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Abstract

The implicit convex feasibility problem attempts to find a point in the intersection

of a finite family of convex sets, some of which are not explicitly determined but may

vary. We develop simultaneous and sequential projection methods capable of handling

such problems and demonstrate their applicability to image denoising in a specific medical

imaging situation. By allowing the variable sets to undergo scaling, shifting and rotation,

this work generalizes previous results wherein the implicit convex feasibility problem was

used for cooperative wireless sensor network positioning where sets are balls and their

centers were implicit.
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1. Introduction

In this paper we are concerned with the following “implicit convex feasibility problem”
(ICFP). Given set-valued mappings Cs : Rn → 2R

n

, s = 1, 2, . . . , S, with closed and convex
value sets, the ICFP is,

Find a point x∗ ∈ ∩Ss=1Cs(x
∗). (1.1)

We call the sets Cs(x) “variable sets” for obvious reasons and include “implicit” in this
problem name because the sets defining it are not given explicitly ahead of time. The problem
is inspired by the work of Gholami et al. [21] on solving the cooperative wireless sensor network
positioning problem in R2 (Rn). There, the sets Cs(x) are circles (balls) with varying centers.
A special instance of the ICFP is obtained by taking fixed sets Cs(x) ≡ Cs, for all x ∈ Rn, and
all s = 1, 2, . . . , S, yielding the well-known, see, e.g., [3], “convex feasibility problem” (CFP)
which is,

Find a point x∗ ∈ ∩Ss=1Cs. (1.2)
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The CFP formalism is at the core of the modeling of many inverse problems in various
areas of mathematics and the physical sciences. This problem has been widely explored and
researched in the last decades, see, e.g., [10, Section 1.3], and many iterative methods where
proposed, in particular projection methods, see, e.g., [11]. These are iterative algorithms that
use projections onto sets, relying on the principle that when a family of sets is present, then
projections onto the given individual sets are easier to perform than projections onto other sets
(intersections, image sets under some transformation, etc.) that are derived from the given
individual sets.

Gholami et al. in [21] introduced the implicit convex feasibility problem (ICFP) in Rd

(d = 2 or d = 3) into their study of the wireless sensor network (WSN) positioning problem.
In their reformulation the variable sets are circles or balls whose centers represent the sensors’
locations and their broadcasting range is represented as the radii. Some of these centers are
known a priori while the rest are unknown and need to be determined. The WSN positioning
problem is to find a point, in an appropriate product space, which represents the circles or
balls centers. The precise relationship between the WSN problem and the ICFP can be found
in [21, Section B]. For more details and other examples of geometric positioning problems,
see [20, 22].

We focus on the ICFP in Rn and present projection methods for its solution. This expands
and generalizes the special case treated in Gholami et al. [21]. Moreover, we demonstrate the
applicability of our approach to the task of image denoising, where we impose constraints on
the image intensity at every image pixel. Because the constraint sets depend on the unknown
variables to be determined, the method is able to adapt to the image contents. This application
demonstrates the usefulness of the ICFP approach to image processing.

The paper is structured as follows. In Section 2 we show how to calculate projections onto
variable sets. In Section 3 we present two projection type algorithmic schemes for solving
the ICFP, sequential and simultaneous, along with their convergence proofs. In Section 4 we
present the ICFP application to image denoising together with numerical visualization of the
performance of the methods. Finally, in Section 5 we discuss further research directions and
propose a further generalization of the ICFP.

2. Projections onto Variable Convex Sets

We begin by recalling the split convex feasibility problem (SCFP) and the constrained
multiple-set split convex feasibility problem (CMSSCFP) that will be useful to our subsequent
analysis.

Problem 2.1. Censor and Elfving ([13]). Given nonempty, closed and convex sets C ⊆ Rn,
Q ⊆ Rm and a linear operator T : Rn → Rm, the Split Convex Feasibility Problem

(SCFP) is:

Find a point x∗ ∈ C such that T (x∗) ∈ Q. (2.1)

Another related more general problem is the following.

Problem 2.2. Masad and Reich ([31]). Let r, p ∈ N and Ωs, 1 ≤ s ≤ S, and Qr, 1 ≤ r ≤ R,
be nonempty, closed and convex subsets of Rn and Rm, respectively. Given linear operators
Tr : Rn → Rm, 1 ≤ r ≤ R and another nonempty, closed and convex Γ ⊆ Rn, the Constrained
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Multiple-Set Split Convex Feasibility Problem (CMSSCFP) is:

Find a point x∗ ∈ Γ such that

x∗ ∈ ∩Ss=1Ωs and Tr(x
∗) ∈ Qr for each r = 1, 2, . . . , R. (2.2)

If Tr ≡ T for all r = 1, 2, . . . , R, then we obtain a multiple-set split convex feasibility problem
(MSSCFP) [14].

A prototype for the above SCFP and MSSCFP is the Split Inverse Problem (SIP)
presented in [8, 15] and given next.

Problem 2.3. Given two vector spaces X and Y and a linear operator A : X → Y , we look
at two inverse problems. One, denoted by IP1, is formulated in X and the second, denoted by
IP2, is formulated in Y . The Split Inverse Problem (SIP) is:

Find a point x∗ ∈ X that solves IP1such that y∗ = Ax∗solves IP2. (2.3)

In [8, 15] different choices for IP1 and IP2 are proposed, such as variational inequalities
and minimization problems. The latter enable, for example, to obtain a least-intensity feasible
solution in intensity-modulated radiation therapy (IMRT) treatment planning as in [39]. In [23]
we further explore and extend this modeling technique to include non-linear mappings between
the two spaces X and Y .

Let C ⊆ Rn be a nonempty, closed and convex set. For each point x ∈ Rn, there exists a
unique nearest point in C, denoted by PC(x), i.e.,

∥x− PC (x)∥ ≤ ∥x− y∥ , for all y ∈ C. (2.4)

The mapping PC : Rn → C is the metric projection of Rn onto C. It is well-known that PC

is a nonexpansive mapping of Rn onto C, i.e.,

∥PC (x)− PC (y)∥ ≤ ∥x− y∥ , for all x, y ∈ R
n. (2.5)

The metric projection PC is characterized by the following two properties:

PC(x) ∈ C, (2.6)

⟨x− PC (x) , y − PC (x)⟩ ≤ 0, for all x ∈ R
n, y ∈ C. (2.7)

If C is a hyperplane, then (2.7) becomes an equality, [24]. We are dealing with variable
convex sets that can be described by set-valued mappings.

Definition 2.1. For a set-valued mapping C : Rn → 2R
n

, we call the sets C(x) ⊆ Rn, defined
below, “variable sets”. Let Ω ⊆ Rn be a given set, called in the sequel a “core set”.

(i) Given an operator µ : Rn → Rn, the variable sets C(x) := Ω+µ(x) = {y + µ(x) | y ∈ Ω} ,
for x ∈ Rn, are obtained from shifting Ω by the vectors µ(x).

(ii) Given an x ∈ Rn let U[x] : R
n → Rn be a linear bounded operator. The variable sets

C(x) := U[x](Ω) =
{

U[x]y | y ∈ Ω
}

are the U[x] images of Ω.

(iii) Given a function f : Rn → R+, the variable sets C(x) := f(x)Ω = {f(x)y | y ∈ Ω} , for
x ∈ Rn, are obtained from scaling Ω uniformly by f(x). This can be re-written as in (ii) with
U[x] = f(x)I, where I is the identity matrix.
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Next we present a lemma that shows how to calculate the metric projection onto such
variable sets via projections onto the core set Ω when the operator µ is linear and denoted by
the fixed matrix A and U[x] is a constant unitary matrix denoted by U (that is UTU = UUT = I,
where UT : Rn → Rn is the adjoint of U). Our proofs are based on Cegielski [10, Subsection
1.2.3].

Lemma 2.1. Let Ω ⊆ Rn be a nonempty, closed and convex core set. Given a matrix A, a
positive diagonal matrix D = αI, α > 0, and a fixed unitary matrix U , the following holds for
any z, x ∈ Rn

PDU(Ω)+Ax (z) = DUPΩ

(

D−1UT (z −Ax)
)

+Ax. (2.8)

Since D is a positive diagonal matrix, this can be re-written as

PC(x) (z) = αUPΩ

(

1

α
UT (z −Ax)

)

+Ax (2.9)

where C(x) = αU (Ω) +Ax.

Proof. Let z ∈ Rn and denote

y := αUPΩ

(

1

α
UT (z −Ax)

)

+Ax. (2.10)

We show that

y = PC(x) (z) . (2.11)

From (2.10) and the unitary matrix U we deduce

1

α
UT (y −Ax) = PΩ

(

1

α
UT (z −Ax)

)

. (2.12)

By the characterization of the metric projection onto Ω (2.7) we have

〈

1

α
UT (z −Ax) −

1

α
UT (y −Ax) , w −

1

α
UT (y −Ax)

〉

≤ 0, for all w ∈ Ω. (2.13)

Since α > 0 and U is unitary, we get

⟨z − y,αUw +Ax− y⟩ ≤ 0, for all w ∈ Ω. (2.14)

Denoting v := αUw +Ax, since w ∈ Ω we get v ∈ αU (Ω) +Ax = C(x), the

⟨z − y, v − y⟩ ≤ 0, for all v ∈ C(x), (2.15)

and again by the characterization of the metric projection onto C(x) (2.7) and by (2.10) y =
PC(x) (z) which completes the proof. !

Two special cases of Lemma 2.1 are illustrated. In Fig. 2.1 we use D,U = I so that
PΩ+Ax (z) = PΩ (z − Ax) +Ax, meaning that the set Ω is shifted by the point Ax to Ω+Ax.
In Fig. 2.2 we use D = I and A = 0 so that PU(Ω) (z) = UPΩ

(

UT z
)

, meaning that the set Ω
is rotated by the unitary matrix U to U (Ω).
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Fig. 2.1.Illustration of Lemma 2.1 with D,U = I .

Fig. 2.2.Illustration of Lemma 2.1 with D = I and A = 0.

3. The Algorithms

The following definitions will be used.

Definition 3.1. A sequence {σk}k∈N of real positive numbers is called a steering sequence

if it satisfies all the following conditions:

(i) lim
k→∞

σk = 0;

(ii) lim
k→∞

σk+1

σk
= 1;

(iii)
∞
∑

k=0

σk = +∞.

Let β be a positive integer. If condition (ii) is replaced by

lim
k→∞

σkβ+j

σkβ
= 1, for all 1 ≤ j ≤ β − 1, (3.1)

and (i) and (iii) remain unchanged, then the sequence is called β-steering sequence.

Definition 3.2. A sequence {i(k)}k∈N of indices is called a cyclic control sequence over
the index set {1, 2, . . . , S} if

i(k) = kmodS, for k ≥ 0. (3.2)
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Problem 3.1. The Implicit Convex Feasibility Problem. Given set-valued mappings Cs :
Rn → 2R

n

, s = 1, 2, . . . , S, with closed convex values Cs(x), the Implicit Convex Feasibility
Problem (ICFP) is

Find a point x∗ ∈ ∩Ss=1Cs(x
∗). (3.3)

One way of handling this problem is to reformulate it as the unconstrained minimization

{

minimize Gicfp(x)
subject to x ∈ Rn,

(3.4)

where

Gicfp(x) :=
1

2

S
∑

s=1

∥x− PCs(x)(x)∥
2 (3.5)

in which PCs(x) is the metric projection operator onto the sets Cs(x).

Following the works of Censor et al. [12] and Gholami et al. [21] we present two algorithmic
schemes, simultaneous and sequential, for solving the ICFP of Problem 3.1. For s = 1, 2, . . . , S,
let Ωs be nonempty, closed and convex core sets in Rn, As ∈ Rn×n are matrices, Us ∈ Rn×n are
unitary matrices, and αs > 0. Then the variable sets defined in Definition 2.1 take the form

Cs(x) = αsUs (Ωs) +Asx, (3.6)

and we assume that the projection PΩs
are at hand or can be easily calculated.

Algorithm 3.1. The Simultaneous Algorithm

Preliminary calculations: For s = 1, 2, . . . , S, calculate the matrices

Ks :=
1

αs
UT
s (I −As) (3.7)

and use matrix 2-norms to calculate the constant

Licfp =
S
∑

s=1

∥I −As∥
2
2 . (3.8)

Initialization: Select an arbitrary starting point x0 ∈ Rn and set k = 0.
Iterative step: Given the current iterate xk, calculate the next iterate by

xk+1 = xk − γk

S
∑

s=1

α2
sK

T
s (I − PΩs

)
(

Ksx
k
)

, (3.9)

where γk ∈ (0, 2/Licfp) for all k ≥ 0.
Stopping rule: If xk+1 = xk (or, alternatively, if ∥xk+1 − xk∥ is small enough) then stop.
Otherwise, set k ← (k + 1) and go back to the beginning of the iterative step.
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Algorithm 3.2. The Sequential Algorithm

Preliminary calculation: For s = 1, 2, . . . , S, calculate the matrices

Ks :=
1

αs
UT
s (I −As) . (3.10)

Initialization: Select an arbitrary starting point x0 ∈ Rn and set k = 0.
Iterative step: Given the current iterate xk, calculate the next iterate by

xk+1 = xk − σkα
2
i(k)K

T
i(k)

(

I − PΩi(k)

) (

Ki(k)x
k
)

, (3.11)

where {σk}k∈N and {i(k)}k∈N are a β-steering and a cyclic control sequences, respectively.
Stopping rule: If xk+1 = xk (or, alternatively, if ∥xk+1 − xk∥ is small enough) then stop.
Otherwise, set k ← (k + 1) and go back to the beginning of the iterative step.

3.1. Convergence

For the mappings Cs(·) of (3.6) we get, from Lemma 2.1, a simplified form of the proximity
function Gicfp in (3.5),

Gicfp(x) =
1

2

S
∑

s=1

∥

∥

∥

∥

x−

(

αsUsPΩs

(

1

αs
UT
s (x−Asx)

)

+Asx

)
∥

∥

∥

∥

2

=
1

2

S
∑

s=1

∥

∥

∥

∥

αsUs (I − PΩs
)

(

1

αs
UT
s (I −As)x

)
∥

∥

∥

∥

2

=
1

2

S
∑

s=1

α2
s

∥

∥

∥

∥

(I − PΩs
)

(

1

αs
UT
s (I −As)x

)
∥

∥

∥

∥

2

=
1

2

S
∑

s=1

α2
s ∥(I − PΩs

) (Ksx)∥
2 , (3.12)

where Ks is as in (3.7).
In order to prove convergence of Algorithm 3.1 we need to show that the function Gicfp

is convex, continuously differentiable and that its gradient is Lipschitz continuous (see [21,
Proposition 4]). For the convergence of Algorithm 3.2 it is sufficient to show only convexity
and continuous differentiability of Gicfp, see [12, Theorem 6]. In both cases our analysis relies
on the classical theorems of Baillon and Haddad [2] and of Dolidze [18].

Proposition 3.1. The function Gicfp of (3.12) is (1) convex, (2) continuously differentiable,
and (3) its gradient is Lipschitz continuous.

Proof. Recall that the SCFP (2.1) can also be formulated as the minimization problem
{

minimize Gscfp(x) :=
1
2 ∥Tx− PQ (Tx)∥2

subject to x ∈ C,
(3.13)

see, e.g., [7], and, moreover, for the CMSSCFP (2.2) we have
⎧

⎨

⎩

minimize Gcmsscfp(x) :=
1
2

S
∑

s=1

∥

∥

∥
x− PΩs

(x)
∥

∥

∥

2
+ 1

2

R
∑

r=1

∥

∥

∥
Trx− PQr

(Trx)
∥

∥

∥

2

subject to x ∈ Γ,
(3.14)
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see [31]. Since our proximity function Gicfp (3.12) shares some common features with the
above Gscfp and Gcmsscfp functions, we follow the lines of [31] and [21, Theorem 2] to prove
the proposition.

(1) The convexity of Gicfp (3.12) is obvious, see, for example [31, Lemma 2].

(2) Since
∇Gscfp(x) = T T (I − PQ) (Tx) (3.15)

(T T is the transpose of T ) we deduce that

∇Gicfp(x) =
S
∑

s=1

α2
sK

T
s (I − PΩs

) (Ksx) , (3.16)

where KT
s = (1/αs)

(

I −AT
s

)

Us, and continuous differentiability follows.

(3) To show that ∇Gicfp is Lipschitz continuous, that is

∥∇Gicfp(x)−∇Gicfp(y)∥ ≤ Licfp ∥x− y∥ , for all x, y ∈ R
n, (3.17)

we write

∇Gicfp(x) −∇Gicfp(y)

=
S
∑

s=1

α2
sK

T
s (I − PΩs

) (Ksx)−
S
∑

s=1

α2
sK

T
s (I − PΩs

) (Ksy)

=
S
∑

s=1

α2
sK

T
s (I − PΩs

) (Ksx−Ksy) . (3.18)

The firm-nonexpansivity of the projection operator, see, e.g., [10, Definion 2.2.1] along with the
triangle and the Cauchy–Schwarz inequalities imply

∥∇Gicfp(x)−∇Gicfp(y)∥ =

∥

∥

∥

∥

∥

S
∑

s=1

α2
sK

T
s (I − PΩs

) (Ksx−Ksy)

∥

∥

∥

∥

∥

≤
S
∑

s=1

α2
s

∥

∥KT
s

∥

∥

2
∥Ks∥2 ∥x− y∥ =

S
∑

s=1

α2
s

∥

∥KT
s Ks

∥

∥

2
∥x− y∥ . (3.19)

Calculating

KT
s Ks =

1

α2
s

(

I −AT
s

)

UsU
T
s (I −As)

=
1

α2
s

(

I −AT
s

)

(I − As) =
1

α2
s

(I −As)
T (I −As) , (3.20)

we obtain
∥

∥KT
s Ks

∥

∥

2
=

(

1

αs
∥I −As∥2

)2

, (3.21)

meaning that

∥∇Gicfp(x) −∇Gicfp(y)∥ ≤

(

S
∑

s=1

∥I −As∥
2
2

)

∥x− y∥ , (3.22)

so that ∇Gicfp is Lipschitz continuous with the Lipschitz constant Licfp =
∑S

s=1 ∥I −As∥
2
2.

This completes the proof of the proposition. !
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Theorem 3.2. For s = 1, 2, . . . , S, let Ωs be nonempty, closed and convex core sets in Rn,
As ∈ Rn×n are matrices, Us ∈ Rn×n are unitary matrices, and αs > 0. If the solution set of
the ICFP of Problem 3.1 is nonempty then any sequence

{

xk
}∞

k=0
, generated by Algorithm 3.1,

converges to a solution x∗ of (3.1).

Proof. Proposition 3.1, guarantees that Gicfp is convex, continuously differentiable, and its
gradient is Lipschitz continuous, therefore Algorithm 3.1 is a gradient descent method for the
unconstrained minimization problem (3.4) which solves the ICFP (3.1). For the complete proof
see, e.g., [4, Proposition 2.3.2]. !

Theorem 3.3. For s = 1, 2, . . . , S, let Ωs be nonempty, closed and convex core sets in Rn,
As ∈ Rn×n are matrices, Us ∈ Rn×n are unitary matrices, and αs > 0. If the solution set of
the ICFP of Problem 3.1 is nonempty and any sequence

{

xk
}∞

k=0
generated by Algorithm 3.2 is

bounded then
{

xk
}∞

k=0
converges to a solution x∗ of (3.1).

Proof. The function Gicfp can be written as

Gicfp(x) =
1

2

S
∑

s=1

gs(x) (3.23)

where gs(x) := α2
s ∥(I − PΩs

) (Ksx)∥
2 , for all s = 1, 2, . . . , S. By Proposition 3.1 each gs is

convex and continuously differentiable, therefore Algorithm 3.2 is a special case of [12, Algorithm
5] and its convergence is guaranteed by [12, Theorem 6]. !

Remark 3.1.

1. Observe that the step size γk in the simultaneous projection Algorithm 3.1 is chosen in
the interval (0, 2/Licfp) which requires the knowledge of the matrix 2-norm. As remarked by
one of the referees this kind of step size might be inefficient from the numerical point of view.
Several alternative step size strategies appear in [30, 36] and the references therein.

2. The ICFP of Problem 3.1 can be reformulated as an unconstrained minimization so
that by applying first-order methods we get two different schemes that generate sequences that
converge to a solution of the ICFP of Problem 3.1. An alternative additional approach is to
use the first-order optimality condition in order to reformulate the ICFP of Problem 3.1 as
a variational inequality problem and derive other appropriate algorithmic schemes, such as,
Korpelevich’s extragradient method [26].

4. Application

4.1. Model description

In the following we introduce an approach for image denoising, which is described in terms
of an implicit convex feasibility problem. We provide it as a specific instance of an ICFP rather
than as a method of choice for image denoising. Evaluating its practical advantages for image
denoising is a direction for future work.

Various methods have been proposed in the literature for image denoising. These methods
can roughly be divided into methods based on partial differential equations like the edge-
preserving Perona-Malik [9] model and Weickert’s anisotropic diffusion [38], Wavelet based
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methods [16], non-local iterative filtering [6], collaborative filtering such as BM3D [17] and
variational approaches [34]. Among the latter we find methods based on regularization with
the total variation (TV) semi-norm [33] and higher order expressions [5, 35], which became
popular and widely used. Recent trends include also adaptive [1, 19, 27, 28] and non-local [25]
TV methods.

Below, we discuss an ansatz based on only prescribing constraints for the pixel intensities,
which leads to an ICFP. Since our ansatz with fixed constraints (CFP) can be interpreted
as a constrained optimization problem with constant objective function, it is related to the
variational approaches. Allowing the constraints to vary depending on the solution of the
problem, such as the ICFP allows, introduces adaptivity.

We now turn to the description of the proposed ICFP. For simplicity, we restrict ourselves
to gray value images. We represent the image to be denoised as a matrix Y = (yi,j) ∈ Rn1×n2 ,
where n1 and n2 are the width and height of the image. The noisy data Y are obtained from
an unknown noise-free image represented by X∗ = (x∗

i,j) ∈ Rn1×n2 through the relationship

yi,j = x∗

i,j + ηi,j , (4.1)

where ηi,j ∈ Rn1×n2 are realizations of independent and identically distributed Gaussian random
variables with zero mean. We denote the denoised data Y by X= (xi,j) ∈ Rn1×n2 , which forms
our estimate of X∗.

For each pixel (i, j) we will impose S constraints on the gray level intensity xi,j in terms of
sets Ωi,j

s , s = 1, 2, . . . , S. Note that we index an individual constraint set for an image location
(i, j) by a subscript s, while the superscripts refer to the location. We motivate a suitable choice
for these sets as follows. Let us consider a fixed pixel (i, j) with intensity yi,j in the interior
of the image together with its left and right neighbors (i − 1, j) and (i + 1, j) with intensities
yi−1,j , yi+1,j . In absence of noise, if the image intensities vary smoothly, we can assume that yi,j
is near the linear interpolation of these two values, while in the case of strong noise yi,j likely
lies outside the range determined by yi−1,j and yi+1,j . Therefore, it makes sense to impose the
constraint

xi,j ∈ Ωi,j
1 := [min(yi+1,j , yi−1,j),max(yi+1,j , yi−1,j)] (4.2)

for the smoothed image X, where [a, b] denotes the closed interval between a and b. To also
cover the case of boundary pixels, we assume a constant extension of the image outside the
image domain, so that (4.2) is well-defined for every (i, j).

We remark that there is a relation to TV regularization, since the total variation of the
discrete signal (min(yi+1,j , yi−1,j), xi,j ,max(yi+1,j , yi−1,j)) is minimal for xi,j ∈ Ωi,j

1 .

Analogously to (4.2) we define constraint sets for every horizontal, vertical and diagonal
edge of the underlying grid graph with vertices corresponding to the pixel positions (i, j):

Ωi,j
2 := [min(yi,j+1, yi,j−1),max(yi,j+1, yi,j+1)],

Ωi,j
3 := [min(yi+1,j+1, yi−1,j−1),max(yi+1,j+1, yi−1,j−1)],

Ωi,j
4 := [min(yi+1,j−1, yi−1,j+1),max(yi+1,j−1, yi−1,j+1)].

(4.3)

In total, we end up with four different constraint sets for pixel (i, j).

Note that we can express each set Ωi,j
s in the form

Ωi,j
s = [−ri,js (Y ), ri,js (Y )] +mi,j

s (Y ), (4.4)
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where

ri,j1 (Y ) =
1

2
|yi+1,j − yi−1,j |, mi,j

1 (Y ) =
1

2
(yi+1,j + yi−1,j), (4.5)

and ri,js (Y ), and mi,j
s (Y ), s = 2, 3, 4, defined accordingly for the vertical and the two diagonal

directions.
We further slightly generalize the sets Ωi,j

s by introducing a scaling factor α > 0 and re-define

Ωi,j
s := α [−ri,js (Y ), ri,js (Y )] +mi,j

s (Y ), for s = 1, 2, 3, 4. (4.6)

Based on these local constraint sets, we look at the CFP

Find X= (xi,j) ∈ R
n1×n2 such that xi,j ∈

4
⋂

s=1

Ωi,j
s for all pixels (i, j). (4.7)

Recall that our approach presented in Section 3 allows mi,j
s to depend on X , in contrast with

(4.7). So, we consider the set-valued mappings

Ci,j
s (X) := α [−ri,js (Y ), ri,js (Y )] +mi,j

s (X), (4.8)

and derive the ICFP

Find X ∈ R
n1×n2 such that X ∈

∏

i,j

(

4
⋂

s=1

Ci,j
s (X)

)

, (4.9)

where
∏

i,j

represents the product of sets. Note that the variable sets Ci,j
s (X) in (4.9) attain the

form (3.6).

4.2. Experiments

In our computational experiments we consider two test images. The Shepp-Logan phantom
of Fig. 4.1(a), displayed with Gaussian noise of zero mean and variance 0.1 in Fig. 4.1(b), and
an ultrasound image, displayed in Fig. 4.1(c).

For the ICFP (4.9), we implemented both Algorithms 3.1 and Algorithm 3.2. The param-

eters were chosen to be γk = 1
16 and 1000 iteration steps for Algorithm 3.1 and σβk+j :=

1

k
for j = 0, 1, . . . ,β and 1000 iteration steps for Algorithm 3.2. If not noted otherwise, we use
β = 100 for the latter.

We compared the performance of the CFP (4.7) with that of the ICFP (4.9). For both
problems we focused on the simultaneous projection method of Algorithm 3.1, which is known
to converge even in the inconsistent case (i.e., the case where the intersection of constraint sets
is empty), see, e.g, [10, 32].

In Fig. 4.1 we present results of comparing the CFP and ICFP approaches on the noisy
Shepp-Logan test image and on the ultrasound image that we used. We also provide close-ups
for a specific region of interest, in order to highlight the differences mainly in texture. We
observe that the CFP is not suited to denoise the data. In contrast, solving the ICFP leads to
a denoised image.

In Fig. 4.2 we study the influence of the parameter α in (4.8) for the ICFP. Our experiments
show, that this parameter influences the smoothness of the result. The smaller α the smoother
the result becomes.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Fig. 4.1. Comparison of the results of the CFP (4.7) (d), (f) and the ICFP (4.9) (e), (g) and close-ups

(h)-(k) of the regions marked in white. From the close-ups, we observe that the ICFP is better suited

as a denoising method than the CFP.

In Fig. 4.3, we plot the percentage of empty constraint sets ∩4s=1C
i,j
s (xk), i = 1, 2, . . . , n1,

j = 1, 2, . . . , n2, depending on the iteration index k for CFP and ICFP, using both algorithms
for the latter.

Note that in the CFP the constraint sets do not vary and, therefore, we have a constant
fraction of empty intersections, while in the ICFP we observe that the number of empty inter-
sections decreases significantly to a final percentage of 3.5%, showing that the constraint sets
adapt to the unknown in a meaningful way.

We note that Algorithm 3.2 requires a β-steering sequence for convergence. To demonstrate
the influence of this sequence on the speed of convergence we conduct an experiment with
different values of β. Obviously the choice of β influences the solution, to which the iterative
sequence generated by the algorithm converges. We found that the results are of similar quality
(the SSIM index proposed by Wang et al. [37] varies only in the range 0.6802± 0.0001). Due
to the non-uniqueness of the solution, we can measure convergence only with respect to the
individual solution the algorithm converges to. To this end, we assume that the sequence
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(a) α = 1 (b) α = 0.1

Fig. 4.2. Results for varying parameter α (cf. (4.8)). Observe that decreasing α leads to a smoother

image.

Fig. 4.3. Percentage of empty constraint sets ∩4
s=1C

i,j
s (X), i = 1, 2, . . . , n1, j = 1, 2, . . . , n2 (inconsistent

cases) with x varying during the iterations. We compare the algorithm for the CFP (dash-dotted), and

for ICFP Algorithm 3.1 (dashed) and the sequential Algorithm 3.2 (solid). We observe, that for the

ICFP, the percentage significantly decreases during the iterations, while for the CFP by definition it is

constant.

converges within the first 1000 steps. This assumption is satisfied, since the difference ∥Xk−1−
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Fig. 4.4. Convergence for different β-steering sequences with β = 10 (black solid), 20 (black dashed), 50

(gray solid) and 100 (gray dashed) in Algorithm 3.2 applied for smoothing the phantom image. Note

that the limit depends on the chosen sequence. We depict ∥Xk −X1000∥, assuming convergence within

the first 1000 steps. We conclude that a larger β is advantageous for a faster convergence.

Xk∥ becomes small for k ≈ 1000. The plot in Fig. 4.4 shows the distances dk := ∥Xk −X1000∥
for β = 10, 20, 50, 100 during the first 1000 steps. We observe that the larger β is, the faster dk
decreases. Thus, for a faster convergence a larger value of β is advantageous.

We conclude that the proposed ICFP has the capability of denoising image data. Al-
though the approach in its current form cannot cope with complex state-of-the-art denoising
approaches, our experiments demonstrate the usefulness of imposing constraints on image in-
tensities. Moreover, we see the potential for further improvements of the approach, for example
by additionally making the parameter α depend on the unknown, or by combining the ICFP
with an objective function for denoising, that has to be optimized subject to the given adaptive
constraints.

5. Summary and Further Discussion

In this paper we consider the implicit convex feasibility problem (ICFP) where the variable
sets are obtained by shifting, rotating and linearly-scaling fixed, closed convex sets. By refor-
mulating the problem as an unconstrained minimization we present two algorithmic schemes
for solving the problem, one simultaneous and one sequential. We also comment that other
first-order methods can be applied if, for example, the problem is phrased as a variational in-
equality problem. We illustrate the usefulness of the ICFP as a new modeling technique for
imposing constraints on image intensities in image denoising.

Two instances of the ICFP, the wireless sensor network (WSN) positioning problem and the
new image denoising approach suggest the applicability potential of the ICFP. In this direction
we recall the nonlinear multiple-sets split feasibility problem (NMSSFP) introduced by Li et
al. [29] and later by Gibali et al. [23].

In this problem the linear operator T : Rn → Rm in the split convex feasibility problem
(2.1) is nonlinear and, therefore, the corresponding proximity function is not necessarily convex
which means that additional assumptions on T are required, such as differentiability. Within
this framework it will be interesting to know, for example, what are the necessary assumptions
on m : Rn → Rn in Definition 2.1 which will guarantee convergence of our proposed schemes.

Another direction is when the unitary matrices Us are not given in advance but generated
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via some procedure; for example, given a linear transformation M : Rn → Rn×n, such that for
all x ∈ Rn, M(x) = U[x] is a unitary matrix. The linearity assumption on M will guarantee
that our analysis here will still hold true. For a nonlinear M our present analysis will not hold
or, at least, not directly hold.
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