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Abstract. We consider the problem of sparse signal recovery in dynamic
sensing scenarios. Specifically, we study the recovery of a sparse time-
varying signal from linear measurements of a single static sensor that
are taken at two different points in time. This setup can be modelled
as observing a single signal using two different sensors – a real one and
a virtual one induced by signal motion, and we examine the recovery
properties of the resulting combined sensor. We show that not only can
the signal be uniquely recovered with overwhelming probability by lin-
ear programming, but also the correspondence of signal values (signal
motion) can be established between the two points in time. In particu-
lar, we show that in our scenario the performance of an undersampling
static sensor is doubled or, equivalently, that the number of sufficient
measurements of a static sensor is halved.

1 Introduction

Overview, Motivation. On of the most common scenarios of compressed sens-
ing concerns the unique recovery of a sparse vector x ∈ Rn from m < n linear
measurements by ℓ1-norm minimization,

min
x∈Rn

∥x∥1 subject to Ax = bx, (1)

based on suitable conditions on the sensor matrix A [3]. In this paper, we extend
this scenario in that x undergoes some unknown transformation,

y = T (x), (2)

and then is observed once more by the same sensor: Ay = by. The corresponding
extension of (1) reads

min
x,y∈Rn

∥∥∥∥

(
x
y

)∥∥∥∥
1

subject to
(
A 0
0 A

)(
x
y

)
=

(
bx
by

)
. (3)
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This formulation, however, merely doubles the number of measurements to 2m
and the number of variables to be recovered to 2n. Additionally, it has the
weakness that the additional m linear measurements are not independent.

On the other hand, if the transformation T of (2) was known, then the number
of variables to be recovered remains n, because the same vector x is observed in
two different ways. Moreover, suppose the measurements (2) of the transformed
vector can be approximated by A(T )x ≈ AT (x) in terms of a virtual sensor A(T )
(regarded as a function of T ), then the number of measurements is effectively
doubled to 2m and the recovery problem reads

min
x∈Rn

∥x∥1 subject to
(

A
A(T )

)
x =

(
bx
by

)
. (4)

The key questions addressed in this paper are: How much can we gain from (4)
relative to (1), under suitable assumptions from the viewpoint of compressed
sensing? How can we cope with the unknown transformation T and recover it at
the same time? Since T is usually a transformation of x between two subsequent
points in time, we call (4) the compressed motion sensing (CMS) problem.

To approach this problem, we consider as a first step the following spe-
cific variant of (4): The vector x results from a discretization of a continuous
medium observed on a grid graph, that covers a bounded Euclidean domain Ω ⊂
Rdim, dim ∈ {2, 3}. A concrete example is the setup of [7] related to the imaging
in experimental fluid dynamics, where every component xi ∈ {0, 1}, i ∈ [n] indi-
cates the absence or presence of a particle in a turbulent fluid. We adopt this
scenario which is sufficient for our purpose to introduce the CMS problem.

Assuming a sufficiently fine spacing of the vertices i of the grid graph, any
transformation T : Ω → Ω can be approximated by a permutation

y = Px, x ∈ {0, 1}n, (5)

which represents the motion of particles on the grid graph. As a consequence,
the specific version of the CMS sensor of (4), that we study in this paper, reads

B :=
(

A
AP

)
∈ R2m×n. (CMS sensor) (6)

Specifically, we are concerned with the following objectives of showing that:

1. the CMS sensor (6) effectively doubles the number of measurements and turns
a poor sensor into a stronger one;

2. the vector x ∈ {0, 1}n can be recovered uniquely;
3. the transformation (5) in terms of the permutation matrix P can be jointly

determined as well, together with x, by linear programming.

Points (1)–(3) are illustrated in Fig. 1 where Ω ⊂ R2 is a square domain, uni-
formly tesselated by square pixels, and the sensor matrix A encodes sums of pixel
values along all image rows and columns – cf. Fig. 2 and Eq. (7), also called pro-
jections. This simple setup of orthogonal projections is a classical scenario of
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discrete tomography [4] and severely ill-posed. As Fig. 1 illustrates, however, our
results show that even on the basis of such a poor sensor matrix A, the corre-
sponding CMS sensor (5) enables to infer unique recovery and correspondence
(motion) information (5) within a certain sparsity regime. In other words, our
approach turns a poor sensor into a stronger one, while using overall the same
number of 2m measurements.

(a) x, original (b) x, CS (c) x, CMS

(d) CMS Motion

(e) y, original (f) y, CS (g) y, CMS

Fig. 1. Recovery of two sparse subsequent 6 × 6 vectors x (a) and y (e) by standard
CS recovery via (1) and by compressed motion sensing (CMS), respectively, based on
a sensor matrix A with projects along two orthogonal directions (rows and columns).
Standard CS recovery (b, f) by solving (1) fails due to poor sensor properties of A,
despite low sparsity. Using the same number of measurements the CMS sensor (6) leads
to unique recovery (c, g) and correspondence (motion) information (d) so that y = Px.

Related Work. Our work builds on [7] where the connection between tomo-
graphic particle imaging and compressed sensing was established, along with an
average case analysis of recovery conditions for static scenarios. In this paper, we
establish the extension to more realistic dynamic scenarios. Applications include,
in particular, the two-frame analysis of tomographic particle image sequences in
experimental fluid dynamics (cf. Fig. 5).

Related other work includes [8] on the application of compressed sensing
techniques to scene reconstruction in computer vision from multiple perspective
views. The transformations are naturally restricted to low-dimensional Euclid-
ean and affine transforms, and the recovery problem amounts to alternatingly
minimizing a non-convex objective function. Our approach can deal with a sig-
nificantly larger class of transformations and solve the joint problem of recon-
struction and transformation estimation globally optimal by linear programming.

Our ‘discretize-then-optimize’ strategy adopted in this paper relates our
recovery problem to discrete optimal transport [12]. The authors of [2] study
regularized discrete optimal transport in connection with color transfer between
natural images, where regularization enforces spatially smooth displacements. In
this paper, we establish uniqueness of both recovery and displacements between
particles solely based on a large subclass of one-to-one grid transformations, that
includes also non-smooth displacement fields encountered in various applications.
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A continuous variational approach based on optimal transport to object
recovery from multiple tomographic measurements is studied in [1]. The numer-
ical implementation of the approach seems to suffer from severe issues of numer-
ical sensitivity and stability, and has only be applied to solid bodies of simple
shapes. Related very interesting work, with a focus on dynamic tomography in
experimental fluid dynamics, was published recently [9,10]. The authors adopt
too a continuous PDE-based approach (iteratively linearized Monge-Ampère
equation) which may lead to a more economical problem parametrization and
enables, in particular, to take into account physical fluid flow models. On the
other hand, a performance analysis is only provided for simple 1D settings or a
single particle in 2D, and additional rectifying filters are needed if the approach
is not discretized on a sufficiently fine grid.

Outside the field of mathematics, highly engineered state-of-the-art
approaches to particle matching and tomographic recovery in experimental fluid
dynamics, that require parameter tuning and do not provide any recovery guar-
antees, include [5,6,11].

2 Sparse Recovery Guarantees

In this section, we address objectives 1 and 2 as discussed in Sect. 1 and analyze
sparse recovery of the vector x by compressed motion sensing. We adopt the
scenario of [7].

Fig. 2. Left: Imaging geometry with d2 cells and 2d projection rays (here: d = 6) for
problems of spatial dimension D = 2. Right: Imaging geometry with d3 cells and 3d2

rays (here: d = 7) for problems of spatial dimension D = 3. The corresponding sensor
matrices A are given by (7).

We consider both dim = 2 and dim = 3 spatial dimensions. Figure 2 depicts
the incidence geometry of the sensor A in terms of orthogonal projection rays
The corresponding sensor matrices A are

A =
(
1⊤
d ⊗ Id

Id ⊗ 1⊤
d

)
if dim = 2, A =

⎛

⎝
1⊤
d ⊗ Id ⊗ Id

Id ⊗ 1⊤
d ⊗ Id

Id ⊗ Id ⊗ 1⊤
d

⎞

⎠ if dim = 3, (7)

where the number d of pixels or voxels along each coordinate direction serves as
discretization parameter.
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We assume that

x ∈ Xn
s :=

{
z ∈ {0, 1}n : |supp(z)| = s

}
(8)

is a uniformly drawn s-sparse vector and P ∈ Πn is a uniformly drawn permu-
tation matrix. We next provide a sufficient condition in terms of sparsity s for
unique recovery of x ∈ Xn

s via

min
z∈Rn

∥z∥1 subject to
(

A
AP

)
z =

(
Ax
APx

)
, z ≥ 0. (9)

Since the columns of B = ( A
AP ) in (6) sum up to a constant the nonnegative

constraints in (9) are self-regularizing.

Remark 1. Indeed, all elements z that satisfy Bz = Bx have equal ℓ1-norm

∥z∥1 = 1⊤
n z =

1
2dim

1⊤
2mBz =

1
2dim

1⊤
2mBx = const.

Thus, in our setting, enforcing sparsity by ℓ1-regularization (4) would be redun-
dant. For sparse recovery we just need to take nonnegativity into account.

We next provide an average case analysis that guarantees unique recovery
of a uniformly distributed random vector x ∈ Xn

s as the unique nonnegative of
Bz = Bx. We closely follow [7] wherein the provided guarantees rest upon the
following observation: A sparse vector x ∈ Xn

s will lead to a sparse measurement
vector b := Ax. The support of b, denoted by

Is := supp(b) = supp(Ax), x ∈ Xn
s (10)

is a random variable due to uniformly drawn random vectors x and the incidence
geometry encoded by A. We denote its expected value by

ms := E
[
|Is|

]
≤ m. (11)

After removing the m − |Is| redundant rows from A, corresponding to zero-
components of b, we may also remove every column corresponding to cells (pixels,
voxels) that are met by any ray corresponding to a removed row. We denote the
index set of the remaining columns by

Js := [n] \ {j ∈ [n] : Aij > 0, ∀i ∈ [m] \ Is}. (12)

The resulting “effective” number |Js| of columns is a random variable with
expected value denoted by

ns := E
[
|Js|

]
. (13)

For highly sparse scenarios with a very small sparsity s, every non-zero compo-
nent of x creates multiple non-zero entries in b, because every cell (pixel, voxel)
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intersects with multiple projection rays. As a consequence, the ratio ms
ns

is larger
than 1. This ratio decreases with increasing s and in particular defines a critical
maximal value

scrit := min
{
s ∈ [n] : ms/ns ≥ 1

}
. (14)

In [7], the authors computed the expected values ms and ns which enables
to solve numerically (14) for scrit. In addition, concentration inequalities were
established that bound deviations of |Is|, |Js| from their expected values ms, ns.
In this work, we confine ourselves to computing ms and ns for the compressed
motion sensor (6) and apply the previous considerations to the system Bx = b,
with b := Bx and x ∈ Xn

s .

Lemma 1. Let X ∈ Xn
s and P ∈ Πn be independent and uniformly distributed

random variables of s-sparse vectors x ∈ Xn
s and permutation matrices P ∈ Πn.

Then Y = PX ∈ Xn
s is also uniformly distributed.

Proof. Let x, y ∈ Xn
s be any realizations. Then there are s!(n − s)! permuta-

tions P mapping xS to yS : y = Px. Denote this set by Πn(x; y) and count
combinations of its elements with possible x from Xn

s . ⊓,

Proposition 1. Let the effective number of rows and columns of the sensor
matrix (6) be indexed by

Is := supp(Bx), x ∈ Xn
s |Is| ∈ [2m], (15a)

Js := [n] \ {j ∈ [n] : Bij > 0, ∀i ∈ [2m] \ Is}, |Js| ∈ [n]. (15b)

Assume the s-sparse vector x ∈ Xn
s is uniformly drawn. Then

ms = E
[
|Is|

]
= 2dim · ddim−1

(
1 −

(
1 − 1

ddim−1

)s)
, (16a)

ns = E
[
|Js|

]
= ddim

(
1 +

2dim∑

k=1

(−1)k
(
2dim
k

) (
1 − k(d − 1) + 1

ddim

)s
)
. (16b)

Proof. The proof basically generalizes the reasoning of [7, Lemma 5.1, Proposi-
tion 5.3] to the CMS matrix (6). Due to lack of space, we skip the details.

⊓,

As a result, the reconstruction of a random s-sparse nonnegative vector x will
be based on a reduced linear system restricted to the rows Is and the columns
Js. Dimensions of reduced systems will be the same for most random sets S =
supp(x) ⊂ Js with |S| = s. Consequently, a sufficient condition that guarantees
unique recovery of x ∈ Xs via

find z ≥ 0 subject to Bz = Bx, (17)

is that the coefficient matrices BIs,Js of the reduced systems are of full rank and
overdetermined. BIs,Js is on average overdetermined if the sparsity s is chosen
according to (14), where scrit solves

ms = ns, (18)
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with ms, ns defined in (16a) and (16b). Solving (18) for scrit results in a curve
that depends on the problem size d only, and is illustrated in Fig. 3a. To deter-
mine this curve we used a standard numerical root finding algorithm in order to
compute the corresponding solution of (18) for each d in the plotted range.

Concerning the second issue, the full rank of BIs,Js , we can resort to small
random perturbations of the non-zero entries of A in (7), and thus preserving the
sparse structure that encodes the underlying incidence relation of the sensor B.
As a consequence the dimension of the reduced systems of a perturbed system
does not change.

0 10 20 30 40 50 60 70 80 90 100
0

1
10

1
5

3
10

2
5

d

CMS sensor B
conventional sensor A

(a) Critical sparsities scrit
n

100 101 102 103 104
100

100.5

101

d

(b) CMS sparsity performance gain

Fig. 3. Critical sparsity values scrit
n that enable with high probability unique recovery

of s-sparse nonnegative vectors whenever s ≤ scrit, using sensor (7) for dim = 3 and

the corresponding CMS sensor B in (a). Plot (b) shows the factor
sAcrit
scrit

between the

two functions in (a), that is the theoretical sparsity performance gain of CMS.
This curve reaches a minimum of 3.4 and becomes larger than 17 for d ≥ 104

The perturbed matrix Ã is computed by uniformly perturbing the non-zero
entries Aij > 0 to obtain Ãij ∈ [Aij−ε, Aij+ε], and by normalizing subsequently
all column vectors of Ã such that they all sum up to a constant e.g. equal to dim.
We then define the “perturbed” CMS sensor as the CMS sensor (6) corresponding
to Ã, i.e.

B̃ :=
(

Ã
ÃP

)
∈ R2m×n. (19)

We next give a sufficient condition that guarantees uniqueness of a nonnegative
and sparse enough vector sampled by a CMS sensor of the form (19).

Proposition 2. There exists a perturbed matrix Ã that has the same structure
as A from (7) such that the perturbed system B̃z = B̃x, with B̃ defined as in
(19), admits unique recovery of s-sparse nonnegative vectors x ∈ Xs with high
probability, i.e. the set

{z ∈ Rn : B̃z = B̃x, z ≥ 0} (20)
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is a singleton with high probability, if s satisfies condition s ≤ scrit, where scrit
solves (18).

Proof. Analogously to [7, Proposition 5.10].

3 Joint Reconstruction and Motion Estimation

Displacement Estimation. We consider first the problem of determining the
displacement mapping P ∈ Πn(x; y) from a known x ∈ Xn

s to a known y ∈
Xn

s (the joint problem is addressed below). Recall the particle imaging setup
illustrated in Fig. 2: Every component xi, yi ∈ {0, 1}, i ∈ [n] indicates the absence
or presence of a particle in a cell. We assume that the n cells have an arbitrarily
fixed order and define the two support sets

Sx := supp(x), Sy := supp(y). (21)

The displacement corresponds to s moving particles and becomes an one-to-one
assignment between the s cells in Sx and Sy. We associate with the assignment
of j ∈ Sx to i ∈ Sy the cost Cij . Then the linear assignment problem reads

min
P∈Pn

tr(C⊤P ) subject to Px = y, P⊤x = y, P ≥ 0, (22)

where Pn := {P ∈ Rn×n
+ : P1 = 1, P⊤1 = 1} is the Birkhoff polytop. This linear

program is also a special case of the Kantorovich formulation of the discrete
optimal transport problem [12]. C ∈ Rn×n

+ is the cost matrix related to the
“energy” needed to move particles in x to y. It can be chosen based on physical
prior knowledge about the scenario at hand – see Sect. 4.
Solving the Joint Problem.We now address the problem of jointly estimating
x, y and the displacement between x and y in terms of P ∈ Πn(x; y) restricted
to the supports (21). We define the assignment matrix D ∈ {0, 1}n×n as

DSy,Sx := PSy,Sx ∈ Πs and DSc
y,S

c
x
:= 0. (23)

Our approach is based on merging the CMS problem (4) with the linear
assignment problem (22) into a single optimization problem, which reads

min
x,y,P

tr
(
C⊤P

)
subject to Ax = bx, Ay = by, x, y ≥ 0,

Px = y, P⊤y = x, P ≥ 0.
(24)

Note that problem (24) is block biconvex : for each fixed (x, y) problem (24) is
convex w.r.t. P , and it is also convex w.r.t. (x, y) for any fixed P . Rather than
considering a block coordinate descent approach that sequentially updates the
two blocks of variables (x, y) and P via proximal minimization, see e.g. [13],
we replace the non-convex constraints Px = y, P⊤y = x and solve instead the
linear program

min
x,y,D

tr
(
C⊤D

)
subject to Ax = bx, Ay = by, x, y ≥ 0,

D1 = y,D⊤1 = x,D ≥ 0.
(25)
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Proposition 3. Assume that x, y ∈ Xn
s and P ∈ Πn(x; y). Set Sx = supp(x),

Sy = supp(y). Consider D from (23). If (x, y,D) is a solution of (24), then
(x, y,D) is also a solution of (25). Likewise, a solution (x, y,D) of (25) is also
a solution of (24).

Proof. We have Dx = DSxxSx = D1 = y, D⊤y = D⊤
Sy
ySy = D⊤1 = x and

hence (x, y,D) is feasible for both (24) and (25). ⊓,

Hence, the optimal assignment D between x, y ∈ Xn
s is a sparse matrix with s

nonzero entries, that equals a permutation matrix when restricted to the support
of x and y.

Corollary 1. Consider x ∈ Xs that is mapped to y = Px via P ∈ Πn(x; y).
Then there exists a perturbation Ã of A from (7) and a cost matrix C ∈ Rn×n

+

such that we can exactly recover x and y and the assignment matrix D ∈
{0, 1}n×n from (23) with y = Dx and DSy,Sx := PSy,Sx ∈ Πs with high probabil-
ity by solving problem (25), specialized to

min
u,v,D

tr
(
C⊤D

)
subject to Ãu = Ãx, Ãv = Ãy, u, v ≥ 0,

D1 = y,D⊤1 = x,D ≥ 0,
(26)

provided that s ≤ scrit, with scrit solving (18).

Proof. By Proposition 2 there exists Ã such that x ∈ Xs is the unique nonnega-
tive solution of

B̃u =
(

Ã
ÃP

)
u =

(
Ã
ÃP

)
x =

(
Ãx
Ãy

)
. (27)

By Proposition 3 (x, y,D) with DSy,Sx = PSy,Sx ∈ Πs and DSc
y,S

c
x
:= 0 is a

(vertex) solution of (26) for an appropriate C ∈ Rn×n
+ .

The next section shows that in practice a perturbation of A is not necessary.

4 Experiments

In this section we empirically validate the previous theoretical results and illus-
trate the performance of the CMS approach in practice. We are concerned with
the following issues:

(1) the exact recovery of sparse vectors x ∈ Xs by linear programming (17)
when the CMS sensor B combines a poor tomographic sensor A (7) with a
random permutation;

(2) the assignment matrix D from (23) in terms of the permutation matrix
P ∈ Πn(x; y) can be jointly determined as well, together with x and y, by
linear programming (25).
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Exact Recovery of Sparse Vectors. We assess the sufficient sparsity scrit
(14) derived via Proposition 1 that induces overdetermined reduced systems and
guarantees unique nonnegative recovery via a perturbation of CMS, see Proposi-
tion 2. Here we consider a CMS sensor B (6) that incorporates the unperturbed
tomographic sensor A (7). Numerical experiments show that no perturbation of
A is necessary in practice. We consider the particle recovery problem in three
dimensions (dim = 3). For a fixed d, we vary the sparsity s in order to determine
empirically the critical sparsity that guarantees unique recovery of s-sparse vec-
tors sampled by B via (17). For each d and s, we generate a permutation matrix
P uniformly at random as part of the CMS sensor B and a random binary signal
x ∈ Xn

s with uniform support. Form b = Bx we recover x̂ by solving the LP
(17). If the recovery error ∥x − x̂∥2 < 10−8, we declare recovery successful. We
repeat this experiment 200 times and count the success ratio, plotted in Fig. 4.

0 10 20 30 40 50 60 70 80 90 100
0

1
10

1
5

3
10

2
5

d

s
n

experiments
theoretical bound

Fig. 4. Experimental validation of the derived recovery guarantee from Proposition 1
for dim = 3. The empirical relative sparsity s

n (black dots) that separates recovery
from nonrecovery together with the sufficient theoretical sparsity bound scrit (14) for
comparison. We note that perturbation of A in view of Proposition 2 was not necessary,
but critical when using only the static sensor A according to [7].

Joint Recovery and Motion Estimation. The minimal example shown in
Fig. 1 already illustrates the potential of CMS. More realistic scenarios are shown
in Fig. 5 using a cost matrix filled with Euclidean distances between grid nodes.
The underlying motion was generated by discretizing a turbulent random vector
field to grid positions in order to be captured by a permutation.

The critical role of the cost matrix via (25) is illustrated in Fig. 6. We generate
a vector field y ∈ R3 from x ∈ R3 by

y =

⎛

⎝
cos(α) sin(α) 0

− sin(α) cos(α) 0
0 0 1

⎞

⎠x+

⎛

⎝
0
0
vz

⎞

⎠ (28)

with α = rad(5vz). This represents a rotation around and a constant shift along
the z-axis. vz ∈ N is the vertical velocity on a voxel basis. In addition to an
Euclidean cost matrix, we define a cost matrix that penalizes particles that do
not move along their orbit around the z-axis, i.e.

Ci,j = min
z

{
∥z − wj∥22 :

∥∥∥∥

(
z1
z2

)∥∥∥∥ =
∥∥∥∥

(
wi,1

wi,2

)∥∥∥∥

}
(29)
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(a) CMS recovery of 80 particles on a
256 × 256 grid.

(b) CMS recovery of 500 particles on a
256 × 256 × 256 grid.

Fig. 5. Exact CMS recovery of particles (blue and red dots) and the assignment (black
arrows) via (25). The true motion is shown as gray arrows. (a) Sensor A from (7) is
complemented with two more projections at 45 and 135◦ to define CMS. In (b) the 3
projection sensor A from (7) is used. (Color figure online)

x
y

z

(a) underlying motion

x

y

(c) vz = 2, α = 10, Eucl. C

x

y

(e) vz = 18, α = 90, Orb. C

x
y

z

(b) vz = 2, α = 10, Eucl. C

x

y

(d) vz = 4, α = 20, Eucl. C

x
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z

(f) vz = 18, α = 90, Orb. C

Fig. 6. Vortex motion (28) in a 257×257×257 volume with additional vertical shift vz
(a) and recovered assignments by CMS (b)–(f). Recovery of particles and assignment
is exact when the cost matrix C is Euclidean, if displacements are small, i.e. vz = 2
and α = 10 (b), (c). After increasing both, recovery with an Euclidean C fails (d), but
CMS is still capable of recovering the correct motion by using a different cost matrix
(29) called Orbit C here. Even for comparably large displacements the CMS recovery
is perfect (e), (f).
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with voxel locations wi ∈ Z3. The result for 200 moving particles according to
(28) and different values of velocity vz are shown in Fig. 6. Using (29) perfect
motion recovery is possible even for large displacements. This shows the flexibil-
ity of our framework in incorporating motion priors.

5 Conclusion

We introduced “Compressed Motion Sensing”, a novel framework the exploits
sparsity for recovery within dynamic scenarios. We gave theoretical recovery
guarantees and validated them experimentally. The approach can be flexibly
adapted to a broad range of applications that involve physical prior knowledge.
Besides signal reconstruction, motion is recovered too, by using in a cost-effective
way undersampled measurements of a single sensor at multiple points in time.
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