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ABSTRACT. In this paper we conduct a study of both superiorization and optimization approaches for the re-
construction problem of superiorized/regularized solutions to underdetermined systems of linear equations with
nonnegativity variable bounds. Specifically, we study a (smoothed) total variation regularized least-squares
problem with nonnegativity constraints. We consider two approaches: (a) a superiorization approach that, in
contrast to the classic gradient based superiorization methodology, employs proximal mappings and is struc-
turally similar to a standard forward-backward optimization approach, and (b) an (inexact) accelerated opti-
mization approach that mimics superiorization. Namely, a basic algorithm for nonnegative least squares that
is enforced by inexact proximal points is perturbed by negative gradients of the the total variation term. Our
numerical findings suggest that superiorization can approach the solution of the optimization problem and leads
to comparable results at significantly lower costs, after appropriate parameter tuning. Reversing the roles of the
terms treated by accelerated forward-backward optimization, on the other hand, slightly outperforms superior-
ization, which suggests that optimization can approach superiorization too, using a suitable problem splitting.
Extensive numerical results substantiate our discussion of these aspects.
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1. INTRODUCTION

The purpose of this work is to present an advanced comparative study of superiorization and accelerated
inexact convex optimization. The motto of the superiorization methodology (SM) is to take a convergent
iterative algorithm (“the basic algorithm”) which is known to converge to a point in a certain set and perturb
its iterates such that the perturbed algorithm (“the superiorized version of the basic algorithm”) will still
converge to some point of the same set. Such perturbations make the basic algorithm “perturbation resilient”.
When the perturbations lower the value of a given exogenous function (“the target function”) then the output
of the superiorized algorithm is expected to be “superior” to the output of the basic algorithm in the sense
that it has a lower (not necessarily minimal) value of the target function. For basic algorithms that are
feasibility-seeking the SM defines a novel class of approaches that may be classified as being “in between”
solving convex feasibility problems and solving optimization problems, respectively. The idea is to improve
– superiorize – the basic algorithm that is resilient against bounded perturbations, by perturbing it such that
the iterates attain lower values of the target function. As a consequence, the returned vector is superior, but
not necessarily optimal, with respect to the target function and any vector produced by the basic algorithm
without superiorization. This weaker guarantee – convergence and superiority, but not necessarily optimality
– enables simple implementations that only require minimal changes of existing code that implements the
basic algorithm. In addition, the SM does not depend on what target function is chosen for the application
domain at hand. As a consequence, superiorization provides a flexible framework for applications that can
be based on a perturbation resilient basic algorithm.

Introductory and advanced materials about the SM, accompanied by relevant references, can be found in
our recent papers [CL19, CGHH19], in particular, [CGHH19, Section 2] contains the basics of the supe-
riorization methodology in condensed form. A comprehensive overview of the state-of-the-art and current
research on superiorization appears in our continuously updated bibliography Internet page that currently
contains 104 items [Cen19]. Research works in this bibliography include a variety of reports ranging from
new applications to new mathematical results on the foundations of superiorization. A special issue enti-
tled: “Superiorization: Theory and Applications” of the journal Inverse Problems [CHJE17] contains several
interesting papers on the theory and practice of SM, such as [CAM17], [HX17], [RZ17], to name but a
few. Later papers continue research on perturbation resilience, which lies at the heart of the SM, see, e.g.,
[BRZ18]. The superiorization method was born when the terms and notions “superiorization” and “pertur-
bation resilience”, in the present context, first appeared in the 2009 paper [DHC09] which followed its 2007
forerunner [BDHK07]. The ideas have some of their roots in the 2006 and 2008 papers [BRZ06, BRZ08].
All these culminated in Ran Davidi’s 2010 PhD dissertation [Dav10] and the many papers since then cited in
[Cen19]. Another recent work attempts at analysing the behavior of the SM via the concept of concentration
of measure [CL19].
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Superiorization has spurred research during the recent years, focusing on proofs of perturbation resilience
of an increasing number of basic algorithms and on numerical experiments that support the claim that in
comparison to algorithms for solving constrained optimization problems, superiorized algorithms are sim-
pler, computationally more efficient and return solutions that are often “sufficiently feasible and sufficiently
optimal” in practice. A recent example is the work [ZLH18, HLZH18] where the preconditioned conjugate
gradient iteration (PCG) is used as a basic algorithm in the algebraic (fully-discretized) model of computed
tomography (CT) and is superiorized using the total variation (TV) as a target function. The authors re-
port that superiorized PCG compares favorably to a state-of-the-art optimization algorithm, FISTA [BT09a],
applied to the unconstrained convex problem

min
x

(
1

2
‖Ax− b‖2 + λR(x)

)
, λ > 0, (1.1)

where minimizing the first term aims to recover a vector x from linear tomographic model and measurements,
whereas minimizing the second, discrete TV, function R enforces a sparse support of the discrete gradient
of x. FISTA is well-known to be particularly efficient for convex problems with sparsity-enforcing `1 or
TV regularizers, because proximal maps with respect to these regularizers, when iterated, can be carried out
efficiently by shrinkage and TV-based denoising, respectively [GO09, BT09b].

It is interesting to observe the different points of view toward problem (1.1) taken by the SM and by op-
timization due to treating differently the summands in (1.1). Exemplary implementations [SJP12, XYT+16]
of state-of-the-art optimization approaches [CP11a, BT09a] for the TV-based regularization problem (1.1)
typically consider a TV minimization algorithm (as proximal term) and modify its iterates by gradients of
the least-squares term. Superiorization, on the other hand, considers first a basic algorithm for solving the
tomographic recovery problem by a least-squares approach that is known to be resilient against bounded per-
turbations, and perturbs the iterates with negative subgradients of the TV function to achieve superiorization.

The earlier work [CDH+14] compared superiorization with optimization for a similar application prob-
lem. The chosen optimization method there is the projected subgradient method. It has a structure that is
similar to superiorization but its convergence rate falls short of state-of-the-art optimization approaches.

Our motivation for the present paper is to conduct a study of comparing superiorization and optimization
for the problem

min
x≥0

(
1

2
‖Ax− b‖2 + λRτ (x)

)
, τ, λ > 0, (1.2)

that is slightly more complex than (1.1) due to the nonnegativity constraints that are often quite relevant in
practice. In particular, we wish that the optimization approach that we use for the comparison should retain
the similarity with the structure of superiorization, i.e., a basic algorithm related to the inverse problem
Ax = b that is perturbed by nonascent directions of the target functional Rτ , which explains why (1.2)
comprises a C1-approximation of R of (1.1) parameterized by τ . In addition, the optimization approach
should be based on approaches to convex programming that are more efficient than the projected subgradient
method. This mainly concerns two trends:

(i) Inexact computations in connection with proximal splitting, and
(ii) Acceleration of such inexact proximal iterations in order to achieve O(k−2) convergence rates.
Regarding (i), proximal iterations based on various operator splittings [CP11b] as well as inexactness

in terms of summable error sequences [Tos94, Com04] are well-known. More recent work has focused
on inexactness criteria that can be checked computationally at each iteration. Regarding (ii), research has
focused on extending the acceleration technique introduced by Nesterov to such inexact proximal schemes.
We refer to [RDP17] and references therein for a recent comprehensive study and survey, including a novel
accelerated inexact forward-backward scheme for minimizing finite convex objective functions. This scheme
does not apply to (1.2), however, due to the nonnegativity constraints here.
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We point out that convex problems of the form (1.2) have been extensively studied from the viewpoint
of convex programming (e.g., [VO98, BT09b, GO09, CZC12]). Selecting the most efficient optimization
approach is not the main objective of the present paper, however. Rather, we consider also an optimization
approach that mimics the structure of superiorization using Rτ as target function, even if this approach is not
the most efficient one for optimizing (1.2). This restriction makes sense since superiorization also applies
to nonconvex problems, in principle, for which the efficiency of optimization algorithms tends to deteriorate
anyway.

Organization. After specifying the problem and basic assumptions in Section 3, we work out a supe-
riorization approach in Section 4. Specifically, we consider a state-of-the-art gradient based superiorized
conjugate gradient (CG) iteration that we adapt to underdetermined linear systems. Further, we consider su-
periorization based on proximal mappings in order to handle nonnegativity constraints. In addition to CG we
also consider the superiorization of the Landweber and the projected Landweber iteration that is structurally
similar to a basic forward-backward iteration for solving (1.2). In Section 5, we work out an optimization
approach to (1.2), accelerated inexact forward-backward splitting, that mimics the structure of the superi-
orization approach: Accelerated inexact proximal iteration, with respect to the nonnegative least-squares
recovery problem, is considered as a “basic algorithm” and is perturbed by negative gradients of the target
function Rτ . Since the proximal maps cannot be computed in closed-form, they are implemented by an
inner iterative loop. We also study the reverse forward-backward splitting since it reveals another relation to
superiorization that affects the overall performance. These aspects and our findings are discussed in Section
6, based on an a series of quantitative numerical results. We conclude in Section 7.

2. SUPERIORIZATION VERSUS CONVEX OPTIMIZATION

The superiorization method (SM) interlaces two algorithmic activities under the “fundamental assump-
tion” that one algorithmic activity (called the “basic algorithm”) is resilient to the “disturbances” of its
iterates caused by the activity of the other algorithm, called “perturbations”. The resilience means that
an important property of the basic algorithm, such as asymptotic convergence to points in a given set, or
ε-compatibility with such a set, are preserved in spite of the repeated perturbations.

The Forward-Backward (FB) splitting optimization method, that plays a prominent role in this paper, also
interlaces two algorithmic activities and, therefore, looks from the structural point of view “similar” to the
SM. However, the FB applies its interlaced iterative process under different conditions, in particular, it does
not obey the “fundamental assumption” of the SM stated above. This difference sets these two methods
apart. Such situations of algorithms being similar but not identical are abound.

One example is the sequential Kaczmarz algorithm applied to a consistent system of linear equations
Ax = b. When it is initialized anywhere in space, i.e., x0 ∈ Rn then it converges asymptotically to any
point in the nonempty intersection of the hyperplanes of the linear system. But if it is initialized in the range
of A>, x0 ∈ R(A>), then it is guaranteed to converge to the feasible point of Ax = b that is closest to
the origin, see, e.g., [CZ97, Algorithm 6.5.1]. Are these then the same algorithm or different algorithms?
The first can find only feasible points while the latter does norm-minimization over the linear system. These
algorithms share the structure of the iteration process but are different in the problem that they solve and
in the assumptions under which they work. Efforts to understand the very good performance of the SM in
practice motivated recently Byrne [Byr19] to notice and study similarities between some SM algorithms and
optimization methods.

In spite of this we juxtapose experimentally the SM with two versions of FB (plain FB and reversed FB)
and investigate their performances. We consider in two different ways how to treat the two algorithmic
activities in FB-splitting. We do not claim this to be identical with SM, because - as stated above - the
assumptions and the algorithms differ. The point we make is that both versions of the FB splitting can
be understood (i) from the SM viewpoint, informally not in a mathematically-strict sense, and (ii) from the
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convex optimization viewpoint rigorously, as methods for solving the underdetermined least-squares problem
such that the LS-solution (out of many existing ones) achieves an optimal value of the target function Rτ (or
Rτ + δRn+ in the nonnegatively constrained case).

Pointing out these relations between SM and FB, substantiated with quantitative numerical results, should
stimulate further research of both.

3. PRELIMINARIES

3.1. Basic Notions and Notation. We set [n] = {1, 2, . . . , n} for any n ∈ N. The Euclidean space is
denoted by Rn and its nonnegative orthant by Rn+. We denote by K∗ the polar cone of a cone K ⊆ Rn,
where K is either Rn or Rn+ in the following. For a closed convex set C ⊂ Rn, NC(x) denotes the normal
cone at x ∈ C and δC is the indicator function of C, i.e., δC(x) = 0 if x ∈ C, and δC(x) = +∞,
otherwise. The orthogonal projection onto C is denoted by ΠC . In the specific case C = K, we simply
write x+ = ΠK(x) and, similarly, x− = ΠK∗(x) = x−x+. The unit matrix is denoted by I. The Euclidean
vector norm and inner product are denoted by ‖ · ‖ and 〈·, ·〉, respectively. For two vectors x, y ∈ Rn we
write x ⊥ y whenever they are orthogonal. For a matrix A ∈ Rm×n, ‖A‖ denotes its spectral norm and A>

is the transformed matrix.
We assume that images are discretized on n grid points in a two dimensional domain in R2. We define

next the discrete gradient matrix obtained by forward differences. We consider first the one-dimensional
discrete derivative operator of a M ×N discrete image

∂d : Rd → Rd, ∂d =


−1, i = j < d,

+1, j = i+ 1,

0, otherwise,
(3.1)

along each spatial direction, with d ∈ {M,N} and write

D =

(
D1

D2

)
=

(
∂M ⊗ IN
IM ⊗ ∂N

)
∈ R2n×n, (3.2)

where ⊗ stands for the Kronecker product and IM , IN are identity matrices of appropriate dimensions.
The following classes of convex functions are relevant to our investigation.

Fc := {f : Rn → R | f is convex, proper and lower semicontinuos}, (3.3a)

F1
c (L) := {f ∈ Fc | f ∈ C1 and ∇f is L-Lipschitz-continuous}, (3.3b)

F1
c (L, µ) := {f ∈ F1

c (L) | f is µ-strongly monotone convex}. (3.3c)

We use subscripts Lf , µf to specify the corresponding concrete function f . f∗ denotes the Legendre-Fenchel
conjugate of f ∈ Fc.

Given a function f : Rn → R and a point x ∈ dom f , we say that a vector v ∈ Rn is a nonascending
vector for f at x if ‖v‖ ≤ 1 and there is a t > 0 such that

f(x+ tv) ≤ f(x), for all t ∈ (0, t]. (3.4)

Given f ∈ Fc(Rn) and α > 0, the proximal mapping of the point x ∈ Rn is defined by

Pαf(x) := arg min
y

{
f(y) +

1

2α
‖y − x‖2

}
, (3.5)

whereas the Moreau envelope is the function defined by

eαf(x) := inf
y

{
f(y) +

1

2α
‖y − x‖2

}
. (3.6)
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This function is continuously differentiable with gradient [RW09, Theorm 2.26]

∇eαf(x) =
1

α

(
x− Pαf(x)

)
. (3.7)

In the optimization part of this study that concerns the iteration (5.13) below, the sequence of iterates gener-
ated by the outer loop will be denoted by (xk), whereas (zl) denotes the sequence of iterates, for any fixed
k, that is generated by an inner loop in order to evaluate (possibly inexactly) the proximal map Pαkg(·). In
the latter context, to simplify notation, we write (5.13) as

y = Pαg(x) (3.8)

with sequence (zl) converging to y. Inexact evaluation means to terminate the inner loop after step l and to
continue the outer loop with xk+1 = zl+1. In connection with (3.8), we write z = zl+1 ≈ y for the latter
approximation and ε = εk for a corresponding error parameter.

3.2. Problem Formulation. We consider problem (1.2) and assume

A ∈ Rm×n+ , rank(A) = m < n (3.9)

and Rτ ∈ Fc(LRτ ). Regarding the definition of Rτ , we use the discrete gradient matrix (3.2) and index by
i ∈ [n] the vertices of the regular image grid. Then

(
(D1x)i
(D2x)i

)
∈ R2 represents the gradient at location i in

terms of the samples xi, i ∈ [n] of a corresponding image function. We set

R : Rn → R+, R(x) =
∑
i∈[n]

(
|(D1x)i|+ |(D2x)i|

)
. (3.10)

To obtain a C1-approximation, we note that R is a support function,

R(x) = sup
p∈C

∑
i∈[n]

〈
pi,
(

(D1x)i
(D2x)i

)〉
, C = {(p1, . . . , pi, . . . , pn) ∈ R2n : pi ∈ R2, ‖pi‖∞ ≤ 1, i ∈ [n]},

(3.11)
which enables the smooth approximation of R in a standard way [AT03, Sect. 2.8], [Com18]

Rτ (x) = τ
∑
i∈[n]

(√
1 + |(D1x/τ)i|2 +

√
1 + |(D2x/τ)i|2

)
(3.12a)

=
∑
i∈[n]

(√
τ2 + |(D1x)i|2 +

√
τ2 + |(D2x)i|2

)
, 0 < τ � 1. (3.12b)

Rτ is continuously differentiable. The gradient

∇Rτ = D>Diag
(
. . . ,

(
τ2 + |(D1x)i|2

)−1/2
, . . . ,

(
τ2 + |(D2x)i|2

)−1/2
, . . .

)
D (3.13)

is Lipschitz continuous with constant

LRτ ≤
1

τ
‖D‖2 < 8

τ
. (3.14)

Regarding data errors, we adopt the basic Gaussian noise model

(Ax− b)i ∼ N (0, σ2), i ∈ [m]. (3.15)
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4. SUPERIORIZATION

Superiorization involves a basic algorithm that has some perturbation resilience properties and concrete
perturbations of iterates of the basic algorithm related to a target function whose value one wants to reduce.
We examine these aspects in turn, with a focus on the problem (1.2). The basic algorithm discussed here is,
in general, an iterative process of the form

(xk+1, u
1
k+1, . . . u

ν
k+1) = A(xk, u

1
k, . . . u

ν
k), for all k ≥ 0, (4.1)

where (xk) are the primal iterates and (uik), i ∈ [ν] some auxiliary sequences of vectors that in general
depend on (xk).

We consider two such iterations in Section 4.1 below. In particular, we consider the conjugate gradient
(CG) iteration and the Landweber iteration that are both appropriate for the least-squares problem. The
Landweber iteration, with a slight modification, is also appropriate the nonnegative least-squares problem.
Superiorization of the basic algorithm 4.1 can be written as

(xk+1, uk+1) = A(xk+1/2, u
1
k, . . . u

ν
k), for all k ≥ 0, (4.2)

where the basic algorithmic operator A is applied to the perturbed iterations

xk+1/2 = xk + yk. (4.3)

An algorithm like 4.2 is called in the literature on superiorization “the superiorized version of the basic algo-
rithm 4.1”. Classic conditions on the superiorization sequence (xk) that guarantee a converging algorithm
after perturbation (perturbation resilience) are discussed in Section 4.2. In Section 4.3 we adopt a classic
gradient based strategy to superiorize the basic algorithms from Section 4.1 and suggest an alternative strat-
egy based on proximal points which brings us closer to the optimization algorithms considered in Section
5.

Specifically, we first address the unconstrained least-squares problem and consider:

• a superiorized CG iteration, tagged GradSupCG, that uses scaled negative gradients, to potentially
decrease the target function Rτ ,
• a superiorized CG iteration based on proximal points, tagged ProxSupCG,
• a gradient based superiorized Landweber iteration, called GradSupLW and
• a proximal-point based superiorized Landweber iteration, called ProxSupLW.

Further, to address the nonnegative least-squares problem we consider:

• a gradient based superiorized projected Landweber iteration, called GradSupProjLW, and
• a superiorized projected Landweber iteration, tagged ProxSupProjLW, that uses proximal points to

potentially decrease the target function Rτ .

We will see that the superiorized projected Landweber algorithm will approach a nonnegative least-squares
solution too. We can steer however the iterates towards the nonnegative orthant through perturbation by
proposing

• a superiorized CG iteration, tagged ProxCSupCG, based on proximal points that also includes con-
straints, and
• a constrained-proximal-point based superiorized Landweber iteration, tagged ProxCSupLW.

Table 1 summaries these superiorization approaches explored in this paper.
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Method Basic algorithm Nonascent direction by Perturbation resilience

GradSupCG ACG S∇ from Alg. 3 X, see [ZLH18, Thm. 1]
GradSupLW ALW S∇ from Alg. 3 X, see [GC18]
ProxSupCG ACG Sprox(x, βk) from (4.16) open
ProxSupLW ALW Sprox(x, βk) from (4.16) follows from [JCJ16, LZZ+19]
ProxCSupCG ACG Sprox+(x, βk) from (4.18) open
ProxCSupLW ALW Sprox+(x, βk) from (4.18) open

GradSupProjLW ALW+ S∇ from Alg. 3 X, see [JCJ16, GC18]
ProxSupProjLW ALW+ Sprox(x, βk) from (4.16) follows from [LZZ+19]

TABLE 1. List of superiorized algorithms. The left column show the name tags used for
the superiorized algorithms that are numerically evaluated in Section 6. The second column
from the left shows the basic algorithm used while the third column indicates our strategy for
computing the perturbations. The last column indicates if perturbation resilience is solved
or still open.

4.1. Basic Algorithms. Regarding the problem to recover x from a linear model represented by Ax = b,
one could adopt any algorithm for solving the linear feasibility problem

find x ∈

{
H, without nonnegativity constraints,
H ∩Rn+, with nonnegativity constraints,

(4.4a)

H =
⋂
j∈[m]

Hj , Hj = {x ∈ Rn : 〈Aj , x〉 = bj}, (4.4b)

as a basic algorithm [BB96, Ceg13], where Aj , j ∈ [m] denote the rows vectors of A. This would be
possible in view of an underdetermined linear system with a full rank matrixA, as considered here. However,
we only consider the more general case of least-squares, i.e., minimizing the first term of (1.2), which is
appropriate, in particular, for noisy measurements bj , j ∈ [m], and inconsistent linear systems. Specifically,
we choose the conjugate gradient (CG) iteration [Saa03, Sect. 8.3] and the Landweber method [BB96]
as basic algorithms. First, we adopt the following CG algorithm that is a slight modification of [ZLH18,
Algorithm 8].

Initialization: Set µ > 0 small; choose x0 ∈ Rn, p0 = A>(b−Ax0) +µx0, and h0 = A>Ap0 +µp0.
Iteration for k ≥ 0: Compute via Algorithm 1 below

(xk+1, pk+1, hk+1) = ACG(xk, pk, hk), for all k ≥ 0. (4.5)

The updates of the current iterates in lines 2 and 6 of Algorithm 1 below differ from the corresponding
updates in [ZLH18, Algorithm 8], because in our case the CG iteration is applied to the regularized least-
squares problem

min
1

2

∥∥∥( A√
µI

)
x−

(
b
0

)∥∥∥2, (4.6)

with a small parameter µ > 0, in order to obtain a well-defined algorithm for the underdetermined scenario
(3.9) considered here. Note that the CG iteration (4.5), as well as [ZLH18, Algorithm 8], differs from the
classic CG iteration for least-squares in that the gradient of the least-squares term, see line 2, is evaluated at
each current iterate, and not by the computationally more efficient update

gk+1 = gk +A>Apk + µpk, (4.7)
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Algorithm 1: (xnew, pnew, hnew)← ACG(x, p, h)

Input: Current iterates x, p, h.
Output: Updated iterates xnew, pnew, hnew.

1 begin
2 g = A>(Ax− b) + µx

3 β = 〈g, h〉/〈p, h〉
4 pnew = −g + βp

5 hnew = A>Apnew + µpnew
6 γ = −〈g, pnew〉/〈pnewhnew〉
7 xnew = x+ γpnew

commonly used, see [Saa03, Sect. 8.3]. As discussed in [ZLH18], by doing so, one obtains an algorithm
that performs exactly as CG, but is resilient to perturbations. See also Section 4.2.

The recent work in [ZLH18, HLZH18] also considers the preconditioned CG iteration as a basic algorithm.
While in case of overdetermined systems preconditioning is mandatory, CG without preconditioning works
well in our underdetermined scenario. However, the CG method cannot be directly applied to a consistent
linear system with nonnegativity constraints. There exist CG versions for nonnegativity and box-constraints
that use an active set strategy but are hampered by frequent restarts of the CG iteration. A more efficient
box-constrained CG method for nonnegative matrices can be found in [Vol14], but even its convergence
theory it still open, let alone its perturbation resilience. As an alternative, we include constraints in the CG
method via superiorization as detailed in Section 4.3 below.

By contrast, the Landweber method can be easily extended to nonnegativity constraints by simple pro-
jections onto the nonnegative orthant. We consider the following Landweber iteration. It makes use of the
spectral norm of A, denoted here by ‖A‖, which has to be computed before hand.

Initialization: Choose x0 ∈ Rn.
Iteration for k ≥ 0: Compute by Algorithm 2 below

xk+1 = ALW+(xk), for all k ≥ 0. (4.8)

Algorithm 2: xnew ← ALW+(x)

Input: Current iterate x; choose γx ∈ (0, 2/‖A‖2).
Output: Updated iterate xnew.

1 begin
2 g = A>(Ax− b)
3 xnew = ΠRn+(x− γxg) = max(x− γxg, 0)

4.2. Perturbation Resilience. In the sequel let A denote either the operator ACG or ALW+ of the basic
algorithms 4.6 or 4.8, respectively, that, for any given x0 ∈ Rn, generate sequences

XA := (xk), by the iteration xk+1 = A(xk), k ≥ 0. (4.9)

For a given feasibility problem, denoted by T , a proximity function PrT : Rn → R+ must be decided upon
such that PrT (x) measures how incompatible x is with the constraints of T . Given an ε > 0, we say that x
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is ε-compatible with T if PrT (x) ≤ ε. We can look, for ε > 0, a given problem T and a chosen proximity
function PrT at the set Cε ⊂ Rn of the form

Cε :=
{
x ∈ Rn | PrT (x) ≤ ε

}
. (4.10)

We will refer to such sets in the sequel as “proximity sets” and list some instances related to our scenario.
For example, the sub-level set

Cε,1 :=
{
x ∈ Rn | 1

2
‖Ax− b‖2 ≤ ε

}
, ε ≥ 0, (4.11)

contains all ε-compatible (i.e., approximate) least-squares solutions up to a given noise level ε. Another
example is the sub-level set of approximate regularized least-squares solutions, see (4.6), for some fixed
µ > 0,

Cε,2 :=
{
x ∈ Rn | 1

2
‖Ax− b‖2 +

µ

2
‖x‖2 ≤ ε

}
, ε ≥ 0, (4.12)

or all such approximate regularized least-squares solutions that are also nonnegative, namely,

C+
ε,1 := Cε,1 ∩ Rn+, C+

ε,2 := Cε,2 ∩ Rn+ (4.13)

with ε > 0 large enough such that the sets C+
ε,1, C

+
ε,2 are nonempty. Each of the above sets describes the

“proximity” with respect to the solution set of the (nonnegative/regularized) least-squares problem consid-
ered here in terms of an intrinsic proximity function (defined here by the least-squares term) and an accuracy
parameter ε > 0.

The underlying idea of the superiorization method is to strive for a point x ∈ Cε, in one of the sets of
interest, that is superior with respect to a given target function, by merely applying the basic algorithm to
perturbed iterates, recall (4.2). For the superiorized version of the basic algorithm to retain its feasibility-
seeking nature to a point in the solution set these perturbations have to be bounded.

There are two research directions in the general area of the superiorization method (SM). One is the di-
rection when only “bounded perturbation resilience” is used and the constraints are assumed to be consistent
(having nonempty intersection). Then the “superiorized version” of the original unperturbed basic algorithm
is treated as a recursion formula that produces an infinite sequence of iterates, and convergence questions are
meant in their asymptotic nature.

The second direction does not assume consistency of the constraints but uses instead a proximity func-
tion that “measures” the violation of the constraints. Instead of seeking asymptotic feasibility, it looks at
ε-compatibility with the constraints and uses the notion of “strong perturbation resilience”, see [HGDC12,
Subsection II.C] where this direction has been initiated. The same core “superiorized version” of the original
unperturbed algorithm might be investigated in each of these directions, but the second is the more useful
one for practical applications, whereas the first makes only asymptotic statements. A recent work on the
guarantee question of the SM is solely focused on weak superiorization [CL19]. The terms “weak superi-
orization” and “strong superiorization” were proposed as a nomenclature for the first and second directions,
respectively, in [CZ15, Section 6] and [Cen15].

The following definition is an adaptation of [CDH10, Definition 1] to our notation used here.

Definition 4.1 (Bounded perturbation resilience). Let S denote the solution set of some given task and let
A be an algorithmic operator as in (4.9). The algorithm (4.9) is said to be bounded perturbations resilient
if the following holds: If the algorithm (4.9) generates sequences XA that converge to points in S for all
x0 ∈ Rn then any sequence X ′A = (x′k), generated by x′k+1 = A(x′k + βkvk) where the vector sequence
(vk) is bounded, βk ≥ 0 for all k ≥ 0, and

∑∞
k=0βk < +∞, also converges to a point in S for any x′0 ∈ Rn.

This definition can be used whenever the constraints which define the set are consistent, i.e., S 6= ∅.
In that case the superiorized version (4.2) of the original unperturbed basic algorithm (4.1) is treated as a
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recursion formula that produces an infinite sequence of iterates, and convergence questions are meant in their
asymptotic nature.

The next notion, wherein one does not have to assume consistency of the constraints, uses a proximity
function that measures the violation of the constraints. Instead of seeking asymptotic feasibility, it looks at
ε-compatibility, see [HGDC12, Subsection II.C], specialized in our case by introducing the sets Cε (4.11)–
(4.13) defined above.

Definition 4.2 (The ε-output of a sequence). For an ε ∈ R+, a proximity set Cε, as in (4.10) above, and a
sequence X := (xk) of points, we use O (Cε,X ) to denote the x that has the following properties: x ∈ Cε,
and there is a nonnegative integer N such that xN = x and, for all nonnegative integers k < N , xk /∈ Cε.
Such an x is called the “ε-output of the sequence”. If there is such an x, then it is unique. If there is no such
x, then we say that O (Cε, X) is undefined, otherwise it is defined.

IfX is an infinite sequence generated by an algorithm such as (4.9), thenO (Cε,X ) is the output produced
by that algorithm when we add to it a stopping rule that makes it terminate when it reaches a point that is
an ε-output of the sequence. With this definition of ε-output of a sequence we define the notion of strong
perturbation resilience from [HGDC12, Subsection II.C], adapted to our notations.

Definition 4.3 (Strong perturbation resilience). LetCε denote the proximity set and letA be an algorithmic
operator as in (4.9). The algorithm (4.9) is said to be strongly perturbation resilient if the following conditions
hold:

(1) there is an ε > 0 such that the ε-output of the sequence XA exists for every x0 ∈ Rn;
(2) for all ε ≥ 0 such that O (Cε,XA) is defined for every x0 ∈ Rn we also have that O (Cε′ ,X ′A) is

defined for every ε′ ≥ ε, and for every sequence

X ′A = (x′k), generated by x′k+1 = A(x′k + βkvk) for all k ≥ 0,

where the sequence (vk) is bounded, βk ≥ 0 for all k ≥ 0, and
∑∞

k=0βk < +∞.

Note that if the constraints are consistent, i.e., S 6= ∅, and if S ⊂ Cε, then bounded perturbation resilience
implies strong perturbation resilience. Sufficient conditions for strong perturbation resilience appeared in
[HGDC12, Theorem 1]. With respect to a target function f , we adopt the convention that a point in the
domain of f for which its value is smaller is considered superior to a point for which the value of f is larger.
The essential idea of the SM is to use the perturbations (4.3) to transform a strongly perturbation resilient
basic algorithm that seeks a constraints-compatible solution into a superiorized version whose outputs are
equally good from the point of view of constraints-compatibility, but are superior (not necessarily optimal)
with respect to the target function f . This can be done by using nonascent vectors.

4.3. Superiorization by Bounded Perturbations. In this subsection we specify in detail the two superior-
ized versions of the basic CG iteration (4.5) and the basic Landweber iteration (4.8) Discussed above. We
start with CG and use the notation

gµ(x) :=
1

2
‖Ax− b‖2 +

µ

2
‖x‖2

to denote the objective function of the regularized least-squares problem (4.6). In the sequel g0 will cor-
respond to the plain least-squares term g0 := 1/2‖A · −b‖2. The next superiorized CG iteration is taken
from [ZLH18, Algorithm 7, Algorithm 8] but applied to the regularized least-squres problem (4.6). It uses
nonascent directions (3.4) based on negative gradients and fits into the general framework in [HGDC12, page
5537].

GradSupCG:
Initialization: Set ε, µ > 0 small; Choose x0 ∈ Rn, set y0 = x0, p0 = A>(b−Ax0) + µx0,
h0 = A>Ap0 + µp0, γ = ‖p0‖2/〈p0, h0〉, x1 = x0 + γp0, `1 = 0
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Iteration for k ≥ 1: Compute

while gµ(xk−1/2) > ε do
(sk, `k+1) = S∇(xk, `k, a, γ0, κ), by Algorithm 3 (4.14a)
xk+1/2 = xk + sk (4.14b)

(xk+1, pk+1, hk+1) = ACG(xk+1/2, pk, hk) (4.14c)
k ← k + 1 (4.14d)

The inputs of the superiorized CG algorithm are the initial vector x0, and a, κ and γ0 have the same role as
in Algorithm 3, while Rτ and ∇Rτ are as in (3.12b) and (3.13), respectively.

Algorithm 3: (s, `)← S∇(x, `, a, γ0, κ)

Input: Current iterate x.
Output: Nonascent direction s := y − x, exponent `.

1 begin
2 y ← x

3 for i = 1, . . . , κ do
4 if∇Rτ (y) 6= 0 then
5 d← −∇Rτ (y)/‖∇Rτ (y)‖, see (3.13),
6 else
7 d← 0;

8 repeat
9 γ ← γ0a

`

10 ynew ← y + γd

11 `← `+ 1;
12 until Rτ (ynew) ≤ Rτ (y).
13 y ← ynew.

We consider a second variant of the superiorized CG iteration that employs nonascent directions computed
by proximal points. The idea is to replace (4.14a) in Algorithm 3 by a proximal point of xk with respect to
the target function

f0(x) = λRτ (x), (4.15)
i.e., by

Sprox(xk, βk) := Pβkf(xk) = arg min
z

{
Rτ (z) +

1

2βk
‖z − xk‖2

}
. (4.16)

Alternatively, we can use a proximal point of xk with respect to the target function f0 together with nonneg-
ative constraints

f(x) = λRτ (x) + δRn+(x) (4.17)

by imposing nonnegative constraints in the proximal point computation

Sprox+(xk, βk) := Pβkf(xk) = arg min
z

{
Rτ (z) + δRn+(z) +

1

2βk
‖z − xk‖2

}
. (4.18)

Superiorization by proximal points has been done in [LZZ+19], as we became aware while preparing this
manuscript. However, the authors in [LZZ+19] do not take into account constraints when computing the
perturbations.
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Clearly, if xk+1/2 := Sprox+(xk, βk) then

f(xk+1/2) ≤ f0(xk+1/2) + δRn+(xk+1/2) + 1/2‖xk+1/2 − xk‖2 (4.19a)

≤ f0(xk) + δRn+(xk) + 1/2‖xk − xk‖2 = f(xk) (4.19b)

and equality holds if and only if xk+1/2 = xk, in view of the definition of the proximal mapping. Therefore,
the decrease of the target function in the iteration is guaranteed. One might argue that computing such an
nonascent direction is expensive and contradicts the spirit of superiorization. The proximal point in (4.16) or
(4.18) can be computed efficiently in our case, e.g. by the box-constrained L-BFGS method from [BLNZ95]
that computes a highly accurate solution within few iterations as we demonstrate in Section 6. Taking these
considerations into account we propose the following superiorized CG iteration.

ProxCSupCG:
Initialization: Set ε, µ > 0 small; Choose x0 ∈ Rn, γ0 > 0 and a ∈ (0, 1); Set x1/2 = x0, p0 =

A>(b−Ax0) + µx0, h0 = A>Ap0 + µp0, γ = ‖p0‖2/〈p0, h0〉, x1 = x0 + γp0 and β1 = γ0.
Iteration for k ≥ 1: Compute

while gµ(xk−1/2) > ε do
xk+1/2 = Sprox+(xk, βk), see (4.18) (4.20a)

βk+1 = γ0a
k (4.20b)

(xk+1, pk+1, hk+1) = ACG(xk+1/2, pk, hk) (4.20c)
k ← k + 1 (4.20d)

Leaving out the nonnegative constraints by replacing in line (4.20a) above Sprox+ by Sprox leads to a
slighly different iteration that we call ProxSupCG. Clearly the sequence (βk) is summable for a ∈ (0, 1).
Despite the proximal mapping being nonexpansive it is not straightforward to show that the iterates (xk+1/2)
are bounded and that ProxSupCG (4.20) converges to a minimzer of gµ, following the lines of the proof from
[LZZ+19], where the basic algorithmic operatorA is iteration independent and nonexpansive. We leave this
open problem for future research and turn our attention to the superiorization of the Landweber and projected
Landweber iterations.

ProxCSupLW:
Initialization: Set ε > 0 small; Choose x1 ∈ Rn, γ0 > 0 and a ∈ (0, 1); Set x1/2 = x1 and β1 = γ0.
Iteration for k ≥ 1: Compute

while g0(xk−1/2) > ε do
xk+1/2 = Sprox+(xk, βk) (4.21a)

βk+1 = γ0a
k (4.21b)

xk+1 = ALW(xk+1/2) (4.21c)
k ← k + 1 (4.21d)

Combinations between the two basic algorithms (CG and Landweber) and the considered selections of
nonascent directions lead to different iterations, that are summarized in Table 1.

Proposition 4.4 below shows the relation of the algorithm ProxCSupLW with an optimization algorithm.
We point out that the parameter choice assumed below does no longer qualify ProxCSupLW as a superiorized
Landweber iteration, since the sequence (βk)k≥0 then fails to be summable. However, the modified algorithm
converges and is guaranteed to return an optimal solution.
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Proposition 4.4. Let γ ∈ (0, 2/Lg0) and λ > 0. The algorithm obtained by setting γ0 = λγ and a = 1 in the
iteration procedure (4.21) generates a sequence (xk+1/2) that converges to a minimizer of

minλRτ (x) +
1

2
‖Ax− b‖2 + δRn+(x). (4.22)

Proof. We will show that the iteration (4.21) and the proximal gradient algorithm, a.k.a. Forward-Backward
(FB) iteration, see next section,

yk+1 = Pγf(yk − γ∇g0(yk)), y0 ∈ Rn, (4.23)

with f := λRτ + δRn+ ∈ Fc, g0 := 1/2‖A · −b‖2 ∈ F1
c (L), are equivalent for an appropriate choice of the

parameter βk. The iterates (yk) in (4.23) above are converging to the minimizer of f +g0, the objective from
(1.2), see [CP11b], provided

0 < γ <
2

Lg0
(4.24)

holds, where Lg0 denotes the global Lipschitz constant of the gradient of least-squares term g0 and that can
be estimated by

Lg0 ≤ ‖A‖2. (4.25)

Further, the Fermat condition for problem (4.22) reads

0 ∈ λ∇Rτ (y) +A>(Ay − b) + ∂δRn+(y).

As done in [LZZ+19, Thm. 3.8], we can introduce an auxiliary variable and write

0 ∈ λ∇Rτ (y) +
1

γ
(y − x) + ∂δRn+(y) (4.26a)

x = y − γA>(Ay − b) (4.26b)

Using that (4.26a) is equivalent to

y = Pλγ(Rτ + δRn+)(x) = arg min
z

{
Rτ (z) + δRn+(z) +

1

2λγ
‖z − x‖2

}
we can recast (4.26) as the following fix-point iteration

yk = Pλγ(Rτ + δRn+)(xk) (4.27a)

xk+1 = yk − γA>(Ayk − b). (4.27b)

Now xk+1/2 := yk and βk := λγ this coincides with algorithm ProxCSupLW (4.21) as it can be rewritten as

xk+1/2 = SLW+(xk, βk) (4.28)
βk+1 = βka (4.29)

xk+1 = ALW(xk+1/2) (4.30)

for a = 1. On the other hand, the iteration (4.27) can be summarized by

yk = Pλγ(Rτ + δRn+)(yk−1 − γA>(Ayk−1 − b)), k ≥ 1

that is the forward backward iteration (4.23). Now (yk) converges to a minimizer of (4.22). �
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5. OPTIMIZATION

We examine two particular decompositions of problem (1.2) in Sections 5.1 and 5.4 and corresponding
forward-backward (FB) approaches. We do so in order to obtain iterative optimization schemes that are
similar to the superiorization approach of Section 4, see Remarks 5.2 and 5.4 below. Plain, accelerated
and inexact versions of the FB-iteration are considered next. Corresponding notions of inexactness provide
concrete criteria for terminating the inner-loop iterations in Section 5.3. Inexact versions are only considered
for the first decomposition from Section 5.1.

5.1. Problem Splitting, Proximal Map. Regarding the objective (1.2), we define functions f0 ∈ F1
c (Lf0),

g, h ∈ Fc and g0 ∈ F1
c (Lg0) by

h(x) := f0(x) + g(x), (5.1a)

f0(x) := λRτ (x), Lf0 = λLRτ , (5.1b)

g(x) := g0(x) + δK(x) =
1

2
‖Ax− b‖2 + δK(x). (5.1c)

Setting

Bα := A>A+
1

α
In, cα :=

1

α
x+A>b, (5.2)

and

φ(y) := φ0(y) + δK(y), φ0(y) :=
1

2
〈y,Bαy〉 −

〈
cα, y

〉
, φ0 ∈ F1

c

(
‖A‖2 +

1

α

)
, (5.3)

the proximal map with respect to g reads

Pαg(x) = y = arg min
y

{ 1

2α
‖y − x‖2 +

1

2
‖Ay − b‖2 + δK(y)

}
(5.4a)

= arg min
y
φ(y) + const. (5.4b)

The unique proximal point y of x with respect to g is characterized by

NK(y) 3 −∇φ0(y) = cα −Bαy (5.5a)

0 ≥
〈
cα −Bαy, z − y

〉
=
〈 1

α
(x− y)−∇g0(y), z − y

〉
, ∀z ∈ K (5.5b)

and satisfies the fixed point equation

y = ΠK

(
y + β(cα −Bαy)

)
= ΠK

(
y + β

( 1

α
(x− y)−∇g0(y)

))
, β > 0. (5.6)

We next compute the duality gap for a feasible point z ∈ K with respect to the convex optimization
problem (5.4) defining y = Pαg(x).

Lemma 5.1. Let z ∈ K and define the dual feasible point

p = (cα −Bαz)−. (5.7)

Then the duality gap, denoted by dgp, induced by the inexactness z ≈ y = Pαg(x), is given by

dgp(z) =
1

2
‖(cα −Bαz)+‖2B−1

α
− 〈p, z〉 ≥ 0. (5.8)
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Proof. y = Pαg(x) is the unique solution to problem (5.4b). Denoting by p ∈ K∗ the multiplier vector
corresponding to the constraint z ∈ K, the dual problem reads

max
p
ψ(p), ψ(p) = −1

2
〈cα − p,B−1α (cα − p)〉 − δK∗(p). (5.9)

The unique pair of optimal primal and dual points (y, p) are connected by

p = cα −Bαy. (5.10)

Choosing any point z ∈ K and the corresponding dual feasible point

p = p(z) = (cα −Bαz)− = cα −Bαz − (cα −Bαz)+ (5.11)

yields the duality gap
dgp(z) = φ(z)− ψ

(
p(z)

)
≥ 0 (5.12)

which, after rearranging, becomes (5.8). �

We observe that if z = y, then by (5.5a) the corresponding dual vector (5.10) is nonpositive and orthogonal
to y. As a consequence, the duality gap (5.8) is zero: dgp(y) = 0.

The Forward-Backward (FB) iteration generates the sequence (xk), converging to a minimizer of the
objective function h (5.1a), by the process

xk+1 = Pαkg
(
xk − αk∇f0(xk)

)
, k ≥ 0, x0 ∈ dom g, (5.13)

for a suitable sequence (αk) of proximal parameters. A common choice is a constant parameter value

αk = α ∈
(

0,
2

Lf0

)
. (5.14)

A refined scheme that admits inexact evaluations of the proximal map Pαg is considered in Section 5.2.

Remark 5.2 (Relation to superiorization). The FB iteration (5.13) resembles the structure of iteration used
in superiorization: Computing iteratively the proximal points Pαkg(xk) of the iterates xk can be viewed as
basic algorithm that is perturbed by the gradient of the target function ∇f0(xk). Inspecting (5.4) shows
that this basic algorithm involves the nonnegative least-squares problem subject to proximal regularization.
Choosing a suitable sequence (αk) of the proximal parameter guarantees to generate a convergent sequence
(xk) minimizing (1.2), which includes the target function.

On the downside, if the proximal map Pαkg cannot be computed in closed-form, then an inner iteration has
to be carried out before the next perturbation can affect the primal variable. By contrast, such intermediate
iterative computations are not part of the superiorization approach. Superiorization does not provide any
quantitative guarantee with respect to the target function, however.

5.2. Outer Loop: Accelerated Inexact Forward-Backward Iteration. We work out versions of the FB
iteration (5.13) based on [CW05] and [VSBV13] in order to accelerate the iteration (5.13) and to take into
account inexact evaluations of the proximal map.

5.2.1. Summable Error Sequences. Let error vectors

ek = xk+1 − Pαkg
(
xk − αk∇f0(xk)

)
(5.15)

represent inexact evaluations of the right-hand side of (5.13). Then the FB iteration (5.13) with parameter
choice (5.14) converges if [CW05, Theorem 3.4]∑

k∈N

‖ek‖ < +∞. (5.16)
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5.2.2. Inexact Subgradients. A point z ∈ Rn is said to evaluate Pαg(x) with ε-precision, denoted by

z uε Pαg(x), ε > 0 (5.17a)

if

1

α
(x− z) ∈ ∂ ε2

2α

g(z), (5.17b)

where the right-hand side is defined by the ε-subdifferential at z [Roc70, Section 23]

∂εg(z) = {p ∈ Rn | g(y) ≥ g(z) + 〈p, y − z〉 − ε}, ∀y ∈ Rn (5.18a)

= {p ∈ Rn | g(z) + g∗(p)− 〈z, p〉 ≤ ε}. (5.18b)

Taking into account the specific form g = g0+δK of g as defined by (5.1c), the following lemma parametrizes
p ∈ ∂εg(z) by points zp ∈ Rn through conjugation.

Lemma 5.3. Let g = g0 + δK with g0 ∈ F1
c (Lg0). Then finding a vector p ∈ ∂εg(z) is equivalent to finding

a pair of vectors zp, w ∈ Rn such that p given by

p = ∇g0(zp)− w, and 0 ≤ w ⊥ zp ≥ 0 (5.19)

satisfy
g0(z)− g0(zp)− 〈∇g0(zp), z − zp〉+ 〈w, z〉 ≤ ε. (5.20)

In the unconstrained case K = Rn, we have w = 0 and no nonnegativity constraint imposed on zp ∈ Rn.

Proof. Writing

g∗(p) = sup
z
{〈p, z〉 − g0(z)− δK(z)} = − inf

z
{g0(z)− 〈p, z〉+ δK(z)}, (5.21)

Fermat’s optimality condition for the latter minimization problem reads p ∈ ∇g0(zp) + NK(zp), which is
equivalent to (5.19). Substituting p and taking into account w ⊥ zp ∈ K gives g∗(p) = 〈∇g0(zp), zp〉 −
g0(zp) and after insertion into (5.18b) Equation (5.20) is obtained. �

We next consider a generalization of the FB iteration (5.13) that includes both acceleration and inexact
evaluations of the proximal mapping.

5.2.3. Algorithm. We adopt the following algorithm proposed and analyzed by [VSBV13].

Initialization: Choose x0 = y0 ∈ dom g, t0 > 1, a ∈ (0, 2) and sequences (αk) ⊂ (0, (2−a)L ],
(ak) ⊂ [a, 2− αkLf ], (εk) ⊂ R+.

Iteration for k ≥ 0: Compute

xk+1 uεk Pαkg
(
yk − αk∇f0(yk)

)
, (5.22a)

tk+1 =
1

2

(
1 +

(
1 + 4

akαk
ak+1αk+1

t2k

)1/2)
, (5.22b)

yk+1 = xk+1 +
tk − 1

tk+1
(xk+1 − xk) + (1− ak)

tk
tk+1

(yk − xk+1). (5.22c)

Unlike the FB iteration (5.13), inexact evaluations of the proximal map are admissible at step (5.22a). In
addition, an auxiliary sequence of vectors (yk) and corresponding parameters (tk) are used for acceleration.
Theorem 4.4 in [VSBV13] assure an O(1/k2) convergence rate of the function values ((g + f)(xk)) to its
infimum provided the error parameter sequence εk corresponding to the steps (5.22a) decays at rate

εk = O
( 1

k3/2+δ

)
, δ > 0. (5.23)
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We next examine the conditions provided by Lemma 5.3 for the inexact evaluation (5.22a), for both the
unconstrained and the nonnegativity constrained case. Recall the simplified notation (3.8) for any fixed outer
iteration index k. We also write ε instead of εk.

5.2.4. Recognizing z ≈ε Pαg0(x): The Unconstrained Case. Let K = Rn. Applying Lemma 5.3 shows
that condition (5.17b) for recognizing z ≈ε Pαg(x) can be expressed as finding another point zp such that

1

α
(x− z) = ∇g0(zp) and (5.24a)

ε2

2α
≥ g0(z)− g0(zp)− 〈∇g0(zp), z − zp〉. (5.24b)

Note that replacing the pair (z, zp) by a single point z that satisfies both conditions, implies that z = y =
Pαg(x) is the exact proximal point: equality z = zp makes the inequality in (5.24b) hold trivially, whereas
condition (5.24a) then reads∇φ0(z) = 0 which implies z = Pαg(x) by (5.4) if K = Rn.

If z 6= zp, then (5.24a) says that neither point is equal to Pαg(x), whereas the right-hand side of condition
(5.24b) is always nonnegative and measures the difference between z and zp by a Bregman-like distance
induced by g0 (it is not a true Bregman distance since g0 merely is convex). The decomposition (5.24a)
of the optimality condition determining Pαg(x) in terms of (z, zp) enables to terminate earlier any iterative
algorithm that converges to Pαg(x), once the level of inexactness (5.24b) is reached.

We conclude this section by comparing (5.24) with (5.15) which – using the simplified notation – reads

e = z − y. (5.25)

Since φ0 given by (5.3) is 1
α -strongly convex [RW09, Definition 12.58] and ∇φ0(y) = 0, we have the

inequality
‖e‖ = ‖z − y‖ ≤ 2α‖∇φ0(z)‖ = 2‖z − x− α∇g0(z)‖, (5.26)

which evaluates violations of Equation (5.24a), for a single point z on both sides. multiplied by 2, and with
the different meaning (5.16) of errors ε = ‖e‖.

5.2.5. Recognizing z ≈ε Pαg(x): The Nonnegatively Constrained Case. Let K = Rn+. In view of (5.17b),
we identify p = 1

α(x− z) in (5.19). Lemma 5.3 then shows that z ≈ε Pαg holds if there is another point zp
such that

1

α
(x− z)−∇g0(zp) = −w and 0 ≤ w ⊥ zp ≥ 0, z ∈ K, (5.27a)

ε2

2α
≥ g0(z)− g0(zp)− 〈∇g0(zp), z − zp〉+ 〈w, z〉. (5.27b)

The discussion above of (5.24) applies here analogously. In particular, if z = zp, then (5.27a) reads
1

α
(x− z)−∇g0(z) = cα −Bαz ≤ 0, (5.28)

which is the optimality condition (5.5a) that uniquely determines the proximal point z = y = Pαg(x).
We conclude this section by comparing (5.27) with (5.15) and consider again the error vector (5.25). In

addition, we take into account the nonnegativity constraint z ∈ K. Since φ(y) − 1
2α‖y − x‖

2 = g0(x) is
convex, φ is 1

α -strongly convex. Exploiting weak duality (5.12), in particular φ(y) ≥ ψ(p), ∀p ∈ K∗, we
estimate

‖e‖2 = ‖z − y‖2 ≤ 2α
(
φ(z)− φ(y)

)
≤ 2α

(
φ(z)− ψ

(
p(z)

))
= 2α dgp(z), z ∈ K, (5.29)

with p(z) given by (5.11). The explicit expression (5.8) shows how dgp(z) evaluates the non-optimality of
the dual point p(z). Formally, this expression defining p(z) also appears as left-hand side of (5.27a), but its
non-optimality results from z 6= zp.
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5.3. Inner Loop: Accelerated Primal-Dual Iteration. We apply the primal-dual optimization approach
[CP11a] to two different decompositions of the optimization problem related to step (5.22a) of the outer loop.
The first decomposition involves the inversion of the matrix Bα defined by (5.2). The second alternative
decomposition avoids this inversion. The overall efficiency depends on two aspects: more sophisticated
iterative steps may converge faster but are also more expensive computationally.

The approach [CP11a] applies to optimization problems written as a saddle-point problem

min
x∈X

max
y∈Y

{
〈Mx, y〉+G(x)− F ∗(y)

}
, (5.30)

where X,Y are finite-dimensional real vector spaces, M : X → Y is linear and F,G ∈ Fc. The algorithm
involves the proximal maps PαF ∗ and PαG as algorithmic operations.

Using definitions the (5.3), we consider problem (5.4b) and two different problem decompositions con-
forming to (5.30). Each corresponding primal-dual iteration generates a sequence (zl) minimizing φ that is
terminated when zl+1 satifies the inexactness criterion (5.24) or (5.27),where z plays the role of zl+1. This
requires to identify the point zp during the inner-loop primal-dual iteration.

In this section, we adopt the simplified notation (3.8), namely, x = yk−αk∇f0(yk) denotes the argument
of step (5.22a) or x = xk − αk∇f(xk) in case of the FB iteration (5.13). This vector x in turn defines the
vector cαk by (5.2), simply denoted by cα. The vector z ≈ y denotes an approximation of the proximal point
Pαg(x).

5.3.1. Basic Decomposition. Rewriting the inner problem in the form (5.30),

min
y∈Rn

max
p∈Rn

{
〈y, p〉+ φ0(y)− δK∗(p)

}
, (5.31)

and noting that φ0 ∈ F1
c (Lφ0 , µ) is strongly convex with constant µ = 1

α , the application of Algorithm 2 of
[CP11a] yields the following iteration.

Initialization: Choose τ0, σ0 > 0 with τ0σ0 ≤ 1, z0, p0 arbitrary and z0 = z0.
Iteration for l ≥ 1: Compute

pl+1 = (pl + σlzl)− (5.32a)

zl+1 =
(
In + τlBα)−1

(
zl − τl(pl+1 − cα)

)
(5.32b)

θl =
(

1 + 2
τl
α

)−1/2
, τl+1 = θlτl, σl+1 =

σl
θl

(5.32c)

zl+1 = zl+1 + θl(zl+1 − zl). (5.32d)

Regarding step (5.32b), we note that the inversion of the matrix

In + τlBα =
(

1 +
τl
α

)
In + τlA

>A (5.33)

can be simplified using the Sherman-Morrison-Woodbury formula [Hig08]

(B + UV >)−1 = B−1 −B−1U(I + V >B−1U)−1V >B−1, (5.34)

to obtain

(In + τlBα)−1 =
α

α+ τl

(
In −

α

α+ τl
A>
( 1

τl
Im +

α

α+ τl
AA>

)−1
A

)
. (5.35)

Thus, to do the n× n matrix inversion on the left-hand side by evaluating the right-hand side, the inversion
of an m×m matrix is only required, which can be considerably less expensive due to assumption (3.9).
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5.3.2. Avoiding Matrix Inversion. If matrix inversion in step (5.32b) is too expensive (e.g., by a direct
method), then it can be avoided by rewriting the objective function (5.4b) in the form

φ(y) =
1

2
‖Ay‖2 +

1

2α
‖y‖2 − 〈cα, y〉+ δK(y), (5.36)

with K either Rn or Rn+ and by dualizing the term comprising A, using an additional dual variable q. Due
to assumption (3.9), this does not affect strong convexity with respect to the primal variable y. The corre-
sponding saddle-point problem then reads

min
y

max
q

{
〈Ay, q〉+

1

2α
‖y‖2 − 〈cα, y〉+ δK(y)− 1

2
‖q‖2

}
(5.37)

and yields the following iteration.
Initialization: Choose τ0, σ0 > 0 with τ0σ0 ≤ 1/‖A‖2, z0, q0 arbitrary and z0 = z0.
Iteration for l ≥ 1: Compute

ql+1 =
1

1 + σl
(ql + σlAzl) (5.38a)

zl+1 = ΠK

( α

α+ τl

(
zl − τl(A>ql+1 − cα)

))
(5.38b)

θl =
(

1 + 2
τl
α

)−1/2
, τl+1 = θlτl, σl+1 =

σl
θl

(5.38c)

zl+1 = zl+1 + θl(zl+1 − zl). (5.38d)

Note that this algorithm only requires matrix-vector multiplications with respect to A and A>.

5.3.3. Termination: The Unconstrained Case. If K = Rn, then Pαg(x) uniquely minimizes φ0 and any
algorithm solving

∇φ0(y) = Bαy − cα = 0 ⇔ y = B−1α cα (5.39)
is exact: y = Pαg(x). Now suppose that applying a direct method for computing B−1α cα = (In +
αA>A)−1cα is numerically intractable, even when a formula analogous to (5.35) is used to reduce the
problem size for matrix inversion from n to m < n. Then we would like to know when any iterative method
generating a sequence (zl) converging to y can be terminated once zl uε Pαg(x) holds.

Let zl+1 be a point such that

∇φ0(zl+1) = ∇g0(zl+1)−
1

α
(x− zl+1) ≈ 0. (5.40)

In order to check if zl+1 is sufficiently exact according to the conditions (5.24), we set

zp = zl+1, z = x− α∇g0(zp). (5.41)

Then condition (5.24a) holds and we can evaluate the right-hand side of (5.24b) in order to check if z uε

Pαg(x).

As an illustration, we now consider the specific iterative algorithm (5.38) applied without the projection
ΠK since here we assume K = Rn. The second step (5.38b) reads

0 =
α

α+ τl

(
zl − τl(A>ql+1 − cα)

)
− zl+1 = −τl + α

ατl
zl+1 +

1

τl
zl −A>ql+1 + cα (5.42a)

= − 1

α

(
zl+1 +

α

τl
(zl+1 − zl)

)
−A>ql+1 +

1

α
x+A>b (5.42b)

=
1

α

(
x− zl+1 −

α

τl
(zl+1 − zl)− αA>(ql+1 −Azl+1)

)
−A>(Azl+1 − b). (5.42c)
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The choice
zp = zl+1, z := zp −

α

τl
(zp − zl)− αA>(ql+1 −Azp), (5.43)

makes equation (5.42c) equal to the second equation of (5.41).
A minor disadvantage of (5.41) is the additional evaluation of the gradient ∇g0(zp). In the present un-

constrained case, this can be avoided as follows. Since by duality ql → Ay, the expression A>(ql+1 − b) ≈
∇g0(y) approximates the gradient. Hence, rearranging equation (5.42b),

0 =
1

α

(
x− zl+1 −

α

τl
(zl+1 − zl)

)
−A>(ql+1 − b), (5.44)

suggests the choice
Azp = ql+1, z := zl+1 +

α

τl
(zl+1 − zl). (5.45)

Then A>(ql+1 − b) = ∇g0(zp) and condition (5.24a) is satisfied. Even though (5.45) does not yield zp
explicitly, condition (5.24b) can be efficiently checked as well,

ε2

2α
≥ 1

2
‖Az − b‖2 − 1

2
‖Azp − b‖2 − 〈Azp − b, Az −Azp〉 (5.46a)

=
1

2
‖Az − b‖2 +

1

2
‖Azp − b‖2 − 〈Azp − b, Az −Azp +Azp − b〉 (5.46b)

=
1

2

∥∥(Az − b)− (Azp − b)
∥∥2 (5.46c)

=
1

2
‖Az − ql+1‖2. (5.46d)

Checking these conditions during the primal-dual iteration only requires negligible additional computation.
Definition (5.45) of z shows that the single additional vector-matrix multiplication Az is implicitly done by
evaluating the primal-dual steps (5.38a) and (5.38d).

We conclude by comparing to the alternative error measure (5.26) which for the choice (5.41) translates
to

ε = ‖e‖ = ‖zp − z‖, (5.47)
and condition (5.16) for summing up these inner-loop errors at the outer iteration level. Conversely, the
alternative choice (5.45) inserted into (5.46d) gives the error

ε ≥ α1/2‖A(z − zp)‖ (5.48)

in terms of vectors of smaller dimension (cf. (3.9)) and with a factor α1/2 � 1 that typically is much
smaller than 1. These errors not only have to be summable but should decay with rate (5.23) to achieve fast
convergence.

5.3.4. Termination: The Nonnegatively Constrained Case. Let K = Rn+. We derive criteria for terminating
the inner-loop iteration (5.38) based on the conditions (5.27). Algorithm (5.32) does not comprise a projec-
tion onto K and hence does not conform to condition (5.27a). We, therefore, only consider early termination
of algorithm (5.38).

We rewrite step (5.38b) as

NK(zl+1) 3
α

α+ τl

(
zl − τl(A>ql+1 − cα)

)
− zl+1 (5.49a)

⇔ NK(zl+1) 3 −
α+ τl
ατl

zl+1 +
1

τl
zl −A>ql+1 +

1

α
x+A>b (5.49b)

=
1

α

(
x− zl+1 −

α

τl
(zl+1 − zl)− αA>(ql+1 −Azl+1)

)
−A>(Azl+1 − b). (5.49c)
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Setting

zp = zl+1, z = zl+1 +
α

τl
(zl+1 − zl) + αA>(ql+1 −Azl+1), (5.50a)

w = A>(Azl+1 − b)−
1

α
(x− z) (5.50b)

satisfies condition (5.27) except for the condition z ∈ K. Clearly, z given by (5.50) becomes nonnegative
as l → ∞, and once this happens for some l we can check z uε Pαg(x) by evaluating condition (5.27b).
Similarly to (5.46), we get

ε2

2α
≥ 1

2
‖Az − b‖2 − 1

2
‖Azp − b‖2 − 〈Azp − b, Az −Azp〉+ 〈w, z〉 (5.51a)

=
1

2
‖A(z − zp)‖2 + 〈w, z〉, (5.51b)

which, in view of (5.50), evaluates inexactness of z through a distance and a complementarity term with
respect to zp.

A>ql+1 − cα =
1

1 + σl
(A>ql + σlA

>A(zl + θl(zl − zl−1)))− cα (5.52a)

=
σl(1 + θl)

1 + σl
A>Azl − cα +

1

σl
A>ql −

σl + θl
1 + σl

A>Azl−1 (5.52b)

A weakness of criterion (5.51) is that it cannot be applied if z 6∈ K, with z given by (5.50a). As an
alternative, we evaluate the error measure (5.29). The duality gap dgp(z) (5.8) requires to compute the
vector

cα −Bαz = cα −A>Az −
1

α
z. (5.53)

Due to the primal-dual iteration (5.38), we have

A>ql+1 − cα =
σl(1 + θl)

1 + σl
A>Azl − cα +

1

σl
A>ql −

σl + θl
1 + σl

A>Azl−1. (5.54)

Thus, recording the vectors A>(Azl) and A>ql during the primal-dual iteration, the vector (5.53) with zl in
place of z can be efficiently computed at each iteration l. In order to avoid the expensive evaluation of the
first term on the right-hand side of (5.8), we estimate

dgp(zl) ≤
1

2
‖B−1α ‖‖(cα −Bαzl)+‖2 − 〈(cα −Bαzl)−, zl〉 (5.55)

and hence obtain with ‖B−1α ‖ ≤ α and (5.29)

‖e‖ ≤ α
(
‖(cα −Bαzl)+‖2 −

2

α
〈(cα −Bαzl)−, zl〉

)1/2
. (5.56)

Fixing an error εk = ‖ek‖ = ‖e‖ so as to satisfy (5.16), the inner loop can be terminated once the right-hand
side of (5.56) drops below εk.

5.4. Reverse Problem Splitting, Proximal Map. Having in mind the similarity between the superiorized
Landweber iteration (4.21) and the FB iteration, see Proposition 4.4, we consider here the reverse splitting
for the objective (1.2). We recall the functions f, h ∈ Fc and g0 ∈ F1

c (Lg0) defined by

h(x) := f(x) + g0(x), (5.57a)

f(x) := λRτ (x) + δK(x), (5.57b)

g0(x) :=
1

2
‖Ax− b‖2, Lg0 ≤ ‖A‖2. (5.57c)
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For the reverse splitting the FB iteration becomes

xk+1 = Pαkf
(
xk − αkA>(Axk − b)

)
(5.58a)

= Pαk(λRτ + δRn+)
(
xk − αk∇g0(xk)

)
, k ≥ 0, x0 ∈ dom f, (5.58b)

where (αk) is a sequence of proximal parameters. As already discussed, a constant parameter value αk =

α ∈
(

0, 2/Lg0

)
is a permissible and common choice. However, it turns out that for the considered problem

these step-size parameters become very small due to the bad conditioning of the matrix A, see Section 6.
The FB generates sequence (xk) above is also converging to a minimizer of the objective function h defined
in (1.2). As in Section 4 we assume that the proximal points Pαf can be computed efficiently. Hence we do
not pursue a refined scheme that allows for inexact evaluations of the proximal map Pαf further and use the
highly accurate box-constrained L-BFGS method from [BLNZ95] to compute the proximal points.

Remark 5.4 (Relation to superiorization). Focusing solely on the structure of the iterative processes in-
volved in the algorithms, we can notice similarities between the FB and the reverse splitting FB iteration
of (5.13) and (5.58), respectively, and the structure of the iterations in superiorization. In (5.13) one would
naturally identify the inner iteration with “perturbations” and the outer iteration of Pαkg with a “basic al-
gorithm” in order to see structural similarity with superiorization. With the reverse splitting FB iteration of
(5.58) we may change our viewpoint and consider the gradient steps with respect to the least-squares objec-
tive, i.e., the mapping A(x) := x− αkA>(Ax− b), as a “basic algorithm” and view the proximal mapping
Pαkf , with respect to the target function f as perturbations of the basic algorithm. Optimization theory tells
us how to choose the parameter sequence (αk) so as to make the overall iteration converge to a minimizer.
We discussed a special case already in connection with Proposition 4.4.

If the proximal map Pαkf cannot be computed in closed-form, then the inner iterations are applied to
successively approximate the proximal mapping. This entails several “perturbations” before the next step of
the “basic algorithm” is carried out. This resembles structurally the method of superiorization by nonascent
vectors, see Algorithm 3, that uses several negative gradient steps to achieve heuristically a decrease of the
target function f . Note that here f is nondifferentiable and alternatives to negative gradients have been
considered [CGHH19]. Using proximal maps as suggested here, however, turns f into the differentiable
function (3.6) with gradient (3.7) and hence enables to apply efficient accelerated optimization schemes.

The downside of this splitting is that the gradient steps with respect to g0, seen as “basic algorithm”, make
in our scenario only very slow progress since the matrix A is underdetermined and bad conditioned. We
therefore investigate whether it is possible to remedy this by acceleration.

We specialize below the accelerated FB iteration from (5.22) and assume exact computations of the
proximal map Pαf . We make in (5.22) the following parameter choices: a = 1, ak = 1, t0 = 1 and
αk = γ ≤ 1/Lg0 . This implies t1 = 1 and y1 = x1. We can now start with iteration k = 1 and rename it
below to k = 0.

Initialization: Choose x0 = y0 ∈ dom g, t0 = 1 and sequences γ ∈ (0, 1/Lg0)
Iteration for k ≥ 0: Compute

xk+1 = Pγf
(
yk − γ∇f(yk)

)
, (5.59a)

tk+1 =
1

2

(
1 +

(
1 + 4t2k

)1/2)
, (5.59b)

yk+1 = xk+1 +
tk − 1

tk+1
(xk+1 − xk). (5.59c)

As discussed in [VSBV13], this is the well-known FISTA iteration [BT09a].
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6. NUMERICAL RESULTS

Section 6.1 details the experimental set-up based on which we compare superiorization with accelerated
inexact optimization in Sections 6.2 and 6.3.

6.1. Data, Implementation. The linear system

Ax = b, A ∈ Rm×n (6.1)

considered for experiments collects linear tomographic measurements of the Shepp-Logan MATLAB 128×
128 phantom shown in Figure 6.1 in a highly underdetermined scenario, i.e., m

n = 0.15625. The vector
representing this test phantom is denoted by x∗ in the sequel. We use the MATLAB routine routine par-

alleltomo.m from the AIR Tools package [HJ18] that implements such a tomographic matrix for a given
vector of projection angles. In particular, we used 20 angles (projections) uniformly spaced between 1◦ and
180◦ degrees, and 120 parallel rays per angle of projection, resulting in a full rank 2560 × 16384 matrix
A. We consider both exact and noisy measurements. In the latter case, i.i.d. normally distributed noise was
added with variance σ2 determined by

bj ← bj + ξj , ξj ∼ N (0, σ2), j ∈ [m], σ =
0.02

m

∑
j∈[m]

bj . (6.2)

Figure 6.2 illustrates the ill-posedness of the problem to recover x from b in terms of the regularized least-
squares solutions

(A>A+ µIn)−1b, µ = 0.01. (6.3)

Termination Criteria. Regarding termination of the superiorized CG iteration we used∥∥A>(Ax− b) + µx‖∞ ≤ 0.001 (6.4)

to terminate the iterative process that concerns the regularized least-squares problem (4.6), while using∥∥A>(Ax− b)‖∞ ≤ 0.001 (6.5)

in the case of the superiorized Landweber iteration, and

max
i∈[n]

∣∣xi(A>(Ax− b)
)
i

∣∣ ≤ 0.001 (6.6)

in the case of the superiorized projected Landweber iteration.
Regarding the optimization problem (1.2), the value τ = 0.01 of the smoothing parameter in Rτ (3.12b)

was used in all experiments. In the unconstrained case x ∈ Rn, the criterion∥∥A>(Ax− b) + λ∇Rτ (x)‖∞ ≤ 0.001 (6.7)

was used to terminate iterative optimization and to accept x as approximate minimizer of (1.2). In the
nonnegatively constrained case x ∈ Rn+, the complementarity condition

max
i∈[n]

∣∣xi(A>(Ax− b) + λ∇Rτ (x)
)
i

∣∣ ≤ 0.001 (6.8)

was used.

Regularization Parameter. The regularization parameter λ was set to

λ :=

{
0.01, for exact data
1.6529, for noisy data

=⇒

{
Rτ (x) ≈ Rτ (x∗)

‖Ax− b‖2 ≈ ‖Ax∗ − b‖2
(6.9)

which implies ,
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FIGURE 6.1. LEFT: The original image x∗ of size n = 1282 to be recovered from m =
0.15625n linear measurements. Both exact and noisy measurements are considered. RIGHT:
The histogram of the original image x∗ that plots the number of pixels for each intensity
value.
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FIGURE 6.2. Regularized least-squares solutions determined by (6.3) for exact b (top) and
for noisy b (bottom) illustrate the ill-posedness of the problem to recover the data shown by
Figure 6.1 from m = 0.15625n linear measurements comprising the data vector b.

• in the case of exact data b, that minimizers x have almost the same total variation as the “unknown”
true solution x∗,
• in the case of inexact data b, that minimizers x reach the noise level of x∗ induced by (6.2).

Figure 6.3 depicts minimizers x of both the unconstrained and the nonnegatively constrained problem (1.2)
for exact and for noisy data, respectively. The histograms show, in particular, that adding nonnegativity
constraints increases accuracy.

6.2. Superiorization vs. Optimization: Reconstruction Error Values. In this section we compare the
algorithmic performance in terms of reconstruction quality based on three reconstruction errors:

(1) The scaled squared residual ‖Axk − b‖2/(2m) that should approach 0 in the noiseless case and
ideally approach the noise level ≈ 0.0473 in the noisy case;

(2) The scaled target function (regularization term) Rτ (xk)/n that should approach the smoothed TV
value of the original image x∗;

(3) The scaled error term ‖xk − x∗‖2/n that should be reduced as much as possible.
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FIGURE 6.3. TOP ROW, FROM LEFT TO RIGHT: Minimizers x of the unconstrained objec-
tive function (1.2) for exact data, for noisy data, and minimizer for the nonegatively con-
strained objective function and noisy data. CENTER ROW: The histograms corresponding
to the top row. In the unconstrained cases, a number of components xi are outside the range
[0, 1] of x∗,i, i ∈ [n]. BOTTOM ROW: The difference histograms of x−x∗ corresponding to
the top row. The left histogram (unconstrained case, exact data) peaks more sharply around
0 than the histogram in the center (unconstrained case, noisy data), and significantly so on
the right (nonnegatively constrained case, noisy data).

Each optimization algorithm is guaranteed to reduce both (1) and (2), and also (3), provided that our model
from (1.2) is appropriate, while the superiorized iterations are only guaranteed to reduce the error in (1).
Superiorization. We first address the unconstrained least-squares problem or the regularized least-squares
problem (4.6) in order to handle an underdetermined system by CG and consider the superiorized CG and
superiorized Landweber iteration by both gradient- and proximal point based target function reduction meth-
ods. The nonnegative least-squares problem is addressed by superiorizing the projected Landweber iteration.
To additionally steer the iterates of a basic algorithm for the least-squares problem towards the nonnegative
orthant we employ perturbation by constrained proximal points.

The algorithms, listed in Table 1, have parameters that need to be tuned. To select these parameters, we
evaluated the quality of the reconstructed image xk using the relative error ‖xk − x∗‖2/n and then choose,
for each algorithm separately, the parameters that provided the best reconstructed image within the first
100 iterations. The superiorization strategies share three parameters (κ, a and γ0), see, e.g., Algorithm 3,
(4.14) , (4.20) and (4.20). These were chosen from the following sets: κ ∈ {5, 10, 20}, a ∈ {0.5, 1 −
10−2, 1 − 10−4, 1 − 10−6}, γ0 ∈ {0.01, 0.001, 0.0025, β1}, with β1 = 1.9λ/‖A‖2 and λ from (6.9). The
combination of these parameters, that provide the best results are listed in Table 2, while the results are
shown in Figure 6.4 and Figure 6.5. For comparison we also plot the results of the FB iteration (5.58) for the
reversed splitting, in view of its intimate connection with the proximal-point based superiorized Landweber
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iteration (4.21), discussed in Proposition 4.4. Note that the best found values for parameter a are very close
to 1 as Proposition 4.4 suggests. For illustration purposes, we show error values even beyond the stopping
criterion. Note that ProxSupCG has the best error values among all superiorized algorithms and that it is also
the superiorized algorithm that satisfied the stopping criterion (6.4) in the least amount of time when it is
adapted to incorporate nonnegativity constraints, by ProxCSupCG.

Method Optimal parameters

GradSupCG (a, γ0, κ) = (1− 10−4, 0.001, 20)
ProxSupCG, ProxSubLW (γ0, a) = (0.001, 1− 10−6)

ProxCSupCG, ProxCSubLW, ProxSupProjLW (γ0, a) = 1.9λ/‖A‖2, 1− 10−6)
GradSubLW, GradSupProjLW (a, γ0, κ) = (1− 10−4, 0.0025, 20)

TABLE 2. Optimal parameters for the superiorized basic algorithms.

Optimization. Figure 6.6 shows the results of comparing the FB iteration (5.13) with the accelerated FB
iteration (5.22) for solving (1.2) without nonnegativity constraints. To obtain a fair comparison, the proximal
maps were evaluated exactly using formula (5.35). Depending on the value of λ that affects the Lipschitz
constant (5.1b), i.e., a small for exact data and a larger value for noisy data, more iterations are required in
the latter case. And acceleration pays: significantly less iterations are then required.

Since the values of λ were chosen such that minimizers match the properties (6.9) of x∗, it seems fair to
claim that – from the viewpoint of optimization – our implementation mimics the problem decomposition
of superiorization, i.e., least-squares minimization adjusted by gradients of the target function Rτ , most
efficiently. Inspecting the plots of Figure 6.6, we noticed that the final values are almost reached after merely
≈ 75 outer iterations. The much larger number of iterations required to meet the termination criterion (6.7),
therefore, suggests that from the superiorization point of view, this termination criterion might be considered
as too conservative.

Similarly, the accelerated FB iteration (5.59) for the reversed splitting reaches error term values close
to final values within the first 100 iterations, at significantly lower cost as discussed next. Results for the
reversed splitting are shown in Figure 6.7 and Figure 6.8 for the unconstrained and nonnegatively constrained
case, respectively.

6.3. Superiorization vs. Optimization: Computational Complexity. Superiorization. To evaluate the
cost of the superiorized algorithms listed in Table 1 we call an outer iteration an iteration of the basic algo-
rithm and an inner iteration an execution of Algorithm 3 or of a proximal map via (4.16) or (4.18). Within
an outer iteration we have for the CG iteration in Algorithm 1 four costly matrix-vector operations in line
2 and line 5, while for the Landweber Algorithm 2 only two costly matrix-vector operations in line 2. The
cost of an inner iteration is the amount of gradient and function evaluations of Rτ . In the case of computing
nonascent directions by scaled nonnegative gradients, see line (4.14a) in Algorithm 4.14, the number of gra-
dient and function evaluation is controlled by parameter κ and is upper bounded by (`k − `k−1)κ. Similarly,
the cost of a proximal mapping evaluation via (4.16) or (4.18) depends on the tolerance parameter of the
employed optimization algorithm. In our case, the box-constrained L-BFGS method from [BLNZ95] is very
efficient in reaching a tolerance level of 10−6 within few iterations due to the small values of parameters βk
used. In particular, we need 3–18 inner iterations while using at most 136 function evaluations of Rτ . This
is comparable to cost of Algorithm 3 for the considered choice of parameters. We underline that the low
cost of the proximal-point based Landweber iteration is almost identical to the FB iteration (5.58) and the
accelerated FB iteration (5.59) for the reversed splitting.
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FIGURE 6.4. Superiorization: Unconstrained Least-Squares. Scaled values of the data
term (top row) and the regularizer (middle row) of the objective (1.2) and the squared error
norm (bottom row), as a function of the iterative steps k of the superiorized CG iteration us-
ing both perturbations based on gradients, see Algorithm 3 and proximal points, see (4.16),
the gradient and proximal-point based superiorized Landweber iteration and the FB itera-
tion (5.58) for the reversed splitting. The dashed lines in the middle of the plots indicate the
corresponding values for x∗. The left and right columns correspond to exact and noisy data.
Both the basic algorithm and the superiorization strategy does not incorporate nonegativity
constraints, respectively. After appropriate parameter tuning the Superiorized CG iteration
approaches the solution of (1.2) significantly faster than the FB iteration (5.58). The superi-
orized Landweber iteration makes slow progress due to very small step-sizes in view of the
large value of ‖A‖2.
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FIGURE 6.5. Superiorization: Adding Nonnegative Constraints. Scaled values of the data
term (top row) and the regularizer (middle row) of the objective (1.2) and the squared error
norm (bottom row), as a function of the iterative steps k of the superiorized CG iteration
(4.20) and the Landweber iteration (4.21) using proximal points, see (4.18), the gradient
and proximal-point based superiorized projected Landweber iteration and the FB iteration
(5.58) for the reversed splitting. The dashed lines in the middle row plots indicate the cor-
responding values for x∗. The left and right columns correspond to exact and noisy data,
respectively. Constraints are incorporated either in the basic algorithm (GradSupProjLW,
ProxSupProjLW) or via the superiorization strategy (ProxCSupCG, ProxCSubLW) by con-
straining proximal points. Superiorized versions of the Landweber iteration perform sim-
ilarly making slow progress towards x∗ due to the bad conditioning of A, with a surpris-
ing better performance of the gradient based superiorized projected Landweber iteration
GradSupProjLW. Again, the superiorized CG iteration approaches the solution of (1.2) sig-
nificantly faster than the FB iteration (5.58) after appropriate parameter tuning.
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50 100 150 200 250 300 350
k

10-5

10-4

0.001

0.010

A x-b2

2m

0 50 100 150 200 250 300 350
k

0.07

0.08

0.09

0.10

Rτ(x)
n

50 100 150 200 250 300 350
k

5.×10-5

1.×10-4

5.×10-4

0.001

0.005

0.010

x - x*2

n

500 1000 1500
k

0.05

0.10

0.15

0.20

A x-b2

2m

0 500 1000 1500
k

0.045

0.050

0.055

0.060

0.065

0.070

Rτ(x)
n

500 1000 1500
k

0.005

0.010

0.050

x - x*2

n

FIGURE 6.6. Optimization: FB and accelerated FB iteration – No Constraints. Scaled
values of the data term (left column) and the regularizer (center column) of the objective
(1.2) and the squared error norm (right column), as a function of the iterative steps k of the
FB iteration (5.13) (dark curves) and the accelerated FB iteration (5.22). The dashed lines
indicate the corresponding values for x∗. The top and bottom row correspond to exact and
noisy data: accelerated FB needs about 50% and 25% less outer iterations, respectively.
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FIGURE 6.7. Optimization: FB and accelerated FB iteration for the reversed splitting –
No Constraints. Scaled values of the data term (left column) and the regularizer (center
column) of the unconstrained objective (1.2) and the squared error norm (right column), as
a function of the iterative steps k of the FB iteration (5.58) (dark curves) and the accelerated
FB iteration (5.59) for the reversed splitting. The dashed lines indicate the corresponding
values for x∗. The top and bottom row correspond to exact and noisy data.
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FIGURE 6.8. Optimization: FB and accelerated FB iteration for the reversed splitting –
Nonnegativity Constraints. Scaled values of the data term (left column) and the regularizer
(center column) of the nonnegatively constrained objective (1.2) and the squared error norm
(right column), as a function of the iterative steps k of the FB iteration (5.58) (dark curves)
and the accelerated FB iteration (5.59) for the reversed splitting. The dashed lines indicate
the corresponding values for x∗. The top and bottom row correspond to exact and noisy
data. While the FB iteration is damped by the inclusion of constraints, the nonnegativity
constraints appear to be beneficial for the accelerated FB iteration on the other hand when
comparing to the results from Figure 6.7.

Optimization. We evaluated accelerated FB iteration with inexact evaluations of the proximal maps, for
both the unconstrained and nonnegatively constrained problem (1.2). In the former case, the inexactness
criterion was evaluated during the primal-dual inner iteration using (5.46). In the latter nonengatively con-
strained case, we noticed that the corresponding criterion (5.51) could not be used since z 6∈ K = Rn+, with
z given by (5.50a), happened frequently. We, therefore, resorted to the error estimate (5.56) and chose and
exponent εk = O(k−q) so as to satisfy (5.16).

Figures 6.9 and 6.10 depict the corresponding results. Inspecting the panels on the left shows both in the
unconstrained and in the constrained case, that choosing the proper error decay rate (5.23) significantly af-
fects the accelerated FB iteration. Having chosen a proper exponent, an increasing number of inner iterations
ranging from few dozens to a couple of hundreds are required for each outer iteration. Even though these
inner iterations can be computed efficiently, their total number adds up to few hundreds of thousends for the
entire optimization procedure.

6.4. Discussion. We discuss our observations according to the following five aspects:

(1) Observations about superiorization;
(2) Observations about optimization;
(3) Superiorization vs. convex optimization: empirical findings;
(4) How superiorization could stimulate convex optimization;
(5) How optimization could stimulate superiorization.
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FIGURE 6.9. Inexact accelerated FB iteration for the unconstrained problem (1.2). LEFT:
Relation of the number of outer iterations (not scaled down) and the total number of inner
iterations (scaled down by 1/1000) as a function of the exponent q of the error εk = O(k−q)
(5.23). RIGHT: Number ` of inner iterations at each outer iteration k, for exponents q = 1.8
(top) and q = 2.0 (bottom) of (5.23).
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FIGURE 6.10. Inexact accelerated FB iteration for the nonnegatively constrained problem
(1.2). LEFT: Relation of the number of outer iterations (not scaled down) and the total
number of inner iterations (scaled down by 1/1000) as a function of the exponent q of the
error εk = O(k−q) (5.23). RIGHT: Number ` of inner iterations at each outer iteration k,
for exponents q = 1.8 (top) and q = 2.0 (bottom) of (5.23).
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(1) (a) Superiorization, Figure 6.4, Figure 6.5: the choice of the basic algorithm is essential. The superior-
ized versions of the CG iteration outperforms in our experimental numerical work the superiorized
versions of the Landweber iteration. The superiorized Landweber iteration makes slow progress
towards x∗ due to the bad conditioning of matrix A and corresponding small step-size parameters.

(b) Superiorization, Figure 6.4, Figure 6.5: incorporating nonnegativity constraints in the superioriza-
tion method slows down the iteration process. Compare the three reconstruction errors in Figure 6.4
to values in Figure 6.5. Since the proximal-point based superiorized projected Landweber itera-
tion (tagged ProxSupProjLW) behaves identically to the superiorized Landweber iteration, which
includes nonnegativity constraints via the proximal map (tagged ProxCSubLW), we conclude that
this is not an artefact of the proposed method of computing nonascent directions but rather a char-
acteristic of projection-based algorithms. We believe that a geometric basic algorithm that smoothly
evolves on a manifold defined by the constraints, in connection with a proximal point that employs
an appropriate Bregman distance, can remedy this situation.

(2) (a) Optimization, Figure 6.7, Figure 6.8: incorporating nonnegative constraints in the FB iteration
for the reversed splitting (5.58) also slows down the iteration process. On the other hand, the
accelerated FB iteration (5.59) does not suffer from this shortcoming.

(b) Optimization, Figure 6.6: acceleration is very effective at little additional cost provided proximal
maps are computed exactly. About 50 and 25 outer iterative steps are merely needed to terminate in
the noise-free and noisy case, respectively (the latter termination criterion - just reaching the noise
level - is more loose). These small numbers of outer iterations result from computing exact proximal
maps, however.

(c) Unconstrained optimization, Figure 6.9: inexact inner loops dramatically increase the number of
iterations. In comparison to Figure 6.6, the number of outer iterations increases to about 150 and
1200, respectively. Thus, the noisy case is becoming much more expensive than the noise-free
case (in contrast to Figure 6.6). Each of these iterations requires on average 130 and 450 primal-
dual iterations that inexactly evaluate the proximal map and are computationally inexpensive. The
efficiency of inexact accelerated optimization requires to choose the exponent q not smaller than a
problem-dependent critical value.

(d) Nonnegatively constrained optimization, Figure 6.10: The number of outer iterations decreases rel-
ative to Figure 6.9 (so constraints help), but the number of inner iterations increases. Otherwise, the
observations regarding Figure 6.9 hold.

(3) (a) Superiorization vs. optimization: convergence. Each optimization algorithm is guaranteed to reduce
both recovery errors (1) and (2), as listed in the beginning of Section 6.2. The subsampling ratio
m/n is chosen according to [KP19] so that recovery via (1.2) is stable. As a consequence, also the
recovery error (3) in Section 6.2 is reduced by the optimization algorithm. While the superiorized
iterations are guaranteed to reduce only the recovery error in (1), we observe in Figure 6.4 and
Figure 6.5 that also recovery errors (2) and (3) are decreased to levels comparable to those achieved
by optimization. This favorable performance of superiorization requires some parameter tuning as
described in Section 6.2.

(b) Superiorization vs. optimization: best performance is achieved by superiorized CG and accelerated
FB iteration for the reversed splitting. The evaluation of the implemented algorithms shows that, in
the unconstrained case, both the proximal-point based superiorized CG iteration and the accelerated
FB iteration (5.59) for the reversed splitting reach almost optimal error term values within the fewest
number of iterations at low computational cost (4 vs 2 matrix-vector evaluations and 1 proximal-
point evaluation of Rτ ). In the constrained case, the accelerated FB iteration (5.59) for the reversed
splitting performs best while keeping low the computational cost.
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(c) Superiorization vs. optimization: we addressed the balancing question by the two alternative split-
tings. By analyzing and evaluating the FB iteration for the two alternative splittings, we also ad-
dressed the so-called balancing question in superiorization: How to distribute the efforts that a su-
periorization algorithm invests in target function reduction steps versus the efforts invested in basic
algorithm iterative steps? In the case of the splitting (5.1) that results in the inexact (accelerated)
FB iteration (5.22), we performed many basic algorithm iteration steps, e.g., via (5.38), and just
one target function reduction step with respect to Rτ . By contrast, in the case of the reversed split-
ting (5.58), we performed one basic algorithm iteration and many target function reduction steps, to
compute the proximal point in (5.58). Our results show that the accelerated reversed FB splitting is
computationally more efficient. They suggest that one basic iteration should be followed by many
target function reduction steps for our considered scenario.

(4) There is a deeper relation between the balancing problem of superiorization and the splitting problem
of optimization. Due to the above comment (3)(b), the number of steps of the basic algorithm relative
to the number of steps for target function reduction is crucial for the performance of superiorization.
For our considered problem, a relatively larger number of target function reduction steps seems to pay.
This observation agrees with the better performance of the reversed splitting for optimization, since then
inexact evaluations of the proximal map entail a larger relative number of target function reduction steps.

(5) Superiorization vs. optimization: future work. Observation (4) motivates us to consider in future re-
search an inexact Douglas-Rachford (DR) splitting that includes two proximal maps: one corresponding
to the least-squares term of (1.2) and one corresponding to the regularizer Rτ that might include non-
negativity constraints as well. Such an inexact DR splitting would not only be algorithmically very close
to the superiorization of a basic algorithm for least-squares, but also provide a basis for a theoretical
investigation of superiorization.

7. CONCLUSION

We considered the underdermined nonnegative least-squares problem, regularized by total variation, and
compared, for its solution, superiorization with a state-of-the-art approach to convex optimization, viz. ac-
celerated forward-backward (FB) splitting with inexact evaluations of the corresponding proximal mapping.
The distinction of the basic algorithm and target function reduction by the superiorization approach moti-
vated us to contrast superiorization with a first FB splitting, such that the more expensive backward part
corresponds to the basic algorithm, whereas the forward part takes into account the target function. How-
ever, in view of the balancing problem of superiorization, we also considered the reverse FB splitting, since
exchanging the forward and backward parts in connection with inexact evaluations of the proximal mapping
is structurally closer to superiorization, as regards the balancing issue.

Our experiments showed that superiorization outperforms convex optimization without acceleration, after
proper parameter tuning. Convex optimization with acceleration, however, is on a par with superiorization
or even more efficient when using the reverse splitting. This raises the question: How can accelerated
superiorization be defined for convex basic algorithms and target function reductions?

Superiorization performs best when the number of iterative steps used for the basic algorithm and for
target function reduction, respectively, are balanced properly. Our results indicate a deeper relationship of
the balancing problem of superiorization and the splitting problem of convex optimization. We suggested a
splitting approach (point (5) in Subsection 5.4 above) that deems most promising to us for further closing
the gap between superiorization and optimization of composite convex problems.

Finally, we point out that we restricted our study to an overall convex problem, which enabled us to apply
an advanced optimization scheme that combines acceleration with inexact evaluations. While superiorization
has proven to be useful for nonconvex problems as well, it will be much harder to relate both methodologies
to each other in the nonconvex case.
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