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Abstract
This paper introduces a probabilistic architecture called sum–product graphical model
(SPGM). SPGMs represent a class of probability distributions that combines, for the first
time, the semantics of probabilistic graphical models (GMs) with the evaluation efficiency
of sum–product networks (SPNs): Like SPNs, SPGMs always enable tractable inference
using a class of models that incorporate context specific independence. Like GMs, SPGMs
provide a high-level model interpretation in terms of conditional independence assumptions
and corresponding factorizations. Thus, this approach provides new connections between the
fields of SPNs and GMs, and enables a high-level interpretation of the family of distributions
encoded by SPNs.We provide two applications of SPGMs in density estimation with empiri-
cal results close to or surpassing state-of-the-art models. The theoretical and practical results
demonstrate that jointly exploiting properties of SPNs and GMs is an interesting direction of
future research.

Keywords Sum product networks · Probabilistic graphical models · Density estimation ·
Deep learning · Exact inference · Density estimation

1 Introduction

The compromise between model expressiveness and tractability of model evaluation (infer-
ence) is a key issue of scientific computing. Regarding probabilistic graphical models (GMs),
tractable inference is guaranteed for acyclic graphical models and GMs on cyclic graphs
with small treewidth (Wainwright and Jordan 2008). On the other hand, inference with cyclic
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graphical models1 generally suffers from a complexity that exponentially grows with the
treewidth of the underlying graph, so that approximate inference is the only viable choice.

Recently, sum–product networks (SPNs) (Poon and Domingos 2011) and closely related
architectures including Arithmetic Circuits and And–Or Graphs (Darwiche 2002; Dechter
andMateescu 2007) have received attention in the probabilisticmachine learning community,
mainly due to these attractive properties:

1. The cost of marginal inference with these architectures is linear in the model size, hence
it is always tractable. This aspect greatly simplifies approaches to learning the structure of
suchmodels, the complexity of which essentially depends on the complexity of inference
as a subroutine.2

2. These architectures allow one to cope with probability distributions that are more com-
plex than tractable graphical models. The key reason is that SPNs efficiently represent
contextual independence: independence between variables that only holds in connection
with some assignment of a subset of variables in the model, called “context”. In contrast,
the connections between nodes in a GM represent conditional independence, a special
case of contextual independence where independence holds for all assignments of the
context variables. Exploiting contextual independence allows one to drastically reduce
the cost of inference whenever the modelled distribution justifies this assumption, and
as a result, a subset of distributions that would be represented by graphical models with
high treewidth can be represented in a tractable way (see Boutilier et al. 1996). A detailed
example illustrating this key point is provided in Sect. 1.1.

3. Several recent papers showed that structure learning approaches for SPNs produce state-
of-the-art results in density estimation (see e.g. Gens and Domingos 2013; Rooshenas
and Lowd 2014; Rahman and Gogate 2016a, b): remarkably, performing exact inference
with tractable models produced in these cases better results than approximate inference
with intractable models.

However, there is a price to pay for these favorable properties: the ability of SPNs to
represent efficiently contextual independence is due to a low-level representation of the
underlying distribution. This representation comprises a Directed Acyclic Graph with sums
and products as internal nodes, and with indicator variables associated with each state of
each variable in the model, that become active when a variable is in a certain state (Fig. 1b).
Thus, SPN graphs directly represent the flow of operations performed during the inference
procedure, which is much harder to read and interpret than a factorized graphical model
which expresses conditional independence. In particular, the factorization associated with
the graphical model is lost after translating the model into an equivalent SPN, and can
only be retrieved (when possible) through a complex hidden variable restoration procedure
(Peharz et al. 2016). As a consequence of these incompatibilities, research on SPNs has
largely evolved without much overlap with work on GMs.

In this paper we combine some favorable properties of GMs and SPNs in a single model,
which we call sum–product graphical model (SPGM). SPGMs are a hybrid between the
two families of models, and explicitly inherit components from both architectures. This
approach connects to previous papers that either endow graphical models with the ability
to model contextual dependences, or provide methods to infer a high level representation of
given SPNs. However, we start from the perspective of defining a new architecture rather
than expanding on either GMs or SPNs—wewill show that the new representation provides a

1 With the exception of a subset of discrete graphical models (see e.g. Kolmogorov and Zabih 2004) where
inference can be reformulated as a maximum flow problem.
2 MAP inference is however a NP-hard problem (Conaty et al. 2017).
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Fig. 1 Representation properties
of graphical models (GMs) and
sum–product networks (SPNs).
The same distribution specified
by Eq. (1.1) is represented by a
GM in panel a and by a SPN in
panel b. This illustrates that GMs
represent conditional
independence more compactly
than SPNs

(a) (b)

more compact and understandable representation than SPNs, close toGMs,while on the other
hand maintaining the full efficiency of SPNs. Comparison with related models is discussed
in detail in Sect. 1.4 and summarized in Table 1.

Ultimately, the goal of this paper is to provide new connections between GMs and SPNs,
and enable researchers to exploit methods from the two families in synergy. In order to
show a few preliminary ways in which this can be done in practice, we discuss two example
applications in which the new properties lead to state-of-the-art results. Firstly, we devise
an algorithm for learning both the structure and the model parameters of SPGMs which is
inspired jointly by methods in the GM and SPN families. A comparative empirical evalua-
tion demonstrates competitive performance of our approach in density estimation: we obtain
results comparable to state-of-the-art models (which are based on SPNs), despite using a rad-
ically different approach from the established body of work and comparing against methods
that rely on years of research. Secondly, we apply SPGMs to the challenging task of approxi-
mating the density of a known but intractable graphical model, which is an area where SPNs
were not previously applied. Also in this case SPGMs obtain strong results in comparison to
other recent methods, demonstrating the potential of the new approach.

1.1 Tradeoff between high-level representation and efficient inference: an example

We consider a distribution of discrete random variables A, B, C, D in the following form
(shown in Fig. 1a as a directed Graphical Model (GM)):

P(A, B, C, D) = P(A)P(B|A)P(C |B)P(D|A) (1.1)

Uppercase letters A, B, C, D denote random variables and corresponding lowercase letters
a, b, c, d values in their domains Δ(A),Δ(B),Δ(C),Δ(D). We write

∑
a,b,c,d for the sum

over the joint domain Δ(A) × Δ(B) × Δ(C) × Δ(D). Using this notation, the distribution
P(A, B, C, D) can be written as a network polynomial (Darwiche 2003):

P(A, B, C, D) =
∑

a,b,c,d

P(a, b, c, d)[A]a[B]b[C]c[D]d (1.2)

Here P(a, b, c, d) denotes the value of P for assignment A = a, B = b, C = c, D = d , and
[A]a ,[B]b,[C]c, [D]d ∈ {0, 1} denote indicator variables. To compute the partition function
all indicator variables of (1.2) are set to 1, and to compute the marginal probability P(A = 1)
one sets [A]1 = 1, [A]0 = 0 and all the remaining indicators to 1.
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We can further exploit factorization and rearrange the sum of (1.2) in terms of messages
μ, as follows:

P(A, B, C, D) =
∑

a∈Δ(A)

P(a)[A]aμb,a(a)μd,a(a), μb,a(A) =
∑

b∈Δ(B)

P(b|A)[B]bμc,b(b),

(1.3a)

μc,b(B) =
∑

c∈Δ(C)

P(c|B)[C]c, μd,a(A) =
∑

d∈Δ(D)

P(d|A)[D]d .

(1.3b)

Hence, the distribution can be represented in two forms: The first one is the directed graphical
model of Eq. (1.1), shown in Fig. 1a. The second one is a sum–product network (SPN)
shown by Fig. 1b, which directly represents the computations expressed by Eq. (1.3), with
the coefficients P(·|·) omitted in Fig. 1b for better visibility. It is evident that the SPN does
not clearly display the high level semantics due to conditional independence of the graphical
model. On the other hand, the SPN makes explicit the computational structure for efficient
inference and encodes more compactly than GMs a class of relevant situations described
next.

Introducing Contextual Independence We consider a distribution in the form

P(A, B, C, D, E, Z) = P(Z)P(A)P(B, C, D|A, Z)P(E |B, C, D) (1.4a)

with

P(B, C, D|A, Z) =
{

P(Z = 0)P(B|A)P(C |A)P(D|A) if Z = 0,

P(Z = 1)P(B|A)P(C |B)P(D|C) if Z = 1.
(1.4b)

Notice that different independence relations hold depending on the value taken by Z : if
Z = 0, then B, C and D are conditionally independent given A, whereas if Z = 1, then they
form a chain. We therefore say that this distribution exhibits context specific independence
with context variable Z .

As in the example before, this distribution can be represented in different ways. Repre-
senting it as a GM (Fig. 2a) requires modelling P(B, C, D|A, Z) as a single factor over 5
variables, since GMs cannot directly represent the if condition of (1.4b).3

We can also represent the distribution as a mixture of two tree-structured GMs (Fig. 2b),

P(B, C, D, A, Z) = [Z ]0P(Z = 0)P(A)P(B|A)P(C |A)P(D|A)P(E |D) (1.5a)

+ [Z ]1P(Z = 1)P(A)P(B|A)P(C |B)P(D|C)P(E |D). (1.5b)

However, since a subsection of the two trees corresponding to factors P(A) and P(E |B)

appears identically in bothmixture components, computations for inference are unnecessarily
replicated and representation generally loses compactness.

Finally, we may represent the distribution as SPN (Fig. 2c) following the procedure out-
lined in the previous example. This representation allows one to both express contextual
independence and to share common parts in the two models’ components, thereby decreas-
ing the number of computations required for inference. On the other hand, as in the previous
example, the SPN representation is considerably more convoluted and the probabilistic rela-
tions which are easily readable in the other models are hidden.

3 A workaround involves factors with a complex structure, similar to SPNs, as done for instance in Mcallester
et al. (2004). Although this approach would be simple enough in the present example, it generally leads to a
representation with the disadvantages of SPNs. See Sect. 1.4 for further discussion.
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(a) (b) (c) (d)

Fig. 2 The distribution in Eq. 1.4 represented (from left to right) as graphical model (GM), as mixture of GMs,
as sum–product network (SPN) and as sum–product graphical model (SPGM)

1.2 Sum–product graphical models

The previous section showed that SPNs conveniently represent context specific independence
and algorithm structures for inference, whereas GMs directly display conditional indepen-
dence through factorization. Several attempts were made in the literature to close this gap.
We discuss related work in Sect. 1.4.

Our approach to this problem is to introduce a new representation, called sum–product
graphical model (SPGM), that directly inherits the favorable traits from both GMs and SPNs.
SPGMs can be seen as an extension of SPN that, alongwith product and sum nodes as internal
nodes, also comprises variable nodes which have the same role as usual nodes in graphical
models. Alternatively, SPGMs can be seen as an extension of directed GMs by adding sum
and product nodes as internal nodes. The SPGM representing the distribution (1.4) is shown
by Fig. 2d. It clearly reveals both the mixture of the two tree-structured subgraphs and the
shared components. Thus, in this case SPGMs exhibit both the expressiveness of SPNs and
the high level semantics of GMs.

More generally, we show that every SPGM implements a mixture of trees with shared
subparts, as in the above example. Hence, the family of GMs that SPGMs can represent
is limited to mixtures of trees,4 with the crucial difference that very large mixtures can be
modeled due to sharing factors between such trees. We also show that this is the same family
of models that SPNs can represent.

In SPGMs, explicit context variables attached to sum nodes implement context specific
independence (like Z in Fig. 2d) and select trees as model components to be combined.
Conditional independence between variables, on the other hand, can be read off from the
graph due to D-separation (Cowell et al. 2003). SPGMs enable one to represent in this
way very large mixtures, whose size grows exponentially with the model size and are thus
intractable if represented as a standard mixture model. On the other hand, inference in SPGM
has a worst case complexity that merely is quadratic in the SPGM size and effectively is
quasi-linear in most practical cases.5

4 An extension to mixtures of junction trees (Cowell et al. 2003) is straightforward but does not essentially
contribute to the present discussion and hence is omitted.
5 More precisely, the complexity is O(N M), where N is the number of nodes and M is the maximal number
of parent nodes, of any node in the model.
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(a) (b) (c)

Fig. 3 Sketch of the structure learning algorithm proposed in this paper. a A weighted subgraph on which we
compute the maximal spanning trees. b Two maximal spanning trees of equal weight to included as mixture
components into the SPGM. They differ only in a single edge. c The mixture of the two trees represented by
sharing all common parts

In addition, SPGMs generally provide an equivalent but more compact and high level
representation of SPNs, with the additional property that the role of variables with respect
to both contextual and conditional independence remains explicit. A compilation procedure
through message passing allows one to convert the SPGM (Fig. 2d) into the equivalent SPN
(Fig. 2c) which directly supports computational inference.

1.3 Structure learning

Learning the structure of probabilistic models obviously is easier for models with tractable
inference than for intractable ones, because any model parameter learning algorithm requires
inference as a subroutine. For this reason, tractable probabilistic models and especially SPNs
have been widely applied for density estimation (Gens and Domingos 2013; Rooshenas and
Lowd 2014; Rahman and Gogate 2016b, a) (Fig. 3).

We provide a density estimation algorithm for SPGMs that exploits the connections
between GMs and SPNs enabled by the new model. Our algorithm starts with fitting a single
tree GM in the classical way (Chow and Liu 1968) and iteratively inserts sub-optimal trees
that have large weights (in terms of the mutual information of adjacent random variables) and
share as many edges as possible with existing tree components. Each insertion is guaranteed
not to decrease the global log-likelihood, thereby reaching a local optimum. As a result, all
informative edges can be included into the model without compromising computational effi-
ciency, because all shared components are evaluated only once. The former property is not
true if a single tree is only fitted (Chow and Liu 1968) whereas working directly with large
tree mixtures (Meila and Jordan 2000) may easily lead to a substantial fraction of redundant
computations.

Our approach is different from previous methods for learning the structure of SPNs, which
mostly implement recursive partitioning of the variables into (approximately) independent
clusters, to be represented by sum and product nodes (Gens and Domingos 2013). The results
of a comprehensive experimental evaluation will be reported in Sect. 5.

123



Machine Learning

1.4 Related work

Table 1 lists and classifies prior work with a similar scope: introducing representations of
probability distributions that fill to some extent the gap between GMs and SPNs. The caption
of Table 1 lists the properties used to classify related work.

A major aspect of an SPGM is that it encodes a SPN through message passing. This
will be made precise formally in Sect. 3.4. As a consequence, SPGMs relate to Arithmetic
Circuits (Darwiche 2002), which differ from SPNs only in the way connection weights are
represented, and to And/Or Graphs (Dechter and Mateescu 2007), which are structurally
equivalent to Arithmetic Circuits and to SPNs despite employing a slightly different prob-
ablistic formalism—we refer to Dechter and Mateescu (2007, Section 7.6.1) and Poon and
Domingos (2011) Sec. 3 for a discussion of details. As discussed in Sect. 1.2, SPGMs encode
the computational structure for efficient inference like SPNs and related representations, but
also preserve explicitly factorization properties of the underlying distribution due to condi-
tional independence.

Furthermore, the concept of SPGM subtrees described in Sect. 3.3 has a close parallel
in the concept of SPN subnetworks, first described in Gens and Domingos (2012) and then
formalized in Zhao et al. (2016). However, while subnetworks in SPNs represent simple
factorizations of the leaf distributions (which can be represented as graphical models without
edges), subtrees in SPGMs represent tree graphical models.

SPGMs are closely related to hierarchical mixtures of trees (HMT) (Jordan 1994) and
generalize them. Like SPGMs, HMTs allow a compact representation of mixtures of trees
by using a hierarchy of “choice nodes” where different trees are selected at each branch (as
sum nodes do in SPGMs). While in HMTs the choice nodes separate the graph into disjoint
branches and thus an overall tree structure is induced, however, SPGMs enable one to use a
DAG structure where parts of the graph towards the leaves can appear in children of multiple
sum nodes.

The probabilistic model encoded by SPGMs also has a close connection to Gates (Minka
andWinn 2009) and the similarly structuredmixedMarkovmodels (MMM) (Fridman 2003).
Gates enable contextual independence in graphicalmodels by including the possibility of acti-
vating/deactivating factors based on the state of some context variables. Regarding SPGMs,
the inclusion/exclusion of factors in subtrees T (S|Z) depending on values of Z can be seen
as a gating unit that enables a full set of tree factors to be active, which suggest identifying
an SPGM as a Gates model. On the other hand, SPGMs restrict inference to a family of
models in which inference is tractable by construction, while inference in Gates generally is
intractable. In addition, SPGMs allow an interpretation as mixture models, which is not the
case for Gates and MMMs.

Finally, SPGMs are related to several methods that augment GMs by factors with com-
plex structure in order to represent context specific independence (Boutilier et al. 1996;
Mcallester et al. 2004; Chickering et al. 2013; Gogate et al. 2010; Bacchus et al. 2012).
These approaches enable one to represent product of factors like graphical models. How-
ever, the additional model complexity due to contextual independence is simply encapsulated
inside the factors, based on models that are equivalent to SPNs and thus exhibit correspond-
ing limitations (Sect. 1.1). In particular, in connection with distributions that combine both
conditional and contextual independence, the approaches have to resort to a low-level SPN-
like representation. On the other hand, if simpler factors (such as with distributions from the
exponential family) were used instead, the model would lose its expressivenes.
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1.5 Contribution and organization

The contributions of this paper are as follows:

– The introduction of SPGMs,which connect SPNs to graphicalmodels in that they possess
high level conditional independence semantics akin to graphical models. Moreover, they
enable tractable inference and represent context specific dependences and determinism
as SPNs.

– A convergent structure learning algorithm for SPGMs based on mixtures of spanning
trees. This algorithm is deployed in a density estimation task using 20 real-life datasets
(Sect. 5). It obtains best results in 5 datasets over 20 comparing against 8 state of the
art methods, and close performances in the other cases, despite using a straightforward
algorithm based on mixtures of trees. Our method could be straightforwardly improved
by applying the simplification and regularization techniques discussed in Vergari et al.
(2015) on the SPN encoded by our model, which is however out of the focus of this paper.

– The application of SPGMs to the approximation of the distribution of a known but
intractable GM, which we choose in a restricted but relevant family which is easily
amenable by SPGMs. This is the first application of this kind for a model in the family
of SPNs. SPGMs demonstrate strong empirical performances against competing meth-
ods, which highlights the importance of exploiting jointly contextual and conditional
independence.

Structure of the Paper This paper is organized as follows. Section 2 contains notation and
background on graphical models and SPNs. Section 3 describes SPGMs and discusses their
properties, analyzing the dual interpretation as mixture of tree graphical models and as SPN.
Section 4 describes the proposed structure learning algorithm for SPGMs. Section 5 shows
applications of SPGMs exploiting the new connections between GMs and SPNs in practical
settings.

2 Background

2.1 Directed graphical models

The aim of this section is to fix the notation for the rest of the paper, and we assume that the
reader is already familiar with the basic concepts of graphical models. For a more compre-
hensive introduction, see e.g. Wainwright and Jordan (2008).

Let G = (V, E) be a Directed Acyclic Graph (DAG) with vertex set V = {1, 2, . . . , N }
and edge set E . We associate to each vertex s ∈ V a discrete random variable Xs taking
values in the finite domain Δ (Xs), and X = {Xs}s∈V denotes the set of all variables of the
model, taking values in the Cartesian product Δ(X) := Δ (X1) × Δ(X2) × · · · × Δ (X N ).
We formally define the indicator variables already introduced in Sect. 1.1, Eqs. (1.2), (1.3).

Definition 1 (Indicator Variables) Let Y ⊆ X be a subset of variables to which the values
y ∈ Δ(Y ) are assigned: Xv = yv, ∀Xv ∈ Y . Based on the assignment y, we associate with
every variable Xs ∈ X and every value i ∈ Δ(Xs) the indicator variable [Xs]i ∈ {0, 1}
defined by

[Xs]i =
{
1 if (Xs ∈ Y and ys = i) or (Xs /∈ Y ),

0 otherwise.
(2.1)

123



Machine Learning

We denote by pa(s) the parents of s in G: pa(s) = {r ∈ V : (r , s) ∈ E}.
A directed graphical model (Directed GM) on a graph G comprises conditional probabil-

ities Ps,t (Xt |Xs) for every directed edge (s, t) ∈ E and unary probabilities Pr (Xr ) for each
vertex r ∈ V with no parent, and encodes the distribution

P(X) =
∏

r∈V : pa(r)=∅
Pr (Xr )

∏

(s,t)∈E
Ps,t (Xt |Xs) . (2.2)

A directed tree graphical model (Tree GM) is a directed GM where the underlying graph
G = T is a rooted tree T with root r . Since each vertex s has at most one parent pa(s), the
distribution (2.2) reads

T (X) = Pr (Xr )
∏

s∈V : pa(s)�=∅
Ppa(s),s

(
Xs |X pa(s)

)
. (2.3)

Marginalization and Maximum a Posteriori (MAP) inference in general directed GMs has a
cost that is exponential in the treewidth of the triangulated graph obtained by moralization of
the original graph, and thus is intractable for graphs with cycles of non trivial size (Cowell
et al. 2003; Diestel 2006). However, in tree GMs inference can be computed efficiently with
message passing. Let Y ⊆ X be a set of observed variables with assignment y ∈ Δ(Y ). Let
[Xs] j , s ∈ V, j ∈ Δ(Xs) denote indicator variables due to Definition 1. Node t sends a
message μt→s; j to its parent s for each state j ∈ Δ(Xs) given by

μt→s; j =
∑

k∈Δ(Xt )

Ps,t (k| j) [Xt ]k

∏

(t,q)∈E
μq→t;k . (2.4)

Setting C = X \ Y and x = (y, c), marginal probabilities T (Y = y) = ∑
c∈Δ(C) T (Y =

y, C = c) can be computed using the distribution (2.3) by first setting the indicator vari-
ables according to the assignment y (Definition 1), then passing messages for every node
in reverse topological order (from leaves to the root), and finally returning the value of the
root message. Since message passing in trees only requires computing one message per each
node, the procedure has complexity O(|V|Δ2

max ), where Δmax = max{|Δ(Xs)| : s ∈ V} is
the maximum domain size. As a consequence, tree GMs enable tractable marginal infer-
ence. Computing MAP queries in SPNs is however an NP-hard problem, for which several
tractable approximations exist (see Conaty et al. 2017; Mei et al. 2018).

Graphical models conveniently encode conditional independence properties of a distri-
bution. Conditional independence between variables in GMs are induced from the graph by
D-separation (see, e.g., Cowell et al. 2003). In the case of tree graphical models, D-separation
becomes particularly simple: if the path between variables A and B contains C , then A is
conditionally independent from B given C .

It is well-known, however, that another form of independence is not covered well by the
GMs: independence that only holds in certain contexts, i.e. depending on the assignment of
values to a specific subset of so-called context variables.

Definition 2 (Contextual Independence) Variables A and B are said to be contextually inde-
pendent given Z and context z ∈ Δ(Z) if P(A, B|Z = z) = P(A|Z = z)P(B|Z = z).

Remark 1 Notice that conditional independence is a special case of contextual independence
in which P(A, B|Z = z) = P(A|Z = z)P(B|Z = z) would hold for all z ∈ Δ(Z). By
contrast, contextual independence assures that this property only holds for a subset of value
assignments that constitute the so-called context. In particular, different independences can
hold for different values z—see Eq. (1.4b) for an illustration. We refer to Boutilier et al.
(1996) for an in-depth discussion of contextual independence.
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Encoding contextual independence mainly motivates the model class of sum–product net-
works formally introduced in Sect. 2.2.

Mixtures of Trees A mixture of trees is a distribution in the form P(X) = ∑K
k=1 λk Tk (X)

where {Tk (X)}K
k=1 are directed treeGMs and {λk}K

k=1 are real non-negativeweights satisfying∑K
k=1 λk = 1. Inference in mixture models involves taking the weighted sum of the results

of inference in each tree. Hence it has K times the cost of inference in a single tree in the
mixture.

A mixture model can also be expressed through a hidden variable Z with Δ(Z) =
{1, 2, . . . , K } by writing: P(X , Z) = ∏K

k=1 (λk Tk (X))δ(Z=k). Then, it holds that P(X) =∑
z∈Δ(Z) P(X , Z), P(Z = k) = λk and P(X |Z = k) = Tk (X). Note that different values

of Z entail different independences due to different tree structures. It follows that mixtures
of trees represent context-specific independence with context variable Z .

However, the family of conditional independences entailed by mixture models is limited
to using a single context variable Z , and to the selection of different models defined on the
entire set X for each value of Z . In contrast, the model class of sum–product networks to be
introduced in the next section, allows one to model contextual independences depending on
multiple context variables that only affect a subset of X—see, e.g., the example in Sect. 1.1.

2.2 Sum–product networks

Sum–product networks (SPN) were introduced in Poon and Domingos (2011). They are
closely related to Arithmetic Circuits (Darwiche 2003). We adopt the definition of decom-
posable SPNs advocated by Gens and Domingos (2013). The expressiveness of these models
was shown by Peharz (2015) to be equivalent to the expressiveness of non-decomposable
SPNs.

Definition 3 (sum–product network (SPN)) Let X = {X1, . . . , X N } be a collection of random
variables, and let X = X1 ∪ X2 ∪ · · · ∪ X K be a partition of X . A sum–product network
(SPN) S(X) is recursively defined and constructed by the following rule and operations:

1. An indicator variable [Xs] j is a SPN S({Xs}).
2. The product

∏K
k=1 Sk(Xk) is a SPN, with the SPNs {Sk(Xk)}K

k=1 as factors.

3. The weighted sum
∑K

k=1 wk Sk(X) is a SPN, with the SPNs {Sk(X)}K
k=1 as summands

and non-negative weights {wk}K
k=1.

Remark 2 Due to Definition 1, indicator variables that form SPNs require the specification of
an assignment y of a subset of variables Y ⊂ X , in order to bewell-defined. Such assignments
are specified in connection with the evaluation of a SPN, denoted by

S(y) := S(X \ Y , Y = y). (2.5)

Example 1 The SPN shown by Fig. 1b displays the operations due to Definition 3. Overall, it
represents the operations of the sum–product message passing procedure (2.4) with respect
to the graphical model of Fig. 1a, where the indicator variables introduce evidence values
(measurements, observations). Notice that indicator variables are the only variables in this
SPN, and that the probabilities Ps, Ps,t define weights attached to the sum nodes.

SPNs are evaluated in a way similar to message passing in tree graphical models (Eq.
(2.4)). An evaluation S(y) due to (2.5) is computed by first assigning indicator variables in
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S according to y by Definition 1, then evaluating nodes in inverse topological order (leaves
to root) and taking the value of the root node of S.

Poon and Domingos (2011) show that evaluating S(y) corresponds to computing
marginals in some valid probability distribution P(X), namely: S(y) = P(Y = y) =∑

x\y∈Δ(X\Y ) P(x), where x\y denotes assignments to variables in the set X \ Y . In addition,
evaluating S(y) involves evaluating each node in the DAG, i.e. inference at O(E) time and
memory cost is always tractable.

The recursive Definition 3 enable one to build up SPNs by iteratively composing SPNs
using the operations 2 and 3, starting from trivial SPNs as leaves in the form of indicator
variables (rule 1). Clearly, it is not always intuitive to design a SPN by hand, which involves
thinking of the product nodes as factorizations and of the sum nodes as mixtures of the
underlying sub-models. For some particular applications, the SPN structure was designed
and fitted in this way to the particular distribution at hand, cf. Poon and Domingos (2011),
Cheng et al. (2014), Amer and Todorovic (2015). Yet, more generally, SPN approaches
involve some form of automatically learning the structure of the SPN from given data (Gens
and Domingos 2013). Our approach to learning the structure of a SPN is described in Sect. 4.

Besides tractability, the main motivation for considering the model class of SPNs is their
ability to represent contextual independences more expressively than mixture models. A
detailed analysis of the role of contextual independence in SPNs is provided in Sect. 3.
Intuitively, the expressiveness of SPNs comes from interpreting sum nodes as mixtures of the
children SPNs, which allows one to create a hierarchy of mixture models and thus a hierarchy
of contextual independences, by using hidden mixture variables. In addition, sharing the
same children SPNs in different sum nodes allows one to limit the effect of contextual
independences to a subsection of the model, as shown in the example in Sect. 1.1.

3 Sum–product graphical models

This section contains the definition of sum–product graphical models (SPGMs) and a discus-
sion of their properties. In Sect. 3.3 SPGMs are seen as GMs with additional context nodes
representing conditional independence, which translates to a very large hierarchical mixture
of trees. From this, a set of results available for GMs immediately translates to SPGMs. In
Sect. 3.4, SPGMs are seen as a high-level representation of SPNs able to represent conditional
independence compactly.

3.1 Definition

The first step in describing SPGMs is to define the nodes that appear in the underlying graph.

Definition 4 (Sum, Product and Variable Nodes) Let X and Z be disjoint sets of discrete
variables, and let G = (V, E) be a DAG.

– The basic nodes s ∈ V of an SPGM are called SPGM Variable Node (Vnode) and
associated with a variable Xs ∈ X . They are graphically represented as a circle having
Xs as label (Fig. 4, left).

– s ∈ V is called Sum Node, if it represents the corresponding operation indicated by the
symbol ⊕. A Sum Node can be Observed, in which case it is associated with a variable
Zs ∈ Z and represented by the symbol ⊕Zs .
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(a) (b)

(c)

(d) (e)

Fig. 4 Sum–product graphical model example. a An SPGM S (X , Z) with X = {A, B, C, D, E, F} , Z =
{Z1, Z2}. b A subtree of S (in bold). c All subtrees of S represented as graphical models and corresponding
context variables—note the shared parts between the trees. The distribution encoded by S is a mixture over
these subtrees (Sect. 3.3). The same distribution can be represented as aDirectedGM (d) or as a SPN (e), which
highlights the trade off between efficiency and high level representation: the GM version (d) is less expressive
due to the inability of representing contextual independences, while the SPN version (e) is as efficient as the
SPGM but lacks the ability to represent conditional independence compactly
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– s ∈ V is called Product Node, if it represents the corresponding operation indicated by
the symbol ⊗.

In the following, variables Z take the role of context variables according to Definition 2.

Definition 5 (Scope of a node) Let G = (V, E) be a rooted DAG with nodes as in Definition
4, and let s ∈ V .

– The scope of s is the set of all variables associated with nodes in the DAG rooted in s.
– The X-scope of s is the set of all variable associated with Vnodes in the DAG rooted in

s.
– The Z-scope of s is the set of variables associated with Observed SumNodes in the DAG

rooted in s.

Example 2 The scope of the Sum Node associated with Z2 in Fig. 4a is {D, E, F, Z2}, its
Z -scope is {Z2}, and its X -scope is {D, E, F}.
Finally, we define the set of “V-parents” of a Vnode s, which intuitively are the closest Vnode
ancestors of s.

Definition 6 (Vparent) The Vparent set vpa (s) of a Vnode s is the set of all r ∈ V such that
r is a Vnode, and there is a directed path from r to s that does not include any other Vnode.

With the definitions above we can now define SPGMs.

Definition 7 (SPGM)A sum–product graphical model (SPGM)S
(
X , Z |G, {Ps}, {Pst }, {Ws},

{Qs}
)
or more shortly, S (X , Z) or even S, is a rooted DAG G = (V, E) where nodes can

be Sum, Product or Vnodes as in Definition 4. The SPGM is governed by the following
parameters:

1. Pairwise conditional probabilities Pst (Xt |Xs) associated with each Vnode t ∈ V and
each Vparent s ∈ vpa (t).

2. Unary probabilities Ps (Xs) associated with each Vnode s ∈ V : vpa(s) = ∅.
3. Unary probabilities Ws(k) for k = {1, 2, ..., |ch(s)|} associated with each non-Observed

Sum Node s, with value Ws(i) associated with the edge between s and its i-th child
(assuming any order has been fixed).

4. Unary probability Qs(Zs) s.t. Δ(Zs) = {1, 2, ..., |ch(s)|} and associated with each
Observed Sum Node s, with value Qs(i) being associated with the edge between s
and its i-th child.

In addition, each node s ∈ V must satisfy the following conditions:

5. If s is a Vnode (associated with variable Xs), then s has at most one child c, and Xs does
not appear in the scope of c.6

6. If s is a Sum Node, then s has at least one child, and the scopes of all children are the
same set. If the Sum Node is Observed (hence associated with variable Zs), then Zs is
not in the scope of any child.

7. If s is a Product Node, then s has at least one child, and the scopes of all children are
disjoint sets.

6 The one child policy for V-nodes is necessary because the associated message acts on a single node, as
discussed in Sect. 3.2. This simplifies the subsequent propositions without loss in generality, since product
nodes take the role of merging multiple children messages acting on disjoint variable sets.
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An example SPGM is shown in Fig. 4, left. Note that the closeness with both SPNs and GMs,
discussed later, can be already seen from the definition: the last three conditions in definition
are closely related to SPN conditions (Definition 3), whereas the usage of pairwise and unary
probabilities in 1.-4. above connects SPGMs to graphical models. In this sense, SPGMs can
be seen as GMs with added context nodes: the results in the following section show how
several properties of GMs immediately translate to SPGMs.

3.2 Message passing in SPGMs

We define a message passing protocol used to evaluate SPGMs, which is very similar to
message passing in graphical models, with a few crucial differences related to context nodes.
The following definition refers to Definitions 6 and 7.

Definition 8 (Message passing in SPGMs) Let s ∈ V, t ∈ V and let ch(s)k denote the k-th
child of s in a given order. Node t sends a message μt→s; j to each Vparent s ∈ vpa (t) and
for each parent state j ∈ Δ(Xs) according to the following rules:

μt→s; j = ∑|ch(t)|
k=1 [Zt ]k Qt (k)μch(t)k→s; j t is a Sum Node, Observed (3.1a)

μt→s; j = ∑|ch(t)|
k=1 Wt (k)μch(t)k→s; j t is a Sum Node, not-Observed (3.1b)

μt→s; j = ∏
q∈ch(t) μq→s; j t is a Product Node (3.1c)

μt→s; j = ∑
k∈Δ(Xt )

Ps,t (k| j) [Xt ]kμch(t)→t;k t is a Vnode (3.1d)

If vpa (s) is empty, top level messages are computed as:

μt→root = ∑|ch(t)|
k=1 [Zt ]k Qt (k)μch(t)k→root t is a Sum Node, Observed (3.1e)

μt→root = ∑|ch(t)|
k=1 Wt (k)μch(t)k→root; j t is a Sum Node, not-Observed (3.1f)

μt→root = ∏
q∈ch(t) μq→root; j t is a Product Node (3.1g)

μt→root = ∑
k∈Δ(Xt )

Ps (k) [Xt ]kμch(t)→t;k t is a Vnode (3.1h)

Vnodes at the leaves send messages as in Eqs. (3.1d) and (3.1h) after substituting the
incoming messages with 1.

Note that thatmessages are only sent toVnodes (or to a fictitious “root” for top level nodes),
and no message is sent to Sum and Product Nodes. Notice further that Vnode messages
resemble message passing in tree GMs (Eq. (2.4)), which is the base for our subsequent
interpretation of SPGMs as graphical model.

Definition 9 (Evaluation of S (X , Z)) Let Y ⊆ X ∪ Z denote evidence variables with
assignment y ∈ Δ (Y ). The evaluation of an SPGM S with assignment y, written as S (y)

(cf. Remark 2 and (2.5)), is obtained by setting the indicator variables accordingly (Defini-
tion 1), followed by evaluating messages for each node from the leaves to the root due to
Definition 8, and then taking the value of the message produced by the root of S.

Proposition 1 The evaluation of an SPGM S has complexity O(|V|M |Δmax |2), where M is
the maximum number of Vparents for any node in S, and |Δmax | = max{Δ(Xs) : s ∈ V} is
the maximum domain size for any variable in X.
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3.3 Interpretation of SPGMs as graphical models

In this section,we consider and discuss SPGMs as probabilisticmodels.We show that SPGMs
encode large mixtures of trees with shared subparts and provide a high-level representation
of both conditional and contextual independence through D-separation. Proofs can be found
in Appendix A.

3.3.1 Subtrees

We start by introducing subtrees of SPGMs and their properties.

Definition 10 (Subtrees of SPGMs) Let S be an SPGM. A subtree τ(X , Z) (or more shortly
τ ) is an SPGM defined on a subtree of the DAG G underlying S (cf. Definition 7), that is
recursively constructed based on the root of S and the following steps:

– If s is a Vnode or a Product Node, then include in τ all children of s and edges formed
by s and its children. Continues this process for all included nodes.

– If s is a SumNode, then include in τ only the ks-th child and the corresponding connecting
edge, where the choice of ks is arbitrary. Continue this process for all included nodes.

We denote by T (S) the set of all subtrees of S.

Example 3 One of the subtrees of the SPGM depicted in Fig. 4a is shown by Fig. 4b.

Definition 11 (Subtrees τ and indicator variable sets zτ ) Let τ ∈ T (S) be a subtree of S.
The symbol zτ denotes the set of all indicator variables associated with Observed SumNodes
and their corresponding state in the subtree. Specifically, if the ks-th child of an Observed
Sum Node s is included in the tree, then [Zs]ks ∈ zτ .

Example 4 The set zτ for the subtree in Fig. 4b is {[Z1]1, [Z2]0}.

Definition 12 (Context-compatible subtrees) Let Y ⊆ Z be a subset of context variables
with assignment y ∈ Δ(Y ), and let [y] denote the set of indicator variables corresponding to
Y = y. The set of subtrees compatible with context Y = y, written as T (S|y), is the set of
all subtrees τ ∈ T (S) such that [y] ⊆ zτ .

Example 5 The set of subtrees T (S|Z1 = 0, Z2 = 0) for the SPGM in in Fig. 4 is composed
by subtree τ , shown in Fig. 4b, and the subtree obtained by modifying τ through choosing
the alternate child of the lowest sum node.

We now state properties of subtrees that are essential for the subsequent discussion.

Proposition 2 Any subtree τ ∈ T (S) is a tree SPGM.

Proposition 3 The number |T (S)| of subtrees of S grows as O(exp(|E|)).

Proposition 4 The scope of any subtree τ(X , Z) ∈ T (S(X , Z)) is {X , Z}.
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Table 2 Probabilistic models related to an SPGM S(X , Z)

P (X , Z) = ∑

τ∈T (S|Z)

λτ Pτ (X) (3.2)

P(X) = ∑

τ∈T (S)

λτ Pτ (X) (3.3)

Pτ (X) = ∏

r∈Vτ : vpa(r)=∅
Pr (Xr )

∏

s∈Vτ ,t :∈Vτ : s∈vpa(t)
Ps,t (Xt |Xs ) (3.4)

λτ = ∏

s∈Oτ

Qs (ks,τ )
∏

s∈Uτ

Ws (ks,τ ) (3.5)

Symbols Vτ , Oτ and Uτ denote respectively the set of Vnodes, Observed Sum Nodes and Unobserved Sum
Nodes in a subtree τ ∈ T (S). ks,τ denotes the index of the child of s that is included in τ (see Definition
10). Evaluation of S (Definition 9) is equivalent to inference using the distribution (3.2), which is a mixture
distribution (3.3) of tree graphical models (3.4), whose structure depends on the context as specified by the
context variables Z of (3.2)

3.3.2 SPGMs as mixtures of subtrees

In this section, we show that SPGMs can be interpreted as mixtures of trees. Table 2 lists the
notation and probabilistic (sub-)models relevant in this context.

As a first step, we show that inference in a subtree τ (Definition 10) is equivalent to infer-
ence in a tree graphical model of the form (2.3), multiplied for a constant factor determined
by the sum nodes in the subtree.

Proposition 5 Let S = S(X , Z) be an SPGM, and let τ ∈ T (S) be a subtree (Definition 10)
with indicator variables zτ (Definition 11). Then message passing in τ is equivalent to
inference using the distribution

λτ Pτ (X)
∏

[Zs ] j ∈zτ

[Zs] j , (3.6)

where Pτ (X) is a tree graphical model of the form (3.4), λτ > 0 is a scalar term obtained
by multiplying the weights of all sum nodes in τ given by (3.5), and

∏
[Zs ] j ∈zτ

[Zs] j is the
product of all indicator variables in zτ .

The second step consists in noting that S represents the same distribution as the mixture of
all its subtrees.

Proposition 6 Evaluating S(X , Z) is equivalent to evaluating
∑

τ∈T (S) τ (X , Z).

We are now prepared to state the main result of this section.

Proposition 7 Let Yx ⊆ X , Yz ⊆ Z denote evidence variables with assignment yx ∈
Δ(Yx ), yz ∈ Δ(Yz), respectively, and denote by x\y ∈ Δ(X \ Yx ), z\y ∈ Δ(Z \ Yz)

assignments to the remaining variables. Evaluating S = S(X , Z) with assignment (yx , yz)

(Definitions 8 and 9) is equivalent to performing marginal inference with respect to the
distribution (3.2) as follows:

P(Yx = yx , Yz = yz) =
∑

x\y∈Δ(X\Yx )

z\y∈Δ(Y\Yz)

P
(
(X \ Yx ) = x\y, (Y \ Yz) = z\y, Yx = yx , Yz = yz

)
.

(3.7)
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Example 6 All subtrees of the SPGM S(X , Z) shown by Fig. 4a are shown as tree graphical
models by Fig. 4c. The probabilistic model encoded by the SPGM is a mixture of these
subtrees whose structure depends on the context variables Z .

The propositions above entail the crucial result that the probabilistic model of an SPGM is a
mixture of trees where the mixture size grows exponentially with the SPGM size (Definition
10), but in which the inference cost grows only polynomially (Proposition 1). Hence, very
largemixturesmodels can then bemodelled tractably. This property is obtained bymodelling
trees τ ∈ T (S|Z) by combining sets of shared subtrees, selected through context variables
Z ,7 and by computing inference in shared parts only once (cf. the example in Fig. 4).

3.3.3 Conditional and contextual independence

In this section we discuss conditional and contextual independence semantics in SPGMs,
based on their interpretation as mixture model.

Definition 13 (Context-dependent paths) Consider variables A ∈ X , B ∈ X and a context
z ∈ Δ(Z) with Z ⊆ Z .

– The set π(A, B) is the set of all directed paths in S going from a Vnode with label A to
a Vnode with label B.

– The set π(A, B|Z = z) ⊆ π(A, B) is the subset of paths in π(A, B) in which all the
indicator variables over Z (Definition 11) are in state z.

Proposition 8 (D-separation in SPGMs) Consider an SPGM S(X , Z), variables A, B, C ∈
X and a context z ∈ Δ(Z) with Z ⊆ Z. The following properties hold for the probabilistic
model S corresponding to Eq. (3.2):

1. A and B are independent iff π(A, B) = ∅ and π(B, A) = ∅ (there is no directed path
from A to B).

2. A and B are conditionally independent given C if all directed paths π(A, B) and π(B, A)

contain C.
3. A and B are contextually independent given context Z = z iff π(A, B|Z = z) = ∅ and

π(B, A|Z = z) = ∅.
4. A and B are contextually and conditionally independent given C and context Z = z iff

all paths π(A, B|Z = z) and π(B, A|Z = z) contain C.

Example 7 In Fig. 4, A and D are conditionally independent given C ; A and C are condi-
tionally independent given B and context Z1 = 1.

The proposition above provides SPGMswith a high level representation of both contextual
and conditional independence. This is obtained by using different variables sets X and Z for
the two different roles. The set X appears in Vnodes and entails conditional independences
due to D-separation, with close similarity to tree graphical models (Proposition 8). The set
Z enable contextual independence through the selection of tree branches via sum nodes.

Note also that using the set of paths π allows one to infer conditional and contextual
independences without the need to check all the individual subtrees, whose number can be
exponentially larger than the cardinality of π .

7 Remark: unobserved sum nodes simply compute the weighted sum of the children subtrees, hence they are
equivalent to observed sum nodes where the observed variable has been marginalized out.
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3.4 Interpretation as SPN

In this section we discuss SPGMs as a high level, fully general representation of SPNs as
defined by Definition 3.

3.4.1 SPGMs encode SPNs

Proposition 9 The message passing procedure in S (X , Z) encodes a SPN S(X , Z).

As can be seen in the proof (Sect. A.9) and in the example of Fig. 5, each SPGMmessage is
represented by a set of sum nodes in the SPN encoded by an SPGM. A sum node represents
the value of the message corresponding to a certain state of the output variable (namely,
μt→s; j for each j). This entails an increase in representation size (but not in inference cost)
by a |Δmax |2 factor when passing from the SPGM to SPN representation. Note also that the
meaning of nodes as implementing conditional and contextual independence is lost during
the conversion to SPN, since both SPGM Vnode and SPGM sum node messages translate
into SPN sum nodes.

Proposition 10 SPGMs are as expressive as SPNs, in the sense that if a distribution P(X , Z)

can be represented as an SPN with inference cost C, then it can also be represented as an
SPGM with inference cost C and vice versa.

Propositions 9 and10, togetherwith the connections to graphicalmodelsworkedout above,
enable an interpretation of an SPGM S as a high-level representation of the encoded SPN
S where contextual independence is explicit. These results generalize what the introductory
example demonstrated by comparing Fig. 2c with Fig. 2d.

The SPGM representation is more compact than SPNs because it can represent compactly
both contextual (through sum nodes) and conditional independence (through Vnodes). Pass-
ing from an SPGM to the SPN representation entails an increase of number of nodes in the

(a) Observed sum node (Eq. (3.1a)). (b) Unobserved sum node (Eq. (3.1b)).

(c) Product node (Eq. (3.1c)). (d) Vnode (Eq. (3.1d)).

Fig. 5 The message passing equations of SPGMs induce a SPN. For better visibility, sum and product nodes
are assumed to have only two children p, q and with binary variables
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graph due to the expansion of messages by a Npa |Δmax |2 factor (see Definition 8 and Fig. 5).
Note, however, that inference cost remains identical in S and S, as SPGMs are not more
expressive than SPNs.

In contrast to SPGMs, the role of contextual and conditional independence in SPN nodes
is hard to decipher (Fig. 2c) because there is no distinction between nodes created by mes-
sages sent from SPGM sum nodes (implementing contextual independence) and messages
generated from SPGMVnodes (implementing conditional independence), both of which are
represented as a set of SPN sum and product nodes (see Fig. 5). In addition, there is no
distinction between contextual variables and Vnode variables.

It is important to remark that SPGMs are not more compact than SPNs in situations in
which there are no conditional independences that can be expressed by Vnodes. However,
we postulate that the co-occurrence of conditional and contextual independences creates
relevant application scenarios (as shown in Sect. 4) and enables connections between SPNs
and graphical models that can be exploited in future work.

Finally, the interpretation of SPGMs as SPN allows one to translate all methods and
procedures available for SPNs to SPGMs. These include jointly computing the marginals of
all variables by derivation (Darwiche 2003), with time and memory linear cost in the number
of edges in the SPN. In addition, Maximum a Posteriori queries can be computed simply
by substituting the sums in Eq. (3.1) by max operations. We leave the exploration of these
aspects to future work, since they are not central for our present discussion.

Thus, there is generally no drawback in employing the SPGM representation over SPNs,
since SPGMs offer higher level Conditional Independence semantics and a more compact
graphical representation of the distribution while still keeping the full SPN expressivity.
However, one could prefer using the SPN representation when dealing with structure learning
algorithms since the simpler definition of SPNs over SPGMs may be easier to work with,
or simply in order to use one of the many learning algorithms available in literature for this
class of models.

4 Learning SPGMs

In this section, we exploit the relations between graphical models and SPNs embodied by
SPGMs and present an algorithm for learning the structure and parameters of SPGMs.

4.1 Preliminaries

Structure learning denotes the problem of learning both the parameters of a probability
distribution P(X |G) and the structure of the underlying graph G. As both the GM and the
SPN represented by a given SPGM due to Sects. 3.3 and 3.4 involve the same graph, the
problem is well defined from both viewpoints.

Let X = {X j }M
j=1 be a set of M discrete variables. Consider a training set of N i.i.d

samples D = {
xi

}N
i=1 ⊂ Δ(X), used for learning. Formally, we aim to find the graph G∗

governing the distribution P(X) which maximizes the log-likelihood

G∗(X) = argmax
G

LL(G) = argmax
G

N∑

i=1

ln P(xi |G) (4.1)

or the weighted log-likelihood
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G∗(X) = argmax
G

WLL(G, w) = argmax
G

N∑

i=1

wi ln P(xi |G), wi ≥ 0, i = 1, 2, . . . , N .

(4.2)

Learning Tree GMs Learning the structure of GMs generally is NP-hard. For discrete tree
GMs however the maximum likelihood solution T ∗ can be found with cost O(M2N ) using
the Chow–Liu algorithm (Chow and Liu 1968).

Let Xs, Xt ∈ X be discrete random variables with assignments ranging over the sets
Δ(Xs),Δ(Xt ). Let Ns; j and Nst; jk respectively count the number of times Xs appears in
state j and Xs, Xt appear jointly in state j, k in the training set D. Finally, define empirical
probabilities Ps( j) = Ns; j/N and Pst (k| j) = Nst; jk/Ns; j . The Chow–Liu algorithm
comprises the following steps:

1. Compute the mutual information Ist between all variable pairs Xs, Xt ,

Ist =
∑

j∈Δ(Xs )

∑

k∈Δ(Xt )

Ps,t ( j, k) ln
Ps,t ( j, k)

Ps( j)Pt (k)
. (4.3)

2. Create an undirected graphG = (V, E)with adjacencymatrix I = {Ist }s,t∈V and compute
the corresponding Maximum Spanning Tree T .

3. Obtain the directed tree T ∗ by choosing an arbitrary node of T as root and using empirical
probabilities Ps(Xs) and Pst (Xt |Xs) in place of corresponding terms in Eq. (2.2).

If the weighted log-likelihood (4.2) is used as objective function, the algorithm remains
the same. The only difference concerns the use of weighted relative frequencies for defin-
ing the empirical probabilities of (4.3): N̂s, j = 1

N̂w

∑N
i=1 δ(xi

s = j)wi and N̂st, jk =
1

N̂w

∑N
i=1 δ(xi

s = j, xi
t = k)wi , where N̂w = ∑N

i=1 wi and xi
s denotes the state of vari-

able Xs in sample xi .

Learning Mixtures of Trees We consider mixture models of the form P(X) =∑K
k=1 λk Pk(X |θk) with tree GMs Pk (X | θk), k = 1, . . . , K , corresponding parameters

{θk}K
k=1 and non-negative mixture coefficients {λk}K

k=1 satisfying
∑K

k=1 λk = 1.While infer-
ence with mixture models is tractable as long as it is tractable with its individual mixture
components, maximum likelihood generally is NP hard. A local optimum can be found
with expectation–maximization (EM) (Dempster et al. 1977), whose pseudocode is shown
in Algorithm 1. The M-step (line 8) involves the weighted maximum likelihood problem and
determines θk using the Chow–Liu algorithm described above.

It is well known that each EM iteration does not decrease the log-likelihood, hence it
approaches a local optimum.

Learning SPNs Let S(X) denote a SPN, G = (V, E) and graph with edge weights. Both
structure learning (optimizing G and W ) and parameter learning (optimizing W only) are
NP-hard in SPNs (Darwiche 2002). Hence, only algorithms that seek a local optimum can
be devised.

Parameter learning can be performed by directly applying the EM iteration for mixture
models, while efficiently exploiting the interpretation of SPNs as a large mixture model
with shared parts (Desana and Schnörr 2016).
To describe EM for SPNs, which will be used in a later section, we need some additional
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Algorithm 1 EM for Mixture Models(Pk, λk, D)
Input: Initial model P(X |θ) = ∑

k λk Pk (X), training set D

Output: Pk (X), λk locally maximizing
∑N

i=1 ln P(xi |θ)

1: repeat
2: for all k ∈ 1...K , i ∈ 1...N do // E-step

3: γk (i) ← λk Pk (xi )∑
k′ λk′ Pk′ (xi )

4: Γk ← ∑N
i=1 γk (i)

5: wk
i ← γk (i)/Γk

6: for all k ∈ 1...K do // M-step
7: λk ← Γk/N
8: θk ← argmaxθk

∑N
i=1 wk

i ln Pk (xi |θk )

9: until convergence

notation. Consider a node q ∈ V , and let Sq denote the sub-SPN having node q as root.
If q is a Sum Node, then by Definition 3 a weight w

q
j is associated with each edge

(q, j) ∈ E . Note that evaluating S(X = x) entails computing Sq(X = x) for each node
q ∈ V due to the recursive structure of SPNs. Hence S(x) is function of Sq(x). The
derivative ∂S (x)/∂Sq(x) can be computed with a root-to-leaves pass requiring O(|E|)
operations (Poon and Domingos 2011).
With this notation, the EM algorithm for SPNs iterates the following steps:

1. E step. Compute for each Sum Node q ∈ V and each j ∈ ch(q)

β
q
j = w

q
j

N∑

n=1

S
(
xn)−1 ∂S (xn)

∂Sq
S j (xn) . (4.4)

2. M step. Update weights for each Sum Node q ∈ V and each j ∈ ch(q) by w
q
j ←

β
q
j /

∑
(q,i)∈E β

q
i , where ← denotes assignment of a variable.

Since all the required quantities can be computed in O(|E|) operations, EM has a cost
O(|E|) per iteration (the same as an SPN evaluation).
In some SPN applications, weights are shared among different edges (see e.g. Gens and
Domingos 2012; Cheng et al. 2014; Amer and Todorovic 2015). Then the procedure still
maximizes the likelihood locally. Let V ⊆ V be a subset of Sum Nodes with shared
weights, in the sense that the set of weights {wq

j } j∈ch(q) associated with incident edges

(q, j) ∈ E is the same for each node q ∈ V . The EM update of a shared weight wq
j reads

(cf. Desana and Schnörr 2016)

w
q
j ←

∑
q∈V β

q
j

∑
i
∑

q∈V β
q
i

, (q, j) ∈ E . (4.5)

Structure learning can be more conveniently done with SPNs than with graphical mod-
els, because tractability of inference is always guaranteed and hence not a limiting factor
for learning the model’s structure. Several greedy algorithms for structure learning were
devised (see Sect. 5), which established SPNs as state of the art models for the estimation
of probability distributions. We point out that most approaches employ a recursive proce-
dure in which children of sum and Product Nodes are generated on disjoint subsets of the
dataset, thus obtaining a tree SPN, while SPNs can be more generally defined on DAGs.
Recently, Rahman and Gogate (2016b) discussed the limitations of using tree structured
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SPNs as opposed to DAGs, and addressed the problem of post-processing SPNs obtained
with previous methods, by merging similar branches so as to obtain a DAG.

4.2 Parameter learning in SPGMs

Parameter learning in an SPGM S can be done by interpreting S as a SPN encoded bymessage
passing (Proposition 10) and directly using any available SPN parameter learning method
(these include EM seen in Sect. 4.1 and others (Gens and Domingos 2012)). Hence, we do
not discuss this aspect further.

Note however that Sum Node messages (Definition 8) require weight sharing between the
SPN Sum Nodes. EM for SPNs with weight tying is addressed in Sect. 4.1.

4.3 Structure learning in SPGMs

Structure learning is an important aspect of tractable inference models, thus it is crucial to
provide a structure learning algorithm for SPGMs. Furthermore, it is useful to provide a first
example of how the new connections between GMs and SPNs can be exploited in practice.

We propose a structure learning algorithm based on the Chow–Liu algorithm for trees
(Sect. 2.1). We start by observing that edges with large Mutual Information can be excluded
from the Chow–Liu tree, thus losing relevant correlations between variables (Fig. 3b, left).
An approach to address this problem, inspired byMeila and Jordan (2000), is to use a mixture
of spanning trees such that the k-best edges are included in at least one tree. We anticipate
that the trees obtained in this way share a large part of their structure (Fig. 3c), hence the
mixture can be implemented efficiently as an SPGM.

Algorithm Description We describe next LearnSPGM, a procedure to learn structure and
parameters of an SPGMs which locally maximizes the weighted log-likelihood (4.2). We use
the notation of Sect. 4.1.
The algorithm learns an SPGM S in three main steps (pseudocode in Algorithm 2). First, S is
initialized to encode the Chow–Liu tree T ∗ (Fig. 6a)—that is, T (S) includes a single subtree
(Definition 10) τ∗ corresponding to T ∗. Then, we order each edge (s, t) ∈ E which was not
included in T ∗ by decreasing mutual information Ist , collecting them in the ordered set Q.
Finally, we insert each edge (s, t) ∈ Q in S with the sub-procedure InsertEdge described
below, until log-likelihood convergence or a given maximum size of S is reached.

InsertEdge(S, T ∗, (s, t)) comprises three steps:

1. Compute themaximumspanning tree overGwhich includes (s, t), denoted asTst . Finding
Tst can be done efficiently by first inserting edge (s, t) in T ∗, which creates a cycle C
(Fig. 6a), then removing the minimum edge in C except (s, t) (Fig. 6b). The potentials in
Tst are set as empirical probabilities Pst according to the Chow–Liu algorithm. Notice
that trees T ∗ and Tst have identical structure up to C and can then be written as T ∗ =
T 1 ∪ C ′ ∪ T 2 and Tst = T 1 ∪ C ′′ ∪ T 2, where C ′ = T ∗ ∩ C, C ′′ = Tst ∩ C.

2. Add Tst to the set T (S) by sharing the structure in common with T ∗ (T 1 and T 2 above).
To do this, first identify the edge (s, t) s.t. s ∈ T 1 and t ∈ C ′

(e.g. (B, C) in Fig. 6b).
Then, create a non-Observed Sum Node q , placing it between s and t , unless such node
is already present due to previous iterations (see q in Fig. 6c).

At this point, one of the child branches of q contains C ′ ∪ T 2. We now add a new
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(a) (b) (c)

Fig. 6 Graphical representation of edge insertion. For simplicity, we start with an SPGM representing a single
MST. a Inserting (D, E) creates a cycle (blue). b Removing the minimum edge in the cycle (except (D, E))
gives the MST containing (D, E). c This MST is inserted into S sharing the common parts (Color figure
online)

child branch containing C ′′
(Fig. 6c). Finally, we connect nodes in C ′′

to their descendants
in the shared section T 2. The insertion maintains S valid since the X and Z -scope of
any node in S does not change. Furthermore, inserting C ′′

in this way we add a subtree
representing Tst in T (S), selected by choosing the child of s corresponding to C ′′

.
3. Update the weights of incoming edges of the Sum Node q by using Eq. 4.5 on the set of

SPN nodes generated by q with Eq.(3.1a) during the conversion to SPN (see Proposition
9).

Convergence It is possible to prove that the log-likelihood does not decrease at each
insertion, and thus the initial Chow–Liu tree provides a lower bound for the log-likelihood.

Proposition 11 Each application of InsertEdge does not decrease the log-likelihood of the
SPGM (Eq. 4.2).

Proposition 12 The Chow Liu tree log-likelihood is a lower bound for the log-likelihood of
an SPGM obtained with LearnSPGM.

Complexity Steps 1 and 2 of InsertEdge are inexpensive, only requiring a number of
operations linear in the number of edges of theChowLiu tree T ∗. The per iteration complexity
of InsertEdge is dominated by step 3, in which the computation of weights through Eq. 4.5
requires evaluating the SPGM for the whole dataset. Although evaluation of an SPGM is
efficient (see Proposition 1), this can still be too costly for large datasets.We found empirically
that assigning weights proportionally to the mutual information of the inserted edge provides
a reliable empirical alternative, which we use in experiments.

4.4 Learningmixtures of SPGMs

LearnSPGM is apt at representing data belonging to a single cluster, since (similarly to
Chow–Liu trees) the edge weights are computed from a single mutual information matrix
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Algorithm 2 LearnSPGM
(
D = {xi }, {wi })

Input: samples D, optional sample weights w

Output: SPGM S approx. maximizing
∑N

i=1 wi ln P(xi |θ)

1: I ← Mutual Information of D with weights w

2: T ∗ ← Chow–Liu tree with connection matrix I

3: S ←SPGM representing T ∗
4: Q ← queue of edges (s, t) /∈ E ordered by decreasing Ist
5: repeat
6: InsertEdge

(
S, T ∗, Q.pop()

)

7: AssignW eights to the modified Sum Node
8: until convergence or max size reached

Algorithm 3 EM for Mixtures of SPGMs(Sk, λk, D)
Input: Initial model P(X) = ∑

k λkSk (X), samples D

Output: Updated Sk (X), λk locally maximizing
∑N

i=1 wi ln P(xi |θ)

1: repeat
2: for all k ∈ 1...K , i ∈ 1...N do // E-step

3: γk (i) ← λkSk (xi )∑
k′ λk′Sk′ (xi )

4: Γk ← ∑N
i=1 γk (i)

5: wk
i ← γk (i)/Γk

6: for all k ∈ 1...K do // M-step
7: λk ← Γk/N
8: Sk ← LearnSPGM(D, wk )
9: if WLL(Sk , wk ) ≥ WLL(Sk , wk ) then
10: Sk ← Sk

11: until convergence

estimated on the whole dataset. To model densities with natural clusters one can use mixtures
of SPGMs trained with EM. We write a mixture of SPGMs in the form

∑K
k=1 λk Pk(X |θk),

where each term Pk(X |θk) is the probability distribution encoded by an SPGM Sk (Eq. 3.3)
governed by parameters θk = {Gk, {Pk

st }, {W k
s }, {Qk

s }} (Definition 7).
EMcanbe adopted for anymixturemodel as long as theweightedmaximum log-likelihood

in the M-step can be solved (Algorithm 1 line 8). In addition, Neal and Hinton (1998) show
that EM converges as long as the M-step can be at least partially performed, namely if it
possible to find parameters θk such that (see Eq. 4.2)

WLL(Pk(X |θk), w
k) ≥ WLL(Pk(X |θk), wk). (4.6)

These observation suggest using to use LearnSPGM to approximately solve the weighted
maximum likelihood problem. However, while LearnSPGM ensures that the Chow–Liu tree
lower bound always increases, the actual weighted log-likelihood can decrease. To satisfy
Eq. (4.6), we employ the simple shortcut of rejecting updates of component Sk when Eq.
(4.6) is not satisfied for θk

new (Algorithm 3 line 9). Hence, the following trivially follows:

Proposition 13 The log-likelihood of the training set does not decrease at each iteration of
EM for Mixtures of SPGMs (Algorithm 3).
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5 Exploiting connections betweenGMs and SPNs: example applications

The key contribution of SPGMs consists in being able to exploit jointly properties of SPNs
and GMs, with the aim of promoting joint research in the two fields. It is then of utmost
importance to demonstrate preliminary ways in which these connections can be exploited in
practice.

We present here two applications: Firstly, an application of the mixture of tree based
structure learning algorithmof Sect. 5.1 to 20 realworld datasets for density estimation,which
are currently dominated by SPNs. Secondly, the approximation of a known but intractable
GM, chosen in a restricted model class which is easily amenable with SPGMs, which is a
new field of application for methods based on SPNs.

In both cases we obtain performances close to or surpassing state-of-the-art models. More
interestingly, these results show that the proposed method enables viable and novel applica-
tions, which should be fully explored in future research. We propose detailed directions of
improvement alongside the description of the experiments.

5.1 Density estimation

We evaluate structure learning algorithm for SPGMs proposed in Sect. 4 by comparing it on
20 real world datasets for density estimation against state-of-the-art methods and baseline
methods. The datasets, described in Lowd and Domingos (2012), contain a number of vari-
ables ranging from 16 to 1556 and a number of training examples ranging from 1.6K to 291K
(Table 3). All variables are binary. The methods we compare to are in the following denoted
with the following abbreviations: MCNets (Mixtures of CutsetNets, Rahman et al. (2014));
ECNet (Ensembles of CutsetNets, Rahman and Gogate (2016a)); MergeSPN, Rahman and
Gogate (2016b); ID-SPN, Rooshenas and Lowd (2014); SPN, Gens and Domingos (2013);
ACMN, Lowd and Domingos (2012), MT (Mixtures of Trees, Meila and Jordan (2000));
LTM (Latent Tree Models, Choi et al. (2011)).

Methodology We found empirically that the best results were obtained using a two phase
procedure: first we run EM updates with LearnSPGM on both structure and parameters until
validation log-likelihood convergence, then we fine-tune using EM for SPNs on parameters
only until convergence.

We fix the following hyperparameters by grid search on a validation set: maximumnumber
of edge insertions {10, 20, 60, 120, 400, 1000, 5000},mixture size {5, 8, 10, 20, 100, 200, 400},
uniform prior {10−1, 10−2, 10−3, 10−9} (used for mutual information and sum weights). In
all our experiments, SPGMs started to overfit at around 200 mixture models; the best models
based on validation LL have between 5 and 100 components. Hence, we stopped our search
at 400.

LearnSPGM was implemented in C++ and is available at the following URL: https://
github.com/ocarinamat/SumProductGraphMod, which also contains the setup to reproduce
this experiment. The average learning time per dataset is 42min on an Intel Core i5-4570
CPU with 16 GB RAM. Inference takes up to one minute on the largest dataset.

Results analysis Test set log-likelihood results averaged over 5 random parameters initial-
izations are shown in Table 3.8 Our method performs best between all compared models in

8 Standard deviation results can be found in Table 6.
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5 cases out of the 20 tested datasets. For comparison, ECNets are best in 4 cases, MergeSPN
in 7, MCnets in 1, Vergari et al. (2015) in 5.

Remarkably, these results were obtained with our relatively simple structure algorithm
based on mixtures of trees, and they could be straightforwardly improved by applying the
simplification and regularization techniques discussed in Vergari et al. (2015) on the SPN
encoded by our model. Further possible improvements consist in using the ensemble learning
as in ECNets rather than EM, as discussed in MCnets, or regularizing the encoded SPN by
merging branches as in MergeSPN.

Improving the empirical performances is out of the focus of this paper, which consists of
representation properties of the model. Hence, we leave these extensions to future applied
work.

Finally, notice that SPGMs—that are large mixtures of trees—always outperform both
standard mixture of trees and Latent Tree Models (Choi et al. 2011). We hypothesize that
sharing tree structure helps preventing overfitting, which is the key limiting factor in these
models (cf. also the analysis in Section).

5.2 Approximating a layered directed graphical model

In this section we use SPGMs for approximating a known but intractable graphical model G
by a large mixture of its spanning trees. This is a novel approach since, to the best of our
knowledge, SPNs have never been used to approximate a given GM.

This application is motivated by the observation that mixtures of spanning trees have been
used extensively to approximate intractable graphs (see e.g. Meila and Jordan 2000; Bach
and Jordan 2001; Pletscher et al. 2009). A further example is the success of mixtures of
chain graphs for approximate inference in the Tree-Reweighted Belief Propagation (TRW)
framework (see Kolmogorov 2006). SPGMs seem to be a very promising architecture to
apply to this framework due to their ability to efficiently represent very large mixtures of
trees due to shared parts and to encode knowledge about the original graph (as we will
see).

For simplicity, we concentrate on a class of directed GMs denoted layered GMs, for
which it is easy to obtain a mixture of spanning trees amenable within the SPGM frame-
work. Extending such an approach to arbitrary GMs is a challenging but very interesting
research problem outside of the scope of this paper, and it should be the subject of further
research.

We define a layered GM as a directed GM composed by successive layers of variables,
where variables in one layer connect only to variables in the next or previous one. This class
of distributions is relevant in applications: it includes Factorial Hidden Markov Models,
Multiscale Quadtrees (Wainwright and Jordan (2008)) and Deep Belief Networks (Hinton
and Osindero (2006)). It is straightforward to show that inference cost in layered GMs is
worst case exponential in the layer size and it is therefore intractable.

A spanning tree can be trivially taken from a layered distribution by allowing a single
variable to have children at each layer (Fig. 7b). It is easy to see that if two trees T1 and T2
taken in this way differ only by the choice of which variable has children, then their structure
is largely shared.

The mixture of many spanning trees with this structure can be modeled with the SPGM
shown in Fig. 8: notice that any subtree in this model corresponds to a tree in the form of
Fig. 7, right, hence the SPGM encodes the mixture of all such trees (Proposition 7).

123



Machine Learning

(a) (b)

(d)(c)

Fig. 7 A mixture of spanning trees with shared subparts obtained from a layered directed graphical model as
described in Sect. 5.2. Variable Xl

k denotes the k-th variable at layer l

Fig. 8 First two layers of an SPGM encoding a mixture of spanning trees in a layered model with K variables
per layer. Xl

k denotes the k-th variable at layer l
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Table 5 Comparison of Log
Likelihood results for the
experiment in Sect. 5.2 between
SPGMs and two recent SPN
learning algorithms (see Table 3)

SPGM MergeSPN ID-SPN ACMN SPN

Train − 13.3 − 17.7 − 19.7 − 21.7 − 22.1

Test − 15.1 − 19.3 − 21.6 − 23.9 − 24.2

We compare against methods for which an implementation is publicly
available

In addition, we can also allow more than one variable in a layer to have children (Fig. 7c).
This can be done by creating a clique by merging variables having children into a single
composite variable: e.g., if two variables A and B have children at a certain layer, then we
create a Vnode associated with a new variable {A, B} with values in Δ(A) × Δ(B), which
merges the individual variables (Fig. 7d). The resulting model can be encoded by an SPGM
where nodes represent cliques, which is a straightforward extension of standard SPGMs.

The resulting SPGM efficiently encodes a very large mixture of trees with shared parts: if
the model contain L layers, and there are C choices of variables with children at each layer,
then the number of subtrees grows exponentially as C L . Crucially, despite the mixture being
very large inference remains tractable due to sharing of tree subparts (Proposition 1).

Empirical Evaluation We tested the SPGMobtained as described above on a layeredmixture
model with 10 layers, each containing 6 binary variables. We took a set of samples using
ancestral sampling from the original GM (ancestor sampling is always tractable in directed
GMs) and divided them into fixed training and test sets. We then maximized the training set
Log Likelihood on our SPGM via EM for SPNs, as described in Peharz (2015). We always
ran the algorithm until convergence (no early stopping is used).

We test SPGM models using a different number of choices of active variables per layer
(i.e. the number of sum node children), which results in an increasingly larger number of
trees in the resulting mixture model. Choosing from 1 to 8 possible active variables per layer,
the mixture size ranges from 1 to 810, while always being tractable: inference takes about
0.2 seconds for the largest mixture model on a Intel Core i5-4570 CPU, for our unoptimized
MATLAB implementation. We also test using different numbers of variables with children
at each layer (1,2 and 4).

We first compared against methods based on tree GMs (Table 4), namely optimal spanning
trees (Chow and Liu 1968), mixture of trees trained with EM (Meila and Jordan 2000), and
Latent Tree Models (Choi et al. 2011). We report separate results depending on the number
of trees in the mixture, in case a mixture is used. Then, we compared against state-of-the-
art density estimation methods for SPNs (Table 5)—please refer to Sect. 5.1 for the used
abbreviations.

SPGMs amply outperform competing methods in terms of test set LL. In particular, they
do not seem to suffer from the overfitting problem that plagues mixtures of tree even for
moderately large mixture sizes: we obtained our best results for mixture of 610 components.

This is a strong indicator that the ability of SPGMs to embed knowledge about the graph
structure into the model (despite only use the connectivity and not the weights), which is
lacking in SPNs, enables a better estimation of the underlying distribution.

The tasks of deriving an SPGM able to approximate a given, generic graph, and the task of
providing an algorithm that directly optimizes the parameters by e.g. direct minimization of
the Kullback-Leibler divergence between the two graphs, are challenging research problems
beyond the scope of this paper. However, they consitute a relevant direction of future research
where the new connections between SPNs and GMs could be exploited. In particular, a
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promising research direction consists in using SPGMs to replace the simple mixtures of
chain graphs used for approximate inference in the Tree-Reweighted Belief Propagation
(TRW) framework (see Kolmogorov 2006) by extending the guaranteed improvement of the
approximation bounds to SPGMs.

6 Conclusions and future work

We introduced sum–product graphical model (SPGM), a new architecture bridging sum–
product networks (SPNs) and Graphical Models (GMs) by inheriting the expressivity of
SPNs and the high level probabilistic semantics of GMs.

We showed that SPGMs enable one to jointly exploit properties of the two families ofmod-
els. These new connections were exploited in two preliminary applications: first, a structure
learning algorithm extending the mixture of trees approach and obtaining results comparable
with the state of the art in density estimation, and secondly, by a procedure to approximate
a known but untractable GM chosen from the class of layered models, which is a novel
application area for SPNs.

The theoretical and practical results demonstrate that jointly exploiting properties of SPNs
and GMs is an interesting direction of future research. A particularly interesting consists
in the generalization of the approximation of intractable GMs explored in the preliminary
application, by using very large but tractable mixture models implemented by SPGMs.

Acknowledgements Support of the German Science Foundation, Grant GRK 1653, is gratefully acknowl-
edged.

A Proofs

A.1 Proposition 1

Every message is evaluated exactly once according to Definition 8. Each of the |V| nodes
sends at most M messages (one for each Vparent), and each message has size |Δmax |2 (one
value per every state of sending and receiving node). ��

A.2 Proposition 2

Only Product Nodes in τ ∈ T (S) can have multiple children, since Vnodes have a single
child by Definition 7, case 5, and Sum Nodes have a single child in τ by Definition 10.
Children of Product Nodes have disjoint graphs by Definition 7, case 7. Therefore τ contains
no cycles. A rooted graph with no cycles is a tree. ��

A.3 Proposition 3.

The proposition can be proven by inspection, considering an SPGM S built by stacking units
as follows: Sum Node s1 (the root of S) is associated with observed variable Z1 and has as
children the set of Vnodes V1 = {v1,1, v1,2, . . . , v1,M }. All the nodes in V1 have a common
single child, which is the sum node s2. In turn, s2 has the same structure as s1, having Vnode
children V1 = {v2,1, v2,2, . . . , v2,M } which are connected to a single child s3, and so forth
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for Sum Nodes s3, s4, . . . , sK . The number of edges in S is 2M K . On the other hand, a
different subtree can be obtained for each choice of active child at each sum node. There is
a combinatorial number of such choices, thus the number of different subtrees is K M . ��

A.4 Proposition 4

A subtree is obtained with Definition 10 by iteratively choosing only one child of each sum
node. However, each child of a sum node has the same scope, due to Definition 7, condition
6. Hence, taking only one child one obtains the same scope as taking all the children. ��

A.5 Proposition 5.

Consider a subtree τ ∈ T (S) as in Definition 10.
Let us first consider messages generated by sum nodes s. Considering that s has only one

child ch(s) in τ (for Definition 10), corresponding to indicator variable [Zs]ks , and applying
Eqs. 3.1, the messages for observed and unobserved sum nodes are as follows:

μst; j = [Zs]ks Qs(ks)μch(s),t; j , Observed Sum Node, (A.1)

μst; j = Ws(ks)μch(s)k ,t; j , Unobserved Sum Node. (A.2)

Hence sum messages contribute only by introducing a multiplicative term [Zs]ks Qs(ks) or
Ws(ks). Now, all variables in the set Z appear in τ (Proposition 4). Hence, the sum nodes
together contribute with the following multiplicative term:

∏

s∈O(τ )

Qs(ks,τ )
∏

s∈U (τ )

Ws(ks,τ )
∏

[Zs ]ks ∈zτ

[Zs]ks = λτ

∏

[Zs ]ks ∈zτ

[Zs]ks . (A.3)

From this it follows that message passing in τ is equivalent to message passing in an SPGM
τ obtained by discarding all the sum nodes from τ , followed by multiplying the resulting
messages for Eq. A.3.

Consecutive Product Nodes in τ can be merged by adding the respective children to the
parent Product Node. In addition, between each sequence Vnode-Vnode in τ we can insert a
product node with a single child. Thus, we can take τ as containing only Vnodes and Product
Nodes, such that the children of Product Nodes are Vnodes. Putting together Eqs. 3.1c and
3.1d, the message passed by each Vnode t to s ∈ vpa(t) is:

μt→s; j =
∑

k∈Δ(Xt )

Ps,t (k| j) [Xt ]k

∏

q∈ch(ch(c))

μq→t; j . (A.4)

Notice that the input messages are generated from the grandchildren of t , that is the children
of the Product Node child of t . This corresponds to the message passed by variables in a tree
graphical model obtained by removing the Product Nodes from τ and attaching the children
of Product Nodes (here, elements q ∈ ch (ch(c))) as children of their parent Vnode (here, t),
which can be seen by noticing the equivalence to Eq. (2.4). This tree GM can be immediately
identified as Pτ (X). Note also that if the root of τ is a Product Node, then Pτ (X) represents
a forest of trees, one for each child of the root Product Node.

The proof is concluded reintroducing the multiplicative factor in Eq. A.3 discarded when
passing from τ to τ . ��
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A.6 Proposition 6.

First, consider an SPGM S(X , Z) defined over G = V, E . Let us take a node t ∈ V and let
St (Xt , Zt ) denote the sub-SPGM rooted in t . Suppose that St satisfies the proposition and
hence it can be written as:

St =
∑

τt ∈T (St )

τt . (A.5)

Let us consider messages sent from node t to a Vparent s ∈ vpa(t) (Definition 6), and note
that if form (A.5) is satisfied then messages take the form

μt→s; j =
∑

τt ∈T (St )

μroot(τt )→s; j , (A.6)

where root(τt )) denotes the message sent from the root of subtree τt to s. Vice versa, if form
(A.6) is satisfied then St can be written as Eq. (A.5). This extends also to the case vpa(t) = ∅,
in which messages are sent to a fictitious root node (Definition 8).

The proposition can now be proved by induction. First, the base case: sub-SPGMs rooted
at Vnodes leaves trivially assume form (A.5), and hence also the form (A.6). Then, the
inductive step: Lemma (1) can be applied recursively for all nodes from the leaves to the
root. Hence, S assumes the form of Eq. (A.6) and thus also of (A.5). ��
Lemma 1 Consider a node t ∈ V . Suppose that the messages sent from the children of node
t ∈ V are in the form (A.6). Then, each message sent from s also assumes the form A.6.

Let us suppose, for simplicity, that t has only two children p and q—the extension to
the general case is straightforward. We distinguish the three cases of t being a Sum Node, a
Product Node or a Vnode.

– Suppose t is an Observed SumNode with weights [Qt (0), Qt (1)] and indicator variables
[Zt ]0 and [Zt ]1 associated with each child. By Eq. (A.2), the children send messages
to their Vparent s, and since input message are in the form (A.6), t sends the following
message:

μt→s; j = Qt (0)[Zt ]0
∑

τp∈T (Sp)

μroot(τp)→s; j + Qt (1)[Zt ]1
∑

τq∈T (Sq )

μroot(τq )→s; j .

This is again in the formA.6. This can be seen because each term in the sum is in the form
Qt (0)[Zt ]0T (Sp) which corresponds to message passed from the subtree τt ∈ T (St )

obtained choosing child p (in this case). It is easy to see that terms corresponding to each
subtrees of t are present.

– If t is an Unobserved Sum Node the discussion is identical to the point above.
– If t is a Product Node, then the children send messages to their Vparent s, and since input

message are in the form (A.6), t sends the following message:

μt→s; j =
( ∑

τp∈T (Sp)

μroot(τp)→s; j

)( ∑

τq∈T (Sq )

μroot(τq )→s; j

)

=
∑

(τp,τq )∈T (Sp)×T (Sq )

μroot(τp)→s; jμroot(τq )→s; j .

Now, μroot(τp)→s; jμroot(τq )→s; j can be seen as the message generated by a particular
subtrees of t , and thus node μt→s; j is in the form (A.6).
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– If t is a Vnode, then it has a single child p by Definition 7, sending messages to t . Thus,
the input message is in the form (A.6), and t sends the following message:

μt→s; j =
∑

k∈Δ(Xt )

Ps,t (k| j) [Xt ]k

∑

τp∈T (Sp)

μroot(τp)→t;k

=
∑

τp∈T (Sp)

∑

k∈Δ(Xt )

Ps,t (k| j) [Xt ]kμroot(τp)→t;k .

Let us analyze a term of the sum for each fixed τp . Such term corresponds to the root
message of an SPGM S obtained taking τp and adding the Vnode t as parent of p (due
to Eq. (3.1d)). But S obtained in this form is a subtree of t by Definition 10. Therefore,
taking the sum

∑
τp∈T (Sp) corresponds to summing over messages sent by all subtrees

of t , in the form (A.6). ��

A.7 Proposition 7

Due to Propositions 5 and 6, the evaluation of S corresponds to performing message passing
(Eq. 2.4) with the mixture distribution

∑

τ∈T (S)

( ∏

[Zs ] j ∈zτ

[Zs] j

)

λτ Pτ (X) .

We now note that the term
(∏

[Zs ] j ∈zτ
[Zs] j

)
attains the value 1 only for the subset of trees

compatible with the assignment Yz = yz and 0 otherwise (since some indicator in the product
is 0), that is for subtrees in the set T (S|Yz = yz) (Definition 12). Therefore, the sum can be
rewritten as

∑
τ∈T (S|Z), and the indicator variables (with value 1) can be removed, which

results in (3.2). The proof is concluded noting that computing message passing in a mixture
of trees with assignment yx , yz corresponds to computing marginals P(Yx = yx , Yz = yz)

in the corresponding distribution (Sect. 2.1), hence Eq. (3.7) follows. ��

A.8 Proposition 8

Follows from results in Meila and Jordan (2000), section 3. In a mixture of trees, conditional
independence of A, B given C holds iff for every tree in the mixture the path between A
and B contains C . If D-separation holds for all paths in π(B, A|z) then it holds for all the
subtrees compatible with Z = z. But P(X , Z) is the mixture of all subtrees compatible with
assignment z (Eq. (3.2)). Hence the result follows. ��

A.9 Proposition 9

The proposition can be proven by induction showing that if input messages represent valid
SPNs, then also the output SPGM messages are SPNs (see Fig. 5). Formally, it is sufficient
to notice that the hypothesis of Lemma 2 below is trivially true for leaf messages (inductive
hypothesis), hence the lemma can be inductively applied for all nodes up to the root. ��
Lemma 2 Consider nodes t ∈ V and s ∈ vpa(t), and let Xt and Zt respectively denote the
X scope and Z scope of node t ∈ V . If the message μt→s; j encodes a SPN St; j (Xt , Zt ),
then the message μs→r;i sent from node s to any node r ∈ vpa(s) also implements a SPN
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Sr;i (Xs, Zs). This also holds when vpa(s) = ∅, where r is simply replaced by the fictitious
root node (Definition 8).

Proof Consider the message passing Eq. 3.1, referring to Fig. 5 for visualization. We distin-
guish the case of node t being a Sum, Product and Vnode.

– SumNodes (Observed and non-Observed). First, we note that every child of a SumNode
has the same scope Xs, Zs (for Definition 7 condition 6). Employing the hypothesis, the
generated message is:

μt→s; j =
∑|ch(t)|

k=1
[Zt ]k Qt (k)St; j

(
Xt , Zt) , t is a Sum Node, Observed, (A.7)

μt→s; j =
∑|ch(t)|

k=1
Wt (k)St; j

(
Xt , Zt) , t is a Sum Node, not-Observed. (A.8)

It is straightforward to see that both equations represent valid SPNs: the sum
∑|ch(t)|

k=1
becomes the root SPN Sum Node with non-negative weights Qt (k) and Wt (k) respec-
tively, and its children are SPNs having the same scope (in the form [Zt ]k ⊗ S j

(
Xt , Zt

)

for Eq. A.7 and in the form S j
(
Xt , Zt

)
for Eq. A.8). Note that Zt ∩ Zt = ∅ for Definition

7 condition 6, therefore condition 3 in Definition 3 is satisfied.
– Product Nodes. Applying the hypothesis to input messages, Eq. 3.1c becomes:

μt→s; j =
∏

q∈ch(t)

Sq; j
(
Xq , Zq)

.

This represents a valid SPN with a Product Node as root since the children node’s scopes
are disjoint (for Definition 7 condition 7), and thus condition 2 in Definition 3 is satisfied.

– Vnodes. Applying the hypothesis to input messages, Eq. 3.1d becomes:

μt→s; j =
∑

k∈Δ(Xt )

Ps,t (k| j) [Xt ]k Sch(t);k
(

Xch(t), Zch(t)
)

.

This represents a valid SPNwith a SumNode
∑

k∈Δ(Xt )
as root. To see this, first note that

terms Ps,t (k| j) can be interpreted as weights. The Sum Node is connected to children
SPNs in the form [Xt ]k⊗Sch(t);k

(
Xch(t), Zch(t)

)
, which are valid SPNs since Xi ∩Xs = ∅

and thus condition 2 in Definition 3 is satisfied. In addition all child SPNs have the same
scope for Definition 7 condition 6, hence condition 3 in Definition 3 is satisfied for the
Sum Node.

��

A.10 Proposition 10

Proof Sketch Firstly, due to Proposition 9, SPNs are at least as expressive as SPGMs since
they encode a SPN via message passing. Secondly, any SPN S can be transformed into
an equivalent SPGM S by simply replacing the indicator variable [A]a in SPN leaves with
Vnodes s associatedwith variable A andunary probability Ps(A) = [A]a (notice that pairwise
probabilities do not appear). It is immediate to see that by doing so all the conditions of
Definition 7 are satisfied, and evaluating Swith message passing yields S. As a consequence,
SPGMs are at least as expressive as SPNs.
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Table 6 Standard deviations corresponding to the SPGM results of Table 3

NLTCS MSNBC KDDCup2K Plants Audio Jester Netflix Accidents Retail Pumsb-star

0.0042 0.0076 0.0037 0.0802 0.1326 0.3125 0.3740 0.1626 0.0752 0.0234

DNA Kosarek MSWeb Book EachMovie WebKB Reuters-52 20Newsgrp. BBC Ad

0.6155 0.1002 0.0084 0.3242 0.4526 1.6230 1.3238 3.5572 4.1047 0.0425

A.11 Proposition 11

InsertEdge adds the branch C ′ ∪ T 2 to Sum Node q , hence it adds a new incident edge and
a corresponding weight to q . We now note that computing weight values using Eq. (4.5)
(step 3 in InsertEdge above) allows one to find the optimal weights of edges incoming to
q considering the other edges fixed, as shown e.g. in Desana and Schnörr (2016).9 Since
the new locally optimal solution includes the weight configuration of the previous iteration,
which is simply obtained by setting the new edge weight to 0 and keeping the remaining
weights, the log-likelihood does not increase at each iteration. ��

A.12 Proposition 12

Follows immediately from Proposition 11, noting that the SPGM is initialized as the Chow
Liu tree T ∗ (Table 6). ��
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