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Abstract broad range of machine learning tasks including computer
vision and structure learning (e.gPoon and Domingos
(2012); Gens and DomingoR012; Rooshenas and Lowd
(2019; Cheng et al(2014; Amer and Todorovic(2015).

Sum-Product Networks (SPNs) are a recent class
of probabilistic models which encode very large
mixtures compactly by exploiting efficient reuse

of computation in inference. Crucially, in SPNs We now describe a key observation that motivates the work
the cost of inference scales linearly with the num- in this paper. Given a set of continuous or discrete vari-
ber of edgest but the encoded mixture sizé able X, it is well known that a SPN (X)) with E edges
can beexponentially largethanE. In this paper represents a mixture model in the folm<_, A.P. (X),

we obtain arefficient(O(£)) implementation of where the mixture siz€' can beexponentially largethan
Expectation Maximization (EM) for SPNs which E. The mixturecoefficients\, are obtained, roughly speak-

is the first to include EM updates both on mix- ing, by taking products of a subset of SPN weights, and the
ture coefficientgcorresponding to SPN weights) mixture components,.(X) are factorizations obtained as
and mixturecomponentgcorresponding to SPN products of distributions at the SPN leaves (see e.g. fig.
leaves). In particular, the update omixture com- 1). It seems naive to express the SPN as this large mix-
ponentdranslates to a weighted maximum like- ture, since it is intractably large. However, we note that
lihood problem on leaf distributions, and can be Maximume-Likelihood problems arenuch simplerin this
solved exactly when leaves are in teeponen- representation than in the SPN form. For instance, the log
tial family. This opens new application areas likelihood of the mixture ¥, In >~ A Pe(z,)) is convex

for SPNs, such as learning large mixtures of tree  if optimized with respect to coefficients. only - the part
graphical models. We validate the algorithm on  determined by the SPN weights. Furthermore, one could
a synthetic but non trivial “soft-parity” distribu- apply Expectation Maximization - the method of choice
tion with 2" modes encoded by a SPN with only for models with hidden variable®empster et al(1977)
O(n) edges. - to trainjointly the weights (determining coefficients)

and parameters at theaveqdetermining component’.),

which are typically not trained in SPN learning methods.

1. Introduction . _
The reason that prevents to apply mixture learning meth-

Sum-Product Networks (SPNs,Poon and Domingos ods to SPNs is then thimtractable mixture size Tra-
(2011) are a class of probabilistic models which represenditional methods for learning SPNs typically ignore
distributions through a Directed Acyclic Graph (DAG) the mixture representation and find maximum likeli-
with sum and products as internal nodes and tractableaood (ML) solutions directly over the SPN weights (see
probability distributions as leaves. The crucial prop@fty Gens and Domingo®012). The resulting optimization is
SPNs is that the cost of inference scales linearly with theneavily non linear and typically suffers from vanishing up-
number of edge#’ in the DAG, and therefore inference is dates in deeper nodes, which leads to use in practice vari-
always tractable - in contrast to graphical models where inants of ML that are justified mostly by empirical results.
ference can be intractable even for relatively small graph&ery recently, methods exploiting the mixture representa-
with cycles. Thanks to their flexibility and the ability to tion have been proposed, but a complete derivation of EM
control the cost of inference, SPNs found practical use in dor SPNs including updates in the mixture components has
been not derived so faP€harz2019; Zhao and Poupart
(2016). We face then the following problem: is it possible


http://arxiv.org/abs/1604.07243v1

Expectation Maximization for Sum-Product Networks as Expamential Family Mixture Models

to apply EM for mixture models to SPNs without explicitly
expanding the encoded mixture?

Contribution. We obtain this goal by formalizing the re-
lations between the SPN and its encoded mixture, and de-
riving a new result relating the mixture model to its repre-
sentation as SPN in Lemnfa The new theoretical results
are then applied to implement efficiently Expectation Max-
imization over the mixture encoded by the SPN. This re-
sults in an efficient@(E)) method for learning SPNs that

is the first, to our knowledge, which: 3(x0) 3(x00) Blxpl) B(x1)

1. Corresponds exactly to the widely used EM algo-
rithm for mixture models: previous work used approx-
imations thereof, as ifPoon and Domingo$2017),
or do not update mixtureomponentdut only the s e,
mixturecoefficientgPehar2015; Zhao and Poupart S(x1) 8(x-0) (X T)8(x0) DX 1)B(x.0) B(xA1) 8(x.,0) 3% 1) BL,,0)
(2019).

o Figure 1.Parity distribution fromPoon and Domingog2011).

2. Does not suffer from the problem of vanishing up- top: SPN representing the uniform distribution over stafdive

dates at deep nodes, and therefore it does not neefriables containing an even number 3. Bottom: mixture
to employ variants of ML that work well in prac- model for the same distribution.

tice but have mostly an empirical justification (see
Gens and DomingaR012).

3. Allows to train distributions at the SPN leaves in the gi>/i@
form of aweighted maximum likelihogaroblem. So- A é —
lutions can often be found efficiently anddiose form / PN @ }Br?/ /O\
when leaves belong to tlexponential family for in- \ L ) I\ ,ﬁ, /]
stance, for multivariate Gaussian and tree graphical \\»/ S L \\,l\\v//
models leaves with arbitrary structure (fR). Ve \ / ﬁ‘)\

¢ ~\Q /

m— (S)(43)
Our algorithm can be easily adapted for iterative and paral- \ ® / \“ //
lel computation and can be extended efficiently to the case - S
of shared weights used in SPNs with convolutional archi-
tecture (e.g.Cheng et al(2014). We provide an analy- Figure 2.A SPN with tree graphica_ll models as leaves. The SPN
sis of learning with EM compared to traditional methodsw,e'ghtsand th&.structurgandpoter!tlal.sof the trees can be learnt
in a synthetic but non trivial test case, whose results indiJO'ntIy and efficiently with our derivation of EM.
cate that EM is comparable to existing SPN learning meth-
ods when only Weighf[ updat_es are used, and superior wh?_ Sum-Product Networks
updates of the leaf distribution parameters are introduce
The ability to learn efficiently complex distributions aeth We start with the definition of SPN based on
leaves which was not available until now allows for new ap-Gens and Domingo$2013. Consider a set of vari-
plications of SPNs that should be explored in future appliedablesX (continuous or discrete).
work, such as learning very large mixtures of tree graphical, .. ... i
models with EM (see fi@). Finally, our theoretical analy- beflmtlon 1. Sum-Product Network (SPN) :
sis and Lemm& contributes to expand on the relationship
between SPNs and encoded mixture models, adding to thel. A tractable distributiop(X) is a SPNS(X).
toolbox of theoretical results on SPNs.

2. The producf [, Si(X)) of SPNsS,(X}) is a SPN
Structure of the Paper. In Section2 we introduce SPNs S (U, Xk) if the setsX, are disjoint for eacl.
and the related notation. In Secti8mwe analyze the rela-
tionship between SPNs and the encoded mixture model. In 3. The weighted surh_, w;S,(X) of SPNsS,(X) is a
Section4 we derive Expectation Maximization for SPNs. SPNS(X) if the weightswy, are nonnegative (notice
In Section5 we discuss results on an example application. thatX is in common for each SPNy).
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By associating a node to each product, sum and tractablhe evaluation of (x) also computes the quantiti®s (z)
distribution and adding edges between an operator anfbr eachnodegq in S (which is a SPNS, by def. 1) as an
its inputs a SPN can be represented as a rooted Directédtermediate step of the sing(@ (E) pass. The partition
Acyclic Graph (DAG) with sums and products as internal function can be also computed with cé3{ E).

nodes and tractable distributions as leaves. This definitio

generalizes the SPN with indicator variables presented i@. SPNs as Large Mixture Models

Poon and Domingo&011), since indicator variables are a

special case of distribution in the form of a Dirac delta cen-It is well known that any SPN can be transformed into

tered on a particular state of the variable, &.¢z, 0) (fig.
2). A SPN isnormalizedif weights of outgoing edges of
sum nodes sum td: >, w, = 1. A SPN can be chosen
normalized without loss of generality (sBeharz2015).

an equivalent SPN made of only two layers which cor-
responds to a mixture model as in fig.1 (see e.g.
Poon and Domingo&011). This interpretation was for-
malized inDennis and Ventur§2015. We report it here,
slightly changing the notation to accommodate for our fur-

Notation. We use the following notation throughout the ther needs.
paper.X denotes a set of variables (continuous or discretePefinition 2. A complete subnetwork (subnetwoitr
andx an assignment of these variables. We consider a SPHrevity) 0. of S is a SPN constructed by first including the

S(X). S, (X,) denotes the sub-SPN rooted at ngdef

S, with X, € X. S (z) is the value ofS evaluated for
assignment (see below)y; (X;) denotes the distribution
atleaf nodd. In the DAG ofS, ch(q) andpa(q) denote the
children and parents af respectively. (¢, ) indicates an

edge between and its child:. If ¢ is a sum node this edge

is associated to a weight!, and for simplicity of notation

we associate outgoing edges of product nodes to a weight3.

1. Finally, € (S), £ (S) andN (S) denote respectively the
set of edges, leaves and sum nodeS.in

Parameters. S (X) is governed by two sets gfarame-
ters the set of sum node weight¥” (termsw; for each

root of S'in o, then processing each noglecluded ino,.
as follows:

1. If g is a sum node, include in. one childi € ch (q)
with relative weightw?. Process the included child.

2. If ¢ is a product node, include in. all the children
ch (q). Process the included children.

If ¢ is a leaf node, do nothing.

Example: fig. 3. The term “subnetwork” is taken
from Gens and Domingof012 that use the same con-
cept. It is easy to show that any subnetwdska tree
(Dennis and Ventur§2019) . Let us callC the number

sum node edge) and the set of leaf distribution paramete/d different subnetworksbtainable fromsS' for different

6. We write S (X |WW,0) to explicitly express this depen-

choices of included sum node children, and associate an

dency. Each leaf distributiop, is associated to a parameter Unique indexc & 1,2...,C to each possible subnetwork
setd; C 0, which are for instance the mean and covariance’1 92, - 0c. Poonand Domingog201]) noted that the
for Gaussian leaves, and the tree structure and potentiald!mber of subnetworks can kxponentially largerthan

for tree graphical model leaves (see sectds).

Evaluation. Assuming that the DAG ofS (X) has F

the number of edges i, e.g for the parity distribution
(fig. 1.
Definition 3. For a subnetwork, of S (X |V, §) we define

edges, then the following quantities can be evaluated wit Mixture coefficienk. and amixture component. (X|6):

a costO (F) Poon and Domingo&@011) :

1. S (x), which is computed by first evaluating the leaf

distributions with evidence set and then evaluating

sum and product nodes in inverse topological order.

AWy = J[  w! 3)
(g,5)€€(0c)

P(X10)= ][ @ (Xil6) 4)
leL(oe)

2. 25 " evaluated processing nodes in topological or-Note that the mixture coefficients are products of all the

a8

der (root to leaves) with the following recursive equa- SUM weights in a subnetwork., and mixture components

tion (total derivatives), noting thaf>“> = 1:

98 (z) > a8 (z) 08y, (z)
- 1)
P50 et O 05
95y (x) _ wk k sum node @)
95, [Liceniuyg Si (@) k prod.node

are factorizations obtained as products of leaves.i(see
fig. 3). Note also that mixture coefficients are only deter-
mined by} and mixture components only I8y

Proposition 4. A SPN.S encodes the following mixture
model:
c

c=1

(®)
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Figure 3.A SPNS (A, B) in which a subnetwork. of S'is high-
lighted. This subnetwork corresponds to a mixture coefiicie
e = wiwg and componen®, (A, B) = o7 (B) @y (A).

Ps Ps
Figure 4.Visualization of Lemm. Left: a subnetwork . cross-

ing (¢,4). Right: The colored part is the set of edges traversed by
all subnetworks crossingy, 7). The blue part represents and

the red part covers terms appearin f ),

whereC denotes the number of different subnetworksS,in
and \., P. are mixture coefficients and components as in
eg.3and4.

Proof: seeDennis and Venturgd2015. As mentioned,
the same result has been derived independently id. Expectation Maximization
Zhao and PoupafR016. Notice that the size (humber of
components) of the encoded mixture(isand therefore a
direct evaluation of the mixture has ca3{C), while the
evaluation ofS has costO(F). SinceC > E, it fol-

Expectation Maximization is an elegant and widely used
method for finding maximum likelihood solutions for
models with latent variables (see e.gMurphy (2012

. .. . - C
lows that a SPN encodes a mixture model which can be int1-4))- Given a distributior?(X) = 3. _, P (X, c|r)
where ¢ are latent variables and are the distribu-

tractably large if explicitly represented. This gap is c
yarg PICTY TP gap s ka tion parameters our objective is to maximize the log

what makes SPNs more expressive than “shallow” repre:- "~ N c
sentations as mixture models. One must note, though, thgtel'hooq 2=y Plag, c[m) over a dataset of
servations{zy, s, ...,2x}. EM proceeds by up-

not every mixture in the forr?zccz1 AP.(X|0) can be rep- g , h X vel ing f
resented by a SPN witi subnetworks, since terms and ating the parameters iteratively starting from some

P. must respect the factorizations e¢jand4 imposed by ~ nitial _cor?fig_uraticin Toid-  An update step con-
the SPN DAG. sists in finding 7* = argmax, Q (7|mea), Where

. N Qo) = Xy Xl P (cln, Tota) In P (c, 2| m).
We now introduce a new Lemmathatis crucial to derive oufwe want to apply EM to the mixture encoded by a
results, reporting it here rather than in the proofs sectionspN which is in principle intractably large.  First,
since it contributes to the set of analytical tools for SPNs. ysing the relation between SPN and encoded mixture

Lemma 5. Consider a SPN§(X), asum nodg € Sand model in Proposition4 we identify P(c,z,[r) =
anodei € ch(q). The following relation holds: Ae (W) Pe(20|0), P(wn|mora) = S (2n|Wold, Oo1a), and
therefore P(c|ay, mord) = P(¢, zn|Toid)/P(xn|mord) =
95 (X) Ae Wota) Pe (n|boia) /S (2n[Woia, bora). Applying these
. q . C (0] C n (0] n (o} 3 YO
_Z AP (X) = wj 5, Si(X) (8 substitutions and dropping the dependencyVBi, 0,14
ki(g,9) €€ (on) for compactness) (W, 0|W 4, 0014) becomes:

where} ;. iee(o,) denotes the sum over all the subnet-
worksoy, of S that include the edgégy, ).

N C
AC—PC n
Proof: in AppendixA.1. This Lemma relates the sub- Q (W,0) => > %x))ln Ae (W) P, (z,]0) (7)
set of the mixture model corresponding to subnetwetks n=1c=1 n

that cross(q, ) and the value and derivative of the SPN

nodesy and:. Note that evaluating the left-hand sum has a, e following sections we will efficiently solve the max-
costO (C) (intractable) but the right-hand term has a COStimization ofQ (W, 6) for W and.

O (F) (tractable). Since in the derivation of EM one needs ’

to evaluate such Sl_Jbset_s of solgtlon, _thls Lemma allow_s t(ﬁ.l. Weights Update

compute the quantity of interest in a single SPN evaluation.
Note al_so thaEk:(q,i)GS(ak)_/\kPk (X) cor.res.ponds to the Simp_lifying Q (W,0) through th_e use of Lemm§ (Ap-_
evaluation of a non-normalized SPN which is a subsét of pendixA.2), one needs to maximize the following objec-
- e.g. the colored part in figl, right. tive function:
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Discussion. From the mixture point of view, the weight
. _ update corresponds to the EM update for the mixture coef-
= 8 e :
W argmax Qw (W) (8) ficients). in eq.5. In both the shared and non shared cases,
Qw (W) = B4 Inw! 9 the EM weight update does not suffer from vanishing up-
w (W) Z Z ®) dates even in deep nodes thanks to the normalization term,
N a problem that prevented the use of direct likelihood max-
q_ ,q -1 98 () . imization in classic SPN training methods SPNs with deep
Bi = w; yq Z ST (@) —5 g Si (zn) : . )
Bt 0S5, DAGs (seeGens and Domingog012). Notice that this
_ . ) is a weight update procedure, and therefore it is similar to
The evaluation of terms3/, which depend only on gyisting learning algorithms for SPNs which typically trai
Woua, 0014 @nd are therefore constants in the optimization,opy weights. Furthermore, this has no hyperparameters
is the E stepof the EMangorlthm. We now maximize iy contrast to classic SPN learning methods. Finally, we
Qw (W) subject toy_, wi = 1Vg € N (5) (M step. note that the same EM update fuon-shared weights only
] ) ] was derived with radically different approachesHaharz
Non shared_ ngghts. Supposing that weights at each (2019; Zhao and Poupa(201§. Our approach however
nodeq are disjoint parameters, then we can moveith&  completes the derivation of EM by updating mixture com-
inside the sum, obtaining separated maximizations eacHonents, as described below, and extends efficiently to the

in the form arg maxuwae > ;e o (g B logw;, wherew? is  ase of shared weights.
the set of weights of edges outgoing fram Now, the

same maximum is attained multiplying by the constan
k= ﬁ Then, defining?! = k3! , we can equivalently _ _ _ _
find arg max,,« Ziech(q) 37 logw!, where! is positive From the mixture point of view, the_ weight up_dgte corre-
and sums td and therefore can be interpreted as a discret§PONds to the EM update for the mixture coefficieftsn

distribution. This is then the maximum of the cross entropy€d- 5. Simplifying @ (W, 6) through the use of Lemm

Arg MaXea (—H (-iq’wlq)) defined e.g. iMurphy (2012 (AppendixA.3), the optimization problem reduces to:

2.8.2). The maximum is attained fof! = 3¢, which cor-
responds to the following update:

geN(S) i€ch(q)

.2, Leaf Parameters Update

0* = arg max Qo (9) (12)
w* =B/ "Bl (10) N
i Qo (0) = Z Z o Ingy (x,10)) (13)
leL(s) n=1
Shared weights. In some SPN applications it is neces- L) oY
sary to share weights between different sum nodes, for in- ap, =S (xn)‘l L")Sl (1)
stance when a convolutional architecture is used (see e.g. 95,

Cheng et al(2014). To keep notation simple let us con- The evaluation of termsy;,,, which are constant coef-

sider only two nodes, g, with shared weights - the same o i the optimization since they depend only on

reasoning generalizes immediately to an arbitrary num-Wold’oold’ is the E stepof the EM algorithm and can be

ber of nodes. We suppose the nodes are constrained o, . S R
. . . i . ting the bilitythat leaf distribut
have identical weights, that is!* = w* for every child en as computing thesponsibilitythat leaf cistribution

. . . .4 assigns to thex-th data point, similarly to the respon-
. Calling w? the setq?fl shaz?d weights, weq2n1eed tq? f'ndsmllmes appearing in EM for classical mixture models.
jﬁg MaXoa leieqh(q)tﬁhi 08 Wy I't+ Ziéc{t(q) fi 08 Wy~ o IMportantly, we note that the maximizatids is concave

en, emg:oylng (5(21 iqgcg;%/ co(r115+ra|n ’ twivhrnga“ €as long asp; (X;|0) is concave, in which case there is an
argmaXwa ) icop(q) (Fi ;) logw; const,

g . unique global optimum
the constant includes terms not dependinguwoh We aue g P

now apply the same reasoning as for the non-shared Weiglﬂ}on shared parameters. To the best of our knowledge
case, multiplying by the normalization constaht = '

1 and noting that we end up maximizin all existing SPN applications use Ieafdistributiqns witimn
S icen(a (BITHBE) 9 P 9 shared parameters. Introducing the hypothesis that param-
the cross entropy-H (k (8" + 51*) ,w!). Then, general- etersy; are disjoint at each ledf we obtain separate maxi-
izing for an arbitrary set of node3; thatsharethe same mizations in the form:

weights ofg, the weight update for nodgis as follows:
N

6‘l* = arg Irb{?x Z o, In (2} (.anl) (14)

wi = > 8|/ > X s Ay n=l

25 €Qs i\4s€Qs This formulation can be recognized as the canonical form
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of aweighted maximum likelihogatoblem. Therefore, the General Graphical Models. If ¢; (X;) is a graphical
M step in the leaf updated translates irgtovell studied model (GM), eq. 14 reduces to the problem of fitting
problem where efficient solutions exist for several distri- the structureand parameters of a graphical model through
butions - we consider in particular solutions for exponen-weighted maximum likelihood. This is a well known re-
tial families and graphical models in sectiér8 butthelist  search field where results based on heuristics are available
of available methods goes well beyond the considered ondsr several different structures, although the global -opti
and therefore this step allows a great degrefteafbility in mum in close form is only available for trees - for instance
the choice of the leaf model, to be explored in future work.Srebro(2003 proposes a method to find locally optimal
structure and parameters for GMs with limited treewidth.

Shared parameters. If ¢, is shared in more than one leaf | N€ Problem simplifies if the optimization is done over
the solution cannot be found analytically since a sum oft1® model parameters keeping the GM structure fixed, al-

logarithms appears in the optimization. However, the obhough it remains NP hard (se&ainwright and Jordan

jective is still concave. Note that this case is not pregent i (2008,Murphy (2012 11.4.4) for a variety of methods).

any existing SPN application to the best of our knowledge.Remark: the idea of learning the str_ucture of tractable GMS

at the leaves has been exploited in the structure learning

4.3. Exponential Family Leaves algorithm ofRooshena_\s and Low@014), vyh|_ch however
does not use EM and is based on a heuristic search.

A crucial property of exponential families is that ed2

is concaveand therefore global optimuncan be reached 4.4, Complexity and Implementation

(see e.g.Murphy (2012 11.3.2)). Additionally, if the pa- o ,
rameters are not shared (e the solution is often avail- 1€ Pseudocode for the EM update step is given in algo-
able efficiently inclosed form Leaf distributions in the ithm 2. We consider the non-shared weight case for sim-

exponential family allow to have a wide degree of flexibil- PiCity (q. 10), but the algorithm can easily be adapted

ity and power in modeling SPNs. The ability to learn them O Sharéd weights using ed.1 Itis easy to see that the

with EM was not investigated in applications of SPNs un-"unning time isO (N £): In algorithm1, the quantities in
til now, and it should be matter of future applied work - a 'O 4 ¢an be computed in a singi@ (E) pass for all the
small example is provided in sectidh We will look in nodes in the network (see secti@p and what follows is

detail in the close form solution for some non-exhaustive? fOr 100p through each edge of the network. This is re-
cases of exponential family leaves. peated for every data point, and the algorithm can imme-

diately be executed in parallel for each data point. Mem-
o ) o ory requirement i$) (E) for 5 (one elemeng! per edge),

Multivariate Gaussian Distributions. Suppose that a andO (NE) for a, sincea, must be computed for each
leaf distributiony; (X;) is a multivariate Gaussian. In eaf nodel and samples. If IV is too large and this value
this case the solution is obtained asMurphy (2012 c43nnot be stored in memory it is often possible to further
11.4.2), and it is a simple adaptatljcv)n of ML Gauss'anoptimize the code in order to have a memory 0O$E)
fitting: r, = Zf:[:l Qp, W = Z"ﬂ% X = by usingiterative maximization procedureghenever they

are available for the particular kind of leaf distribution.
For instance, both the maximum likelihood Gaussian fit
and Chow-Liu algorithm discussed in sectiér3 are eas-
ily adapted to update the maximization iteratively for each

_ o _ data point, reducing the memory cost2¢F) (seeMurphy
Tree graphical models. If a leaf distributiony; (X;) is a (2012 11.4.2)Meila and Jordag2000).
tree graphical model over discrete variables, the soluifon

eq.14can be found by constructing the tree with the Chow-5_ Example Application

Liu algorithm Chow and Liu1968) adapted for weighted

likelihood (seeMeila and Jordar{200Q). The algorithm  The aim of this section is to test the performance of the EM
has a cost quadratic on the cardinalityXfand allows to  updates oV’ andf in a controlled setting. The weight up-
learnjointly the optimal tree structure and potentials. It candate onl¥ can be easily compared to classical SPN learn-
be extended to continuous variables and allows to add &g algorithms which train weightsgens and Domingos
regularizer term. The resulting SPN represents a very largé2012). The leaf parameter update @nis difficult to
mixture of tree graphical modglss in fig. 2. Mixture  compare since, at the best of our knowledge, leaf distri-
of trees are powerful architectures (déeila and Jordan butions were not learned until now in any application of
(2000) and exploring the capabilities of this very large Sum-Product Networks. An exception is structure learn-
mixtures trained with EM should be subject of future ap-ing for SPNs Rooshenas and Low@014), where leaves
plied work. however are not trained but constructed as Arithmetic Cir-

N T
anl“l"(m";“l)(””"_“l) . It is easy to add a regularizer
by adding a diagonal matrix t8;, equivalent to assuming
a prior distribution.
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Algorithm 1 ComputeAlphaAndBeta
g - P P Table 1.Log likelihood of test data for soft parity distributions of
Input: SPNS, parameter$lV, 0}, data{x1, ¥, ..., TN} increasing depth. EM¥, 0 and EM3V is our EM algorithm up-

setf{ = 0 for eachq € NV (S) andi € ch(q) datingWW, @ and onlyW respectively. SoftEM, HardEM, SoftGD
for eachx,, € {21, 29,...,25} dO and HardGD are described iG€ns and Domingg£012).
computesSy, (xn),agg”k") for each nodé € S
for each sum node € AV (S) do NVARS EM-W,0 EM-W SOFTGD SOFTEM HARDGD HARDEM
for eaCh nOde S Ch(q) dO 10 8.01 10.6 11.0 10.6 11.0 10.9
B B+ xwlS; (z,) %S’ ()" 20 ~161 211  —220 211 —221 ~216
q 40 —32.5 —43.4 —45.4 —43.5 —45.3 —44.7
end for 80 —66.0 857 -804  —85.9 -89.3 —88.2
end for
for each leaf nodé < £ (5) do
—1 95(zn)
o = S(n) 5550 (4n) . -
end ?or " o8 " ingly, when also the leaf update is introduced the resuéts ar
end for significantly better It remains to be seen if this translates

into real world applications of SPNs with complex leaves
learned with EM, which should be matter of future applied
Algorithm 2 EMstep work.

Input: SPNS, parameter§W, 0}, data{z;, 2, ...,xn}

[cr, B8] + ComputeAlphaAndBe(®, W, 0, {x1,...,xn}) 6. Conclusions

for each sum node € N (.S) do

wi B/ Y iceni Bl We presented the first derivation of Expectation Maxi-
end for mization (EM) for the very large mixture encoded by a
for each leaf nodée £ (S) do SPN which includes updates on both mixtaeefficients

0, < argmaxy, Zﬁf:l i In gy (2,]6;) and components The EM weight updatedoes not suffer
end for from vanishing updates and therefore can be applied with-

out approximations to deep SPNs, in contrast with stan-
dard SPN weight learning method&d€ns and Domingos
(2012). Theleaf distribution updatés new in SPN litera-
ture and allows to efficiently learn leaves exploiting expo-
nential family tools. This capability has never been used in
SPN applications at the best of our knowledge, and should
be focus of future applications such as learning very large
mixtures of tree graphical models with EM. A synthetic but
non trivial test case confirms the potential of this approach

cuits along with the SPN. Therefore, in order to test if learn
ing leaves is beneficial in Maximum Likelihood we intro-
duce a minimal but non trivial synthetic application cap-
turing the key properties of SPNs. While the focus of this
paper is theoretical and the application clearly limitda t
result show promise for real applications of the algorithm
in future work.

The example that we build is a continuous version of theA
parity distribution fromPoon and Domingo$201]) (fig- )
ure 1) which we call “soft parity”, where the deltas at the Preliminars. Consider some subnetwosk of S includ-
leaves are simply substituted with Gaussian distributionsng the edgédq, i) (fig. 4). Remembering that. is a tree,
with mean centered on the “on” state of each delta, andve divideo.. in three disjoint subgraphs: the edggi),
weights are not uniform but randomly assigned. This isihe tregr®(* corresponding to “descendants”ofand the
represented by a deep SPN wiftin) nodes and as many . h(e) a(q) i

layers as the number of variables, corresponding to a mix(€maining treer, 7. Notice thatg (c) could be the same
ture model with2” components and” modes. We cre- for two different subnetworks;andos, meaning thzzt the
ate a target soft parity SPN with random weights and cosubtrees?(?) is in common. Similarly, the SUbtr%Eg
variances, which is sampled to obtain a training and tesgould be in common between several subnetworks.

set. A randomly i.nitialize netv_vork is then t_rained to leam \ye now observe that the the coefficient and compo-
Fhese samples with several different allg_qut.hm_s. Comparﬁempc (egs. 3 and 4) factorize in terms corresponding
isons of res_ults averaged_ovlérrandom |n|t|al|zat|on_s and t0 6@ and tos®® as follows: Ao = wI N @) gy
for soft parity SPNs of different depth are shown in table ~ 9(¢) 4 pa )h(c) i) i "*h(c)"g(c)

1. Our limited empirical analysis agrees well with the ex- = = Py Py5, whereX, ) = H(mm)eﬁ(gdm) wy',
tensive one performed independentlyZtyao and Poupart  _q@i) "

(2016 on the EM weight update, which proved to be com-~ h(¢) — Hlea(a;’fﬁij)
petitive with standard SPN learning methods. Not surprisnotation, foreachsubnetworks.. including (g, ) we write:

Appendix - Proofs

) ¢ and similarly fora (¢). With this
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N the subtree o0&, rooted ini and the sum is taken over all
AP = w! (/\ Eng((c))) (/\h((lc))Ph((g) (15)  such subtrees. SeconESLEW )\;(q)pg‘l(q) = %S):) for
Lemma6. Substituting inl6 we get the result. O
Let us now consider the sum ovall the subnetworks.
of S that include(q, 7). The sum can be rewritten as two A.2. EM step onW

nested sums, the external one over all temfyfg) (red part,
fig. 4) and the internal one over all subneﬁé (blue part,
fig. 4). This is intuitively easy to grasp: we can think of
the sum over all trees,. as first keeping the subtreé@
fixed and varying all possible subtre@#i) below: (inner

Starting from eq.7 and collecting terms not depending on
W in a constant in view of the maximization, we obtain:

N C
sum), then iterating this for choice oﬁ(‘” (outer sum). _ Z Z AP (z ) In A, (W) + const
Exploiting the factorizatiod5we obtain the following for- n=1c=1 S (zn
mulation: RN P (o)
= — Inw? + const
Sy X muf+
Ca(q) Claiy n=Le= (g,3)€E (o)
ST AP =w! 3 A@pe@ §7 A0 pd)
ci(q,i)e€(oe) g=1 h=1

(16)  We now drop the constant and move Qu}, ;) ce(,.) PY
introducing a delta, ;) . which equald if (¢,i) € £ (o.)
WhereCd(z) andC,, denote the total number of different and0 otherwise and summing oveli edgest (S):

treeScf andcr 2@ jn 3.

Lemma 6. ag(s)q() _ Zg;(lq) /\Z(q)P;(q)'

o AP (0
=22 S(a:(:)) > e

Proof. First let us separate the sum in ecp in two n=1c=1 (9,i)€E(S)
sums, one over subnetworks includipgnd one over sub- /\ P (22)0
networks not including;: S(X) = >, c, APy + Z Z ZC 1 (n) O(g.i) c
H Ok )
> ador AP The second sum does not involvg, (q71)65(5)n 1 Tn)
so for aS(X) it becomes a constart. Then, S = DO )eg ) AP ()
. _ 9,1)€E(oc " q
> kigeon /\kPk + k. As in eq. 16, we divide the sum = ) Z ) Inw;
kgea, () iNtWo nested sums acting over disjoint terms: (@.)eE(s)
Ca(q) Ca(q) Applying LemmaStOZ (i) €€ (o) Aele (z,,) we get:
S = Z Aa a(q) Z AZ(Q)P}?(Q) Tk
h=1
o N ’U} 8S(I")S ( )
We now notice thap ;. * A/ pi? — g by Proposi- @ (W) = > > Lol Sas Inw!
tion 4, sinceA} (@ p@) refer to the subtree af.. rooted in (¢.6)€E(8) \n=1 (zn)
¢ and the sum is taken over all such subtrees. So we write:
Cata) A And defining 8 = wy 4 SN ST (@) %;:)Si (zn)
S = Z As@ pata) | g 4k we can writeQ (W) = 3= cn(s) 2icen(q) i mwi. O
g=1
A.3. EM step oné

Taking the partial derivative leads to the result. O

Starting from eq. 7, as in A2 we expandln P,
A.1. Proof of Lemmas ag a gum Ao}i ( Io)g;r:ithms and (ob|tai)n: QW) =
Ln In ; (z,]6;) + const. In-

. . n=1 c=1 S(z, leL(oc
We start by writing the sum on the left-hand side of éqg. troducings; .. Wh(ICh) equaTS(if l) € £ (0.) ando otherwise,

as in eq.16. Now, first we notice tha}_, *}’ /_\k( )Pl dropping the constant and performing the sdf. . s
equalsS; (X) by Propositiord, smce/\d(l)P,f(Z) referto  over all leaves ir5 we get:
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Robert Gens and Pedro Domingos. Learning the structure
of sum-product networks. IlCML (3), pages 873-880,

N ENPs (2 .
QO =23 T S il e ons | -
n=1c=1 leL(S) Marina Meila and Michael I. Jordan. Learning with mix-
N ZC— AP, () tures of treesJournal of Machine Learning Research
= C—}S,T In o (2,101) 01.c 1-48,20004.3 4.4
leL(S) n=1 "

Kevin P. Murphy.Machine Learning: A Probabilistic Per-
spective The MIT Press, 2012. ISBN 0262018020,

o i Zc:leﬁ(a’c) Al (l’n)

= In ¢, (xnwl)
= S (xn) 978026201802%,4.1,4.3 4.4
N Robert Peharz. Foundations of sum-product networks
= Zaln In oy (2,|60;) for probabilistic modeling. (phd thesis). Research-
leL(s)n=1 gate:273000972015.1, 1, 2,4.1
Where «y,, = S<xn)‘120.leg<g ) AcPe (z,). To com- Hoifung Poon and Pedro Domingos. Sum-product net-
pute oy, we notice that the termP, in this sum al- works: A new deep architecture. WAI 2011, Proceed-
ways contains a factop; (eq. 4), and ¢, = S, by ings of the Twenty-Seventh Conference on Uncertainty

in Artificial Intelligence, Barcelona, Spain, July 14-17,

def. 1. Then, writing oy = (erwc)\l ‘p’“) We ob- 5011 pages 337-346, 2011, 1,1, 2.2, 3,3, 5

tain: o, = S(z,) 'S . APy () ). Fi-
: () : (ZC'ZGL("“) ul )) Amirmohammad Rooshenas and Daniel Lowd. Learning

nally, sinceS = Zczzeqac) AL + 2okitg (o) M = sum-product networks with direct and indirect variable
813 ctec(o.) APt + k (wherek does not depend on interactions. In Tony Jebara and Eric P. Xing, editors,
S}), taking the derivative we ggsil = Zc:leﬁ(a ) AePai- Proceedings of the 31st International Conference on

Machine Learning (ICML-14)pages 710-718. JMLR
Workshop and Conference Proceedings, 20144.3
5

Substituting we gety, = S (z,,) " %jﬁsl (z,). O
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