
ar
X

iv
:1

60
4.

07
24

3v
1

 [c
s.

LG
]

25
 A

pr
 2

01
6

Expectation Maximization for Sum-Product Networks as
Exponential Family Mixture Models

Mattia Desana MATTIA .DESANA@IWR.UNI-HEIDELBERG.DE

Christoph Schnörr SCHNOERR@MATH .UNI-HEIDELBERG.DE

Heidelberg University, Institute of Applied Mathematics,Image and Pattern Analysis Group
Im Neuenheimer Feld 205 69120 Heidelberg

Abstract

Sum-Product Networks (SPNs) are a recent class
of probabilistic models which encode very large
mixtures compactly by exploiting efficient reuse
of computation in inference. Crucially, in SPNs
the cost of inference scales linearly with the num-
ber of edgesE but the encoded mixture sizeC
can beexponentially largerthanE. In this paper
we obtain anefficient(O(E)) implementation of
Expectation Maximization (EM) for SPNs which
is the first to include EM updates both on mix-
turecoefficients(corresponding to SPN weights)
and mixturecomponents(corresponding to SPN
leaves). In particular, the update onmixture com-
ponentstranslates to a weighted maximum like-
lihood problem on leaf distributions, and can be
solved exactly when leaves are in theexponen-
tial family. This opens new application areas
for SPNs, such as learning large mixtures of tree
graphical models. We validate the algorithm on
a synthetic but non trivial “soft-parity” distribu-
tion with 2n modes encoded by a SPN with only
O(n) edges.

1. Introduction

Sum-Product Networks (SPNs,Poon and Domingos
(2011)) are a class of probabilistic models which represent
distributions through a Directed Acyclic Graph (DAG)
with sum and products as internal nodes and tractable
probability distributions as leaves. The crucial propertyof
SPNs is that the cost of inference scales linearly with the
number of edgesE in the DAG, and therefore inference is
always tractable - in contrast to graphical models where in-
ference can be intractable even for relatively small graphs
with cycles. Thanks to their flexibility and the ability to
control the cost of inference, SPNs found practical use in a

broad range of machine learning tasks including computer
vision and structure learning (e.g.Poon and Domingos
(2011); Gens and Domingos(2012); Rooshenas and Lowd
(2014); Cheng et al.(2014); Amer and Todorovic.(2015)).

We now describe a key observation that motivates the work
in this paper. Given a set of continuous or discrete vari-
ableX , it is well known that a SPNS (X) with E edges
represents a mixture model in the form

∑C
c=1 λcPc (X),

where the mixture sizeC can beexponentially largerthan
E. The mixturecoefficientsλc are obtained, roughly speak-
ing, by taking products of a subset of SPN weights, and the
mixturecomponentsPc(X) are factorizations obtained as
products of distributions at the SPN leaves (see e.g. fig.
1). It seems naı̈ve to express the SPN as this large mix-
ture, since it is intractably large. However, we note that
Maximum-Likelihood problems aremuch simplerin this
representation than in the SPN form. For instance, the log
likelihood of the mixture (

∑

n ln
∑

c λcPc(xn)) is convex
if optimized with respect to coefficientsλc only - the part
determined by the SPN weights. Furthermore, one could
apply Expectation Maximization - the method of choice
for models with hidden variables (Dempster et al.(1977))
- to train jointly the weights (determining coefficientsλc)
and parameters at theleaves(determining componentsPc),
which are typically not trained in SPN learning methods.

The reason that prevents to apply mixture learning meth-
ods to SPNs is then theintractable mixture size. Tra-
ditional methods for learning SPNs typically ignore
the mixture representation and find maximum likeli-
hood (ML) solutions directly over the SPN weights (see
Gens and Domingos(2012)). The resulting optimization is
heavily non linear and typically suffers from vanishing up-
dates in deeper nodes, which leads to use in practice vari-
ants of ML that are justified mostly by empirical results.
Very recently, methods exploiting the mixture representa-
tion have been proposed, but a complete derivation of EM
for SPNs including updates in the mixture components has
been not derived so far (Peharz(2015); Zhao and Poupart
(2016)). We face then the following problem: is it possible

http://arxiv.org/abs/1604.07243v1

Expectation Maximization for Sum-Product Networks as Exponential Family Mixture Models

to apply EM for mixture models to SPNs without explicitly
expanding the encoded mixture?

Contribution. We obtain this goal by formalizing the re-
lations between the SPN and its encoded mixture, and de-
riving a new result relating the mixture model to its repre-
sentation as SPN in Lemma5. The new theoretical results
are then applied to implement efficiently Expectation Max-
imization over the mixture encoded by the SPN. This re-
sults in an efficient (O(E)) method for learning SPNs that
is the first, to our knowledge, which:

1. Corresponds exactly to the widely used EM algo-
rithm for mixture models: previous work used approx-
imations thereof, as inPoon and Domingos(2011),
or do not update mixturecomponentsbut only the
mixturecoefficients(Peharz(2015); Zhao and Poupart
(2016)).

2. Does not suffer from the problem of vanishing up-
dates at deep nodes, and therefore it does not need
to employ variants of ML that work well in prac-
tice but have mostly an empirical justification (see
Gens and Domingos(2012)).

3. Allows to train distributions at the SPN leaves in the
form of aweighted maximum likelihoodproblem. So-
lutions can often be found efficiently and inclose form
when leaves belong to theexponential family- for in-
stance, for multivariate Gaussian and tree graphical
models leaves with arbitrary structure (fig.2).

Our algorithm can be easily adapted for iterative and paral-
lel computation and can be extended efficiently to the case
of shared weights used in SPNs with convolutional archi-
tecture (e.g.Cheng et al.(2014)). We provide an analy-
sis of learning with EM compared to traditional methods
in a synthetic but non trivial test case, whose results indi-
cate that EM is comparable to existing SPN learning meth-
ods when only weight updates are used, and superior when
updates of the leaf distribution parameters are introduced.
The ability to learn efficiently complex distributions at the
leaves which was not available until now allows for new ap-
plications of SPNs that should be explored in future applied
work, such as learning very large mixtures of tree graphical
models with EM (see fig2). Finally, our theoretical analy-
sis and Lemma5 contributes to expand on the relationship
between SPNs and encoded mixture models, adding to the
toolbox of theoretical results on SPNs.

Structure of the Paper. In Section2 we introduce SPNs
and the related notation. In Section3 we analyze the rela-
tionship between SPNs and the encoded mixture model. In
Section4 we derive Expectation Maximization for SPNs.
In Section5 we discuss results on an example application.

Figure 1.Parity distribution fromPoon and Domingos(2011).
Top: SPN representing the uniform distribution over statesof five
variables containing an even number of1’s. Bottom: mixture
model for the same distribution.

Figure 2.A SPN with tree graphical models as leaves. The SPN
weightsand thestructureandpotentialsof the trees can be learnt
jointly and efficiently with our derivation of EM.

2. Sum-Product Networks

We start with the definition of SPN based on
Gens and Domingos(2013). Consider a set of vari-
ablesX (continuous or discrete).

Definition 1. Sum-Product Network (SPN) :

1. A tractable distributionϕ(X) is a SPNS(X).

2. The product
∏

k Sk(Xk) of SPNsSk(Xk) is a SPN
S (

⋃

k Xk) if the setsXk are disjoint for eachk.

3. The weighted sum
∑

k wkSk(X) of SPNsSk(X) is a
SPNS(X) if the weightswk are nonnegative (notice
thatX is in common for each SPNSk).

Expectation Maximization for Sum-Product Networks as Exponential Family Mixture Models

By associating a node to each product, sum and tractable
distribution and adding edges between an operator and
its inputs a SPN can be represented as a rooted Directed
Acyclic Graph (DAG) with sums and products as internal
nodes and tractable distributions as leaves. This definition
generalizes the SPN with indicator variables presented in
Poon and Domingos(2011), since indicator variables are a
special case of distribution in the form of a Dirac delta cen-
tered on a particular state of the variable, e.g.δ (x, 0) (fig.
2). A SPN isnormalizedif weights of outgoing edges of
sum nodes sum to1:

∑

k wk = 1. A SPN can be chosen
normalized without loss of generality (seePeharz(2015)).

Notation. We use the following notation throughout the
paper.X denotes a set of variables (continuous or discrete)
andx an assignment of these variables. We consider a SPN
S(X). Sq (Xq) denotes the sub-SPN rooted at nodeq of
S, with Xq ⊆ X . S (x) is the value ofS evaluated for
assignmentx (see below).ϕl (Xl) denotes the distribution
at leaf nodel. In the DAG ofS, ch(q) andpa(q) denote the
children and parents ofq respectively.(q, i) indicates an
edge betweenq and its childi. If q is a sum node this edge
is associated to a weightwq

i , and for simplicity of notation
we associate outgoing edges of product nodes to a weight
1. Finally,E (S), L (S) andN (S) denote respectively the
set of edges, leaves and sum nodes inS.

Parameters. S (X) is governed by two sets ofparame-
ters: the set of sum node weightsW (termswq

i for each
sum node edge) and the set of leaf distribution parameters
θ. We writeS (X |W, θ) to explicitly express this depen-
dency. Each leaf distributionϕl is associated to a parameter
setθl ⊆ θ, which are for instance the mean and covariance
for Gaussian leaves, and the tree structure and potentials
for tree graphical model leaves (see section4.3).

Evaluation. Assuming that the DAG ofS (X) hasE
edges, then the following quantities can be evaluated with
a costO (E) Poon and Domingos(2011) :

1. S (x), which is computed by first evaluating the leaf
distributions with evidence setx and then evaluating
sum and product nodes in inverse topological order.

2. ∂S(x)
∂Sq

, evaluated processing nodes in topological or-
der (root to leaves) with the following recursive equa-
tion (total derivatives), noting that∂S(x)

∂Sroot
= 1:

∂S (x)

∂Sq
=

∑

k∈pa(q)

∂S (x)

∂Sk

∂Sk (x)

∂Sq
(1)

∂Sk (x)

∂Sq
=

{

wk
q k sumnode

∏

i∈ch(k)\q Si (x) k prod. node
(2)

The evaluation ofS (x) also computes the quantitiesSq (x)
for eachnodeq in S (which is a SPNSq by def. 1) as an
intermediate step of the singleO (E) pass. The partition
function can be also computed with costO (E).

3. SPNs as Large Mixture Models

It is well known that any SPN can be transformed into
an equivalent SPN made of only two layers which cor-
responds to a mixture model as in fig.1 (see e.g.
Poon and Domingos(2011)). This interpretation was for-
malized inDennis and Ventura(2015). We report it here,
slightly changing the notation to accommodate for our fur-
ther needs.

Definition 2. A complete subnetwork (subnetworkfor
brevity) σc of S is a SPN constructed by first including the
root ofS in σc, then processing each nodeq included inσc

as follows:

1. If q is a sum node, include inσc one childi ∈ ch (q)
with relative weightwq

i . Process the included child.
2. If q is a product node, include inσc all the children

ch (q). Process the included children.
3. If q is a leaf node, do nothing.

Example: fig. 3. The term “subnetwork” is taken
from Gens and Domingos(2012) that use the same con-
cept. It is easy to show that any subnetworkis a tree
(Dennis and Ventura(2015)) . Let us callC the number
of different subnetworksobtainable fromS for different
choices of included sum node children, and associate an
unique indexc ∈ 1, 2..., C to each possible subnetwork
σ1, σ2, ..., σC . Poon and Domingos(2011) noted that the
number of subnetworks can beexponentially largerthan
the number of edges inS, e.g for the parity distribution
(fig. 1).

Definition 3. For a subnetworkσc of S (X |W, θ)we define
amixture coefficientλc and amixture componentPc(X |θ):

λc (W) =
∏

(q,j)∈E(σc)

wq
j (3)

Pc (X |θ) =
∏

l∈L(σc)

ϕl (Xl|θl) (4)

Note that the mixture coefficients are products of all the
sum weights in a subnetworkσc, and mixture components
are factorizations obtained as products of leaves inσc (see
fig. 3). Note also that mixture coefficients are only deter-
mined byW and mixture components only byθ.

Proposition 4. A SPNS encodes the following mixture
model:

S (X |W, θ) =

C
∑

c=1

λc (W)Pc (X |θ) (5)

Expectation Maximization for Sum-Product Networks as Exponential Family Mixture Models

Figure 3.A SPNS (A,B) in which a subnetworkσc of S is high-
lighted. This subnetwork corresponds to a mixture coefficient
λc = w1

2w
4
9 and componentPc (A,B) = ϕ7 (B)ϕ9 (A).

whereC denotes the number of different subnetworks inS,
andλc, Pc are mixture coefficients and components as in
eq.3 and4.

Proof: seeDennis and Ventura(2015). As mentioned,
the same result has been derived independently in
Zhao and Poupart(2016). Notice that the size (number of
components) of the encoded mixture isC and therefore a
direct evaluation of the mixture has costO(C), while the
evaluation ofS has costO(E). SinceC ≫ E, it fol-
lows that a SPN encodes a mixture model which can be in-
tractably large if explicitly represented. This gap is exactly
what makes SPNs more expressive than “shallow” repre-
sentations as mixture models. One must note, though, that
not every mixture in the form

∑C
c=1 λcPc(X |θ) can be rep-

resented by a SPN withC subnetworks, since termsλc and
Pc must respect the factorizations eq.3 and4 imposed by
the SPN DAG.

We now introduce a new Lemma that is crucial to derive our
results, reporting it here rather than in the proofs section
since it contributes to the set of analytical tools for SPNs.

Lemma 5. Consider a SPNS(X), a sum nodeq ∈ S and
a nodei ∈ ch(q). The following relation holds:

∑

k:(q,i)∈E(σk)

λkPk (X) = wq
i

∂S (X)

∂Sq
Si (X) (6)

where
∑

k:(q,i)∈E(σk)
denotes the sum over all the subnet-

worksσk of S that include the edge(q, i).

Proof: in AppendixA.1. This Lemma relates the sub-
set of the mixture model corresponding to subnetworksσk

that cross(q, i) and the value and derivative of the SPN
nodesq andi. Note that evaluating the left-hand sum has a
costO (C) (intractable) but the right-hand term has a cost
O (E) (tractable). Since in the derivation of EM one needs
to evaluate such subsets of solution, this Lemma allows to
compute the quantity of interest in a single SPN evaluation.
Note also that

∑

k:(q,i)∈E(σk)
λkPk (X) corresponds to the

evaluation of a non-normalized SPN which is a subset ofS
- e.g. the colored part in fig.4, right.

Figure 4.Visualization of Lemma5. Left: a subnetworkσc cross-
ing (q, i). Right: The colored part is the set of edges traversed by
all subnetworks crossing(q, i). The blue part representsSi and
the red part covers terms appearing in∂S(X)

∂Sq
.

4. Expectation Maximization

Expectation Maximization is an elegant and widely used
method for finding maximum likelihood solutions for
models with latent variables (see e.g.Murphy (2012,
11.4)). Given a distributionP (X) =

∑C
c=1 P (X, c|π)

where c are latent variables andπ are the distribu-
tion parameters our objective is to maximize the log
likelihood

∑N
n=1 ln

∑C
c=1 P (xn, c|π) over a dataset of

observations{x1, x2, ..., xN}. EM proceeds by up-
dating the parameters iteratively starting from some
initial configuration πold. An update step con-
sists in finding π∗ = argmaxπ Q (π|πold), where
Q (π|πold) =

∑N
n=1

∑C
c=1 P (c|xn, πold) lnP (c, xn|π).

We want to apply EM to the mixture encoded by a
SPN which is in principle intractably large. First,
using the relation between SPN and encoded mixture
model in Proposition4 we identify P (c, xn|π) =
λc (W)Pc (xn|θ), P (xn|πold) = S (xn|Wold, θold), and
thereforeP (c|xn, πold) = P (c, xn|πold)/P (xn|πold) =
λc (Wold)Pc (xn|θold) /S (xn|Wold, θold). Applying these
substitutions and dropping the dependency onWold, θold
for compactness,Q (W, θ|Wold, θold) becomes:

Q (W, θ) =

N
∑

n=1

C
∑

c=1

λcPc (xn)

S (xn)
lnλc (W)Pc (xn|θ) (7)

In the following sections we will efficiently solve the max-
imization ofQ (W, θ) for W andθ.

4.1. Weights Update

Simplifying Q (W, θ) through the use of Lemma5 (Ap-
pendixA.2), one needs to maximize the following objec-
tive function:

Expectation Maximization for Sum-Product Networks as Exponential Family Mixture Models

W ∗ = argmax
W

QW (W) (8)

QW (W) =
∑

q∈N (S)

∑

i∈ch(q)

βq
i lnw

q
i (9)

βq
i = wq

i,old

N
∑

n=1

S−1 (xn)
∂S (xn)

∂Sq
Si (xn)

The evaluation of termsβq
i , which depend only on

Wold, θold and are therefore constants in the optimization,
is the E stepof the EM algorithm. We now maximize
QW (W) subject to

∑

i w
q
i = 1∀q ∈ N (S) (M step).

Non shared weights. Supposing that weights at each
nodeq are disjoint parameters, then we can move themax
inside the sum, obtaining separated maximizations each
in the form argmaxwq

∑

i∈ch(q) β
q
i logw

q
i , wherewq is

the set of weights of edges outgoing fromq. Now, the
same maximum is attained multiplying by the constant
k = 1

∑

i
βq

i

. Then, defininḡβq
i = kβq

i , we can equivalently

find argmaxwq

∑

i∈ch(q) β̄
q
i logw

q
i , whereβ̄q

i is positive
and sums to1 and therefore can be interpreted as a discrete
distribution. This is then the maximum of the cross entropy
argmaxwq

(

−H
(

β̄q
i , w

q
i

))

defined e.g. inMurphy (2012,
2.8.2). The maximum is attained forwq

i = β̄q
i , which cor-

responds to the following update:

wq∗
j = βq

j /
∑

i

βq
i (10)

Shared weights. In some SPN applications it is neces-
sary to share weights between different sum nodes, for in-
stance when a convolutional architecture is used (see e.g.
Cheng et al.(2014)). To keep notation simple let us con-
sider only two nodesq1, q2 with shared weights - the same
reasoning generalizes immediately to an arbitrary num-
ber of nodes. We suppose the nodes are constrained to
have identical weights, that iswq1

i = wq2
i for every child

i. Calling wq the set of shared weights, we need to find
argmaxwq

∑

i∈ch(q) β
q1
i logwq1

i +
∑

i∈ch(q) β
q2
i logwq2

i .
Then, employing the equality constraint, we rewrite
argmaxwq

∑

i∈ch(q) (β
q1
i + βq2

i) logwq
i + const, where

the constant includes terms not depending onwq . We
now apply the same reasoning as for the non-shared weight
case, multiplying by the normalization constantk =

1
∑

i∈ch(q)(β
q1
i

+β
q2
i)

and noting that we end up maximizing

the cross entropy−H (k (βq1
i + βq2

i) , wq
i). Then, general-

izing for an arbitrary set of nodesQs that sharethe same
weights ofq, the weight update for nodeq is as follows:

wq∗
j =





∑

qs∈Qs

βqs
j



 /
∑

i





∑

qs∈Qs

βqs
i



 (11)

Discussion. From the mixture point of view, the weight
update corresponds to the EM update for the mixture coef-
ficientsλc in eq.5. In both the shared and non shared cases,
the EM weight update does not suffer from vanishing up-
dates even in deep nodes thanks to the normalization term,
a problem that prevented the use of direct likelihood max-
imization in classic SPN training methods SPNs with deep
DAGs (seeGens and Domingos(2012)). Notice that this
is a weight update procedure, and therefore it is similar to
existing learning algorithms for SPNs which typically train
only weights. Furthermore, this has no hyperparameters
in contrast to classic SPN learning methods. Finally, we
note that the same EM update fornon-shared weights only
was derived with radically different approaches inPeharz
(2015); Zhao and Poupart(2016). Our approach however
completes the derivation of EM by updating mixture com-
ponents, as described below, and extends efficiently to the
case of shared weights.

4.2. Leaf Parameters Update

From the mixture point of view, the weight update corre-
sponds to the EM update for the mixture coefficientsPc in
eq. 5. Simplifying Q (W, θ) through the use of Lemma5
(AppendixA.3), the optimization problem reduces to:

θ∗ = argmax
θ

Qθ (θ) (12)

Qθ (θ) =
∑

l∈L(S)

N
∑

n=1

αln lnϕl (xn|θl) (13)

αln = S (xn)
−1 ∂S (xn)

∂Sl
Sl (xn)

The evaluation of termsαln, which are constant coef-
ficients in the optimization since they depend only on
Wold, θold, is theE stepof the EM algorithm and can be
seen as computing theresponsibilitythat leaf distribution
ϕl assigns to then-th data point, similarly to the respon-
sibilities appearing in EM for classical mixture models.
Importantly, we note that the maximization14 is concave
as long asϕl (Xl|θ) is concave, in which case there is an
unique global optimum.

Non shared parameters. To the best of our knowledge,
all existing SPN applications use leaf distributions with non
shared parameters. Introducing the hypothesis that param-
etersθl are disjoint at each leafl, we obtain separate maxi-
mizations in the form:

θ∗l = argmax
θl

N
∑

n=1

αln lnϕl (xn|θl) (14)

This formulation can be recognized as the canonical form

Expectation Maximization for Sum-Product Networks as Exponential Family Mixture Models

of aweighted maximum likelihoodproblem. Therefore, the
M step in the leaf updated translates intoa well studied
problem, where efficient solutions exist for several distri-
butions - we consider in particular solutions for exponen-
tial families and graphical models in section4.3, but the list
of available methods goes well beyond the considered ones
and therefore this step allows a great degree offlexibility in
the choice of the leaf model, to be explored in future work.

Shared parameters. If θl is shared in more than one leaf
the solution cannot be found analytically since a sum of
logarithms appears in the optimization. However, the ob-
jective is still concave. Note that this case is not present in
any existing SPN application to the best of our knowledge.

4.3. Exponential Family Leaves

A crucial property of exponential families is that eq.12
is concaveand therefore aglobal optimumcan be reached
(see e.g.Murphy (2012, 11.3.2)). Additionally, if the pa-
rameters are not shared (eq.14) the solution is often avail-
able efficiently inclosed form. Leaf distributions in the
exponential family allow to have a wide degree of flexibil-
ity and power in modeling SPNs. The ability to learn them
with EM was not investigated in applications of SPNs un-
til now, and it should be matter of future applied work - a
small example is provided in section5. We will look in
detail in the close form solution for some non-exhaustive
cases of exponential family leaves.

Multivariate Gaussian Distributions. Suppose that a
leaf distributionϕl (Xl) is a multivariate Gaussian. In
this case the solution is obtained as inMurphy (2012,
11.4.2), and it is a simple adaptation of ML Gaussian

fitting: rl =
∑N

n=1 αln, µl =
∑N

n=1 αlnxn

rl
, Σl =

∑

N
n=1 αln(xn−µl)(xn−µl)

T

rl
. It is easy to add a regularizer

by adding a diagonal matrix toΣl, equivalent to assuming
a prior distribution.

Tree graphical models. If a leaf distributionϕl (Xl) is a
tree graphical model over discrete variables, the solutionof
eq.14can be found by constructing the tree with the Chow-
Liu algorithm (Chow and Liu(1968)) adapted for weighted
likelihood (seeMeila and Jordan(2000)). The algorithm
has a cost quadratic on the cardinality ofX and allows to
learnjointly the optimal tree structure and potentials. It can
be extended to continuous variables and allows to add a
regularizer term. The resulting SPN represents a very large
mixture of tree graphical models, as in fig. 2. Mixture
of trees are powerful architectures (seeMeila and Jordan
(2000)) and exploring the capabilities of this very large
mixtures trained with EM should be subject of future ap-
plied work.

General Graphical Models. If ϕl (Xl) is a graphical
model (GM), eq. 14 reduces to the problem of fitting
the structureandparameters of a graphical model through
weighted maximum likelihood. This is a well known re-
search field where results based on heuristics are available
for several different structures, although the global opti-
mum in close form is only available for trees - for instance
Srebro(2003) proposes a method to find locally optimal
structure and parameters for GMs with limited treewidth.
The problem simplifies if the optimization is done over
the model parameters keeping the GM structure fixed, al-
though it remains NP hard (seeWainwright and Jordan
(2008),Murphy (2012, 11.4.4) for a variety of methods).
Remark: the idea of learning the structure of tractable GMs
at the leaves has been exploited in the structure learning
algorithm ofRooshenas and Lowd(2014), which however
does not use EM and is based on a heuristic search.

4.4. Complexity and Implementation

The pseudocode for the EM update step is given in algo-
rithm 2. We consider the non-shared weight case for sim-
plicity (eq. 10), but the algorithm can easily be adapted
for shared weights using eq.11. It is easy to see that the
running time isO (NE): In algorithm1, the quantities in
row 4 can be computed in a singleO (E) pass for all the
nodes in the network (see section2), and what follows is
a for loop through each edge of the network. This is re-
peated for every data point, and the algorithm can imme-
diately be executed in parallel for each data point. Mem-
ory requirement isO (E) for β (one elementβq

i per edge),
andO (NE) for α, sinceαln must be computed for each
leaf nodel and samplen. If N is too large and this value
cannot be stored in memory it is often possible to further
optimize the code in order to have a memory costO(E)
by usingiterative maximization procedureswhenever they
are available for the particular kind of leaf distribution.
For instance, both the maximum likelihood Gaussian fit
and Chow-Liu algorithm discussed in section4.3 are eas-
ily adapted to update the maximization iteratively for each
data point, reducing the memory cost toO(E) (seeMurphy
(2012, 11.4.2);Meila and Jordan(2000)).

5. Example Application

The aim of this section is to test the performance of the EM
updates onW andθ in a controlled setting. The weight up-
date onW can be easily compared to classical SPN learn-
ing algorithms which train weights (Gens and Domingos
(2012)). The leaf parameter update onθ is difficult to
compare since, at the best of our knowledge, leaf distri-
butions were not learned until now in any application of
Sum-Product Networks. An exception is structure learn-
ing for SPNs (Rooshenas and Lowd(2014)), where leaves
however are not trained but constructed as Arithmetic Cir-

Expectation Maximization for Sum-Product Networks as Exponential Family Mixture Models

Algorithm 1 ComputeAlphaAndBeta

Input: SPNS, parameters{W, θ}, data{x1, x2, ..., xN}
setβq

i = 0 for eachq ∈ N (S) andi ∈ ch(q)
for eachxn ∈ {x1, x2, ..., xN} do

computeSk(xn),
∂S(xn)
∂Sk

for each nodek ∈ S

for each sum nodeq ∈ N (S) do
for each nodei ∈ ch(q) do
βq
i ← βq

i + 1
Nwq

i Si (xn)
∂S(xn)
∂Sq

S (xn)
−1

end for
end for
for each leaf nodel ∈ L (S) do
αln ← S (xn)

−1 ∂S(xn)
∂Sl

Sl (xn)
end for

end for

Algorithm 2 EMstep

Input: SPNS, parameters{W, θ}, data{x1, x2, ..., xN}
[α, β]←ComputeAlphaAndBeta(S,W, θ, {x1, ..., xN})
for each sum nodeq ∈ N (S) do
wq

i ← βq
i /

∑

i∈ch(q) β
q
i

end for
for each leaf nodel ∈ L (S) do
θl ← argmaxθl

∑N
n=1 αln lnϕl (xn|θl)

end for

cuits along with the SPN. Therefore, in order to test if learn-
ing leaves is beneficial in Maximum Likelihood we intro-
duce a minimal but non trivial synthetic application cap-
turing the key properties of SPNs. While the focus of this
paper is theoretical and the application clearly limited, the
result show promise for real applications of the algorithm
in future work.

The example that we build is a continuous version of the
parity distribution fromPoon and Domingos(2011) (fig-
ure1) which we call “soft parity”, where the deltas at the
leaves are simply substituted with Gaussian distributions
with mean centered on the “on” state of each delta, and
weights are not uniform but randomly assigned. This is
represented by a deep SPN withO(n) nodes and as many
layers as the number of variables, corresponding to a mix-
ture model with2n components and2n modes. We cre-
ate a target soft parity SPN with random weights and co-
variances, which is sampled to obtain a training and test
set. A randomly initialize network is then trained to learn
these samples with several different algorithms. Compar-
isons of results averaged over10 random initializations and
for soft parity SPNs of different depth are shown in table
1. Our limited empirical analysis agrees well with the ex-
tensive one performed independently byZhao and Poupart
(2016) on the EM weight update, which proved to be com-
petitive with standard SPN learning methods. Not surpris-

Table 1.Log likelihood of test data for soft parity distributions of
increasing depth. EM-W, θ and EM-W is our EM algorithm up-
datingW,θ and onlyW respectively. SoftEM, HardEM, SoftGD
and HardGD are described in (Gens and Domingos, 2012).

NVARS EM-W,θ EM-W SOFTGD SOFTEM HARDGD HARDEM

10 −8.01 −10.6 −11.0 −10.6 −11.0 −10.9
20 −16.1 −21.1 −22.0 −21.1 −22.1 −21.6
40 −32.5 −43.4 −45.4 −43.5 −45.3 −44.7
80 −66.0 −85.7 −89.4 −85.9 −89.3 −88.2

ingly, when also the leaf update is introduced the results are
significantly better. It remains to be seen if this translates
into real world applications of SPNs with complex leaves
learned with EM, which should be matter of future applied
work.

6. Conclusions

We presented the first derivation of Expectation Maxi-
mization (EM) for the very large mixture encoded by a
SPN which includes updates on both mixturecoefficients
andcomponents. The EM weight updatedoes not suffer
from vanishing updates and therefore can be applied with-
out approximations to deep SPNs, in contrast with stan-
dard SPN weight learning methods (Gens and Domingos
(2012)). Theleaf distribution updateis new in SPN litera-
ture and allows to efficiently learn leaves exploiting expo-
nential family tools. This capability has never been used in
SPN applications at the best of our knowledge, and should
be focus of future applications such as learning very large
mixtures of tree graphical models with EM. A synthetic but
non trivial test case confirms the potential of this approach.

A. Appendix - Proofs

Preliminars. Consider some subnetworkσc of S includ-
ing the edge(q, i) (fig. 4). Remembering thatσc is a tree,
we divideσc in three disjoint subgraphs: the edge(q, i),
the treeσd(i)

h(c) corresponding to “descendants” ofi, and the

remaining treeσa(q)
g(c) . Notice thatg (c) could be the same

for two different subnetworksσ1andσ2, meaning that the
subtreeσa(q)

g(c) is in common. Similarly, the subtreeσd(i)
h(c)

could be in common between several subnetworks.

We now observe that the the coefficientλc and compo-
nentPc (eqs. 3 and 4) factorize in terms corresponding
to σ

a(q)
g(c) and toσd(i)

h(c) as follows: λc = wq
i λ

d(i)
h(c)λ

a(q)
g(c) and

Pc = P
d(i)
h(c)P

a(q)
g(c) , whereλd(i)

h(c) =
∏

(m,n)∈L
(

σ
d(i)

h(c)

) wm
n ,

P
d(i)
h(c) =

∏

l∈L
(

σ
d(i)

h(c)

) ϕl and similarly fora (q). With this

notation, foreachsubnetworkσc including(q, i) we write:

Expectation Maximization for Sum-Product Networks as Exponential Family Mixture Models

λcPc = wq
i

(

λ
a(q)
g(c)P

a(q)
g(c)

)(

λ
d(i)
h(c)P

d(i)
h(c)

)

(15)

Let us now consider the sum overall the subnetworksσc

of S that include(q, i). The sum can be rewritten as two

nested sums, the external one over all termsσ
a(q)
g (red part,

fig. 4) and the internal one over all subnetsσ
d(i)
h (blue part,

fig. 4). This is intuitively easy to grasp: we can think of
the sum over all treesσc as first keeping the subtreeσa(q)

g

fixed and varying all possible subtreesσ
d(i)
h belowi (inner

sum), then iterating this for choice ofσa(q)
g (outer sum).

Exploiting the factorization15we obtain the following for-
mulation:

∑

c:(q,i)∈E(σc)

λcPc = wq
i

Ca(q)
∑

g=1

λa(q)
g P a(q)

g

Cd(i)
∑

h=1

λ
d(i)
h P

d(i)
h

(16)

whereCd(i) andCa(q) denote the total number of different

treesσd(i)
h andσa(q)

g in S.

Lemma 6. ∂S(X)
∂Sq

=
∑Ca(q)

g=1 λ
a(q)
g P

a(q)
g .

Proof. First let us separate the sum in eq.5 in two
sums, one over subnetworks includingq and one over sub-
networks not includingq: S (X) =

∑

k:q∈σk
λkPk +

∑

l:q/∈σl
λlPl. The second sum does not involveSq

so for ∂S(X)
∂Sq

it becomes a constant̂k. Then, S =
∑

k:q∈σk
λkPk + k̂. As in eq. 16, we divide the sum

∑

k:q∈σk
(·) in two nested sums acting over disjoint terms:

S =





Ca(q)
∑

g=1

λa(q)
g P a(q)

g









Cd(q)
∑

h=1

λ
d(q)
h P

d(q)
h



+ k̂

We now notice that
∑Cd(q)

k=1 λ
d(q)
k P

d(q)
k = Sq by Proposi-

tion 4, sinceλd(q)
k P

d(q)
k refer to the subtree ofσc rooted in

i and the sum is taken over all such subtrees. So we write:

S =





Ca(q)
∑

g=1

λa(q)
g P a(q)

g



Sq + k̂

Taking the partial derivative leads to the result.

A.1. Proof of Lemma 5

We start by writing the sum on the left-hand side of eq.6

as in eq.16. Now, first we notice that
∑Cd(i)

k=1 λ
d(i)
k P

d(i)
k

equalsSi (X) by Proposition4, sinceλd(i)
k P

d(i)
k refer to

the subtree ofσc rooted ini and the sum is taken over all
such subtrees. Second,

∑Ca(q)

g=1 λ
a(q)
g P

a(q)
g = ∂S(X)

∂Sq
for

Lemma6. Substituting in16we get the result.

A.2. EM step onW

Starting from eq.7 and collecting terms not depending on
W in a constant in view of the maximization, we obtain:

Q (W) =

N
∑

n=1

C
∑

c=1

λcPc (xn)

S (xn)
lnλc (W) + const

=
N
∑

n=1

C
∑

c=1

λcPc (xn)

S (xn)

∑

(q,i)∈E(σc)

lnwq
i + const

We now drop the constant and move out
∑

(q,i)∈E(σc)
by

introducing a deltaδ(q,i),c which equals1 if (q, i) ∈ E (σc)
and0 otherwise and summing overall edgesE (S):

Q (W) =

N
∑

n=1

C
∑

c=1

λcPc (xn)

S (xn)

∑

(q,i)∈E(S)

lnwq
i δ(q,i),c

=
∑

(q,i)∈E(S)

N
∑

n=1

∑C
c=1 λcPc (xn) δ(q,i),c

S (xn)
lnwq

i

=
∑

(q,i)∈E(S)

N
∑

n=1

∑

c:(q,i)∈E(σc)
λcPc (xn)

S (xn)
lnwq

i

Applying Lemma5 to
∑

c:(q,i)∈E(σc)
λcPc (xn) we get:

Q (W) =
∑

(q,i)∈E(S)





N
∑

n=1

wq
i,old

∂S(xn)
∂Sq

Si (xn)

S (xn)



 lnwq
i

And definingβq
i = wq

i,old

∑N
n=1 S

−1 (xn)
∂S(xn)
∂Sq

Si (xn)

we can writeQ (W) =
∑

q∈N (S)

∑

i∈ch(q) β
q
i lnw

q
i .

A.3. EM step onθ

Starting from eq. 7, as in A.2 we expand lnPc

as a sum of logarithms and obtain: Q (θ) =
∑N

n=1

∑C
c=1

λcPc(xn)
S(xn)

∑

l∈L(σc)
lnϕl (xn|θl) + const. In-

troducingδl,c which equals1 if l ∈ L (σc) and0 otherwise,
dropping the constant and performing the sum

∑

l∈L(S)

over all leaves inS we get:

Expectation Maximization for Sum-Product Networks as Exponential Family Mixture Models

Q (θ) =

N
∑

n=1

C
∑

c=1

λcPc (xn)

S (xn)

∑

l∈L(S)

lnϕl (xn|θl) δl,c

=
∑

l∈L(S)

N
∑

n=1

∑C
c=1 λcPc (xn)

S (xn)
lnϕl (xn|θl) δl,c

=
∑

l∈L(S)

N
∑

n=1

∑

c:l∈L(σc)
λcPc (xn)

S (xn)
lnϕl (xn|θl)

=
∑

l∈L(S)

N
∑

n=1

αln lnϕl (xn|θl)

Whereαln = S (xn)
−1 ∑

c:l∈L(σc)
λcPc (xn). To com-

pute αln we notice that the termPc in this sum al-
ways contains a factorϕl (eq. 4), and ϕl = Sl by

def. 1. Then, writingPc\l =
(

∏

k∈L(σc)\l
ϕk

)

we ob-

tain: αln = S (xn)
−1 Sl

(

∑

c:l∈L(σc)
λcPc\l (xn)

)

. Fi-

nally, sinceS =
∑

c:l∈L(σc)
λcPc +

∑

k:l/∈L(σk)
λkPk =

Sl

∑

c:l∈L(σc)
λcPc\l + k̂ (where k̂ does not depend on

Sl), taking the derivative we get∂S∂Sl
=

∑

c:l∈L(σc)
λcPc\l.

Substituting we get:αln = S (xn)
−1 ∂S(X)

∂Sl
Sl (xn).

References

Mohamed Amer and Sinisa Todorovic. Sum product
networks for activity recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI
2015), 2015.1

Wei-Chen Cheng, Stanley Kok, Hoai Vu Pham, Hai Leong
Chieu, and Kian Ming Chai. Language Modeling with
Sum-Product Networks.Annual Conference of the In-
ternational Speech Communication Association 15 (IN-
TERSPEECH 2014), 2014.1, 1, 4.1

C. I. Chow and C. N. Liu. Approximating discrete proba-
bility distributions with dependence trees.IEEE Trans-
actions on Information Theory, 14:462–467, 1968.4.3

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maxi-
mum Likelihood from Incomplete Data via the EM Al-
gorithm. Journal of the Royal Statistical Society. Series
B (Methodological), 39(1):1–38, 1977. ISSN 00359246.
doi: 10.2307/2984875.1

Aaron Dennis and Dan Ventura. Greedy structure search
for sum-product networks. 2015.3, 3, 3

Robert Gens and Pedro Domingos. Discriminative learning
of sum-product networks. InNIPS, pages 3248–3256,
2012.1, 2, 3, 4.1, 5, 1, 6

Robert Gens and Pedro Domingos. Learning the structure
of sum-product networks. InICML (3), pages 873–880,
2013.2

Marina Meila and Michael I. Jordan. Learning with mix-
tures of trees.Journal of Machine Learning Research, 1:
1–48, 2000.4.3, 4.4

Kevin P. Murphy.Machine Learning: A Probabilistic Per-
spective. The MIT Press, 2012. ISBN 0262018020,
9780262018029.4, 4.1, 4.3, 4.4

Robert Peharz. Foundations of sum-product networks
for probabilistic modeling. (phd thesis). Research-
gate:273000973, 2015.1, 1, 2, 4.1

Hoifung Poon and Pedro Domingos. Sum-product net-
works: A new deep architecture. InUAI 2011, Proceed-
ings of the Twenty-Seventh Conference on Uncertainty
in Artificial Intelligence, Barcelona, Spain, July 14-17,
2011, pages 337–346, 2011.1, 1, 1, 2, 2, 3, 3, 5

Amirmohammad Rooshenas and Daniel Lowd. Learning
sum-product networks with direct and indirect variable
interactions. In Tony Jebara and Eric P. Xing, editors,
Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pages 710–718. JMLR
Workshop and Conference Proceedings, 2014.1, 4.3,
5

Nathan Srebro. Maximum likelihood bounded tree-width
markov networks.Artif. Intell., 143(1):123–138,January
2003. ISSN 0004-3702. doi: 10.1016/S0004-3702(02)
00360-0.4.3

Martin J. Wainwright and Michael I. Jordan. Graphi-
cal models, exponential families, and variational infer-
ence. Found. Trends Mach. Learn., 1(1-2):1–305, Jan-
uary 2008. ISSN 1935-8237. doi: 10.1561/2200000001.
4.3

Han Zhao and Pascal Poupart. A unified approach for learn-
ing the parameters of sum-product networks.ArXiv e-
prints, arXiv:1601.00318, 2016.1, 1, 3, 4.1, 5

