈
exp−1

1S
(p)− tλVβ;i, π0

(
exp−1

1S
(p)− tλVβ;i

)〉)
(A.11a)

= exp
(
− 1

2

〈
exp−1

1S
(p)− tλVβ;i,

(
exp−1

1S
(p)− tλVβ;i

)〉)
→ 0 as t→ ∞, (A.11b)

for any p ̸= W β;i ∈ Sc and i ∈ [n], due to the choice (3.26) of the tangent vector Vβ . We conclude that the
image measure ν∞;i(β) is a Dirac measure concentrated on W β;i. □
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A.2. Proofs of Section 3.3.

Proof of Lemma 3.4. By [BSS21, Lemma 4], one has Q⊤QV = cn−1V for all V ∈ T0. Thus, Qc defined by
(3.40) has the property

Qc
⊤QcV = V, for all V ∈ T0. (A.12)

To show that (3.39) indeed defines the orthogonal projection onto imgQ ∩ T0SN , note that

QcΠ0 = π0Qc (A.13)

by [BCA+24, Lemma A.3] and accordingly

Qc
⊤π0 = (π0Qc)

⊤ = (QcΠ0)
⊤ = Π0Qc

⊤ (A.14)

by using the symmetry of Π0 and π0. We can use this to show img proj0 ⊆ imgQ ∩ T0SN , because for any
x ∈ Rn×c, we have

QcΠ0x ∈ imgQ and QcΠ0x
(A.13)
= π0Qcx ∈ T0SN . (A.15)

Now let v ∈ T0SN and y ∈ imgQ ∩ T0SN be arbitrary. Then y can be written as y = Qcy
′ and we have

⟨v − proj0(v), y⟩ = ⟨v −QcΠ0Qc
⊤v,Qcy

′⟩ = ⟨Qc⊤v −Qc
⊤QcΠ0Qc

⊤v, y′⟩ (A.16a)
(A.12)
= ⟨Qc⊤v −Π0Qc

⊤v, y′⟩ (A.14)
= ⟨Qc⊤v −Qc

⊤π0v, y
′⟩ (A.16b)

= 0, (A.16c)

which shows that proj0 projects orthogonally. □

Proof of Theorem 3.5. We use the representation of proj0 (Lemma 3.4) to compute the pushforward (3.42).

(projT )♯ν
SN
t (β)

(3.41)
= (exp1SN

◦proj0 ◦ exp−1
1SN

)♯ν
SN
t (β) (A.17a)

(3.36)
= (exp1SN

◦proj0)♯N SN
t (·|β) (A.17b)

(3.39)
= (exp1SN

◦QcΠ0Qc
⊤)♯N SN

t (·|β) (A.17c)

(3.35)
= (exp1SN

◦QcΠ0Qc
⊤)♯N (·; tcn−1λπ0eβ, c

n−1π0) (A.17d)

= (exp1SN
)♯N (·; tcn−1λQcΠ0Qc

⊤π0eβ, c
n−1QcΠ0Qc

⊤π0(QcΠ0Qc
⊤)⊤) (A.17e)

(3.40)
(A.14)
= (exp1SN

)♯N (·; tλQΠ0Q
⊤eβ, c

n−1QcΠ0Qc
⊤QcΠ0Qc

⊤) (A.17f)

(3.40)
(A.12)
= (exp1SN

)♯N (·; tλQΠ0Q
⊤eβ, QΠ0Q

⊤) (A.17g)

= (exp1SN
◦Q)♯N (·; tλΠ0Q

⊤eβ,Π0). (A.17h)

By [BCA+24, Lemma 3.4], we have Q⊤eβ = Meβ , with Q and M defined by (2.9) and (2.14b). Using the
shorthand Vβ defined by (3.26) and the lifting map lemma (3.38), this shows

(projT )♯ν
SN
t (β) = (exp1SN

◦Q)♯N (·; tλVβ,Π0) (A.18a)

(3.38)
= (T ◦ exp1W )♯N (·; tλVβ,Π0) (A.18b)

(3.26)
= (T ◦ exp1W )♯Nt,β (A.18c)

(3.27)
= T♯νt(β) (A.18d)
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which is the assertion (3.42).
Returning to (A.18a), we compute the conditional vector field whose flow generates the path (projT )♯ν

SN
t (β)

by
uTt (q|β) = d exp1SN

(v)[λQVβ] = Rq[λQVβ] (A.19)

with v = exp−1
1SN

(q), analogous to (3.30). This shows the shape of the flow matching criterion (3.43). It
remains to show that it is equal to (3.31).

Substituting the ansatz f̃θ = Q ◦ Fθ ◦M into this criterion gives

LT
RCFM = Et∼ρ,β∼p,W∼νt(β)

[∥∥RT (W )[λQ(Vβ)− (Q ◦ Fθ)(W, t)]
∥∥2
T (W )

]
. (A.20)

By [BCA+24, Theorem 3.1], T : Wc → T ⊆ SN defined by (2.7) is a Riemannian isometry. Thus, for any
vector field X : Wc → T and any W ∈ Wc, it holds that

⟨RW [X], RW [X]⟩W =
〈
dTW

[
RW [X]

]
, dTW

[
RW [X]

]〉
T (W )

. (A.21)

Furthermore, by [BCA+24, Theorem 3.5], one has

dTW
[
RW [X]

]
= RT (W )[QX]. (A.22)

Taking (A.21) and (A.22) together, (A.20) transforms to

LT
RCFM = Et∼ρ,β∼p,W∼νt(β)

[∥∥RW [λVβ − Fθ(W, t)]
∥∥2
W

]
(A.23)

which is (3.31). □

APPENDIX B. EXPERIMENTS: DETAILS

B.1. Details of Class Scaling Experiment. To parameterize Fθ, we use the same convolutional architecture
used in [SJW+24]. We train for 500k steps of the Adam optimizer with constant learning rate 3 · 10−4 and
batch size 128. We reproduce the Dirichlet flow matching results and linear flow matching baseline by using
the code of [SJW+24]. The experiment shown in Figure 4.1 is slightly harder than the version in [SJW+24],
because we limit training to 64k steps at batch size 512 for Dirichlet- and linear flow matching. Accordingly,
both assignment flow methods are trained for 250k steps at batch size 128, such that around 32M data are
seen by each model during training.

B.2. Details of Generating Image Segmentations.

B.2.1. Cityscapes Data Preparation. Rather than the original c = 33 classes, we only use the c = 8
classes specified as categories in torchvision. The same subsampling of classes was used in the related
work [HNJ+21]. They additionally perform spatial subsampling to 32 × 64. Instead, we subsample the
spatial dimensions (NEAREST interpolation) to 128× 256.

B.2.2. Cityscapes Training. For the Cityscapes experiment, we employ the UNet architecture of [DN21]
with attention_resolutions (32, 16, 8), channel_mult (1,1,2,3,4), 4 attention heads, 3 blocks and 64 channels.
We trained for 250 epochs using Adam with cosine annealing learning rate scheduler starting at learning rate
0.0003 and batch size 4. The distribution ρ of times t used during training is an exponential distribution with
rate parameter λ = 0.25. For sampling, we integrate up to tmax = 15.

B.2.3. Binarized MNIST Data Preparation. We pad the original 28× 28 images with zeros to size 32× 32
to be compatible with spatial downsampling employed by the UNet architecture. Binarization is performed
by pixelwise thresholding at grayvalue 0.5.
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B.2.4. Binarized MNIST Training. We modify the same architecture used for Cityscapes to attention_resolutions
(16), channel_mult (1,2,2,2), 4 attention heads, 2 blocks and 32 channels. The same training regimen is used
as for Cityscapes except for an increase in batch size to 256. The distribution ρ of times t used during train-
ing is an exponential distribution with rate parameter λ = 0.5. For sampling, we integrate up to tmax = 10.
In table 1, we use the same UNet architecture and training regimen for the comparison method [BGAS24]
(t→ 1).

APPENDIX C. LIKELIHOOD COMPUTATION: DETAILS

Assume we have learned a probability path νt and a final pushfoward distribution ν∞. In practice, numeri-
cal integration needs to be stopped after a finite time t = tmax, reaching a numerical pushforward distribution
νtmax ≈ ν∞. Drawing samples from p̃ = EW∼νtmax

[T (W )] is a two-stage process: W ∼ νtmax is drawn first,
followed by sampling β ∼ T (W ). Due to the numerical need to stop integration at finite time, T (W ) may in
practice not have fully reached a discrete Dirac distribution. For long sequences of random variables, such
as text or image modalities, this can lead to undesirable noise in the output samples. A way to combat this
numerical problem is by rounding to a Dirac measure before sampling. This procedure can be interpreted
within the framework of dequantization, which we elaborate in Section 3.6.

In practice, W ∼ νtmax is typically close to a discrete Dirac already (cf. Figure 3.3), so rounding has
little impact on the represented joint distribution. Nevertheless, the rounding process is formally a different
model than p̃ = EW∼νtmax

[T (W )], which we explicitly distinguish for the purpose of computing likelihoods.
Recall the definition (3.32) of subsets rβ ⊆ W with each W ∈ rβ assigning the largest probability to the
labels β. The points in rβ are also the ones which round to W β

2. Thus, the labeling β ∈ [c]n has likelihood

p̃rβ = EW∼νtmax
[1rβ (W )] = Pνtmax

(rβ) (C.1)

under the rounding model p̃r, with 1rβ denoting the indicator function of rβ . This is numerically similar to
the likelihood under our original model

p̃β = EW∼ν∞ [T (W )β] (C.2)

and matches it in the limit t→ ∞, provided that (almost) every trajectoryW (t) approaches an extreme point
of Wc under the learned assignment flow dynamics.

We will now devise an importance sampling scheme for efficient and numerically stable approximation of
the integral in (C.1), that analogously applies to (C.2). Let ϱ be a proposal distribution with full support on
Wc which has most of its mass concentrated around a point qβ ∈ Wc close to W β . Then

Pνtmax
(rβ) = EW∼ϱ

[
1rβ (W )

νtmax(W )

ϱ(W )

]
(C.3)

where we assumed that both νtmax and ϱ have densities with respect to the Lebesgue measure and used
again the symbols νtmax and ϱ to denote these densities. The rationale behind this construction is that,
since we learned νtmax to concentrate close to points W β , drawing most samples close to qβ will reduce the
estimator variance compared to sampling (C.1) directly. In high dimensions, the quantities in (C.3) are prone
to numerical underflow, which motivates the transformation

logPνtmax
(rβ) = logEW∼ϱ

[
1rβ (W )

νtmax(W )

ϱ(W )

]
(C.4a)

= logEW∼ϱ
[
exp

(
log 1rβ (W ) + log νtmax(W )− log ϱ(W )

)]
. (C.4b)

After replacing the expectation with a mean over samples drawn from ϱ, we can evaluate (C.4) by leveraging
stable numerical implementations of the logsumexp function.

2The sets rβ technically overlap on the boundary, but all intersections have measure zero.
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For every evaluation of the integrand, we evaluate log-likelihood under ϱ in closed form as well as
log-likelihood under νtmax through numerical integration backward in time, leveraging the instantaneous
change of variables (3.45) and Hutchinson’s trace estimator (3.46). Note the conventions log 0 = −∞ and
exp(−∞) = 0 employed in (C.4). The analogous expression for (C.1) reads

log p̃β = logEW∼ϱ
[
exp

(
log T (W )β + log νtmax(W )− log ϱ(W )

)]
(C.5)

and we can further expand

log T (W )β = log
∏
i∈[n]

Wi,βi =
∑
i∈[n]

logWi,βi (C.6)

to avoid numerical underflow.
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