
Whitening Convergence Rate of
Coupling-based Normalizing Flows

Felix Draxler
Heidelberg University

felix.draxler@iwr.uni-heidelberg.de

Christoph Schnörr
Heidelberg University

schnoerr@math.uni-heidelberg.de

Ullrich Köthe
Heidelberg University

ullrich.koethe@iwr.uni-heidelberg.de

Abstract

Coupling-based normalizing flows (e.g. RealNVP) are a popular family of nor-
malizing flow architectures that work surprisingly well in practice. This calls for
theoretical understanding. Existing work shows that such flows weakly converge
to arbitrary data distributions [1]. However, they make no statement about the
stricter convergence criterion used in practice, the maximum likelihood loss. For
the first time, we make a quantitative statement about this kind of convergence:
We prove that all coupling-based normalizing flows perform whitening of the
data distribution (i.e. diagonalize the covariance matrix) and derive corresponding
convergence bounds that show a linear convergence rate in the depth of the flow.
Numerical experiments demonstrate the implications of our theory and point at
open questions.

1 Introduction

Normalizing flows [2, 3] are among the most promising approaches to generative machine learning
and have already demonstrated convincing performance in a wide variety of practical applications,
ranging from image analysis [4, 5, 6, 7, 8] to astrophysics [9], mechanical engineering [10], causality
[11], computational biology [12] and medicine [13]. As the name suggests, normalizing flows
represent complex data distributions as bijective transformations (also known as flows or push-
forwards) of standard normal or other well-understood distributions.

In this paper, we focus on a theoretical underpinning of coupling-based normalizing flows, a par-
ticularly effective class of normalizing flows in terms of invertible neural networks. All of the
above applications are actually implemented using coupling-based normalizing flows. Their central
building blocks are coupling layers, which decompose the space into two subspaces called active and
passive subspace (see Section 3). Only the active dimensions are transformed conditioned on the
passive dimensions, which makes the mapping computationally easy to invert. In order to vary the
assignment of dimensions to the active and passive subspaces, coupling layers are combined with
preceding orthonormal transformation layers into coupling blocks. These blocks are arranged into
deep networks such that the orthonormal transformations are sampled uniformly at random from the
orthogonal matrices and the coupling layers are trained with the maximum likelihood objective, see
Equation (2). Upon convergence of the training, the sequence of coupling blocks gradually transforms
the probability density that generated the given training data, into a standard normal distribution and
vice versa.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

0 1 2 3 4 7 10 14 20
Number of Coupling Blocks

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 C
on

tri
bu

tio
ns

Loss = +
non-Gaussianity
non-Standardness
Theoretical Upper Bound []

non-Gaussianity

non-Standardness

Normalizing Flow Loss

Figure 1: (Left) The Maximum Likelihood Loss L (blue) can be split into the non-Gaussianity
G (orange) [25] and the non-Standardness S (green) of the latent code z = fθ(x): L = G + S
(Proposition 1). For the latter, we give explicit guarantees as one more coupling block is added in
Theorems 1 and 2 and show a global convergence rate in Theorem 3. (Right) Typical fit of EMNIST
digits by a standard affine coupling flow for various depths. Our theory (Theorem 1) upper bounds
the average S for L+ 1 coupling blocks given a trained model with L coupling blocks (dotted green).
We observe that our bound is predictive for how much end-to-end training reduces S.

Since the resulting normalizing flows deviate significantly from optimal transport flows [14] and the
bulk of the mathematical literature is focusing on optimal transport, an analysis tailored to coupling
architectures is lacking. In a landmark paper, [1] proved that sufficiently large affine coupling flows
weakly converge to arbitrary data densities. The notion of weak convergence is critical here, as it does
not imply convergence in maximum likelihood [15, Remark 3]. Maximum likelihood (or, equivalently,
the Kullback-Leibler (KL) divergence) is the loss that is actually used in practice. It can be used for
gradient descent and it guarantees not only convergence in samples (“x ∼ q(x)→ x ∼ p(x)”) but
also in density estimates (“q(x) → p(x)”). It is strong in the sense that the square root of the KL
divergence upper bounds (up to a factor 2) the total variation metric, and hence also the Wasserstein
metric if the underlying space is bounded [16]. Moreover, convergence under the KL divergence
implies weak convergence which is fundamental for robust statistics [17].

We take a first step towards showing that coupling blocks also converge in terms of maximum likeli-
hood. To the best of our knowledge, our paper presents for the first time a quantitative convergence
analysis of coupling-based normalizing flows based on this strong notion of convergence.

Specifically, we make the following contributions towards this goal:

• We utilize that the loss of a normalizing flow can be decomposed into two parts (Figure 1):
The divergence to the nearest Gaussian (non-Gaussianity) plus the divergence of that
Gaussian to the standard normal (non-Standardness).

• The contribution of a single coupling layer on the non-Standardness is analyzed in terms of
matrix operations (Schur complement and scaling).

• Explicit bounds for the non-Standardness after a single coupling block in expectation over
all orthonormal transformations are derived.

• We use these results to prove that a sequence of coupling blocks whitens the data covariance
and to derive linear convergence rates for this process.

Our results hold for all coupling architectures we are aware of (Appendix C), including: NICE [4],
RealNVP [5], and GLOW [6]; Flow++ [18]; nonlinear-squared flow [19]; linear, quadratic [20],
cubic [21], and rational quadratic splines [22]; neural autoregressive flows [23], and unconstrained
monotonic neural networks [24]. We confirm our theoretical findings experimentally and identify
directions for further improvement.

2

2 Related work

Analyzing which distributions coupling-based normalizing flows can approximate is an active area of
research. A general statement shows that a coupling-based normalizing flow which can approximate
an arbitrary invertible function can learn any probability density weakly [1]. This applies to affine
coupling flows [4, 5, 6], Flow++ [18], neural autoregressive flows [26], and SOS polynomial flows
[27]. Affine coupling flows converge to arbitrary densities in Wasserstein distance [15]. Both
universality results, however, require that the couplings become ill-conditioned (i.e. the learnt
functions become increasingly discontinuous as the error decreases, whereas in practice one observes
that functions remain smooth). Also, they consider only a finite subspace of the data space. Even more
importantly, the convergence criterion employed in their proofs (weak convergence resp. convergence
under Wasserstein metric) is critical: Those criteria do not imply convergence in the loss that is
employed in practice [15, Remark 3], the Kullback-Leibler divergence (equivalent to maximum
likelihood). An arbitrarily small distance in any of the above metrics can even result in an infinite
KL divergence. In contrast to previous work on affine coupling flows, we work directly on the KL
divergence. We decompose it in two contributions and show the flow’s convergence for one of the
parts.

Regarding when ill-conditioned flows need to arise to fit a distribution, [28] showed that well-
conditioned affine couplings can approximate log-concave padded distributions, again in terms of
Wasserstein distance. Lipschitz flows on the other hand cannot model arbitrary tail behavior, but this
can be fixed by adapting the latent distribution [29].

SOS polynomial flows converge in total variation to arbitrary probability densities [30], which also
does not imply convergence in KL divergence; zero-padded affine coupling flows converge weakly
[23], and so do Neural ODEs [31, 32].

Closely related to our work, 48 linear affine coupling blocks can represent any invertible linear
function Ax + b with det(A) > 0 [15, Theorem 2]. This also allows mapping any Gaussian
distribution N (m,Σ) to the standard normal N (0, I). We put this statement into context in terms
of the KL divergence: The loss is exactly composed of the divergence to the nearest Gaussian and
of that Gaussian to the standard normal. We then make strong statements about the convergence
of the latter, concluding that for typical flows a smaller number of layers is required for accurate
approximation than predicted by [15].

3 Coupling-based normalizing flows

Normalizing flows learn an invertible function fθ(x) that maps samples x from some unknown
distribution p(x) given by samples to latent variables z = fθ(x) so that z follow a simple distribution,
typically the standard normal. The function fθ then yields an estimate q(x) for the true data
distribution p(x) via the change of variables formula (e.g. [5]):

q(x) = N (fθ(x); 0, I)|det J |, (1)

where J = ∇fθ(x) is the Jacobian of fθ(x). We can train a normalizing flow via the maximum
likelihood loss, which is equivalent to minimizing the Kullback-Leibler divergence between the
distribution of the latent code q(z), as given by z = fθ(x) when x ∼ p(x), and the standard normal:

L = DKL(q(z)∥N (0, I)) = Ex∼p(x)

[
1
2

∥∥fθ(x)∥∥2 − log |det J |
]
+ const . (2)

The invertible architecture that makes up fθ has to (i) be computationally easy to invert, (ii) be able
to represent complex transformations, and (iii) have a tractable Jacobian determinant |det J | [9].
Building such an architecture is an active area of research, see e.g. [2] for a review. In this work, we
focus on the family of coupling-based normalizing flows, first presented in the form of the NICE
architecture [4]. It is a deep architecture that consists of several blocks, each containing a rotation, a
coupling and an ActNorm layer [6]:

fblock(x) = (fact ◦ fcpl ◦ frot)(x). (3)

The coupling fcpl splits an incoming vector x0 in two parts along the coordinate axis: The first part
p0, which we call passive, is left unchanged. The second part a0, which we call active, is modified as

3

a function of the passive dimensions:

fcpl(x0) = fcpl

(
p0
a0

)
=

(
p0

c(a0; p0)

)
=:

(
p1
a1

)
. (4)

Here, the coupling function c : RD/2×RD/2 → RD/2 has to be a function that is easy to invert when
p0 is given, i.e. it is easy to compute a0 = c−1(a1; p0) given p0. This makes the coupling easy to
invert: Call x1 = (p1; a1) the output of the layer, then p0 = p1. Use this to invert a1 = c(a0; p0). For
example, RealNVP [5] proposes a simple affine transformation for c: a1 = c(a0; p0) = a0 ⊙ s(p0) +

t(p0) (⊙ means element-wise multiplication). s(p0) ∈ RD/2
+ and t(p0) ∈ RD/2 are computed by a

feed-forward neural network. The coupling functions c of other architectures our theory applies to
are listed in Appendix C.

An Activation Normalization (ActNorm) layer [6] helps stabilize training and is implemented in
practice like in the popular INN framework FrEIA [33]. It rescales and shifts each dimension:

fact(x) = r ⊙ x+ u, (5)

given parameters r ∈ RD
+ and u ∈ RD. We include it as it simplifies our mathematical arguments.

If we were to concatenate several coupling layers, the entire network would never change the passive
dimensions apart from the element-wise affine transformation in the ActNorm layer. Here, the
rotation layers frot(x) = Qx come into play [6]. They multiply an orthogonal matrix Q to the data,
changing which subspaces are passive respectively active. This matrix is typically fixed at random at
initialization and then left unchanged during training.

4 Coupling layers as whitening transformation

The central mathematical question we answer in this work is the following: How can a deep coupling-
based normalizing flow whiten the data? As the latent distribution is a standard normal, whitening is
a necessary condition for the flow to converge. This is a direct property of the loss:
Proposition 1 (Pythagorean Identity, Proof in Appendix B.1). Given data with distribution p(x) with
mean m and covariance Σ. Then, the Kullback-Leibler divergence to a standard normal distribution
decomposes as follows:

DKL(p(x)∥N (0, I)) = DKL(p(x)∥N (m,Σ))︸ ︷︷ ︸
non-Gaussianity G(p)

+DKL(N (m,Σ)∥N (0, I))︸ ︷︷ ︸
non-Standardness S(p)

(6)

and the non-Standardness again decomposes:

S(p) = DKL(N (m,Σ)∥N (m,Diag(Σ)))︸ ︷︷ ︸
Correlation C(p)

+DKL(N (m,Diag(Σ))∥N (0, I))︸ ︷︷ ︸
Diagonal non-Standardness

. (7)

This splits the transport from the data distribution to the latent standard normal into three parts: (i)
From the data to the nearest Gaussian distribution N (m,Σ), measured by G. (ii) From that nearest
Gaussian to the corresponding uncorrelated Gaussian N (m,Diag(Σ)), measured by C. (iii) From
the uncorrelated Gaussian to standard normal.

We do not make explicit use of the fact that the non-Standardness can again be decomposed,
but we show it nevertheless to relate our result to the literature: The Pythagorean identity
DKL(p(x)∥N (m,Diag(Σ))) = G(p) + C(p) has been shown before by [25, Section 2.3]. Both
their and our result are specific applications of the general [34, Theorem 3.8] from information
geometry. Our proof is given in Appendix B.1.

Proposition 1 is visualized in Figure 1. In an experiment, we fit a set of Glow [6] coupling flows
of increasing depths to the EMNIST digit dataset [35] using maximum likelihood loss and measure
the capability of each flow in decreasing G and S (Details in Appendix A.1). The form of the non-
Standardness S is given by the well-known KL divergence between the involved normal distributions,
see Equation (30) in Appendix B.1. It is invariant under rotations Q and only depends on the first two
moments m,Σ:

S(m,Σ) := S(p) = 1

2
(∥m∥2 + trΣ−D − log detΣ)) = S(Qm,QΣQT). (8)

4

The non-Standardness S will be our measure on how far the covariance and mean have approached
the standard normal in the latent space. We give explicit loss guarantees for S for a single coupling
block in Theorems 1 and 2 and imply a linear convergence rate for a deep network in Theorem 3.

Deep Normalizing Flows are typically trained end-to-end, i.e. the entire stack of blocks is trained
jointly. In this work, our ansatz is to consider the effect of a single coupling block on the non-
Standardness S . Then, we combine the effect of many isolated blocks, disregarding potential further
improvements to S due to joint, cooperative learning of all blocks. This simplifies the theoretical
analysis of the network, but it is not a restriction on the model: Any function that is achieved in
block-wise training could also be the solution of end-to-end training.

We aim to strongly reduce S while leaving room for a complementary theory explaining how non-
Gaussianity G is reduced in practice. Note that affine-linear functions Ax+ b can never change G,
because they jointly transform the distribution p(x) at hand and correspondingly the closest Gaussian
to it (see Lemma 1 in Appendix B.2). Thus, if we restrict our coupling layers to be affine-linear
functions, we are able to reduce S without increasing G in turn. This motivates considering affine-
linear couplings of the following form, spelled out together with ActNorm as given by Equation (5).
The results in this work apply to all coupling architectures, as they all can represent this coupling,
see Appendix C. (

p1
a1

)
= (fact ◦ fcpl)(Qx) = r ⊙

(
I 0
T I

)(
p0
a0

)
+ u. (9)

For future work considering G, we propose to lift the restriction to affine-linear layers while making
sure that S behaves as described in what follows. As the convergence of G however will strongly
depend on the coupling architecture and data p(x) at hand, this is beyond the scope of this work.

Our first result shows which mean m1 and covariance Σ1 a single affine-linear coupling as in
Equation (9) yields to minimize S(m1,Σ1) given data with mean m and covariance Σ, rotated by Q:
Proposition 2 (Proof in Appendix B.2). Given D-dimensional data with mean m and covariance Σ
and a rotation matrix Q. Split the covariance of the rotated data into four blocks, corresponding to
the passive and active dimensions of the coupling layer:

QΣQT = Σ0 =

(
Σ0,pp Σ0,pa

Σ0,ap Σ0,aa

)
(10)

Then, the moments m1,Σ1 that can be reached by a coupling as in Equation (9) are:

m1 = 0, Σ1 =

(
M(Σ0,pp) 0

0 M(Σ0,aa − Σ0,apΣ
−1
0,ppΣ0,pa)

)
. (11)

This minimizes S as given in Equation (8), and G does not increase.

The function M takes a matrix A and rescales the diagonal to 1 as follows. It is a well-known
operation in numerics called Diagonal scaling or Jacobi preconditioning so that M(A)ii = 1:

M(A)ij =
√

AiiAjj
−1

Aij = (Diag(A)−1/2ADiag(A)−1/2)ij . (12)
Proposition 2 shows how the covariance can be brought closer to the identity.

The new covariance has passive and active dimensions uncorrelated. In the active subspace, the
covariance is the Schur complement Σ0,aa −Σ0,apΣ

−1
0,ppΣ0,pa. This coincides with the covariance of

the GaussianN (0,Σ) as it is conditioned on any passive value p. Afterwards, the diagonal is rescaled
to one, matching the standard deviations of all dimensions with the desired latent code. The proof is
based on a more general result how a single layer maximally reduces the Maximum Likelihood Loss
for arbitrary data [14], which we apply to the non-Standardness S (see Appendix B.2).

Figure 2 shows an experiment in which a single affine-linear layer was trained to bring the covariance
of EMNIST digits [35] as close to I as possible (Details in Appendix A.2). The experimental result
coincides with the prediction by Proposition 2. Due to the finite batch-size, a small difference between
theory and experiment remains.

5 Explicit convergence rate

In Section 4, we showed how a single coupling layer acts on the first two moments of a given data
distribution to whiten it. We now explicitly demonstrate how much progress this means in terms

5

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

Input covariance
0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Experiment: Output covariance
0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Theory: Output covariance
0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Difference

0.0

0.5

1.0

1.5

2.0

2.5

Figure 2: How a single coupling layer can whiten the covariance at the example of the EMNIST
digits covariance matrix (first panel). The covariance after a single layer trained experimentally
to minimize non-Standardness S(m1,Σ1) (second panel), which matches closely the prediction of
Proposition 2 (third panel). The difference between theory and experiment vanishes (last panel).

of the non-Standardness S(m1,Σ1) averaged over rotations Q (Theorems 1 and 2) and show the
consequences for multiple blocks (Theorem 3).

5.1 Single coupling block guarantees

Proposition 2 allows the computation of the minimum non-Standardness after a single coupling block
given its rotation Q, by evaluating S(m1,Σ1). In fact, if we were to choose Q such that the data
is rotated so that principal components lie on the axes (i.e. obtain Q using PCA), a single coupling
block suffices to reduce the covariance to the identity: Σ0 = QΣQT would be a diagonal matrix
and Σ1 = I . This is not the case in practice, where this optimal orientation has zero probability: Q
is chosen uniformly at random before training from all orthogonal matrices. One could argue that
one should whiten the data before passing it to the flow, reducing S to zero from the start. However,
any change in the architecture could possibly alter the performance of the network with regard to
reducing the non-Gaussianity G. Also, our work shows that coupling-based normalizing flows are
already well-equipped to bring the non-Standardness to zero without such modifications. To properly
describe the achievable non-Standardness S , we formulate all guarantees as expectations over the
rotation Q, corresponding to the loss averaged over training runs.

We make two mild assumptions on our data that are part of usual data-preprocessing, when the mean
is subtracted from the data and all data points are divided by the scalar

√
tr Σ/D (not to be confused

with diagonal preconditioning, which acts dimension-wise).
Assumption 1. The data p(x) is centered: Ex∼p(x)[x] = 0.
Assumption 2. The covariance is normalized: tr Σ = D.

The assumptions simplify the non-Standardness in Equation (8), which now only depends on the
determinant of Σ:

S(Σ) = − 1
2 log detΣ = − 1

2 log detΣ0 = S(Σ0) (13)
for arbitrary rotation Q. We aim to compute the average non-Standardness after a single block
EQ∈p(Q)[S(Σ1(Q))]. For any Q, S(Σ1) is again given by the determinant of the covariance Σ1(Q)
as Assumptions 1 and 2 remain fulfilled: By Proposition 2 m1 = 0 and the diagonal preconditioning
M ensures that the trace of Σ1 is D. We write det(Σ1) via Ma and Mp, the diagonal matrices that
make up the diagonal preconditioning in Equation (12), and use the Schur determinantal formula
for the determinant of block matrices: det(Σ0,pp) det(Σ0,aa − Σ0,apΣ

−1
0,ppΣ0,pa) = det(Σ0) =

det(Σ) [36]. We thus get det(Σ1) = det(MpΣ0,ppMp) det(Ma(Σ0,aa − Σ0,apΣ
−1
0,ppΣ0,pa)Ma) =

det(M2
p) det(M

2
a) det(Σ). Inserting this into Equation (13), we find:

S(Σ1) = − 1
2 (log detΣ + log detM2

p + log detM2
a) ≤ S(Σ0) = S(Σ). (14)

The inequality S(Σ1) ≤ S(Σ0) holds because Σ1 = Σ0 is an admissible solution of the coupling
layer optimization, but Σ1 as given by Proposition 2 is a minimizer of S(Σ1).

We average this quantity over training runs, i.e. over rotations Q:

EQ∼p(Q)[S(Σ1)] = − 1
2

(
log detΣ + EQ∼p(Q)[log detM

2
p] + EQ∼p(Q)[log detM

2
a]
)
. (15)

6

The main difficulty lies in the computation of EQ∼p(Q)[log detM
2
a]. Here, we contribute the two

strong statements Theorems 1 and 2 below.

5.1.1 Precise guarantee

The first result relies on projected orbital measures as developed by [37]. This theory describes the
eigenvalues of submatrices of matrices in a random basis. We require such a result for integrating
over p(Q) in EQ∼p(Q)[log detM

2
a]. In contrast to typical choices of p(Q), the theory to this date

only covers data rotated by unitary matrices.1 To comply with [37], we make two more assumptions:

Assumption 3. The distribution of rotations is the Haar measure over unitary matrices U(D).

Assumption 4. The eigenvalues of the covariance matrix Σ are distinct: λi ̸= λj for i ̸= j.

One could think that the step from orthogonal to unitary rotations takes us far away from the scenario
we want to consider. We will later observe empirically that the difference between averaging over
unitary and orthogonal matrices is negligible. Technically, the covariance matrix remains positive
definite, so the non-Standardness S is always real (see Appendix B.3.4). We will write EQ∼U(D)[·]
to denote expectations over unitary matrices.

Assumption 4 is typically satisfied when working with real data that are in ‘general position’. We are
now ready to compute the average training performance of a single coupling block:

Theorem 1 (Proof in Appendix B.3). Given D-dimensional data with covariance Σ with eigenvalues
λ1, . . . λD. Assume that Assumptions 1 to 4 hold. Then, after a single coupling block, the expected
non-Standardness is bounded from above:

EQ∈U(D)[S(Σ1(Q))]<S(Σ)+D
2 log

(
(−1)

D
2 +1

D∑
i=1

λ
1−D

2
i log(λi)R(λ−1

i ;λ−1
̸=i)eD

2 −1
(λ−1

̸=i)

)
. (16)

Here, λ ̸=i := {λ1, . . . , λi−1, λi+1, . . . , λD} and R, eK are given by:

R(a; {bi}Ni=1) =

N∏
i=1

1

a− bi
and eK({bi}Ni=1) =

∑
0<i1<···<iK≤N

bi1 · · · biK . (17)

Inequality (16) sharply bounds the expected non-Standardness that can be achieved by a single block.
The only approximation made is an inequality which comes close to equality as the dimension D
increases due to the concentration of the corresponding probability distribution.

Figure 3 shows an experiment confirming Theorem 1 (Details in Appendix A.3). We start with
covariance matrices using parametrized eigenvalue spectra. On each, we first apply a single coupling
block with random Q and train the coupling that maximally reduces S (Proposition 2). Then we
iteratively append 32 additional blocks in the same manner, building a flow of that depth. We average
the resulting empirical ratio S(Σ1)/S(Σ) over several orthogonal orientations Q of the rotation layer
for each input covariance matrix. Then, we compare this to (i) experimentally averaging over unitary
rotations and (ii) to the prediction by Theorem 1 and confirm that it is a valid and close upper bound.
Details for replication and more examples can be found in Appendix A.3.

The proof explicitly integrates E[M2
a] using [37] (see Appendix B.3). Numerically evaluating

Equation (16) can be hard even for small D as the summands scale as O(exp(D)), but the overall
sum scales as O(D). High values cancel due to R alternating in sign, and one requires arbitrary-
precision floating point software to evaluate Equation (16).

5.1.2 Interpretable guarantee

The guarantee in Theorem 1 yields useful predictions, but it does not lend itself to further analysis:
How does the bound behave over several coupling blocks? What is the behavior for varying dimension
D? Also, Assumption 3 restricts formal reasoning as we are interested in averaging over orthogonal
and not unitary rotations. Our second single-block guarantee depends only on simple metrics of the
covariance. Moreover, we drop Assumptions 3 and 4, averaging over orthogonal, not unitary, Q:

1The only result known to us would yield predictions for D = 2 [38], whereas we are interested in large D.

7

10 5 10 4 10 3 10 2 10 1 100 101

non-Standardness before Block

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

no
n-

St
an

da
rd

ne
ss

 a
fte

r B
lo

ck

i

Experiment
Experiment (Unitary)
'Unitary' Bound
'Var-max' Bound
'Loss-only' Bound

10 4 10 3 10 2 10 1 100 101 102

non-Standardness before Block

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

no
n-

St
an

da
rd

ne
ss

 a
fte

r B
lo

ck

i

Experiment
Experiment (Unitary)
'Unitary' Bound
'Var-max' Bound
'Loss-only' Bound

Figure 3: Comparison between predicted non-Standardness and experiment for 48-dimensional
parametrized eigenvalue spectra (insets), varied over a parameter which controls the spread of the
spectrum and thus changes S. The experimental average over orthogonal rotations matrices (blue,
shaded by Interquartile Range IQR) is closely matched by the experimental average over unitary
matrices (dotted blue). The prediction by Theorem 1 is a close upper bound that closely matches the
experimental behavior (orange). The predictions by Theorem 2 are less precise, but converge to the
same value as the precise bound for covariances close to the identitiy: ‘Var-max’ is Equation (18a)
(green) and ‘Loss-only’ is Equation (18b) (red). More details and examples in Appendix A.3.

Theorem 2 (Proof in Appendix B.4). Given D-dimensional data fulfilling Assumptions 1 and 2 with
covariance Σ ̸= I with eigenvalues λ1, . . . λD. Then, after a single coupling block, the expected loss
can be bounded from above:

EQ∈O(D)[S(Σ1(Q))] ≤ S(Σ) + D

4
log

(
1− D2

2(D − 1)(D + 2)

Var[λ]

λmax

)
(18a)

≤ S(Σ) + D

4
log

(
1− D2

(D − 1)(D + 2)

1−
√
1− gD

1 +
√
1− gD

(1− g)

)
< S(Σ).

(18b)

Here, g is the geometric mean of the eigenvalues: g =
∏D

i=1 λ
1/D
i = exp(−2S(Σ)/D) < 1 which

is a bijection of S(Σ).

These two new bounds on the average achievable non-Standardness S after a single block are also
depicted in Figure 3. They make useful predictions, but are less precise than Theorem 1. The second
bound will be especially useful in what follows because it only depends on the non-Standardness
before the block S(Σ).
The full proof is given in Appendix B.4. It relies on the integration of monomials of entries of random
orthogonal matrices as described by [39] and the arithmetic mean-geometric mean inequality by [40].

The first bound suggests an important property of the non-Standardness convergence of a coupling-
based normalizing flow in terms of dimension: The performance only marginally depends on the
dimension. To see this, divide Equation (18a) by D to obtain a statement about the non-Standardness
per dimension S/D. Then take several data sets with different dimension but same spectrum
characteristics (i.e. same geometric mean, variance and maximum of covariance eigenvalues). The
guarantee is then approximately constant in D (it varies slightly with D2/(D2 +D − 2), which is
always close to 1).

5.2 Deep network guarantee

The previous Section 5.1 was concerned with determining how much a single coupling block can
typically contribute towards reducing the S to zero. Now, we extend this result to compute the
expected non-Standardness after a deep coupling-based normalizing flow as an explicit function of
the number of blocks. We again treat the rotation layer of each block as a random variable, as it is
randomly determined before training.

8

0 5 10 15 20 25 30
Number of Coupling Blocks

10 9

10 7

10 5

10 3

10 1

101

Av
er

ag
e

no
n-

St
an

da
rd

ne
ss

0 5 10 15 20 25 30
Number of Layers

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

no
n-

St
an

da
rd

ne
ss

 R
at

io

Experiment
'Unitary' bound
'Var-max' bound
'Loss-only' bound

Figure 4: Deep network convergence of covariance on toy dataset. (Left) Each line shows the
experimental convergence of S via the repeated application of Proposition 2, averaged over 32 runs
with different rotations Q. (Right) The empirical convergence rate (blue), i.e. the ratio of S before
and after a block, is correctly bounded from above by our predictions in Theorem 1 (orange), and
the bounds in Theorem 2: Equation (18a) (green) and Equation (18b) (red). The solid lines show
the ratio (bounds) averaged over the toy dataset and rotations, the shade is the IQR. The experiment
suggests that a convergence rate like Theorem 3 can also be derived for the remaining bounds.

We find that the convergence rate of the covariance to the identity is (at least) linear:
Theorem 3 (Proof in Appendix B.5). Given D-dimensional data fulfilling Assumptions 1 and 2 with
covariance Σ. Then, after L coupling blocks, the expected loss is smaller than:

EQ1,...,QL∈O(D)[S(ΣL)] ≤ γ
(
S(Σ)

)LS(Σ), (19)

where the convergence rate depends on the non-Standardness before training:

γ(S) = 1 + 1
4S/D log

(
1− D2

(D − 1)(D + 2)

1−
√
1− g(S)D

1 +
√
1− g(S)D

(
1− g(S)

))
< 1. (20)

The non-Standardness decreases at least exponentially fast in the number of blocks. The convergence
rate that holds for a deep network is computed using the non-Standardness of the input data S(Σ).
This rate comes from Equation (18b). The proof uses that γ(S) improves from block to block as
S decreases (see Appendix B.5). Again, g(S) = exp(−2S/D) < 1 is the geometric mean of
eigenvalues of Σ, which increases from block to block.

Figure 4 shows the convergence of the non-Standardness to zero in an experiment. We build a toy
dataset of various covariances where we aim to capture a plethora of possible cases (see Appendix A.4).
We apply a single coupling block with random Q and the coupling that maximally reduces S via
Proposition 2. We iteratively add such blocks 32 times, building a flow of that depth. The resulting
convergence of S as a function of depth is averaged over 32 runs with different rotations. The
measured curve confirms Theorem 3. We find that the rate γ in Equation (20) is correct, but several
experiments show even faster convergence in practice. Indeed, the experiments suggest that dividing
all upper bounds for E[S(Σ1)] in Theorems 1 and 2 by S(Σ) also bounds the non-Standardness ratio
for subsequent blocks. Formally, we conjecture that E[S(ΣL)]/S(Σ) ≤ (B/S(Σ))L where B is the
rhs. of Equations (16) and (18a) (Theorem 3 shows exactly this for Equation (18b)). We leave a proof
or falsification of this conjecture open to future work.

The experiment also suggests that all bounds agree after a few blocks, leaving a small gap to the
experiment. We can explicitly compute this limit value of γ(S) by taking S → 0:

γ(S) S→0−−−→ D(D+2)−4
2(D−1)(D+2) ∈

[
1/2, 5/9

]
. (21)

The two experimental observations together with this limit value suggest the heuristic that a single
additional coupling block typically reduces the non-Standardness S by a factor of approximately
50% if previous blocks are left unchanged, and possibly faster if cooperations between blocks are
taken into account.

9

6 Conclusion

To the best of our knowledge, this is the first work on coupling-based normalizing flows that provides a
quantitative convergence analysis in terms of the KL divergence. Specifically, a minimal convergence
rate is established at which flows whiten the covariance of the input data under this strong measure
of discrepancy of probability distributions. Splitting the loss into the non-Gaussianity G and the
non-Standardness S , we show that this whitening is a necessary condition for the flow to converge and
give explicit guarantees. Our derivations suggest the rule of thumb that S can typically be reduced by
about 50% per coupling block.

Our central idea was to separate out the contribution a single isolated block can make to reduce the
loss, arguing that end-to-end training can only outperform the concatenation of isolated blocks.

Having separated the tasks a normalizing flow has to solve, and having explained how the non-
Standardness S can be reduced to zero, we hope that explaining also the entire convergence of
L = G + S with respect to the KL divergence is within reach. In particular, our theory did not yet
explore how the non-linear part of each coupling block reduces the non-Gaussianity G.

Acknowledgments and Disclosure of Funding

This work is supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy EXC-2181/1 - 390900948 (the Heidelberg STRUCTURES
Cluster of Excellence). It is also supported by the Vector Stiftung in the project TRINN (P2019-0092).

We thank our colleagues (in alphabetical order) Marcel Meyer, Jens Müller, Robert Schmier and
Peter Sorrenson for their help and fruitful discussions.

References
[1] Takeshi Teshima, Isao Ishikawa, Koichi Tojo, Kenta Oono, Masahiro Ikeda, and Masashi

Sugiyama. Coupling-based Invertible Neural Networks Are Universal Diffeomorphism Approx-
imators. In Advances in Neural Information Processing Systems, 2020.

[2] Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker. Normalizing Flows: An Introduc-
tion and Review of Current Methods. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(11):3964–3979, 2021.

[3] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing Flows for Probabilistic Modeling and Inference. Journal of
Machine Learning Research, 57(22):1–64, 2021.

[4] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear Independent Components
Estimation. In International Conference on Learning Representations, Workshop Track, 2015.

[5] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP.
In International Conference on Learning Representations, 2017.

[6] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
In Advances in Neural Information Processing Systems, 2018.

[7] Radek Mackowiak, Lynton Ardizzone, Ullrich Kothe, and Carsten Rother. Generative classifiers
as a basis for trustworthy image classification. In IEEE / CVF Computer Vision and Pattern
Recognition Conference, 2021.

[8] Lynton Ardizzone, Radek Mackowiak, Carsten Rother, and Ullrich Köthe. Training Normalizing
Flows with the Information Bottleneck for Competitive Generative Classification. In Advances
in Neural Information Processing Systems, 2020.

[9] Lynton Ardizzone, Jakob Kruse, Carsten Rother, and Ullrich Köthe. Analyzing Inverse Problems
with Invertible Neural Networks. In International Conference on Learning Representations,
2018.

10

[10] Pablo Noever-Castelos, Lynton Ardizzone, and Claudio Balzani. Model updating of wind
turbine blade cross sections with invertible neural networks. Wind Energy, 25(3):573–599,
2022.

[11] Jens Müller, Robert Schmier, Lynton Ardizzone, Carsten Rother, and Ullrich Köthe. Learning
Robust Models Using The Principle of Independent Causal Mechanisms. In German Conference
on Pattern Recognition, 2021.

[12] Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling
equilibrium states of many-body systems with deep learning. Science, 365(6457):eaaw1147,
2019.

[13] Tim J. Adler, Lynton Ardizzone, Anant Vemuri, Leonardo Ayala, Janek Gröhl, Thomas Kirch-
ner, Sebastian Wirkert, Jakob Kruse, Carsten Rother, Ullrich Köthe, and Lena Maier-Hein.
Uncertainty-aware performance assessment of optical imaging modalities with invertible neural
networks. International Journal of Computer Assisted Radiology and Surgery, 14(6):997–1007,
2019.

[14] Felix Draxler, Jonathan Schwarz, Christoph Schnörr, and Ullrich Köthe. Characterizing the
Role of a Single Coupling Layer in Affine Normalizing Flows. In German Conference on
Pattern Recognition, 2020.

[15] Frederic Koehler, Viraj Mehta, and Andrej Risteski. Representational aspects of depth and
conditioning in normalizing flows. In International Conference on Machine Learning, 2021.

[16] Alison L. Gibbs and Francis Edward Su. On Choosing and Bounding Probability Metrics.
International Statistical Review / Revue Internationale de Statistique, 70(3):419–435, 2002.

[17] P. J. Huber and E. M. Ronchetti. Robust Statistics. John Wiley & Sons, Inc., second edition,
2009.

[18] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving
Flow-Based Generative Models with Variational Dequantization and Architecture Design. In
International Conference on Machine Learning, 2019.

[19] Zachary Ziegler and Alexander Rush. Latent Normalizing Flows for Discrete Sequences. In
International Conference on Machine Learning, 2019.

[20] Thomas Müller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. Neural
Importance Sampling. ACM Transactions on Graphics, 38(5):1–19, 2019.

[21] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Cubic-Spline Flows. In
International Conference on Machine Learning, Workshop Track, 2019.

[22] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural Spline Flows.
In Advances in Neural Information Processing Systems, 2019.

[23] Chin-Wei Huang, Laurent Dinh, and Aaron Courville. Augmented Normalizing Flows: Bridging
the Gap Between Generative Flows and Latent Variable Models. In International Conference
on Learning Representations, Workshop Track, 2020.

[24] Antoine Wehenkel and Gilles Louppe. Unconstrained Monotonic Neural Networks. In Advances
in Neural Information Processing Systems, 2019.

[25] Jean-François Cardoso. Dependence, Correlation and Gaussianity in Independent Component
Analysis. Journal of Machine Learning Research, 4:1177–1203, 2003.

[26] Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural Autoregres-
sive Flows. In International Conference on Machine Learning, 2018.

[27] Priyank Jaini, Kira A. Selby, and Yaoliang Yu. Sum-of-Squares Polynomial Flow. In Interna-
tional Conference on Machine Learning, 2019.

11

[28] Holden Lee, Chirag Pabbaraju, Anish Sevekari, and Andrej Risteski. Universal Approximation
for Log-concave Distributions using Well-conditioned Normalizing Flows. In International
Conference on Machine Learning, Workshop Track, 2021.

[29] Priyank Jaini, Ivan Kobyzev, Yaoliang Yu, and Marcus Brubaker. Tails of Lipschitz Triangular
Flows. In International Conference on Machine Learning, 2020.

[30] Isao Ishikawa, Takeshi Teshima, Koichi Tojo, Kenta Oono, Masahiro Ikeda, and Masashi
Sugiyama. Universal approximation property of invertible neural networks. arXiv preprint
arXiv:2204.07415, 2022.

[31] Han Zhang, Xi Gao, Jacob Unterman, and Tom Arodz. Approximation Capabilities of Neural
ODEs and Invertible Residual Networks. In International Conference on Machine Learning,
2020.

[32] Takeshi Teshima, Koichi Tojo, Masahiro Ikeda, Isao Ishikawa, and Kenta Oono. Universal
Approximation Property of Neural Ordinary Differential Equations. In Advances in Neural
Information Processing Systems, Workshop Track, 2020.

[33] Lynton Ardizzone, Till Bungert, Felix Draxler, Ullrich Köthe, Jakob Kruse, Robert
Schmier, and Peter Sorrenson. Framework for Easily Invertible Architectures (FrEIA).
https://github.com/VLL-HD/FrEIA, 2018.

[34] Shun-ichi Amari and Hiroshi Nagaoka. Methods of Information Geometry. American Mathe-
matical Society, 2007.

[35] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: An extension
of MNIST to handwritten letters. arXiv preprint arXiv:1702.05373, 2017.

[36] Roger A Horn and Charles R Johnson. Matrix Analysis. Cambridge University Press, 2012.

[37] Grigori Olshanski. Projections of orbital measures, Gelfand-Tsetlin polytopes, and splines.
Journal of Lie Theory, 23(4):1011–1022, 2013.

[38] Jacques Faraut. Rayleigh theorem, projection of orbital measures and spline functions. Advances
in Pure and Applied Mathematics, 6(4):261–283, 2015.

[39] T. Gorin. Integrals of monomials over the orthogonal group. Journal of Mathematical Physics,
43(6):3342–3351, 2002.

[40] D. I. Cartwright and M. J. Field. A refinement of the arithmetic mean-geometric mean inequality.
Proceedings of the American Mathematical Society, 71(1):36–38, 1978.

[41] P.R. Krishnaiah. Some recent developments on complex multivariate distributions. Journal of
Multivariate Analysis, 6(1):1–30, 1976.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] see Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Generative

modeling, which this paper aims to improve, can be used in harmful ways to generate
Deepfakes for disinformation.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Full proofs are in

Appendix B.

12

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Appendix A.
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] See Appendix A.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix A.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

Whitening Convergence Rate of
Coupling-based Normalizing Flows: Appendix

A Details on Experiments

All experiments were carried out on a single AMD Ryzen 7 3700X 8-Core Processor together with
a NVIDIA GeForce RTX 2080. At https://github.com/VLL-HD/Coupling-Flow-Bound we
have made available the code for all experiments.

A.1 Deep network on EMNIST

In this experiment, we estimate the capability of affine normalizing flows in reducing the non-
Standardness S (see Equation (8)) as a function of the number of layers. We compare this to the
theoretic bound in Theorem 1.

To this end, we train affine normalizing flows on EMNIST digits [35]. We leverage a 20-block Glow
architecture as described in Section 3. To measure the effect of depth L = 1, . . . , 20 of the flow on S ,
we truncate the architecture to L layers.

The architecture is built as follows: We start by down-sampling the input image from gray scale
1× 28× 28 to 4× 14× 14: Each group of four neighboring pixels is reordered into one pixel with
four times the channels in a checkerboard-like pattern. Then, eight convolutional coupling blocks
with 16 hidden channels are applied. They are followed by another down-sampling to 16 × 7 × 7
and eight convolutional coupling blocks with 32 hidden channels. After flattening the input, four
fully-connected affine coupling blocks are added with 392 hidden dimensions.

When truncating this architecture, we remove blocks from the left. For example, when one block is
present (L = 1), only the last coupling block with the fully connected subnetwork remains. This
makes the theory in this paper applicable, as Proposition 2 assumes that the neural networks s and t
are fully connected (otherwise, the whitening operation cannot always be represented).

We train each depth from scratch for 300 epochs using Adam with a learning rate of 3 · 10−3 which
is reduced by a factor of .1 after 100 and 200 epochs. The batch size is 240 which implies 1000
iterations per epoch.

Given the 20 networks of different, we split the loss into the non-Gaussianity G and non-Standardness
S as suggested by Proposition 1. To do so, we compute the empirical covariances Σl of 10’000 test
samples pushed through each flow.

To relate this experiment to our theory, we take the covariance matrices obtained using the trained
flows Σl and apply Theorem 1 on each. This yields an upper bound on the expected non-Standardness
after training another network with depth increased by one. In other words, given Σl, Theorem 1
predicts an upper bound on the expected EQl+1∼p(Q)[S(Σl+1)]. We observe that the experimentally
observed non-Standardness behaves similar to the upper bound. We do not expect this to be the
case in general: There might be a trade-off between reducing S and G, so the optimization might
actually decide for reducing G at the cost of increasing S. We only show that with the covariance
in Proposition 2, G does not increase. On the other end, an affine flow might actually be able to
reduce the non-Standardness stronger than predicted, as our theory does not take potentially useful
cooperation between layers into account.

We average all results over eight runs per depth (i.e. 8 · 20 = 160 networks in total). Despite different
random orientations in each run, the results are very concentrated: We find error bars so small that
they are not visible in Figure 1.

We observe that after three blocks, the non-Standardness is close to zero. Here, the flow consists of
one convolutional and two fully connected coupling blocks. This justifies the use of convolutional
networks for s and t; it could have happened that the convolutional layer, being limited to reduce
correlations between pixels only locally, does not reduce the non-Standardness as strongly as predicted.
This justifies the use of convolutional layers for the remaining blocks.

Figure 5 shows samples from one networks trained for each depth (sampling temperature T = 0.7).

14

https://github.com/VLL-HD/Coupling-Flow-Bound

20191817161514131211109876543210
Number of Coupling Blocks

8

7

6

5

4

3

2

1

Sa
m

pl
e

In
de

x

Figure 5: Samples generated by the affine coupling flows with varying depth trained for Figure 1.
Each column shows eight samples by a network of the corresponding depth.

A.2 Single layer on EMNIST digit covariance

This experiment confirms that the covariance minimizing the non-Standardness S(Σ1) after a single
layer is correctly predicted by Proposition 2.

To get an interesting covariance matrix, we flatten the EMNIST digits training data and compute its
covariance matrix Σ, as depicted in Figure 2 on the left. We then sample a multivariate Gaussian
with this covariance matrix and train a single affine coupling layer. As the data is Gaussian, we can
train with the standard maximum likelihood loss as it is equivalent to the non-Standardness S. We
use Adam with a learning rate 0.05, a batch size of 2048 and train for 512 iterations.

A.3 Single block on toy data

This experiment explores the average non-Standardness that can be reached by a single layer by
modifying the covariance as given by Proposition 2. It also aims to confirm the upper bounds shown
in Theorems 1 and 2.

We build a family of toy covariance matrices to work with. As the data will be randomly rotated
anyway, we choose the matrices to be diagonal w.l.o.g., i.e. we directly design the eigenvalue spectrum
of each covariance. We prescribe this spectrum by a continuous function µ : [0, 1] → R+. It is
chosen bijective to ensure that the eigenvalues are distinct. We then define the eigenvalues as follows:

µi = µ
(

i
D−1

)
i = 0, . . . , D − 1. (22)

With this approach, we can systematically modify eigenvalue/noise spectra.

Given a vector of eigenvalues (µi)i, we need to ensure that its mean is one. We do so by dividing by
the mean:

νi :=
µi∑D

i=1 µi/D
. (23)

Finally, we add a scaling parameter s > 0 that defines how close the spectrum is to the identity:

λ
(s)
i := (νi − 1) · s+ 1. (24)

The non-Standardness strictly decreases as s comes closer to 0. As the eigenvalues always have to be
positive, s must be chosen smaller than:

s <
1

1− λmin
=: smax. (25)

Given a spectrum λ
(s)
i , we build a diagonal covariance matrix

Σ = Diag(λ
(s)
i)Di=1. (26)

15

Figure 6: Eigenvalue spectra used for experiment depicted in Figure 3. (Left) µ(x) = x2 and (right)
µ(x) = x8. Each line corresponds to a different scaling s.

For the experimental baseline, we sample Nrot orthogonal and unitary rotation matrices
Q ∼ p(Q) from the corresponding Haar measure over O(D) and U(D). We employ
scipy.stats.ortho_group respectively scipy.stats.unitary_group. This yields the covari-
ance of the rotated data:

Σ0 = QΣQT . (27)

(Or, Q∗ instead of QT if we average over unitary matrices).

We do not train affine coupling layers directly. Instead, we make use of the single layer output
covariance Σ1 from Proposition 2.

We choose the following numerical values for s: To get a close look at the case where s → 0 and
correspondingly S → 0, we take Nscale/3 geometrically spaced points in [0.001smax, 0.9smax]. To
accurately capture the off-minimum behavior, we add to that 2Nscale/3 linearly spaced points between
[0.9smax, .999smax].

We choose Nrot = 100 and Nscale = 150 for all experiments. To save computational resources, we
re-use the rotations sampled for the first scale for the remaining.

In Figure 3, we showed the experiment for the parameterized spectra µ(x) = x2 and µ(x) = x8. For
both, Figure 6 shows which rescaled eigenvalue spectra were used in this experiment. In Figure 7, we
give examples for more spectra.

A.4 Layer-wise training on toy data

In this experiment, we track the non-Standardness as layers are added, check Theorem 3, and compare
the convergence rate Equation (20) to the other bounds in Theorems 1 and 2.

This experiment uses a different set of toy covariances than Appendix A.3. This time, we build a
plethora of different initial covariances (eigenvalue spectra) that include extreme cases:

1. All eigenvalues are set to 1 except for one that is varying.

2. All eigenvalues have the same value that is varied, except for one that is set to 1.

3. Split the eigenvalues into two halves, respectively having the same value: The first half is
varied, the second half assume the inverse value of the first half.

4. Randomly sample all eigenvalues uniformly from [0, 2].

5. Randomly sample all eigenvalues between such that the logarithm is uniformly distributed
over [1/vmax, vmax].

Whenever we vary the value of any eigenvalue, we take Nvary scalars geometrically spaced between
1/vmax and vmax. We exclude the case where all eigenvalues are equal to 1, implying a non-
Standardness of 0.

16

10 5 10 4 10 3 10 2 10 1 100 101

non-Standardness before Block

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

no
n-

St
an

da
rd

ne
ss

 a
fte

r B
lo

ck

i

Experiment
Experiment (Unitary)
'Unitary' Bound
'Var-max' Bound
'Loss-only' Bound

10 4 10 3 10 2 10 1 100 101 102

non-Standardness before Block

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

no
n-

St
an

da
rd

ne
ss

 a
fte

r B
lo

ck

i

Experiment
Experiment (Unitary)
'Unitary' Bound
'Var-max' Bound
'Loss-only' Bound

10 5 10 4 10 3 10 2 10 1 100 101

non-Standardness before Block

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

no
n-

St
an

da
rd

ne
ss

 a
fte

r B
lo

ck

i

Experiment
Experiment (Unitary)
'Unitary' Bound
'Var-max' Bound
'Loss-only' Bound

10 5 10 4 10 3 10 2 10 1 100 101

non-Standardness before Block

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

no
n-

St
an

da
rd

ne
ss

 a
fte

r B
lo

ck

i

Experiment
Experiment (Unitary)
'Unitary' Bound
'Var-max' Bound
'Loss-only' Bound

Figure 7: Examples for single layer relative non-Standardness on more eigenvalue spectra: (Top left)
µ(x) = x, (top right) µ(x) = x5, (bottom left) µ(x) = 1

1.1−x , (bottom right) µ(x) = exp(x). More
details in Figure 3.

To fulfill Assumption 4, we do not actually assign the same value to eigenvalues, but multiply them
each with a linearly increasing factor in (1− ϵ, 1+ ϵ). We do not observe any change in experimental
behavior from this, but this allows us evaluating Theorem 1.

Given the dataset of eigenvalues, we build diagonal covariances, repeatedly apply random rotations
and the whitening procedure in Proposition 2. The details are given in Algorithm 1. For each input
covariance, we obtain Nrot trajectories of covariances.

Algorithm 1 Multi-layer non-Standardness experiment

Require: Input covariances Σ(i), i = 1, . . . , N , number of rotations Nrot, number of layers L.
Σ

(i,r)
0 ← Σ(i) for i = 1, . . . , N ; r = 1, . . . , Nrot {Copy each input covariance Nrot times}

for l = 1, . . . , L do
Q(r) ∼ O(D) for r = 1, . . . , Nrot {Sample rotations}
Σ

(i,r)
l−1

′ ← Q(r)Σ
(i,r)
l−1 (Q

(r))T for i = 1, . . . , N ; r = 1, . . . , Nrot {Apply rotations}

Σ
(i,r)
l ← Proposition 2 on Σ

(i,r)
l−1

′ {Apply whitening step}
end for

Ensure: {Σ(i,r)
l }Ll=1 for i = 1, . . . , N ; r = 1, . . . , Nrot.

We evaluate the non-Standardness of each covariance matrix S(Σ(i,r)
l) and average over rotations.

This is shown in the left plot in Figure 4.

In addition, we compute the relative non-Standardness between layers:

S(Σ(i,r)
l)/S(Σ(i,r)

l−1). (28)

This quantity is averaged over rotations r and instances i. It is depicted together with the correspond-
ing interquartile range (IQR) in the right half of Figure 4.

We also evaluate each of the bounds on EQ[S(Σ(i,r)
l+1)] in Theorems 1 and 2 given Σ

(i,r)
l and divide it

by the non-Standardness S(Σ(i,r)
l). Again, we average over rotations and iterations.

17

Averaging over rotations might be counter-intuitive as the bounds explicitly calculate a value that is
an average: It is necessary because for each initial covariance, we have Nrot trajectories with different
convergence behavior. Let us make this explicit. Denote by B any of the bounds in Theorems 1
and 2:

EQl+1∼p(Q)[S(Σ
(i,r)
l+1 (Ql+1))]

S(Σ(i,r)
l)

≤
B(Σ

(i,r)
l)

S(Σ(i,r)
l)

. (29)

We average the quantity on the right over the different trajectories, i.e. over i, r. It only depends on
the covariances in the lth layer in contrast to the expression on the left.

As hyperparameters to the experiment, we choose D = 48, L = 32, Nvary = 128, Nrot = 32, vmax =
1000, ϵ = 10−5. We stop a trajectory once the non-Standardness falls below 10−9 to avoid numerical
instabilities.

B Detailed proofs

B.1 Proof of Proposition 1

The explicit form of the non-Standardness is given by the KL divergence between the two multivariate
Gaussians N (m,Σ) and N (0, I):

DKL(N (m,Σ)∥N (0, I)) (30a)
= Ex∼N (m,Σ)[logN (x;m,Σ)− logN (x; 0, I)] (30b)

= Ex∼N (m,Σ)[− 1
2 log det(2πΣ)−

1
2 (x−m)TΣ−1(x−m) + 1

2 log det(2πID) + 1
2∥x∥

2
] (30c)

= 1
2

(
− log det(Σ) + Ex∼N (m,Σ)[− 1

2 (x−m)TΣ−1(x−m) + 1
2∥x∥

2
]
)

(30d)

= 1
2 (∥m∥

2
+ trΣ−D − log detΣ). (30e)

Proof. We start with the first decomposition in Equation (6).

DKL(p∥N (0, I))−DKL(p∥N (m,Σ)) (31a)
= Ex∼p(x)[log p(x)− logN (x; 0, I)− log p(x) + logN (x;m,Σ)] (31b)

= Ex∼p(x)[− logN (x; 0, I) + logN (x;m,Σ)] (31c)

=
1

2
Ex∼p(x)[D log(2π) + ∥x∥2 −D log(2π)− log detΣ− (x−m)TΣ−1(x−m)] (31d)

=
1

2
Ex∼p(x)[∥x∥

2 − log detΣ− (x−m)TΣ−1(x−m)] (31e)

=
1

2

(
Ex∼p(x)[∥x∥

2
]− log detΣ− Ex∼p(x)[(x−m)TΣ−1(x−m)]

)
. (31f)

The open expectation values read:

Ex∼p(x)[∥x∥
2
] = Ex∼p(x)[

D∑
i=1

x2
i] =

D∑
i=1

Ex∼p(x)[x
2
i] =

D∑
i=1

(m2
i +Σii) = ∥m∥2 + trΣ, (32)

and interpreting (x −m) as a RD×1 matrix, we can re-write using the trace. Then use the cyclic
property and linearity of the trace:

Ex∼p(x)[(x−m)TΣ−1(x−m)] = Ex∼p(x)[tr((x−m)TΣ−1(x−m))] (33a)

= Ex∼p(x)[tr((x−m)(x−m)TΣ−1)] (33b)

= tr(Ex∼p(x)[(x−m)(x−m)T]Σ−1) (33c)

= tr(ΣΣ−1) (33d)
= D. (33e)

18

Inserting the two expectation values, we identify:

DKL(p∥N (0, I))−DKL(p∥N (m,Σ)) =
1

2

(
∥m∥2 + trΣ− log detΣ−D

)
(34a)

= DKL(N (m,Σ)∥N (0, I)), (34b)

and obtain Equation (6).

Now we move on to show Equation (7):

C(p) = DKL(N (m,Σ)∥N (m,Diag(Σ))) (35a)

=
1

2

(
tr
(
(DiagΣ)−1Σ

)
−D + log

det(Diag(Σ))

detΣ

)
(35b)

=
1

2
log

det(Diag(Σ))

detΣ
, (35c)

and

DKL(N (m,Diag(Σ))∥N (0, I)) =
1

2

(
trDiag(Σ)−D − log(det(Diag(Σ)))

)
(36a)

=
1

2

(
tr Σ−D − log(det(Diag(Σ)))

)
. (36b)

Adding the two divergences yields Equation (7).

B.2 Proof of Proposition 2

We first show that an affine-linear function g(x) as assumed in Proposition 2 cannot change the
non-Gaussianity G:
Lemma 1. Given a D-dimensional distribution and an affine-linear function

g(x) = Ax+ b (37)

for some A ∈ RD×D with detA > 0 and b ∈ RD. Then:

G(g♯p) = G(p). (38)

Proof. The non-Gaussianity G is given by:

G(p) = DKL(p(x)∥N (m,Σ)). (39)

Mean and covariance of the push-forward of p via g read:

Ex∼p(x)[g(x)] = Ex∼p(x)[Ax+ b] = Am+ b = m1, (40a)

Covx∼p(x)[g(x)] = Covx∼p(x)[Ax+ b] = AΣAT = Σ1. (40b)

Thus, the non-Gaussianity after applying g reads:

G(g♯p) = DKL(g♯p∥N (m1,Σ1)). (41)

The push-forward of N (m,Σ) via g is identical to the normal distribution that occurs in the non-
Gaussianity of g♯p:

g♯N (m,Σ) = N (m1,Σ1), (42)

Now, we make use of the fact that the KL divergence is invariant if both arguments are transformed
by any invertible function g:

DKL(p1(x)∥p2(x)) = DKL((g♯p1)(x)∥(g♯p2)(x)). (43)

Together,
G(g♯p) = G(p). (44)

We now turn to the proof of Proposition 2:

19

Proof. We aim to find the affine-linear coupling layer fcpl minimizing S(Σ1). By Lemma 1, G does
not change.

The affine-linear coupling fcpl has the following form:

x1 =

(
Diag(r) 0

T Diag(s)

)(
p0
a0

)
+

(
u
t

)
=: Ax0 + b. (45)

To make the coupling affine-linear, r, s ∈ RD/2
+ are positive vectors, u, t ∈ RD/2 are vectors and

T ∈ RD/2×D/2 is the matrix describing the linear dependence of a1 on p0.

By linearity of expectation, the mean of x1 reads:

m1 = Am0 + b. (46)

Write S := Diag(s) and R := Diag(r) so that the covariance of x1 is given by:

Σ1 := Cov[x1] = AΣ0A
T (47a)

=

(
R 0
T S

)(
Σ0,pp Σ0,pa

Σ0,ap Σ0,aa

)(
R TT

0 S

)
(47b)

=

(
RΣ0,ppR R(Σ0,paS +Σ0,ppT

T)
(TΣ0,pp + SΣ0,ap)R (TΣ0,pa + SΣ0,aa)S + (TΣ0,pp + SΣ0,ap)T

T

)
(47c)

Together, the non-Standardness of x1 is given from Equation (8)

S(m1,Σ1) (48a)

= 1
2

(
∥m1∥2 + trΣ1 −D − log detΣ1

)
(48b)

= 1
2

(
∥Am0 + b∥2 + tr(R2Σ0,pp) + tr(TΣ0,paS) + tr(S2Σ0,aa) + tr(TΣ0,ppT

T) (48c)

+ tr(SΣ0,apT
T)−D − log detΣ0 − log detR− log detS

)
. (48d)

To find the minimum of S(m1,Σ1), minimize the above over r, s, T and b:

argmin
r,s,T,b

S(m1,Σ1). (49a)

It is easy to see that b = −Am0 minimizes Equation (48) as in this case m1 = 0.

At the minimum, we find for r:

0 =
∂S(m1,Σ1)

∂rm
= − 1

rm
+ rm(Σ0,pp)mm, (50)

for some m = 1, . . . , D/2. We read off that rm = (Σ0,pp)
−1/2
mm . In matrix notation:

R = Diag(Σ0,pp)
−1/2. (51)

For s, T , we find the system:

0 =
∂S(m1,Σ1)

∂sn
= − 1

sn
+

D/2∑
j=1

Tnj(Σ0,pa)jn + sn(Σ0,ap)nn (52a)

0 =
∂S(m1,Σ1)

∂Top
= sp(Σ0,pa)po +

D/2∑
k=1

Tpk(Σ0,aa)ko. (52b)

Multiplying the first equation by sn, we find in matrix notation:

I = Diag(TΣ0,paS + S2Σ0,aa) (53a)
0 = SΣ0,pa + TΣ0,pp. (53b)

20

We solve the second equation for T (we use that Σ0,pp is invertible as it is positive definite):

T = −SΣ0,apΣ
−1
0,pp, (54)

and insert into the first:

I = Diag(−SΣ0,apΣ
−1
0,ppΣ0,paS + S2Σ0,aa) (55a)

= Diag(−S2Σ0,apΣ
−1
0,ppΣ0,pa + S2Σ0,aa). (55b)

The last step is due to Diag(·) linear and S diagonal. We read off that:

S = Diag(Σ0,aa − Σ0,apΣ
−1
0,ppΣ0,pa)

−1/2. (56)

Alternative solutions with negative signs are discarded by convention (without an effect on the
covariance).

Inserting into Equation (47c), we find:

Σ1,pp = RΣ0,ppR = Diag(Σ0,pp)
−1/2Σ0,pp Diag(Σ0,pp)

−1/2 = M(Σ0,pp), (57a)

Σ1,pa = R(Σ0,paS +Σ0,ppT
T) = R(Σ0,paS − Σ0,ppΣ

−1
0,ppΣ0,paS) = 0, (57b)

Σ1,ap = ΣT
1,pa = 0, (57c)

Σ1,aa = (TΣ0,pa + SΣ0,aa)S + (TΣ0,pp + SΣ0,ap)T
T (57d)

= (−SΣ0,apΣ
−1
0,ppΣ0,pa + SΣ0,aa)S + (SΣ0,apΣ

−1
0,ppΣ0,pp − SΣ0,ap)Σ

−1
0,ppΣ0,paS (57e)

= S(Σ0,aa − Σ0,apΣ
−1
0,ppΣ0,pa)S = M(Σ0,aa − Σ0,apΣ

−1
0,ppΣ0,pa). (57f)

This concludes the proof:

m1 = 0, Σ1 =

(
M(Σ0,pp) 0

0 M(Σ0,aa − ΣapΣ
−1
pp Σpa)

)
. (58)

B.3 Proof of Theorem 1

The following statement will help us along the way:

Lemma 2. For A ∈ CD, Q ∈ {O(D), U(D)} with the corresponding Haar measure p(Q):

EQ∈p(Q)[(QAQ∗)ii] =
1

D
tr(A). (59)

Proof. By symmetry, EQ[(QAQ∗)11] = EQ[(QAQ∗)ii] for i = 1, . . . , D. Thus, EQ[(QAQ∗)11] =
1
D

∑D
i=1 EQ[(QAQ∗)ii] =

1
DEQ[tr(QAQ∗)] = 1

D trA.

When we write Q∗, we mean conjugate transpose if Q is sampled from the unitary group U(D), and
transpose if Q is from the orthogonal group O(D). Whenever we only consider orthogonal Q, we
will resort back to writing QT.

This allows us to directly estimate EQ∼p(Q)[log detM
2
p]:

Lemma 3. With the definitions in Section 5.1, p(Q) either the Haar measure of orthogonal or unitary
matrices, and Assumption 2. Then:

EQ∼p(Q)[log detM
2
p] ≥ 0. (60)

Proof. Mp is given by:

M2
p = Diag(Σ0,pp)

−1. (61)

21

The corresponding expectation value can be estimated via Jensen’s inequality:

EQ∼p(Q)[log detM
2
p] = EQ∼p(Q)[log detDiag(Σ0,pp)

−1] (62a)

= −EQ∼p(Q)[log

D/2∏
i=1

(Σ0,pp)ii] = −
D/2∑
i=1

EQ∼p(Q)[log(Σ0,pp)ii] (62b)

≥ −
D/2∑
i=1

logEQ∼p(Q)[(Σ0,pp)ii] = −
D

2
log trΣ/D (62c)

= 0. (62d)

By Assumption 2, tr Σ = D. We have used Lemma 2 for evaluating EQ∼p(Q)[(Σ0,pp)ii].

As mentioned in Section 5.1, the main difficulty in estimating EQ∼p(Q)[S(Σ1(Q))] lies in
EQ∼p(Q)[log detM

2
a]. The following subsections show a path to do so.

B.3.1 Problem reformulation

In a first step, we reformulate this expectation so that it can be computed with the help of projected
orbital measures [37].

We split the expectation over the Haar measure p(Q) in two parts: One that defines which eigenvalues
the (D/2) × (D/2) block Σ0,aa has (denote this as Qap) and, conditioned on this, another which
rotates Σ0,aa into all possibles bases (denote this as Qa). Formally, write Q as:

Q =

(
I 0
0 Qa

)
Qap. (63)

We will replace the Schur complement Σ0,aa − Σ0,apΣ
−1
0,ppΣ0,pa appearing in Proposition 2 by the

corresponding block of the precision matrix P0 := Σ−1
0 = (QΣ−1Q∗)−1 = QΣ−1Q∗ (e.g. [36,

Section (0.7.3)]:
(P0,aa)

−1 = ((Σ−1
0)aa)

−1 = Σ0,aa − Σ0,apΣ
−1
0,ppΣ0,pa. (64)

We give more details in the proof of the following lemma, which formalizes this step:

Lemma 4. Given the definitions in Section 5.1 and Assumption 2. It holds that

EQ∼p(Q)[log detM
2
a] ≥ −

D/2∑
i=1

logEQa∼p(Qa|Qap)[((P0,aa)
−1)ii]. (65)

Proof. By Proposition 2, M2
a is given by:

M2
a = Diag(Σ0,aa − Σ0,apΣ

−1
0,ppΣ0,pa)

−1. (66)

Being diagonal, its determinant is given by the product of its diagonal entries:

EQ∼p(Q)[log detM
2
a] = EQ∼p(Q)[log

D/2∏
i=1

(Σ0,aa − Σ0,apΣ
−1
0,ppΣ0,pa)

−1
ii] (67a)

=

D/2∑
i=1

EQ∼p(Q)[log((Σ0,aa − Σ0,apΣ
−1
0,ppΣ0,pa)

−1
ii)] (67b)

= −
D/2∑
i=1

EQ∼p(Q)[log((Σ0,aa − Σ0,apΣ
−1
0,ppΣ0,pa)ii)]. (67c)

Evaluating this expression is hard mainly because the Σ0,apΣ
−1
0,ppΣ0,pa involves the inverse of

Σ0,pp = (QΣQ∗)pp, which depends on Q.

22

To circumvent this, note the following property of any nonsingular matrix M [36, Section (0.7.3)].
Split M into blocks as:

M =

(
A B
B∗ C

)
, (68)

and do the same for its inverse:

M−1 =

(
A′ B′

B′∗ C ′

)
(69)

Then, (A′)−1 = A−BC−1B∗, which is called the Schur complement M/C. This means we can
rewrite

Σ0,aa − Σ0,apΣ
−1
0,ppΣ0,pa = (P0,aa)

−1, (70)

where P0 = Σ−1
0 is the precision matrix of the rotated data. Given a rotation Q, it can easily be

obtained from the precision matrix of the data in its original rotation:

Σ0 = QΣQ∗, P0 = QΣ−1Q∗. (71)

Inserting this, we find the expectation value:

EQ∼p(Q)[log detM
2
a] = −

D/2∑
i=1

EQ∼p(Q)[log(((P0,aa)
−1)ii)]. (72)

The logarithm can be drawn out via Jensen’s inequality:

−
D/2∑
i=1

EQ∼p(Q)[log(((P0,aa)
−1)ii)] ≥ −

D/2∑
i=1

log(EQ∼p(Q)[((P0,aa)
−1)ii]). (73)

This concludes the statement.

B.3.2 Projected orbit expectation

The theory of projected orbital measures describes the distribution of eigenvalues of a randomly
projected submatrix of some given matrix. Let us formalize this:

Fix a diagonal matrix A = Diag(a1, . . . , aN). Then, then the orbit of A is defined as:

OA := {QAQ∗ : Q ∈ U(D)}. (74)

(The same definition also exists for orthogonal Q ∈ O(D), but we keep it to the level we require
here). All matrices in the orbit of OA have the same eigenvalues.

The natural measure (probability distribution) on the orbit OA is given by the image of the Haar
measure on the unitary group U(D). This can be thought of as the uniform measure on the group of
unitary rotations. We call this measure the orbital measure.

We now cut out the K ×K top left corner out of every matrix in OA:

PKOA := {PKY : Y ∈ OA}. (75)

We call this the projected orbit. The matrix PK projects a matrix to its upper left corner:

PK = (IK ; 0K×(N−K)). (76)

The distribution of matrices in the projected orbit PKOA induced by the orbital measure is denoted
as the projected orbital measure µA,K . We are now interested in the eigenvalues of matrices in the
projected orbit PKOA.

Let spectrum be the function that assigns a matrix Y ∈ CK×K its eigenvalues y1, . . . , yK . We will
make use of a result that gives the distribution of eigenvalues of matrices in the projected orbit PKOA.
This is called the radial part of the projected orbital measure and is denoted as νA,K(x1, . . . , xK).

νA,K(x1, . . . , xK) = PX∼µA,K
[spectrum(X) = (x1, . . . , xK)]. (77)

In other words, νA,K(x1, . . . , xK) gives the probability density that a random matrix from the
projected orbit of A has exactly eigenvalues (x1, . . . , xK). Its functional form was shown by [37]:

23

Theorem 4 (Radial part of projected orbital measure [37]). Fix A = (a1, . . . , aD) with a1 < · · · <
aD. For any K = 1, . . . , D − 1, the density of eigenvalues of

νA,K(x1, . . . , xK) = cD,K

V (x1, . . . , xK) det[M(aj ;xi, . . . , xD−K+i)]
K
i,j=1∏

j−i≥D−K+1(xj − xi)
. (78)

Here, the constant is given by:

cD,K =

K−1∏
i=1

(
D −K + i

i

)
, (79)

and M(a; y1, . . . , yN) is the B-spline:

M(a; y1, . . . , yn) := (N − 1)
∑

i:yi>a

(yi − a)n−2∏
r:r ̸=i(yi − yr)

, (80)

and V is the Vandermonde polynomial:

V (y1, . . . , yn) =
∏
i<j

(yj − yi). (81)

We will make use of the following variant of the Vandermonde determinant where all powers greater
or equal to some k are increased by one:

Lemma 5. For all n ∈ N, k = 1, . . . , n− 1 and distinct ai, i = 1, . . . , n:

det

1 · · · ak−1
1 ak+1

1 · · · an1
...

...
...

...
1 · · · ak−1

n ak+1
n · · · ann

 = V (a1, . . . , an)en−k(a1, . . . , an). (82)

with the elementary symmetric polynomial eK given by Equation (17).

Lemma 6. Fix A = (a1, . . . , aN) with a1 < · · · < aN . For any K = 1, . . . , N − 1, it holds that:

Ea1,...,aK∼νA,K(x1,...,xK)[x
−1
1 + · · ·+ x−1

K] (83a)

= (N −K)(−1)N−K
N∑
j=1

aN−K−1
j log(aj)R(aj ; a̸=j)eK−1(a̸=j). (83b)

Here, R is defined in Equation (17).

Proof. We use the Andreief identity in the form of [41, Lemma 2.1]

Ex1,...,xk∼νA,K
[1
x1

+ · · ·+ 1
xk

] (84a)

= Z−1

∫
(RK)+

(1
x1

+ · · ·+ 1
xk

) det(xj−1
i) det(M(xi; aj , . . . , aj+N−K)) dx1 · · · dxk (84b)

= Z−1
K∑

k=1

det

∫
R
x−δjkxj−1M(x; ai, . . . , ai+N−K) dx (84c)

= Z−1 det

∫
R
xj−1−δj1M(x; ai, . . . , ai+N−K) dx (84d)

= Z−1 det

{
µ−1(ai, . . . , ai+N−K) j = 1

µj−1(ai, . . . , ai+N−K) j > 1
(84e)

where µk(t1, . . . , tn) the kth moment of the B-spline with knots t1, . . . , tn:

µk(t1, . . . , tn) =

∫
xkM(x; t1, . . . , tn) dx. (85)

24

We can now make use of the Hermite–Genocchi formula [38, Proposition 6.3]:∫
f (n−1)(x)M(x; t1, . . . , tn) dx = (n− 1)!f [t1, . . . , tn], (86)

so we can rewrite
µk(t1, . . . , tn) = fk[t1, . . . , tn], (87)

with

f−1(x) = (n− 1)xn−2 log x, (88a)

fk(x) =

(
n+ k − 1

k

)−1

xn+k−1. (88b)

Together, we find

Ex1,...,xk∼νA,K
[1
x1

+ · · ·+ 1
xk

] = Z−1 det(fi−1−δ1i [aj , . . . , aj+N−K]). (89)

The right hand side can be identified with the right hand side of [38, Proposition 6.4]. It is equal to:

Z−1 det(fi[aj , . . . , aj+N−K]) (90a)

= Z−1

 ∏
0<j−i≤N−K

(aj − ai)
−1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
a1 · · · aN
...

...
aN−K−1
1 · · · aN−K−1

N
f1(a1) · · · f1(aN)

...
...

fK(a1) · · · fK(aN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(90b)

= Z−1

 ∏
0<j−i≤N−K

(aj − ai)
−1

K∏
k=1

(
N −K + k

k

)−1
(N −K)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
a1 · · · aN
...

...
aN−K−1
1 · · · aN−K−1

N

aN−K−1
1 log a1 · · · aN−K−1

N log aN
aN−K+1
1 · · · aN−K+1

N
...

...
aN−1
1 · · · aN−1

N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(90c)

=: C2 det(Mij) (90d)

Here, C2 reduces to:

C2 =
N −K

V (a1, . . . an)
. (91a)

Then, the determinant of Mij reads:

detMij =

N∑
j=1

(−1)N−K+1+jaN−K−1
j log(aj)V (a̸=j)

∑
i1<···<iK−1

i... ̸=j

ai1 · · · aiK−1
(92a)

= V (a)(−1)N−K
∑
j

aN−K−1
j log(aj)R(aj ; a̸=j)eK−1(a̸=j), (92b)

where R(aj ; a̸=j) collects all the terms in V (a) that were not contained in V (a̸=j) up to sign:

R(aj ; a̸=j) =

n∏
i=1
i ̸=j

1

ai − aj
= (−1)j−1V (a̸=j)/V (a). (93)

25

Note that the sign of R(aj ; a̸=j) flips from j → j + 1, so the alternating nature of the above series
remains.

Together, the desired expectation value reads:

Ex1,...,xk∼νA,K
[1
x1

+ · · ·+ 1
xk

] (94a)

= (N −K)(−1)N−K
N∑
j=1

aN−K−1
j log(aj)R(aj ; a̸=j)eK−1(a ̸=j), (94b)

which concludes the proof.

We now connect this result to our situation. This paves the path from the reformulation in Lemma 4
to Theorem 1.

Corollary 1. For the definitions in Section 5.1 and when Assumptions 3 and 4 are fulfilled, it holds
that:

EQ∼p(Q)[log detM
2
a] ≥ D

2 log

(
(−1)

D
2 +1

D∑
i=1

λ
1−D

2
i log(λi)R(λ−1

i ;λ−1
̸=i)eD

2 −1
(λ−1

̸=i)

)
. (95)

Proof. Then, Lemma 2 tells us how to integrate over Qa.

EQa∼p(Qa|Qap)[((P0,aa)
−1)ii] = tr((QapPQ∗

ap)
−1) =

D/2∑
i=1

ai(Qap)
−1. (96)

Here, we denote by ai(Qap) the ith eigenvalue of P0 = QapPQ∗
ap, which depends on the “outer”

rotation Qap.

We substitute the expectation over Qap with an expectation over the projected eigenvalues of the
rotated precision matrix P0:

EQap∼p(Q)[EQa∼p(Qa|Qap)[((P0,aa)
−1)ii] = tr((QapPQ∗

ap)
−1)] (97a)

= Ea1,...,aD/2∼νA,D/2(a1,...,aD/2|λ−1
1 ,...,λ−1

D)[a
−1
1 + · · ·+ a−1

D/2]. (97b)

Here X = (λ−1
1 , . . . λ−1

D) contains the eigenvalues of the precision matrix P , the inverse of the
covariance Σ. Lemma 6 with K = D/2 tells us how to evaluate the above expression. Insert the
result into Lemma 4 to obtain the result.

B.3.3 Summary

We can now collect the above pieces to build the proof of Theorem 1:

Proof. Equation (15) is the version of the non-Standardness after a single layer when Assumptions 1
and 2 are fulfilled. Insert Lemma 3 (passive part) and Corollary 1 (active part) to obtain the result.
The former required Assumption 2 and the latter Assumptions 3 and 4 to hold.

B.3.4 Handling of imaginary part

If we allow for unitary rotations Q ∈ U(D), real-valued data is typically rotated into imaginary space.
In fact, the case that the input remains real even has probability zero:

P[Qx ∈ RD] = 0. (98)

This does not pose a problem for our theory: The covariance matrix is positive definite also for
complex data and so it has a positive determinant and trace, which are the only quantities entering the
non-Standardness S (see Equation (8)).

26

B.4 Proof of Theorem 2

Lemma 7. With the definitions in Section 5.1 and p(Q) the Haar measure over the orthogonal group
O(D):

EQ∼p(Q)[log detM
2
a] ≥ D/2 log

(
1− DD

2(D + 1)(D − 1)

Var[λ]

λmax

)
. (99)

Proof. By Proposition 2, M2
a is given by:

M2
a = Diag(Σ0,aa − Σ0,apΣ

−1
0,ppΣ0,pa)

−1. (100)

The determinant of a diagonal matrix is equal to the product of the entries on the diagonal. By the
permutation symmetry of p(Q), we can pick the entry in the upper left corner:

EQ∼p(Q)[log detM
2
a] = D/2EQ∼p(Q)[log((M

−2
a)11)] ≤ −D/2 logEQ∼p(Q)[(M

2
a)11]. (101)

The last step is due to the Jensen inequality.

We are left with computing EQ∼p(Q)[(M
2
a)11]:

EQ∼p(Q)[(M
2
a)11] = EQ∼p(Q)[(Σ0,aa − Σ0,apΣ

−1
0,ppΣ0,pa)11] (102a)

= EQ∼p(Q)[(Σ0,aa)11]− EQ∼p(Q)[(Σ0,apΣ
−1
0,ppΣ0,pa)11] (102b)

=
1

D
tr Σ0 − EQ∼p(Q)[(Σ0,apΣ

−1
0,ppΣ0,pa)11]. (102c)

The first expectation can be exactly computed via Lemma 2.

The average trace of the second matrix is not so easy to evaluate. As Σ−1
0,pp is positive definite, we

can replace it with the worst case in the expectation:

(Σ0,apΣ
−1
0,ppΣ0,pa)11 ≥ (Σ0,apλ

−1
maxIΣ0,pa)11 = (Σ0,apΣ0,pa)11λ

−1
max. (103)

λmax is the largest eigenvalue of Σ, which does not depend on Q.

The expectation value can now be computed exactly:

EQ∼p(Q)[(Σ0,apΣ0,pa)11] =

D/2∑
i=1

EQ∼p(Q)[(Σ0,ap)1i(Σ0,pa)i1] (104a)

= D/2EQ∼p(Q)[(Σ0,ap)
2
11]. (104b)

The last step is because each summand will have the same contribution. Writing the matrix multipli-
cation out explicitly:

(Σ0,ap)
2
11 = (QDiag(λ1, . . . , λD)Q∗)211 = (

D∑
j=1

Q1jλjQ(D/2+1)j)
2 (105)

Again by symmetry, we can exchange axes and write 2 instead of D/2 + 1 in what follows:

(

D∑
j=1

Q1jλjQ(D/2+1)j)
2 = (

D∑
j=1

Q1jλjQ2j)
2 =

D∑
j,k=1

λjλkQ1jQ2jQ1kQ2k. (106)

Taking the expectation, we use the linearity of the expectation and are left with the following
monomials of elements of Q:

1. j = k: EQ∼p(Q)[Q
2
1jQ

2
2j] = EQ∼p(Q)[Q

2
11Q

2
21] as we can exchanges axes,

2. j ̸= k: EQ∼p(Q)[Q1jQ2jQ1kQ2k] = EQ∼p(Q)[Q11Q21Q12Q22] as we can exchange axes.

27

By [39], these amount to the following integrals of monomials of entries of random orthogonal
matrices and the corresponding values:

1.
〈
2 2

〉
=

1

D(D + 2)
, (107a)

2.

〈
1 1
1 1

〉
= − 1

D(D − 1)(D + 2)
. (107b)

Together, we find

EQ∼p(Q)[(M
2
a)11] = 1− 1

2(D + 2)λmax

 D∑
j=1

λ2
j −

1

D − 1

∑
j ̸=k

λjλk

 (108a)

= 1− D2

2(D − 1)(D + 2)

Var[λ]

λmax
. (108b)

Here, Var[λ] = 1
D tr Σ2 − (1

D tr Σ)2 is the variance of the eigenvalues of Σ.

Insert this to obtain the result.

Lemma 8. With the definitions in Section 5.1:

EQ∼p(Q)[log detM
2
a] ≥ D/2 log

(
1− DD

2(D + 1)(D − 1)

Var[λ]

λmax

)
. (109)

Proof. The idea is to lower bound
Var[λ]

λmax
(110)

by some function of L. We make use of following arithmetic mean-geometric mean (AM-GM)
inequality by [40]:

Var[λ]

2λmax
≤ λ̄− g ≤ Var[λ]

2λmin
, (111)

where g is the geometric mean of the eigenvalues:

g :=

 D∏
i=1

λi

1/D

. (112)

We can write the loss L directly via g and vice versa:

L = −1

2
log gD = −D

2
log g, (113a)

g = exp(−2L/D). (113b)

Rewrite Equation (111) to our needs:

Var[λ]

λmax
=

Var[λ]λmin

λmaxλmin
=

2

κ

Var[λ]

2λmin
≥ 2

κ
(1− g), (114)

with κ the condition number of the covariance Σ.

As we want a bound that merely depends on the loss, we upper bound κ using a function of the
loss, yielding a lower bound on Var[λ]/λmax that merely depends on the loss. The maximum of the
condition value is given by:

max
λ1,...,λD∑

i λi=D∏
i λ

1/D
i =g

κ =
1 +

√
1− gD

1−
√
1− gD

. (115)

This yields the required lower bound:

Var[λ]

λmax
≥ 2

1−
√
1− gD

1 +
√
1− gD

(1− g), (116)

28

which results in an overall upper bound:

EQ∈O(D)[S(Σ1(Q))] ≤ S(Σ) + D

4
log

(
1− D2

(D − 1)(D + 2)

1−
√
1− gD

1 +
√
1− gD

(1− g)

)
. (117)

Replacing the expression in Equation (113b) for g yields the statement.

We summarize to obtain the proof of Theorem 2:

Proof. Equation (15) is the form of non-Standardness S(Σ1) (see Equation (8)) we need to evaluate
when Assumptions 1 and 2 hold. Into this equation, insert Lemma 3 together with Lemma 7 for the
first bound. For the second bound, insert Lemmas 3 and 8.

B.5 Proof of Theorem 3

Proof. The non-Standardness will not increase by the action of a single layer given in Proposition 2
(compare Equation (14)). This holds regardless of the rotations of the individual blocks Q1, . . . QL,
so S(Σ) = S(Σ0) ≥ S(Σ1) ≥ · · · ≥ S(ΣL). It is easy to see that γ decreases as S decreases by
using S > 0 to check that

∂γ

∂S
> 0. (118)

Together, we have:
γ
(
S(ΣL−1)

)
≤ · · · ≤ γ

(
S(Σ0)

)
. (119)

Rewrite Theorem 2 as follows:

EQ∈O(D)[S(Σ1(Q))] ≤ γ
(
S(Σ0)

)
S(Σ), (120)

and apply repeatedly:

EQ1,...,QL∈O(D)[S(ΣL)] ≤ EQ1,...,QL−1∈O(D)[γ(S(ΣL−1))S(ΣL−1)] (121a)

≤ γ(S(Σ))EQ1,...,QL−1∈O(D)[S(ΣL−1)] (121b)

≤ · · · ≤ γ(S(Σ))LS(Σ0) (121c)

This shows the statement.

C Compatible coupling architectures

All statements in this paper apply to the following architectures, where we assume each layer to
be equipped with ActNorm [6]. To shorten the notation, we consider how a single dimension is
transformed and rewrite the dependence on p0 via a parameter vector θ = θ(p0), which is usually
computed by a feed-forward neural network:

y = c(x; θ), (122)

short for:
(a1)i = c

(
(a0)i; θi(p0)

)
. (123)

• Affine coupling flows in the form of NICE [4], RealNVP [5] and GLOW [6]:

c(x; θ) = sx+ t. (124)

Here, θ = [s; t] ∈ R+ × R.

• Nonlinear squared flow [19]:

c(x; θ) = ax+ b+
c

1 + (dx+ h)2
, (125)

for θ = [a, b, c, d, h] ∈ R5.

29

• SOS polynomial flows [27]:

c(x; θ) =

∫ x

0

k∑
κ=1

 r∑
l=0

al,κu
l

2

du+ t. (126)

Here, θ = [t; (al,κ)l,κ] ∈ R× Rrk.
• Flow++ [18]:

c(x; θ) = sσ−1

 K∑
j=1

πjσ

(
x− µj

σj

)+ t. (127)

Here, θ = [s; t; (πj , µj , σj)
K
j=1] ∈ R+×R× (R×R×R+)

K and σ is the logistic function.
• Spline flows in the form of piecewise-linear, monotone quadratic [20], cubic [21], and

rational quadratic [22] splines. Here, c is a spline of the corresponding type, parameterized
by knots θ.

• Neural autoregressive flow [26] parameterize c(x; θ) by a feed-forward neural network,
which can be shown to be bijective if all weights are positive and all activation functions are
strictly monotone.
One can also restrict the neural network c(x; θ) to have positive output and integrate it
numerically. This was introduced as unconstrained monotonic neural networks [24].

30

	Introduction
	Related work
	Coupling-based normalizing flows
	Coupling layers as whitening transformation
	Explicit convergence rate
	Single coupling block guarantees
	Precise guarantee
	Interpretable guarantee

	Deep network guarantee

	Conclusion
	Details on Experiments
	Deep network on EMNIST
	Single layer on EMNIST digit covariance
	Single block on toy data
	Layer-wise training on toy data

	Detailed proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1
	Problem reformulation
	Projected orbit expectation
	Summary
	Handling of imaginary part

	Proof of Theorem 2
	Proof of Theorem 3

	Compatible coupling architectures

