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Abstract. We propose a novel variational approach based on a level set
formulation of the Mumford-Shah functional and shape priors. We extend
the functional by a labeling function which indicates image regions in
which the shape prior is enforced. By minimizing the proposed functional
with respect to both the level set function and the labeling function, the
algorithm selects image regions where it is favorable to enforce the shape
prior. By this, the approach permits to segment multiple independent
objects in an image, and to discriminate familiar objects from unfamiliar
ones by means of the labeling function. Numerical results demonstrate
the performance of our approach.

1 Introduction

The problem of segmenting an image into its semantically significant components
has been eluding researchers in computer vision for over 30 years. In the early
days it was believed to be merely a technical problem. The traditional bottom-
up approach, which is still very common in the computer vision community,
suggests to start with a denoising process and to apply some sort of threshold
afterward. Once the image is successfully segmented one can go to higher levels
such as 3D reconstruction, motion analysis, classification and recognition.

It was realized by Mumford and Shah in the mid 80’s, that denoising and
segmentation are two different aspects of the same problem. Indeed a good de-
noising process should distinguish between a set of significant regions and the
border between them. Such a denoising process assumes, implicitly, that the
segmentation is known. On the other hand, segmentation approaches based on
a threshold process assume that the image is denoised such that jumps in gray
value can be attributed to boundaries between objects and are not the result of



noise. This line of reasoning culminated in the Mumford-Shah functional [14],
which puts the denoised image and the boundary contours on the same footing.
Minimizing the functional simultaneously with respects to the dynamic variables
results in a denoised image AND the boundaries. The minimization procedure
involves the solution of coupled equations for the image and its boundaries.

Despite the success of the Mumford-Shah functional, its many variants [13]
and the extensive mathematical analysis that followed its introduction, the prob-
lem of segmentation still eludes us. There is no segmentation algorithm that
comes near the performance of a 3 year old child.

This failure indicates that a pure bottom-up approach is inappropriate. In
fact we believe that higher-level processes related to recognition should partici-
pate in the segmentation process. This idea is reflected in the works of several
researches. For a recent non-PDE approach starting from such viewpoint see [1].

In this paper, we combine both data-driven and recognition-driven process-
ing in an unbiased way by introducing a dynamic labeling function into a vari-
ational segmentation approach with shape priors. In analogy to the reasoning
of Mumford and Shah, minimization of the proposed functional with respect to
the dynamic variables results in denoising, reconstruction of boundaries and the
evolution of a decision function which models a higher-level recognition process.

The integration of shape priors into PDE based segmentation methods has
been a focus of research in past years (c.f. [10, 21, 17, 6, 12, 20, 8, 7, 16]). Com-
monly, such approaches introduce a shape prior into the contour evolution in
such a way that (ideally) the object of interest is reconstructed and all unfamil-
iar image structures are suppressed.

More recently, implicit level set based representations of a contour [15] have
become a popular framework for image segmentation (cf. [2, 11, 4]). Since the
topology of the evolving boundary is not constrained, one can elegantly model
topological changes such as splitting and merging. This permits to segment mul-
tiply connected objects or several independent objects in a given image.

The question of how to introduce higher-level prior shape knowledge into
level set based contour evolutions has been addressed by a number of people
in recent years (cf. [12, 20, 5, 16]). In many of these approaches, the shape prior
acts on the embedding level set function. As shown e.g. in [12], this approach
permits to segment a multiply connected object with a statistical shape prior.

All of these approaches introduce the shape prior in such a way that only
familiar structures of one given object can be recovered. They do not permit
the simultaneous segmentation of several independent objects, comprising both
familiar and unfamiliar ones. As an example, Figure 1, left side, shows a table
scene containing two objects — the cover of a teapot, which is assumed to be
familiar, and a pen assumed to be unfamiliar. The same scene is shown on the
right, but the familiar object is corrupted: some parts are missing while others
are occluded.

The aim of the present work is to introduce a shape prior into the Mumford-
Shah functional, in a way which permits the simultaneous segmentation of several
objects in one image (each of which may consist of several components). In
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Fig. 1. Left: A table scene showing two objects — the cover of a tea pot which is
assumed to be familiar, and a pen which is assumed to be unfamiliar.
Right: Corrupted version of the same image obtained by removing and occluding
parts of the familiar object.

particular, we will show that this approach permits to reconstruct the familiar
object in Figure 1, right side, while leaving the correct segmentation of the
unfamiliar object unaffected. To this end, we extend a level set formulation of
the Mumford-Shah functional by a labeling function which indicates the regions
of the image plane in which a given shape prior is enforced. By simultaneously
minimizing the proposed energy functional with respect to the level set function
and the labeling function, the labeling function dynamically separates regions of
familiar objects from regions of unfamiliar ones.

The organization of this paper is as follows: In Section 2, we briefly review a
level set formulation of the piecewise constant Mumford-Shah functional, as pro-
posed in [3]. In Section 3, we augment this variational framework by a shape prior
which affects the evolution of the level set function globally. As a consequence,
such commonly proposed global shape priors suppress all unfamiliar image struc-
tures in the resulting segmentation process. In Section 4, we introduce a static
labeling function to explicitly restrict the effect of the shape prior to designated
areas of the image plane. This permits to both reconstruct a corrupted version
of a known object and segment a novel unknown object in the same input image.
In Section 5, we finally propose a variational framework with a dynamic labeling
function. Compared to the case of a static labeling, the dynamic one evolves
in an unsupervised manner during energy minimization. Numerical results show
that this approach permits to segment new objects and reconstruct known ones
without specifying the respective image areas beforehand. In Sections 7 and 8,
we discuss some limitations and future work and end with a conclusion.

2 Region-based Segmentation with Level Sets

In this section, we will detail a level set method for image segmentation which
aims at maximizing the gray value homogeneity in a set of disjoint regions. It
is based on a level set formulation of the Mumford-Shah functional proposed
by Chan and Vese [3]. This framework will then be extended by shape priors of
increasing complexity in the subsequent sections.

3



2.1 A Level Set Framework for the Mumford-Shah Functional

Mumford and Shah [14] proposed to segment an input image f : Ω → R by
minimizing the functional

E(u, C) =
1
2

∫
Ω

(f − u)2 dx + λ2 1
2

∫
Ω−C

|∇u|2 dx + ν |C| (1)

simultaneously with respect to the segmenting boundary C and the piecewise
smooth approximation u. If the smoothness constraint is further stressed, one
obtains for λ →∞ the cartoon limit (or minimal partition problem) in which the
input image f is approximated by a piecewise constant segmentation u = {ui}:

E(u, C) =
1
2

∑
i

∫
Ωi

(f − ui)2 dx + ν |C|. (2)

During minimization of (2), the constants {ui} will take on the mean value of f
over the set of disjoint regions {Ωi} which partition the image plane (Ω =

⋃
Ωi)

and which are separated by the boundary C.
In several papers, Chan and Vese detailed a level set implementation of the

Mumford-Shah functional (cf. [3, 4]), which is based on the use of the Heaviside
function as an indicator function for the separate phases. The focus of the present
work is the modeling of selective shape priors. Therefore, we will restrict ourselves
to the case of the piecewise constant Mumford-Shah model and a single level set
function φ : Ω → R to embed the contour: C = {x ∈ Ω |φ(x) = 0}.

A piecewise constant segmentation of an input image f with two gray values
u+ and u− can be obtained by minimizing the functional [3]:

ECV (u+, u−, φ) =
∫
Ω

(f−u+)2H(φ)+(f−u−)2
(
1−H(φ)

)
dx + ν

∫
Ω

|∇H(φ)|, (3)

with respect to the scalar variables u+ and u− and the embedding level set
function φ. Here H(φ) denotes the Heaviside function:

H(φ) =
{

1, φ ≥ 0
0, else (4)

The Euler-Lagrange equation for this functional can be implemented by the
following gradient descent:

∂φ

∂t
= δε(φ)

[
ν div

(
∇φ

|∇φ|

)
− (f − u+)2 + (f − u−)2

]
, (5)

where the scalars u+ and u− are updated in alternation with the level set evo-
lution to take on the mean gray value of the input image f in the regions with
φ > 0 and φ < 0, respectively:

u+ =
∫

f(x)H(φ)dx∫
H(φ)dx

, u− =
∫

f(x)(1−H(φ))dx∫
(1−H(φ))dx

. (6)
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The implementation in [3] is based on a smooth approximation of the delta
function δε(s) = H ′

ε(s), which is chosen to have an infinite support:

δε(s) =
1
π

ε

ε2 + s2
. (7)

In particular, a discretization with a support larger than zero permits the de-
tection of interior contours – for example if one wants to segment a ring-like
structure, starting from an initial contour located outside the ring.

2.2 Redistancing

During its evolution according to equation (5), the level set function φ generally
grows to very large positive values in dark areas of the input image and very
large negative values in bright areas of the image (or vice versa). At the zero
crossings, it rises steeply, the gradient can become arbitrarily large. In numeri-
cal implementations, we found that a very steep slope of the level set function
eventually inhibits the flexibility of the boundary to displace.

Many people have advocated the use of a redistancing procedure in the evolu-
tion of level set functions to constrain the slope of φ to |∇φ| = 1, c.f. [9]. In order
to reproject the evolving level set function to the space of distance functions, we
intermittently iterate several steps of the redistancing equation [19]:

∂φ

∂t
= sign(φ̂) (1− |∇φ|) , (8)

where φ̂ denotes the level set function before redistancing. As pointed out in [3],
such a regularization is optional for the above level set model. Yet, we found
this to have two favorable properties in our application. Firstly, it improves
the convergence of the boundary evolution. And secondly, this normalization
facilitates the introduction of shape priors which are encoded in terms of signed
distance functions. We found this simple redistancing process to work well for
our purpose, therefore we did not revert to more elaborate iterative redistancing
schemes such as the one presented in [18].

2.3 Numerical Results

Minimization of the functional (3) is done by alternating the three fractional
steps of iterating the gradient descent for the level set function φ, as given by
equation (3), iterating the redistancing procedure given by equation (8) and
updating the mean gray values for the two phases, as given in equation (6).

Figure 2 shows several steps of the evolution of the boundary C obtained by
minimizing the functional (3) for the corrupted input image introduced in Figure
1. Due to the implicit representation, the boundary is free to perform splitting
and merging. Due to the region-based formulation of the functional, the contour
converges to the final segmentation over fairly large distances, while local edge
and corner information is well preserved.
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Fig. 2. Segmentation without shape prior. Evolution of the boundary for the
Chan-Vese level set formulation of the piecewise constant Mumford-Shah func-
tional (with a single level set function). The contour evolves so as to separate
bright and dark areas. Due to the implicit level set representation, the topology is
not constrained, which allows for splitting and merging of the boundary.

Fig. 3. Segmentation without shape prior. Evolution of the boundary for the
Chan-Vese level set formulation with a different initialization as in Figure 2. There
is no bias in form of a balloon term, therefore the contour can both expand and
shrink for the same parameter value.

Yet, compared to many alternative approaches to level set segmentation, the
above approach does not contain a balloon term which induces a bias favoring
either contraction or expansion and therefore assumes prior knowledge about
whether the objects of interest are inside or outside the initial contour. Figure
3 shows the corresponding contour evolution for a different initial contour. In
this case, the contour expands from its initialization to converge to a similar
segmentation of the given image.

3 Global Shape Prior in the Level Set Segmentation

In many applications of image segmentation, some knowledge about the shape
of expected objects of interest is available. This prior shape information can be
introduced into the level set functional in the following way. A number of train-
ing shapes is embedded by the signed distance function. The set of associated
distance functions is aligned and a statistical model for the level set function is
inferred from the training set. This prior is then added either to the evolution
equation (5) or directly as a shape energy to the functional (3). Invariance of the
prior with respect to similarity transformations of the level set function can be
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Fig. 4. Segmentation with a global shape prior. Evolution of the boundary
for the Chan-Vese level set formulation with a shape prior which favors a ring.
Compared to the corresponding segmentation without prior shown in Figure 2, the
introduction of the global shape prior has several effects: The ring is reconstructed
according to the shape prior, i.e. the partial occlusion is removed and the missing
parts are filled in. At the same time, all other image structures – such as the pen
on the right side – are removed.

incorporated into these approaches (cf. [12, 16]). Since the focus of this work is
selectivity of shape priors, we will not consider such invariances here. Moreover,
we will only consider a single training shape, but we allow for more than one
object in the image. Nevertheless, our approach can in principle be extended to
more involved statistical shape priors [7].

A straight-forward extension of the functional (3) with an isotropic Gaussian
shape prior is the following:

E(u+, u−, φ) = ECV (u+, u−, φ) + α Eshape(φ), (9)

with
Eshape(φ) =

∫
Ω

(
φ(x)− φ0(x)

)2
dx, (10)

where φ0 is the level set function embedding a given training shape (or the mean
of a set of training shapes) and α ≥ 0 determines the weight of the prior.

Minimizing this functional with respect to φ results in an evolution equation
of the form:

∂φ

∂t
= δε(φ)

[
ν div

(
∇φ

|∇φ|

)
− (f − u+)2 + (f − u−)2

]
− 2 α

(
φ− φ0

)
. (11)

Compared to the purely data-driven evolution in (5), we obtain an additional
relaxation towards the learned shape φ0.

Applied to the same image as in Figure 2, this generates the contour evolution
shown in Figure 4. For sufficiently large weight of the shape prior, all image
structures which are not familiar will be suppressed from the segmentation. In
our example, the training shape consisted of the ring from a tea can. Due to the
shape prior, missing parts of this object are recovered and occlusions removed.
Moreover, the pen next to the ring is also removed.

7



4 Selective Shape Prior by Static Labeling

In the example of Figure 4, the shape prior permitted to reconstruct the learned
object. In general, however, this object may not be present in a given image.
Moreover, a given view of a scene may contain corrupted versions of a known
object — the ring in our example — and other unfamiliar objects — in our
example the pen next to it. In such cases, it may be desirable to have a selective
shape prior, which permits to reconstruct the corrupted version of the known
object, but which will not affect the segmentation of the unknown objects.

In this paper, we will model such a selective shape prior by a labeling function
L : Ω → R which indicates the areas of the image plane in which a given prior
should be enforced. This labeling function is to take on the values +1 and −1
depending on whether the prior should be enforced or not. For the beginning,
we will assume this labeling to be known. This assumption will be removed in
the following section.

We propose to segment an input image f by minimizing the functional (9)
with a shape prior of the form:

Eshape(φ) =
∫
Ω

(
φ(x)− φ0(x)

)2 (L + 1)2 dx, (12)

where a labeling L defines the parts of the image plane Ω where the shape prior
should be active. The gradient descent equation for φ is given by:

∂φ

∂t
= δε(φ)

[
ν div

(
∇φ

|∇φ|

)
− (f − u+)2 + (f − u−)2

]
− 2 α (L + 1)2

(
φ− φ0

)
. (13)

Compared to the evolution equation with the global prior in (11), the additional
relaxation towards the learned shape φ0 is now restricted to the image areas
where L 6= −1.

Fig. 5. Left: The labeling function L, shown in a 3D plot, indicates the area
around the familiar object in which the prior should be applied (L = 1) and the
remainder of the image plane, which should be segmented according to the gray
value information only (L = −1). Right: Zero crossing of L superimposed on the
input image.
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Fig. 6. Segmentation with static labeling function and shape prior.
Evolution of the boundary upon minimizing the functional (12) with the static
labeling function shown in Figure 5. According to the labeling function, the prior
is enforced in an area around the ring only and masked out in the areas away
from the ring. Therefore — in contrast to the result in Figure 4 — the ring is
reconstructed according to the shape prior while the pen is also segmented as an
independent object.

Figure 6 shows the result of minimizing this functional with respect to φ for
the static labeling shown in Figure 5.

Due to the definition of the labeling, the shape prior is only enforced in
a region around the ring. In the remainder of the image plane the labeling
function masks out the shape prior. The consequence is that the known object is
reconstructed according to the prior, while the correct segmentation of the pen
is unaffected by the prior. It remains to be shown how this labeling function L
can be determined from the image data as well.

5 Selective Shape Prior by Dynamic Labeling

In the previous section, we introduced a labeling function L to indicate regions of
the image plane where a given shape prior should be enforced. Yet, this labeling
was specified beforehand.

In the present section, we will overcome this limitation by an approach with
a dynamic labeling function. To this end, we propose to minimize the functional

E(u+, u−, φ, L) = ECV (u+, u−, φ) + α Eshape(φ), (14)

with the shape prior:

Eshape(φ,L) =
∫

(φ− φ0)
2 (L+1)2 dx+

∫
λ2 (L−1)2 dx + γ

∫
|∇H(L)| dx. (15)

Compared to the previous approach of a static labeling function, we now assume
the labeling L to be unknown. Instead of specifying the labeling, we simultane-
ously optimize the above cost functional with respect to both the segmenting
level set function φ and the labeling function L.

According to the proposed cost functional, the labeling will evolve in an
unsupervised manner driven by two criteria:

9



– The labeling should enforce the shape prior in those areas of the image
where the level set function is similar to the prior. In particular, for fixed φ,
minimizing the first two terms in (15) will generate the following qualitative
behavior of the labeling:

L → 1, if |φ− φ0| < λ
L → −1, if |φ− φ0| > λ

– The boundary separating regions with shape prior from regions without
shape prior should have minimal length. This regularizing constraint on the
zero crossing of the labeling function – given by the last term in equation
(15) — induces a topological “compactness” of the regions with and without
shape prior.

6 Evolution of Labeling Function and Level Set Function

We simultaneously minimize the functional (14) with respect to both the labeling
function L and the level set function φ by iterating the associated gradient
descent equations in alternation with updates of the mean gray values u+ and
u− according to (6).

For fixed φ, the gradient descent equation for the labeling function is given
by:

∂L

∂t
= −∂E

∂L
= α

[
2λ2(1− L)− 2(φ− φ0)2(1 + L) + γδε(L) div

(
∇L

|∇L|

)]
. (16)

The first two terms drive the labeling toward −1 or 1, depending on whether
|φ − φ0| is larger or smaller than λ. And the last term in (16) minimizes the
length of the zero-crossing of L, thereby enforcing decision regions with minimal
boundary.

Conversely, for fixed labeling, the gradient descent equation for the level set
function φ is given by:

∂φ

∂t
= −∂E

∂φ

= δε(φ)
[
ν div

(
∇φ

|∇φ|

)
− (f − u+)2 + (f − u−)2

]
− 2 α (1 + L)2 (φ− φ0). (17)

Compared to the purely data-driven evolution in equation (5), we have an ad-
ditional relaxation toward the learned shape φ0 in all areas of the image where
L 6= −1.

The resulting evolution of the labeling function L, obtained by minimizing
the total energy (14) for the same input image as before, is shown in Figure 7,
bottom row: The area around the ring arises in an unsupervised manner as the
region where the prior should be applied.
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Evolution of the boundary

Evolution of the labeling

Fig. 7. Segmentation with dynamic labeling and shape prior. Top row:
Evolution of the segmenting boundary obtained by minimizing the functional (14)
for the same input image as in Figure 2. The ring object is reconstructed ac-
cording to the shape prior, whereas the correct segmentation of the pen is unaf-
fected by the prior. The prior affects the embedding level set function φ only in
the regions indicated by the simultaneously evolving dynamic labeling function.
Bottom row: Evolution of the dynamic labeling L during energy minimization.
The labeling function dynamically selects the region around the ring object to
apply the shape prior. Compared to the static labeling shown in Figure 6, the
dynamic labeling evolves in an unsupervised manner.

The corresponding evolution of the segmenting boundary given by the zero
level set of the function φ is shown in Figure 7, top row. These results demon-
strate the following favorable properties of our approach:

– Compared to the segmentation without shape prior shown in Figure 2, the
ring is reconstructed according to the shape prior, i.e. the missing parts are
filled in and the occlusion is removed.

– Compared to the segmentation with a global shape prior shown in Figure 4,
the correct segmentation of the pen is unaffected by the shape prior. The
effect of the shape prior is restricted to the area around the familiar object
by the labeling function.

– Compared to the case of a static labeling function shown in Figures 5 and 6,
one no longer needs to specify beforehand the regions where the prior should
be enforced. Instead, the labeling evolves in an unsupervised manner during
the minimization of the functional (14). It dynamically selects image regions
in which the prior is to be applied.
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7 Limitations and Future Work

Segmentation results obtained with the dynamic labeling approach depend on
an appropriate choice of the parameters λ and γ which affect the evolution of the
labeling. We are currently working on a more rigorous probabilistic formulation
of the dynamic labeling approach which, we believe, should result in automatic
estimates of these parameters from the data. Moreover, we intend to generalize
the proposed approach to multiple selective shape priors, and to more elaborate
statistical shape priors such as the one introduced in [7]. We will also investigate
methods to introduce pose invariance, such as the one presented e.g. in [12, 16],
into the proposed approach.

8 Conclusion

We presented a novel variational approach to integrate higher-level shape pri-
ors into level set based segmentation methods. In particular, we addressed the
problem of applying shape priors selectively, such that a given prior permits the
reconstruction of corrupted versions of a familiar object while not affecting the
correct segmentation of independent unknown objects.

To this end, we extended the level set approach of Chan and Vese by three
shape priors of increasing complexity. The first one is a simple globally active
prior which permits the reconstruction of a known object but removes all un-
familiar objects. The second one is a shape prior with a static labeling, which
allows to define areas of the input image in which the prior should be applied.
This prior permits to reconstruct the known object in the selected area, but does
not affect the correct segmentation of independent objects in the remainder of
the image plane. Finally, the third shape prior is based on a dynamic labeling
function. The latter is not specified beforehand, it rather evolves in an unsuper-
vised manner in order to automatically select the image regions to which the
prior should be applied. As a consequence, the familiar object is reconstructed,
yet independent unfamiliar objects are correctly segmented. And the decision
which areas correspond to familiar objects simultaneously evolves with the seg-
mentation during minimization of the proposed functional.

We believe that the results presented in this work demonstrate the capacity of
the dynamic labeling approach to model an unsupervised decision process. Such
a decision process fundamentally extends the applicability of statistical shape
priors in segmentation. It permits to combine both data-driven and recognition-
driven processing on equal footings in a variational segmentation approach.
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