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Abstract. Deep Affine Normalizing Flows are efficient and powerful
models for high-dimensional density estimation and sample generation.
Yet little is known about how they succeed in approximating complex
distributions, given the seemingly limited expressiveness of individual
affine layers. In this work, we take a first step towards theoretical un-
derstanding by analyzing the behaviour of a single affine coupling layer
under maximum likelihood loss. We show that such a layer estimates and
normalizes conditional moments of the data distribution, and derive a
tight lower bound on the loss depending on the orthogonal transforma-
tion of the data before the affine coupling. This bound can be used to
identify the optimal orthogonal transform, yielding a layer-wise training
algorithm for deep affine flows. Toy examples confirm our findings and
stimulate further research by highlighting the remaining gap between
layer-wise and end-to-end training of deep affine flows.

1 Introduction

Affine Normalizing Flows such as RealNVP [4] are widespread and success-
ful tools for density estimation. They have seen recent success in generative
modeling [3,4,9], solving inverse problems [1], lossless compression [6], out-of-
distribution detection [12], better understanding adversarial examples [7] and
sampling from Boltzmann distributions [13].

These flows approximate arbitrary data distributions µ(x) by learning an
invertible mapping T (x) such that given samples are mapped to normally dis-
tributed latent codes z := T (x). In other words, they reshape the data density
µ to form a normal distribution.

While being simple to implement and fast to evaluate, affine flows appear not
very expressive at first glance. They consist of invertible layers called coupling
blocks. Each block leaves half of the dimensions untouched and subjects the
other half to just parameterized translations and scalings.

Explaining the gap between theory and applications remains an unsolved
challenge. Taking the problem apart, a single layer consists of a rotation and
an affine nonlinearity. It is often hand-wavingly argued that the deep model’s
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expressivity comes from the rotations between the couplings by allowing different
dimensions to influence one another [4].

In this work, we open a rigorous branch of explanation by characterizing the
normalizing flow generated by a single affine layer. More precisely, we contribute:

– A single affine layer under maximum likelihood (ML) loss learns first- and
second-order moments of the conditional distribution of the changed (active)
dimensions given the unchanged (passive) dimensions (Section 3.2).

– From this insight, we derive a tight lower bound on how much the affine
nonlinearity can reduce the loss for a given rotation (Section 3.3). This is
visualized in Figure 1 where the bound is evaluated for different rotations of
the data.

– We formulate a layer-wise training algorithm that determines rotations us-
ing the lower bound and nonlinearities using gradient descent in turn (Sec-
tion 3.4).

– We show that such a single affine layer under ML loss makes the active
independent of the passive dimensions if they are generated by a certain rule
(Section 3.5).
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Fig. 1. An affine coupling layer pushes the input density towards standard normal. Its
success depends on the rotation of the input (top row). We derive a lower bound for
the error that is actually attained empirically (center row, blue and orange curves).
The solution with lowest error is clearly closest to standard normal (bottom row, left).

Finally, we show empirically in Section 4 that while improving the training of
shallow flows, the above new findings do not yet explain the success of deep
affine flows and stimulate further research.
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2 Related Work

The connection between affine transformations and the first two moments of a
distribution is well-known in the Optimal Transport literature. When the func-
tion space of an Optimal Transport (OT) problem with quadratic ground cost is
reduced to affine maps, the best possible transport matches mean and covariance
of the involved distributions [17]. In the case of conditional distributions, affine
maps become conditional affine maps [16]. We show such maps to have the same
minimizer under maximum likelihood loss (KL divergence) as under OT costs.

It has been argued before that a single coupling or autoregressive block [14]
can capture the moments of conditional distributions. This is one of the moti-
vations for the SOS flow [8], based on a classical result on degree-3 polynomials
by [5]. However, they do not make this connection explicit. We are able to give
a direct correspondence between the function learnt by an affine coupling and
the first two moments of the distribution to be approximated.

Rotations in affine flows are typically chosen at random at initialization and
left fixed during training [3,4]. Others have tried training them via some pa-
rameterization like a series of Householder reflections [15]. The stream of work
most closely related to ours explores the idea to perform layer-wise training.
This allows an informed choice of the rotation based on the current estimate
of the latent normal distribution. Most of these works propose to choose the
least Gaussian dimensions as the active subspace [2,11] . We argue that this is
inapplicable to affine flows due to their limited expressivity when the passive
dimensions are not informative. To the best of our knowledge, our approach is
the first to take the specific structure of the coupling layer into account and
derive a tight lower bound on the loss as a function of the rotation.

3 Single Affine Coupling Layer

3.1 Architecture

Normalizing flows approximate data distributions µ available through samples
x ∈ RD ∼ µ by learning an invertible function T (x) such the latent codes
z := T (x) follow an isotropic normal distribution z ∈ RD ∼ N (0,1). When such
a function is found, the data distribution µ(x) can be approximated using the
change-of-variables formula:

µ(x) = N (T (x))|det J| =: (T−1] N )(x), (1)

where J = ∇T (x) is the Jacobian of the invertible function, and “·]” is the
push-forward operator. New samples x ∼ µ can be easily generated by drawing z
from the latent Gaussian and transporting them backward through the invertible
function:

z ∼ N (0,1) ⇐⇒ x =: T−1(z) ∼ µ(x). (2)

Affine Normalizing Flows are a particularly efficient way to parameterize such
an invertible function T : They are simple to implement and fast to evaluate in
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both directions T (x) and T−1(z), along with the Jacobian determinant det J [1].
Like most normalizing flow models, they consist of the composition of several
invertible layers T (x) = (TL ◦ · · · ◦ T1)(x). The layers are called coupling blocks
and modify the distribution sequentially. We recursively define the push-forward
of the first l blocks as

µl = (Tl)]µl−1, µ0 = µ. (3)

Each block Tl, l = 1, . . . , L contains a rotation Ql ∈ SO(D) and a nonlinear
transformation τl:

xl = Tl(xl−1) = (τl ◦Ql)(xl−1), x0 = x. (4)

The nonlinear transformation τl is given by:

τl(y) = τl

([
p
a

])
=

[
p

a� esl(p) + tl(p)

]
=:

[
p
a′

]
= y′. (5)

Here, y = Qlxl−1 ∼ (Ql)]µl−1 is the rotated input to the nonlinearity (dropping
the index l on y for simplicity) and � is element-wise multiplication. An affine
nonlinearity first splits its input into passive and active dimensions p ∈ RDP and
a ∈ RDA . The passive subspace is copied without modification to the output of
the coupling. The active subspace is scaled and shifted as a function of the passive
subspace, where sl and tl : RDP → RDA are represented by a single generic feed
forward neural network [9] and need not be invertible themselves. The affine
coupling design makes inversion trivial by transposing Ql and rearranging terms
in τl.

Normalizing Flows, and affine flows in particular, are typically trained using
the Maximum Likelihood (ML) loss [3]. It is equivalent to the Kullback-Leibler
(KL) divergence between the push-forward of the data distribution µ and the
latent normal distribution [10]:

DKL(T]µ||N ) = −H[µ] +
D

2
log(2π) + Ex∼µ

[
1

2

∥∥T (x)
∥∥2 − log |det J(x)|

]
(6)

= −H[µ] +
D

2
log(2π) + ML(T]µ||N ), (7)

The two differ only by terms independent of the trained model (the typically
unknown entropy H[µ] and the normalization of the normal distribution).

It is unknown whether affine normalizing flows can push arbitrarily complex
distributions to a normal distribution [14]. In the remainder of the section, we
shed light on this by considering an affine flow that consists of just a single
coupling as defined in Equation (5). Since we only consider one layer, we’re
dropping the layer index l for the remainder of the section. In Section 4, we will
discuss how these insights on isolated affine layers transfer to deep flows.

3.2 KL Divergence Minimizer

We first derive the exact form of the ML loss in Equation (6) for an isolated
affine coupling with a fixed rotation Q as in Equation (4).
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The Jacobian for this coupling has a very simple structure: It is a triangular
matrix whose diagonal elements are Jii = 1 if i is a passive dimension and
Jii = exp(si(p)) if i is active. Its determinant is the product of the diagonal

elements, so that det J(x) > 0 and log det J(x) =
∑DA

i=1 si(p). The ML loss thus
reads:

ML(T]µ||N ) = Ep,a∼Q]µ

1

2
‖p‖2 +

1

2

∥∥∥a� es(p) + t(p)
∥∥∥2 − DA∑

i=1

si(p)

. (8)

We now derive the minimizer of this loss:

Lemma 1 (Optimal single affine coupling). Given a distribution µ and a
single affine coupling layer T with a fixed rotation Q. Like in Equation (5), call
(a,p) = Qx the rotated versions of x ∼ µ. Then, at the unique minimum of the
ML loss (Equation (8)), the functions s, t : RDP → RDA as in Equation (4) take
the following value:

esi(p) =
1√

Varai|p[ai]
= σ−1Ai|p, (9)

ti(p) = −Eai|p[ai]e
si(p) = −

mAi|p

σAi|p
. (10)

We derive this by optimizing for s(p), t(p) in Equation (8) for each value of p
separately. The full proof can be found in Appendix A.1.

We insert the optimal s and t to find the active part of the globally optimal
affine nonlinearity:

τ(a|p) = a� es(p) + t(p) =
1

σA|p
� (a−mA|p). (11)

It normalizes a for each p by shifting the mean of µ(a|p) to zero and rescaling
the individual standard deviations to one.

Example 1. Consider a distribution where the first variable p is uniformly dis-
tributed on the interval [−2, 2]. The distribution of the second variable a is
normal, but its mean m(p) and standard deviation σ(p) are varying depending
on p:

µ(p) = U([−2, 2]), µ(a|p) = N (m(p), σ(p)). (12)

m(p) =
1

2
cos(πp), σ(p) =

1

8
(3− cos(8π/3 p)). (13)

We call this distribution “W density”. It is shown in Figure 2a.
We now train a single affine nonlinearity τ by minimizing the ML loss, setting

Q = 1. As hyperparameters, we choose a subnet for s, t with one hidden layer
and a width of 256, a learning rate of 10−1, a learning rate decay with factor 0.9
every 100 epochs, and a weight decay of 0. We train for 4096 epochs with 4096
i.i.d. samples from µ each using the Adam optimizer.
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c)

2 0 2
Passive dimension p

4

3

2

1

0

1

2

3

4

Ac
tiv
e
di
m
en
si
on
a'

2 1 0 1 2
Passive dimension p

1.0

0.5

0.0

0.5

1.0

Ac
tiv
e
di
m
en
si
on
a

Input moments

True
Learnt

2 0 2
Passive dimension p

4

3

2

1

0

1

2

3

4

Ac
tiv
e
di
m
en
si
on
a'

Push-forward WUd)

2.0 1.5 1.0 0.5 _00 0.5 _1 1.5 v2
Passive dimension p

1.0

0.0

1.0

Ac
tiv
e
di
m
en
si
on
a

W Densitya)

2 0

1.0

0.5

0.0

0.5

1.0

Ac
tiv
e
di
m
en
si
on
a'

e) Normalized moments

Target
Learnt

2
Passive dimension p

b)

Push-forward W

Fig. 2. (a) W density contours. (b) The conditional moments are well approximated
by a single affine layer. (c, d) The learnt push-forwards of the W (Example 1) and
WU (Example 2) densities remain normal respectively uniform distributions. (e) The
moments of the transported distributions are close to zero mean and unit variance,
shown for the layer trained on the W density.

We solve s, t in Lemma 1 for the estimated mean m̂(p) and standard deviation
σ̂(p) as predicted by the learnt ŝ and t̂. Upon convergence of the model, they
closely follow their true counterparts m(p) and σ(p) as shown in Figure 2b.

Example 2. This example modifies the previous to illustrate that the learnt con-
ditional density τ]µ(a|p) is not necessarily Gaussian at the minimum of the loss.

The W density from above is transformed to the “WU density” by replacing
the conditional normal distribution by a conditional uniform distribution with
the same conditional mean m(p) and standard deviation σ(p) as before.

µ(p) = U([−2, 2]), (14)

µ(a|p) = U([m(p)−
√

3σ(p),m(p) +
√

3σ(p)]). (15)

One might wrongly believe that the KL divergence favours building a distribu-
tion that is marginally normal while ignoring the conditionals, i.e. τ]µ(p) = N .
Lemma 1 predicts the correct result, resulting in the following uniform push-
forward density depicted in Figure 2d:

T]µ(p) = µ(p) = U([−2, 2]), (16)

T]µ(a|p) = U([−
√

3,
√

3]). (17)

Note how τ]µ(a|p) does not depend on p, which we later generalize in Lemma 2.
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3.3 Tight Bound on Loss

Knowing that a single affine layer learns the mean and standard deviation of
µ(ai|p) for each p, we can insert this minimizer into the KL divergence. This
yields a tight lower bound on the loss after training. Even more, it allows us to
compute a tight upper bound on the loss improvement by the layer, which we
denote ∆ ≥ 0. This loss reduction can be approximated using samples without
training.

Theorem 1 (Improvement by single affine layer). Given a distribution µ
and a single affine coupling layer T with a fixed rotation Q. Like in Equation (5),
call (a,p) = Qx the rotated versions of x ∼ µ. Then, the KL divergence has the
following minimal value:

DKL(T]µ||N ) = DKL(µP ||N ) + Ep

DA∑
i=1

H[N (0, σAi|p)]−H[µ(a|p)]

 (18)

= DKL(µ||N )−∆. (19)

The loss improvement by the optimal affine coupling as in Lemma 1 is:

∆ =
1

2

DA∑
i=1

Ep[m2
Ai|p + σ2

Ai|p − 1− log σ2
Ai|p]. (20)

To proof, insert the minimizer s, t from Lemma 1 into Equation (8). Then evalu-
ate ∆ = DKL(µ||N )−DKL(T]µ||N ) to obtain the statement. The detailed proof
can be found in Appendix A.2.

The loss reduction by a single affine layer depends solely on the moments
of the distribution of the active dimensions conditioned on the passive sub-
space. Higher order moments are ignored by this coupling design. Together with
Lemma 1, this paints the following picture of an affine coupling layer: It fits a
Gaussian distribution to each conditional µ(ai|p) and normalizes this Gaussian’s
moments. The gap in entropy between the fit Gaussian and the true conditional
distribution cannot be reduced by the affine transformation. This makes up the
remaining KL divergence in Equation (18).

We now make the connection explicit that a single affine layer can only
achieve zero loss on the active subspace iff the conditional distribution is Gaus-
sian with diagonal covariance:

Corollary 1. If and only if (Q]µ)(a|p) is normally distributed for all p with
diagonal covariance, that is:

µ(a|p) =

DA∏
i=1

N (ai|mAi|p, σAi|p), (21)

a single affine block can reduce the KL divergence on the active subspace to zero:

DKL((T]µ)(a|p)||N ) = 0. (22)
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The proof can be found in Appendix A.3.

Example 3. We revisit the Examples 1 and 2 and confirm that the minimal loss
achieved by a single affine coupling layer on the W-shaped densities matches the
predicted lower bound. This is the case for both densities. Figure 3 shows the
contribution of the conditional part of the KL divergence DKL((T]µ)(a|p)||N )
as a function of p:

For the W density, the conditional µ(a|p) is normally distributed. This is the
situation of Corollary 1 and the remaining conditional KL divergence is zero. The
remaining loss for the WU density is the negentropy of a uniform distribution
with unit variance.
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Fig. 3. Conditional KL divergence before (gray) and after (orange) training for W-
shaped densities confirms lower bound (blue, coincides with orange). The plots show
the W density from Example 1 (left) and the WU density from Example 2 (right).

3.4 Determining the Optimal Rotation

The rotation Q of the isolated coupling layer determines the splitting into active
and passive dimensions and the axes of the active dimensions (the rotation within
the passive subspace only rotates the input into s, t and is irrelevant). The bounds
in Theorem 1 heavily depend on these choices and thus depend on the chosen
rotation Q. This makes it natural to consider the loss improvement as a function
of the rotation: ∆(Q). When aiming to maximally reduce the loss with a single
affine layer, one should choose the subspace maximizing this tight upper bound
in Equation (20):

arg max
Q∈SO(D)

∆(Q). (23)

We propose to approximate this maximization by evaluating the loss improve-
ment for a finite set of candidate rotations in Algorithm 1 “Optimal Affine
Subspace (OAS)”. Note that Step 5 requires approximating ∆ from samples. In
the regime of low DP , one can discretize this by binning samples by their passive
coordinate p. Then, one computes mean and variance empirically for each bin.
We leave the general solution of Equation (23) for future work.
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Algorithm 1 Optimal Affine Subspace (OAS).

1: Input: Q = {Q1, . . . ,QC} ⊂ SO(D), (xj)
N
j=1 i.i.d. samples from µ.

2: for candidate Qc ∈ Q do
3: Rotate samples: yj = Qcxj .
4: for each active dimension i = 1, . . . , DA do
5: Use (y)Nj=1 to estimate the conditional mean mAi|p and variance σAi|p as a

function of p. {Example implementation in Example 4}
6: end for
7: Compute ∆c := 1

2

∑N
j=1

∑DA
i=1(m2

Ai|pj
+σ2

Ai|pj
−1− log σ2

Ai|pj
) {Equation (20)}.

8: end for
9: Return: arg maxQc∈Q∆c.

Example 4. Consider the following two-component 2D Gaussian Mixture Model:

µ =
1

2

(
N ([−δ; 0], σ) +N ([δ; 0], σ)

)
. (24)

We choose δ = 0.95, σ =
√

1− δ2 = 0.3122... so that the mean is zero and
the standard deviation along the first axis is one. We now evaluate the loss
improvement ∆(θ) in Equation (20) as a function of the angle θ with which we
rotate the above distribution:

µ(θ) := Q(θ)]µ, [p, a] = Q(θ)x ∼ µ(θ). (25)

Analytically, this can be done pointwise for a given p and then integrated numer-
ically. This will not be possible for applications where only samples are available.
As a proof of concept, we employ the previously mentioned binning approach. It
groups N samples from µ by their p value into B bins. Then, we compute mA|pb
and σA|pb using the samples in each bin b = 1, . . . , B.

Figure 4 shows the upper bound as a function of the rotation angle, as ob-
tained from the two approaches. Here, we used B = 32 bins and a maximum
of N = 213 = 8192 samples. Around N ≈ 256 samples are sufficient for a good
agreement between the analytic and empiric bound on the loss improvement and
the corresponding angle at the maximum.

Note: For getting a good density estimate using a single coupling, it is crucial
to identify the right rotation. If we naively or by chance decide for θ = 90◦, the
distribution is left unchanged.

3.5 Independent Outputs

An important step towards pushing a multivariate distribution to a normal distri-
bution is making the dimensions independent of one another. Then, the residual
to a global latent normal distribution can be solved with one sufficiently expres-
sive 1D flow per dimension, pushing each distribution independently to a normal
distribution. The following lemma shows for which data sets a single affine layer
can make the active and passive dimensions independent.
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Fig. 4. Tight upper bound given by Equation (20) for two-component Gaussian mix-
ture as a function of rotation angle θ, determined analytically (blue) and empirically
(orange) for different numbers of samples. The diamonds mark the equivalent outputs
of the OAS Algorithm 1.

Lemma 2. Given a distribution µ and a single affine coupling layer T with a
fixed rotation Q. Like in Equation (5), call (a,p) = Qx the rotated versions of
x ∼ µ. Then, the following are equivalent:

1. a′ := τ(a|p) ⊥ p for τ(a|p) minimizing the ML loss in Equation (8),
2. There exists n ⊥ p such that a = f(p) + n� g(p), where f, g : RDP → RDA .

The proof can be found in Appendix A.4.
This results shows what our theory can explain about deep affine flows: It

is easy to see that D − 1 coupling blocks with DA = 1, DP = D − 1 can make
all variables independent if the data set can be written in the form of xi =
f(x 6=i) + xig(x 6=i). Then, only the aforementioned independent 1D flows are
necessary for a push-forward to the normal distribution.

Example 5. Consider again the W-shaped densities from the previous Exam-
ples 1 and 2. After optimizing the single affine layer, the two variables p, a′ are
independent (compare Figure 2c, d):

Example 1: a′ ∼ N (0, 1) ⊥ p, (26)

Example 2: a′ ∼ U([−
√

3,
√

3]) ⊥ p, (27)

4 Layer-wise Learning

Do the above single-layer results explain the expressivity of deep affine flows? To
answer this question, we construct a deep flow layer by layer using the optimal
affine subspace (OAS) algorithm Algorithm 1. Each layer l being added to the
flow is trained to minimize the residuum between the current push-forward µl−1
and the latent N . The corresponding rotation Ql is chosen by maximizing ∆(Ql)
and the nonlinearities τl are trained by gradient descent, see Algorithm 2.

Can this ansatz reach the quality of end-to-end affine flows? An analytic
answer is out of the scope of this work, and we consider toy examples.
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Algorithm 2 Iterative Affine Flow Construction.

1: Initialize T (0) = id.
2: repeat
3: Compute Ql via OAS (Algorithm 1), using samples from T

(l−1)
] µ.

4: Train τl on samples y = Ql · T (l−1)(x) for x ∼ µ.
5: Set Tl = τl ◦Ql.
6: Compose T (l) = Tl ◦ T (l−1).
7: until convergence, e.g. loss or improvement threshold, max. number of layers.
8: return Final transport T (L).

Example 6. We consider a uniform 2D distribution µ = U([−1, 1]2). Figure 5
compares the flow learnt layer-wise using Algorithm 2 to flows learnt layer-
wise and end-to-end, but with fixed random rotations. Our proposed layer-wise
algorithm performs on-par with end-to-end training despite optimizing only the
respective last layer in each iteration, and beats layer-wise random subspaces.

OA
S

LW

Uniform (Q1) 0 1 (Q2) 1 2 (Q3) 2 3 (Q4) 3 4 Latent

RN
D

LW
RN

D
E2

E

Fig. 5. Affine flow trained layer-wise “LW”, using optimal affine subspaces “OAS” (top)
and random subspaces “RND” (middle). After a lucky start, the random subspaces do
not yield a good split and the flow approaches the latent normal distribution signif-
icantly slower. End-to-end training “E2E” (bottom) chooses a substantially different
mapping, yielding a similar quality to layer-wise training with optimal subspaces.

Example 7. We now provide more examples on a set of toy distributions. As
before, we train layer-wise using OAS and randomly selected rotations, and end-
to-end. Additionally, we train a mixed variant of OAS and end-to-end: New
layers are still added one by one, but Algorithm 2 is modified such that iteration
l optimizes all layers 1 through l in an end-to-end fashion. We call this training
“progressive” as layers are progressively activated and never turned off again.

We obtain the following results: Optimal rotations always outperform random
rotations in layer-wise training. With only a few layers, they also outperform end-
to-end training, but are eventually overtaken as the network depth increases.
Progressive training continues to be competitive also for deep networks.

Figure 6 shows the density estimates after twelve layers. At this point, none
of the methods show a significant improvement by adding layers. Hyperparame-
ters were optimized for each training configuration to obtain a fair comparison.
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Fig. 6. Affine flows trained on different toy problems (top row). The following rows de-
pic different training methods: layer-wise “LW” (rows 2 and 3), progressively “PROG”
(rows 4-5) and end-to-end “E2E” (last row). Rotations are “OAS” when determined
by Algorithm 1 (row 2 and 4) or randomly selected “RND” (rows 3, 5 and 6).

Densities obtained by layer-wise training exhibit significant spurious structure
for both optimal and random rotations, with an advantage for optimally chosen
subspaces.

5 Conclusion

In this work, we showed that an isolated affine coupling learns the first two mo-
ments of the conditioned data distribution µ(a|p). Using this result, we derived
a tight upper bound on the loss reduction that can be achieved by such a layer.
We then used this to choose the best rotation of the coupling.

We regard our results as a first step towards a better understanding of deep
affine flows. We provided sufficient conditions for a data set that can be exactly
solved with layer-wise trained affine couplings and a single layer ofD independent
1D flows.

Our results can be seen analogously to the classification layer at the end of
a multi-layer classification network: The results from Section 3 directly apply to
the last coupling in a deep normalizing flow. This raises a key question for future
work: How do the first L− 1 layers prepare the distribution µL−1 such that the
final layer can perfectly push the data to a Gaussian?
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A Proofs

A.1 Proof of Lemma 1

Proof. Minimizing the KL divergence is equivalent to minimizing Equation (4).
The affine nonlinearity τ leaves the passive dimensions p unchanged. This leaves
us with the following minimization problem:

min
s,t:RDP→RDA

Ep,a

1

2

∥∥∥a� es(p) + t(p)
∥∥∥2 − DA∑

i=1

si(p)

, (28)

where Ep,a is shorthand for Ep,a∼Q]µ.
Under the assumption that s, t are arbitrary functions without smoothness

constraints, the above minimization problem decouples into one for each value
of p. We fix p for what follows and write s = s(p), t = t(p) ∈ RDA instead of
the corresponding functions and obtain:

min
s,t∈RDA

Eai|p

1

2
‖a� es + t‖2 −

DA∑
i=1

si(p)

. (29)

This can be decoupled into DA independent minimization problems, indexed by
i = 1, . . . , DA:

min
si,ti∈R

Eai|p
[

1

2
(aie

si + ti)
2 − si

]
. (30)

At an extremal point, we find

∂siEai|p
[

1

2
(esiai + ti)

2 − si
]

= Eai|p
[
(esiai + ti)e

siai − 1
]

= 0, (31)

∂tiEai|p
[

1

2
(esiai + ti)

2 − si
]

= Eai|p
[
(esiai + ti)

]
= 0. (32)

We can solve the second equation for ti:

ti = −Eai|p[ai]e
si . (33)

Insert this into the condition on si:

Eai|p
[
2(esiai − Eai|p[ai]e

si)esiai − 1
]

= e2si Varai|p[ai]− 1 = 0, (34)

and find:

e2si Var[ai] = 1,

esi =
1

σAi|p
. (35)

This is the statement, written componentwise and for a fixed p. ut
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A.2 Proof of Theorem 1

Proof. Inserting the minimizer from Equation (11), we find the minimal KL
divergence of a single affine layer:

DKL(T]µ||N ) = DKL(µ||T ]N )

= DKL(µP ||N ) + Ep,a

[
logµ(a|p) +D log

√
2π +

1

2
(a′)2 − log |∇aa′|

]

= DKL(µP ||N ) + Ep,a

logµ(a|p) +

DA∑
i=1

(
(ai −mAi|p)2

2σ2
Ai|p

+ log(σAi|p
√

2π)

)
= DKL(µP ||N ) + Ep

Ea|p[logµ(a|p)] +

DA∑
i=1

(
1 + log(σAi|p

√
2π)
)

= DKL(µP ||N ) + Ep

DA∑
i=1

H[N (0, σAi|p)]−H[µ(a|p)]

. (36)

Compare this to the KL divergence without transport:

DKL(µ||N ) (37)

= DKL(µP ||N ) + Ep

Ea|p[logµ(a|p)] +DA log
√

2π +
1

2

DA∑
i=1

Ea|p[a2i ]

 (38)

= DKL(µP ||N ) + Ep

1

2

DA∑
i=1

(m2
Ai|p + σ2

Ai|p + 2 log
√

2π)−H[µ(a|p)]

. (39)

Subtracting the two, we find an improvement in KL divergence by the single
affine layer of:

∆ = DKL(µ||N )−DKL(T]µ||N ) (40)

=
1

2

DA∑
i=1

Ep[m2
Ai|p + σ2

Ai|p − 1− log σ2
Ai|p] (41)

which can be computed independently for the DA active dimensions. ut

A.3 Proof of Corollary 1

Proof. “⇒”: Insert this particular choice of µ into Equation (18) to obtain the
result.

“⇐”: The push-forward T]µ(a|p) can only be written as a product of its
marginals if µ(a|p) was a product distribution for each p. Then, Equation (18)
decouples into contributions from each µ(ai|p). Each contribution is the negen-
tropy of µ(ai|p) which is only zero if µ(ai|p) is Gaussian. ut
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Side note: Iff Q is chosen such that µ(a|p) has diagonal covariance for all p
(i.e. the relations between the dimensions are the same, they are just scaled dif-
ferently for different p), then it can be chosen such that the total KL divergence
is zero after the layer.

A.4 Proof of Lemma 2

Proof. 1⇒ 2: Rewriting Equation (11), we find:

a = mA|p + σA|p � a′ =: f(p) + g(p)� n. (42)

By assumption, n = a′ ⊥ p and and we obtain the statement.
2⇒ 1: In the following, we omit “�” and all multiplications are element-wise.
We first identify the solution as in Equation (11) and then show that the

resulting variable is independent of p. In the following, we write f = f(p) and
g = g(p).

En[A] = f + En[n]g, (43)

En[A2] = f2 + 2fgEn[n] + g2E[n2]. (44)

We combine:

mA|p = f + En[n]g, (45)

σA|p =
√
f2 + 2fgEn[n] + g2E[n2]− (f2 + 2fgEn[n] + g2En[n]2) (46)

= gσn. (47)

The resulting a′ from this transport reads:

A′ = T (A|p) =
1

σA|p
(a−mA|p) (48)

=
1

gσN
(f + ng − (f + En[n]g)) (49)

=
1

σN
(n− En̂[n̂]). (50)

This is independent of p. ut
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