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Abstract

We introduce a novel class of algorithms for evaluating PIV image pairs. The math-
ematical basis is a continuous variational formulation for globally estimating the optical
flow vector fields over the whole image. This class of approaches has been known in the
field of image processing and computer vision for more than two decades but apparently
has not been applied to PIV image pairs so far.
We pay particular attention to a multiscale representation of the image data so as to cope
with the quite specific signal structure of particle image pairs. The experimental evaluation
shows that a prototypical variational approach competes in noisy real-world scenarios with
three alternative approaches especially designed for PIV-sequence evaluation. We outline
the potential of the variational method for further developments.

Keywords: Particle image velocimetry, particle tracking, optical flow, variational methods

1 Introduction

Particle Image Velocimetry (PIV)is an important and active research field concerned with the
quantitative investigation of fluids by imaging techniques [17]. The prevailing technique un-
derlying most computational approaches to estimating the motion of fluids from corresponding
image pairs is based on the correlation of local interrogation windows in subsequent frames.
However, despite the success of this technique and numerous investigations into improvements
(which are summarized in [18]), it suffers from some fundamental limitations:

• The partitioning of the image by interrogation areas must not be too fine if you want
to detect correlation peaks reliably. This unavoidably limits the spatial resolution of the
estimated motion vector field. The advanced hierarchical schemes described in [18] offer
the possibility of ending with very small interrogation areas. However, even in these
high-performance techniques, post-processing is neccessary to detect erroneous motion
vectors.
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• The size of the interrogation areas determines a spatial scale at which the variation of
motion vector fields is (tacitly) assumed to be negligible. This assumption is erroneous
and proves inaccurate in many relevant situations. Many authors have concentrated on
iterative window deformation methods of1st or 2nd order that deal with this problem
[18].

• Motion estimation is carried out regardless of spatial context. As a consequence, prior
knowledge about spatial flow structures cannot be exploited during estimation, and miss-
ing motion estimates in image regions where a correlation analysis yields no reliable
estimates, have to be heuristically inferred in a post-processing step.

The objective of this paper is to introduce a novel class of motion estimation approaches to
the PIV-community. The prototypical approach of this class is due to Horn and Schunck [9],
and many corresponding approaches have been analyzed in the fields of image processing and
computer vision. For a review and extensions we refer to [23]. In this paper, we focus on
the prototypical approach [9] along the analysis presented in [19]. The variational framework
and corresponding features will be presented in section 2. Next, we carefully examine features
of a coarse-to-fine implementation, thus taking into account the specific gray value-functions
induced by particles in PIV image pairs (section 3). Numerical experiments for benchmark
image pairs and a comparison with two alternative approaches especially designed for PIV-
sequence evaluation will be presented in section 4. We conclude in section 5 by indicating
extensions of the prototypical approach within the variational framework.

2 Variational Approach

2.1 Basic Assumptions and Constraints

Let f(x, y, t) denote the gray value recorded at location(x, y)> and timet in the image plane. A
basic assumption underlying most approaches to motion estimation is thatf is conserved, that
is the change off(x, y, ·) at location(x, y)> is due to a movement off(x, y, t) to the location
(x + u∆t, y + v∆t)> during a time intervall∆t:

f(x + u∆t, y + v∆t, t + ∆t) = f(x, y, t) . (1)

A common approach to estimating theoptical flow vector(u, v)> at some fixed location(x, y)>

on the image grid(x, y)> = (k∆x, l∆y)>, k, l ∈ Z, is to assumeu andv to be constant within
a local spatial areaN(x, y) around(x, y)> and to minimize1

∑

k,l∈N(x,y)

[
f(k + u∆t, l + v∆t, t + ∆t)− f(k, l, t)

]2
(2)

as a function ofu andv. Assuming additionally that
∑

k,l∈N(x,y) f(k, l, t)2 does not vary with
(x, y)>, the minimizing values ofu, v maximize the correlation function

∑

k,l∈N(x,y)

f(k + u∆t, l + v∆t, t + ∆t) f(k, l, t) .

1Without loss of generality we take∆x = ∆y = 1
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The first major difference to variational approaches is that the latter explicitly take into account
smooth changes of the flow(u, v)> at timet as a function ofx andy: u = u(x, y), v = v(x, y).
A continuously formulated expression analogous to (2) then reads:

∫

Ω

[
f(x + u(x, y)∆t, y + v(x, y)∆t, t + ∆t)− f(x, y, t)

]2
dxdy (3)

Note that since we do no longer assumeu andv to be piecewise constant according to a sub-
division of the visible sectionΩ of the image plane into interrogation areas, we integrate over
the entire image domainΩ, observing the Neumann border conditions. From the viewpoint of
variational analysis and algorithm design, formulation (3) is less favourable because the depen-
dency onu andv is highly non-convex. A common way around this difficulty is (i) to further
simplify the objective function so as to obtain a mathematically tractable problem, and (ii) to
apply the resulting variational approach to a multi-scale representation of the image dataf (see
section 3) so that the following approximation becomes valid:

f(x+u∆t, y + v∆t, t + ∆t)

≈ f(x, y, t) + ∂xf(x, y, t)u∆t + ∂yf(x, y, t)v∆t + ∂tf(x, y, t)∆t (4)

= f(x, y, t) +∇f(x, y, t) ·

u

v


 ∆t + ∂tf(x, y, t)∆t

where the spatial and temporal derivatives off can be estimated locally using FIR filters (see
section 4.2.).
Inserting this approximation into (1) (and dropping the argument (x,y,t) for convenience) yields:

∇f ·

u

v


 + ∂tf = 0 . (5)

According to computer vision literature, this is the so-calledBrightness Change Constraint
Equation (BCCE)which merely reflects with a differential formulation our basic assumption
(1) made in the beginning:

d

dt
f(x, y, t) = 0 = ∇f ·


ẋ

ẏ


 + ∂tf

Using (4) and (5), the objective function (3) becomes:

∫

Ω

[∇f ·

u

v


 + ∂tf

]2
dxdy (6)

Note that this objective function now dependsquadraticallyon the twofunctionsu(x, y) and
v(x, y), which is much more convenient from the mathematical point-of-view! So far, the
transition to a continous setting has led us to the formulation (6) which has to be minimized with
respect to arbitrary functionsu andv. Clearly, this problem is not well-posed as yet becauseany
vector field with components∇f · (u, v)> = −∂tf, ∀x, y, is a minimizer. However, rather than
to consider vector fields which are piecewise constant within interrogation areas, we merely rule
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out too irregular vector fields by additionally minimizing the magnitudes of the spatial gradients
of u andv:

J(u, v) =

∫

Ω

{[∇f ·

u

v


 + ∂tf

]2
+ λ

(|∇u|2 + |∇v|2)
}

dxdy , 0 < λ ∈ R . (7)

Parameterλ is either a user-parameter or can be determined as Lagrange multiplier related to
the either of the constraints

∫

Ω

[∇f ·

u

v


 + ∂tf

]2
dxdy = α ,

∫

Ω

(|∇u|2 + |∇v|2)dxdy = β ,

provided either of the numbersα or β is known. The discussion of this and other possible
extensions is however beyond the scope of this paper (cf. section 5), and we regardλ as a user-
parameter. In view of the limitations mentioned in section 1, we point out the following features
of the variational approach (7):

• The approach is formulated in terms offunctionsu andv and hence, by definition, pro-
vides motion estimates

(
u(x, y), v(x, y)

)>
atanypoint (x, y)> ∈ Ω ⊂ R2.

• Spatial variation ofu, v is merely constrained by aglobal penalty term (i.e. the second
term in (7)). Accordingly, the motion field(u, v)> may exhibit spatial variations of differ-
ent strengths depending on the evidence provided by the spatio-temporal image sequence
dataf .

• The approach is intrinsically non-local and allows to incorporate spatial context in a math-
ematically convenient way by means of functionals depending onu, v and corresponding
derivatives.

2.2 Optimization Problem and Discretization

Under mild conditions with respect to the image sequence dataf it can be shown [19] that the
functional (7) is strictly convex. As a consequence, theFinite Element Method (FEM)can fully
be exploited, as will be sketched next. For details we refer to [6, 21]. The unique globally
minimizing vector field

(
u(x, y), v(x, y)

)>
is determined by the variational equation

a
(
(u, v)>, (ũ, ṽ)>

)
= b

(
(ũ, ṽ)>

)
, ∀ũ, ṽ , (8)

where

a
(
(u, v)>, (ũ, ṽ)>

)
=

∫

Ω

{

u

v


 · ∇f∇f ·


ũ

ṽ


 + λ

(
∇u · ∇ũ +∇v · ∇ṽ

)}
dxdy , (9)

b
(
(ũ, ṽ)>

)
= −

∫

Ω

∂tf∇f ·

ũ

ṽ


 dxdy . (10)
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Figure 1:Left: Uniform triangulation of the image domainΩ. Right: Basis functionφi(x, y)
attached to pixel positioni.

The simplest discretization is obtained by choosing a regular triangulation of the image domain
Ω and attaching to each pixel position a piecewise linear basis functionφ(x, y) for each function
u, v, ũ, ṽ, as illustrated in Figure 1. Indexing each pixel position(k, l) by 1, 2, . . . , N we thus
have

u(x, y) =
N∑

i=1

uiφi(x, y) ,

and similarly forv, ũ, ṽ. Hence, each of the functionsu, v, ũ, ṽ is represented byN real vari-
ables. To simplify notation, we use the same symbols to denote these vectors:u, v, ũ, ṽ ∈ RN .
Inserting into (8) leads to:


u

v


 · A


ũ

ṽ


 = b ·


ũ

ṽ


 , ∀ũ, ṽ ,

hence:

A


u

v


 = b (11)

The2N × 2N–Matrix A factorizes into

A =


A11 A12

A>
12 A22




where by virtue of (9):

(A11)k,l = a
(
(φk, 0)>, (φl, 0)>

)

(A12)k,l = a
(
(φk, 0)>, (0, φl)

>)

(A22)k,l = a
(
(0, φk)

>, (0, φl)
>)

.

Analogously, the2N–vectorb factorizes intob = (b>1 , b>2 )> where by virtue of (10):

(b1)k = b
(
(φk, 0)>

)

(b2)k = b
(
(0, φk)

>)
.

The linear system (11) is sparse and positive definite. Thusu, v can be conveniently computed
by some corresponding iterative solver [8].
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3 Coarse-to-Fine Motion Estimation

The accuracy of motion estimation critically depends on the magnitude of image motion. In
fact, depending on the spatial image frequency, very large motions even may cause aliasing
along the time frequency axis. For illustration, Figure 2 shows a 1D-signal moving to the right
at constant speedu:

g(x, t) = sin
(
ωx(x− ut)

)
. (12)

Due to the Nyquist-condition|ωt| < π (with ωt := ωxu), only motions up to|u| < π/ωx are
correctly represented by samples of the signal.2 Faster motions lead to aliasing. In other words,
for a fixed global velocity, spatial frequencies moving more than half of their period per frame
cause temporal aliasing. In practice, this upper bound has to be lowered because derivatives of
the signal can only be robustly estimated in connection with low-pass filtering.

Figure 2: Moving signalg(x, t) = sin(ωx(x−ut)) as gray value image with different parameters
ωx (spatial frequency) andu (velocity). Left: ωx = π/4, u = 1, Middle: ωx = π/16, u = 1,
Right: ωx = π/16, u = 4. Temporal frequency is affected by both spatial frequencyωw and
velocityu.

As a remedy, we first compute a coarse motion field by using only low spatial frequency
components and “undo” the motion, thus roughly stabilizing the position of the image over
time. Then the higher frequency subbands are used to estimate optical flow on the warped
sequence. Combining this “optical flow correction” with the previously computed optical flow
yields a refined overall optical flow estimate. This process may be repeated at finer and finer
spatial scales until the original image resolution is reached [12, 22]. A standard technique for
generating multi-scale representations in this context is to construct an image pyramid (Figure
3) by recursively applying lowpass filtering and subsampling operations. Note that the images
at different scales are represented by different sampling rates. Thus, the same derivative filters
may be used at each scale and we do not have to design multiple derivative filters, one for
each different scale. Let us define the pyramid representation of a generic imagef of size
nx×ny. Letf 0 = f be the”zeroth” level image. This image is essentially the highest resolution
image (the raw image). The image width and height at that level are defined asn0

x = nx and
n0

y = ny. The pyramid representation is then built in a recursive fashion: Computef 1 from
f 0, then computef 2 from f 1, and so on ... . Letk = 0, 1, 2, ..., L − 1 be a generic pyramidal
level, and letfk be the image at levelk. nk

x andnk
y denote the width and the height offk.

First the lowpass filter[1/4 1/2 1/4] × [1/4 1/2 1/4]> is used for image anti-aliasing before
image subsampling. Then a bilinear interpolation performs the adaption to the new coarser

2Without loss of generality we assume sampling rates∆x = ∆t = 1.
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Figure 3: Image Pyramid: Each level in the pyramid is a subsampled version of the level below
convolved with a Gaussian filter.

grid, as every new vertex is located exactly in the middle of four finer vertices (if the respective
image size is even-numbered, cmp. Figure 4). This procedure results in a convolution mask of
[1/8 3/8 3/8 1/8]× [1/8 3/8 3/8 1/8]>. In the first step the optical flow between the top level

Level 3

Level 2

Level 1

Level 0

Figure 4: Image Pyramid: Location of the vertices in the respective levels.

imagesfL−1
1 andfL−1

2 (lowest frequency images) is computed, using the variational approach
of section 2. The computed coarse-level flow field must then be projected onto the next finer
pyramid level. This flow field estimate is used to warp the second image towards the first image:

W{fL−1
2 , dL−1}(x, y, t + ∆t) = fL−1

2 (x− u∆t, y − v∆t, t + ∆t), dL−1 =

(
u

v

)
(13)

At pyramid levelL − 2, we compute a new and finer flow field between the imagesfL−2
1

andW{fL−2
2 , dL−1}. While the expression to be minimized is analogous to (7), the first-order

Taylor series expansion is performed around(x + dL−1(x), t + 1). This results in the cost
functional:

J(u, v) =

∫

Ω

{[∇f ·

u

v


+∂tf

]2
+λ

(|∇(u+dL−1
u )|2+|∇(v+dL−1

v )|2)
}

dxdy , 0 < λ ∈ R .

(14)
The unique flow field minimizing (14) is the correction-field∆dL−2 of the coarser flow field
dL−1. In order to obtain the overall flow fielddL−2 at levelL − 2 we have to add the coarse
motiondL−1 and the correction field∆dL−2:

dL−2(x, y) = dL−1(x, y) + ∆dL−2(x, y) (15)
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This correction process is repeated for each level of the pyramid until the finest pyramid leveld0

has been reached. In the experimental evaluation section below, we will refer to this approach
as Horn & Schunck Multi-Resolution (H&S R ). So far, we have introduced adyadic pyra-
mid structure which is equivalent to using lowpass filters with bandwidthsΩ

2L−1 ,
Ω

2L−2 , ...,
Ω
21 ,

Ω
20

combined with subsampling. Now we introduce additional filters that slice the bandwidth into
even smaller pieces, e.g.Ω/4, 3/8Ω, Ω/2, 3/4Ω, Ω. In order to implement these extra steps
which do not fit into the dyadic pyramid structure, we apply at each pyramid level pre-filters
when estimating derivatives. Figure 5 shows the effect on a typical particle image: the lower
the cut-off frequency of the pre-filter, the more the particles seem to melt down and form a
smooth gray value structure. A coarse motion estimate can reliably be computed using this
structure. Then, we update and refine the motion field (in the same way as described in detail
for the multi-resolution case) using the less low-pass filtered image derivatives. Figure 6 shows

Figure 5: A sample particle image in different scale levels.

the frequency spectra of the Gaussian filters we apply, for the case of five scale-space levels. In
practice, we use nine scale-space levels and thus nine different filters with cut-off frequencies of
π
2
, 9

16
π, 5

8
π,11

16
π, 3

4
π, 13

16
π, 7

8
π, 15

16
π, π. An inverse Fourier Transform yields the filter coefficients.

Low pass filtering with cut-off frequencies belowπ/2 is not neccessary, since this is what the
anti-aliasing filter of the preceding lower resolution level has already done.
Below, we will refer to this combined approach as Horn&Schunck Multi-Resolution + Multi-
Scale (H&S R+S).

4 Experimental Evaluation

In this section, we report comparisons of the variational approach with three other approaches
for various data sets. Before discussing the results in section 4.4 below, we first describe the data
sets used for the comparison (section 4.1), the alternative approaches (besides the variational
approach) and corresponding parameter setting (section 4.2) and quantitative error measures
(section 4.3).

4.1 Data

The experimental evaluation was carried out on the basis of the following data sets:

• Quénot image pair: The first set of artificial benchmark image pairs was introduced
in [16] and is available on the internet. The analyzed velocity field (av. velocity =
7.58 pixels/frame) is taken from a numerical solution, obtained for two-dimensional flow
around a pair of cylinders (Figure 7).
We examined ten different test cases belonging to the following four classes:
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Figure 6: Gaussian Filters with cut-off frequencies ofπ/2, 5/8π, 3/4π, 7/8π, π.

Figure 7: Qúenot image pair: synthetic
particle image

Figure 8: Exact velocity field (av. 7.58
px/frame)

– Perfect: “Perfect” case means that the second image was computer-generated from
the first image and the target flow field.

– Noise N%: Additionally to the “perfect” case, noise was superimposed for all im-
ages.

– Add/Rm N%: The specified percentage of particles was randomly removed and the
same amount of particles was randomly added.

– Mixed N%: In this case all images were corrupted by both types of errors (Noise
N% and Add/Rm N%) simultaneously.

• VSJ: In 1999, the Visualization Society of Japan (VSJ) published standard PIV images
on their website [13]. There are eight different computer-generated standard image pairs.
They differ from each other in image features as well as in flow field attributes.

Table 1 lists the parameters of these standard images: The number of particles that are
present in the images, the particle diameter and the standard deviation of the particle
diameter, the average image velocity and the out-of-plane velocity. The average image
velocity defines the particle displacement in the image between two successive images.
The target velocity field (Figure 10) is scaled in order to achieve a certain average image
velocity. This is equivalent to adapting the temporal sampling rate.
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Figure 9: Sample VSJ standard image Figure 10: Exact velocity field

The out-of-plane velocity expresses the three-dimensional effects of the flow field: The
intensity of the particles that move slightly out of the plane fades, and if the particle
completely leaves the plane the gray value of the particle disappears.

Table 1 shows that some parameters were varied while others were kept constant: For
image pairs 01, 04 and 05, for example, the number of particles is 1,000, 4,000 and
10,000, while all other parameters are fixed. The image pairs 01, 02 and 03 differ only
with respect to the magnitude of the flow field: the average velocities are 2.5, 7.4 and 22
pixels/frame but the flow field structure is the same in all three cases.

Image Av. Displace-
ment

Max. Dis-
placement

Av. Out of
Plain Vel.

Number of
Particles

Av. Particle
Diameter d

Std. Deviation
of d

01 7.4 px 15.0 px 0.017 4000 5.0 px 1.4 px

02 22.0 px 45.00 px 0.058 4000 5.0 px 1.4 px

03 2.5 px 5.1 px 0.006 4000 5.0 px 1.4 px

04 7.4 px 15.0 px 0.017 10000 5.0 px 1.4 px

05 7.4 px 15.0 px 0.017 1000 5.0 px 1.4 px

06 7.4 px 15.0 px 0.017 4000 5.0 px 0.0 px

07 7.4 px 15.0 px 0.017 4000 10.0 px 4.0 px

08 7.4 px 15.0 px 0.170 4000 5.0 px 1.4 px

Table 1: Pre-generated VSJ standard images. Variations from the default settings are marked in
bold font.

• Real-world images:We also included two real-world image pairs into our data set. Fig-
ure 11 shows a corresponding image from the first test case of a time-resolved PIV mea-
surement of periodical vortices in the transitional cylinder wake [3, 25]. The mean dis-
placement is about 9 pixels/frame and the maximum displacement about 16 pixels/frame.
Figure 18 shows the second real-world test case: freezing in a convection box filled with
water [16]. The mean displacement in this case is about 4 pixels/frame and the maximum
about 15 pixels/frame.

4.2 Approaches and Parameter Settings

The data sets described above were evaluated using the following approaches and parameter
settings:
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Figure 11: Real-world image Figure 12: Estimated flow field (variational ap-
proach)

• Variational approach: The spatial (∇f ) and temporal (∂tf ) derivatives were estimated
using derivative of Gaussian filters of size five at every point in the image domain. At
the image borders (where the filter mask hangs over the image) the image is mirrored
about its edge pixel (for smoothing operations) or reflected and inverted (for derivative
operations).

In a first series of experiments (H&S R ) five resolution levels were used, in a second
series of experiments (H&S R+S), a setup of five resolution levels and nine scale space
levels on every resolution level was chosen. For the Quénot image pair computations, the
smoothness parameterλ was set to7∗10−4 in the H&S R case and to7∗10−3 in the H&S
R+S case. For the VSJ and the real-world image pairs, only H&S R+S computations
were performed. The smoothness parameterλ was also set to7 ∗ 10−3 in these rows
of experiments. This value was determined experimentally. However, we will show in
section 4.4 that, up to a certain point, changes ofλ do not deteriorate results distinctly
and that one can even improve the results by adaptingλ manually. The gray values were
scaled in each case to the interval[0, 1].

• DIPV approach: For comparison we took the error measures of the classical 2D FFT
based digital particle image velocimetry (DPIV) method from [16] in the synthetic test
cases. Two different interrogation window sizes were applied:32 × 32 pixel (DPIV 32)
and48 × 48 pixel (DPIV 48). We analyzed the “cylinder wake” real-world image pair
using a hierarchical DPIV approach, with an interrogation window size beginning with
512×512 pixels and ending up with64×64 pixels, with window-shifting and peak-height
validation (but without substitution or interpolation, as we want to compare the actually
computed values).

• ODP2 approach [15]: We also considered the results of a dynamic programming based
optical flow technique. This approach transforms the two-dimensional correspondence
problem to a sequence of one-dimensional search problems. It has been successfully
applied to particle image velocimetry in [16]. The error measures were taken from [14].

• KLT approach [5]: Finally, we considered the results of a feature-tracking approach
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to motion estimation. The Kanade-Lucas-Tomasi Tracker tracks local areas of sufficient
intensity variation; outliers are erased and a dense motion field is interpolated.

4.3 Error Measures

As quantitative error measures we computed the angular error (between correct and computed
motion vectors) as defined in [1] along with its standard deviation as well as the mean ve-
locity error (L1 norm of the difference between the correct and the computed velocities in
pixels/frame).
For the Qúenot image pair, the error measure was computed for the whole image except for
the inner circular regions corresponding to the cylinders. Since the VSJ standard image pairs
have different average velocities, the relativeL1 norm error (absolute error divided by aver-
age in-plane velocity) was computed in the corresponding series of experiments for the sake of
comparability.

4.4 Numerical Results and Discussion

4.4.1 Qúenot Image Pair

Table 2 summarizes the error measures and their standard deviation (±) 3. Furthermore, typical
execution times of the respective algorithms are indicated.

DPIV32 DPIV48 ODP2 KLT H&S R H&S R+S

Perfect angle 5.95± 13.9 9.35± 18.3 1.23± 2.24 2.32± 3.69 1.42± 2.16

disp 0.55± 0.94 0.87± 1.46 0.13± 0.10 0.30± 0.80 0.39± 0.66 0.19± 0.18

Noise 5% angle 6.49± 14.6 9.69± 19.0 1.83± 3.84 2.88± 4.21 1.53± 2.29

disp 0.61± 1.18 0.86± 1.49 0.21± 0.46 0.30± 0.80 0.45± 0.67 0.21± 0.26

Noise 10% angle 8.75± 17.9 10.8± 20.0 4.01± 10.8 4.02± 5.51 1.77± 2.65

disp 0.77± 1.57 0.91± 1.59 0.53± 1.44 0.31± 0.60 0.60± 0.75 0.24± 0.41

Noise 20% angle 35.0± 35.5 31.0± 30.4 6.70± 11.8 7.13± 8.95 2.52± 3.62

disp 3.11± 4.14 2.06± 2.88 0.88± 1.58 0.42± 0.60 1.10± 1.13 0.33± 0.49

Add/rm 5% angle 6.04± 13.8 9.35± 18.3 1.27± 2.35 2.48± 3.91 1.43± 2.17

disp 0.55± 0.90 0.86± 1.45 0.14± 0.11 0.46± 0.82 0.19± 0.20

Add/rm 10% angle 5.94± 13.5 9.52± 18.5 2.61± 9.94 2.62± 4.10 1.48± 2.31

disp 0.55± 0.93 0.87± 1.47 0.34± 1.28 0.54± 0.97 0.21± 0.33

Add/rm 20% angle 6.11± 14.2 9.77± 19.2 1.42± 2.54 3.41± 4.94 1.54± 2.50

disp 0.56± 0.99 0.88± 1.52 0.16± 0.12 0.99± 1.67 0.23± 0.43

Mixed 5% angle 6.40± 14.4 9.59± 19.0 1.77± 2.87 3.04± 4.38 1.54± 2.34

disp 0.60± 1.12 0.86± 1.51 0.20± 0.13 0.52± 0.80 0.21± 0.30

Mixed 10% angle 10.2± 19.6 11.3± 20.8 4.30± 11.7 4.39± 5.89 1.81± 2.74

disp 0.91± 1.89 0.93± 1.66 0.57± 1.71 0.78± 1.07 0.26± 0.46

Mixed 20% angle 40.8± 34.5 38.3± 29.7 6.15± 9.01 9.33± 9.93 2.96± 4.23

disp 3.73± 4.39 2.49± 3.19 0.74± 0.52 2.03± 2.13 0.39± 0.53

Time 10 min 10 min 20 min 15 sec 16 sec /2 sec 2 min / 15 sec

Table 2: Angular error and absolute displacement error. Best performance for every setting is
marked in bold.

3Error measures for the three algorithms not implemented by the authors were taken from [16], the execution
times from [5].
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Note that DPIV and KLT yield sparse vector fields, whereas both ODP2 and the variational
approach compute dense vector fields. All of the tested algorithms are rather insensitive to
particle appearance/disappearance. However, they all are (in varying degrees) sensitive to su-
perimposed noise. In the case of DPIV, extending the interrogation window size increases the
robustness to noise, while decreasing the accuracy at the same time. However, irrespective of
the window size, the performance of DPIV is much worse than the performance of the other
approaches.
Comparing H&S R and H&S R+S, we realize that H&S R+S provides much better results in all
the test cases. This had to be expected because temporal aliasing as well as linearization errors
due to eqn. (4) are suppressed by additional scale space computations.

Figure 13 shows the results for the “Mixed 20%” test case. One can see that the highest es-
timation errors are reached at the borders of the two cylinders. The smoothness term penalizes
the discontinuities at these locations and smoothes over the discontinuities. The error at regions
close to the left cylinder is the highest because of the high velocity of the fluid. In section 5 we
will point out possible solutions to this problem such as the insertion of border conditions and
higher order regularization.
The two lower images of figure 13 compare the exact vorticity field and the estimated vorticity
field using our approach. With exception of the addressed problem (flow discontinuity at the
left cylinder), the estimated vorticity field resembles the exact vorticity field very well.

ODP2 provides the best result for the “perfect” test case. However, it is much less robust to
noise than H&S: While the error measures of the variational coarse-to-fine approach are slightly
higher in the perfect case (cf. table 2), this changes with the presence of noise. The error for the
ODP2 approach then rises much faster, so that, for noise rates of 5 % and above, the H&S R+S
approach provides better results. This gap rises even more for higher amounts of noise. Since
noise is always present in real-world image pairs, we expect the variational Horn & Schunck
algorithm to perform better than both the DPIV and the ODP2 approaches.
The error measures of KLT are consistently better than those of H&S R, but slightly worse than
the results of ODP2 and H&S R+S. However, it seems to be less noise sensitive than ODP2, and
has the advantage of much faster execution times than this computationally expensive dynamic
programming technique.
When we use a preconditioned conjugate gradient method to solve the H&S system matrices,
the execution time of our algorithm is about 16 sec for H&S R and 2 min for H&S R+S (when
choosing a residual error of10−4 as a stopping criterion). Using a multi-grid approach [2,
7] to solve the linear systems, the computation time of H&S R is approx. 2 sec, while the
H&S R+S computation takes about 15 sec on an up-to-date computer. Information about the
different multi-grid cycles and stopping criterions can be taken from [4]. Thus our approach is
as fast as the feature tracker and faster than ODP2. Even real time operation can be achieved
through parallelization using domain decomposition [11]. Note, however, that, while we use a
3 GHz Intel processor, the DPIV and ODP results were obtained using much older and slower
machines. Qúenot mentones in [16] a 250 MHz SGI processor and a 200 MHz Intel processor.

4.4.2 VSJ Standard Image Pairs

Figure 14 compares the averageL1 errors of ODP2 and H&S R+S for all eight VSJ standard
image pairs. The average relativeL1 error of the H&S R+S computation for image pairs 01 and
04-07 is constantly between1.89 (image pair 04 has a high particle density) and3.51 (image
pair 05 has a low particle density). As a consequence, the number of particles seems to be the
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Figure 13: Results for the Quénot image pair “Mixed 20%”. Estimated flow field with H&S
R+S (top), absolute displacement error (2nd row), exact vorticity field (3rd row) and estimated
vorticity field (bottom).
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Figure 14: Average relativeL1 error of ODP2 and H&S R+S for the VSJ standard images pairs
01-08.

parameter of the image that influences the quality of the flow field estimation most.
In the VSJ standard image pairs 01 and 03-07, the error measures of ODP2 and H&S R+S are
more or less equal. This coincides with the results of the “perfect” Quénot image pair since
both image pairs have comparable average displacements, and the out-of-plane velocity is very
low in these VSJ image pairs.
The error measures for image pair 02 and image pair 08 are most interesting since they clearly
exhibit the different strengths of both approaches:

• Both approaches yield high error measures for image pair 02. This is no surprise since
the average velocity is quite high in this example so that temporal aliasing becomes a
severe problem. Though we used a coarse-to-fine strategy and multi-scale computations,
the Taylor series linearization leads to errors that are higher than those of the ODP2
approach.

• Image pair 08, on the other hand, confirmed the results obtained for the Quénot image
pair: While H&S R+S is tolerant towards noise (here mainly caused by out-of-plane
velocity), ODP2 tends to much higher error measures when noise is present in the images.

Figure 15 shows that our approach is rather insensitive to changes of the smoothness parameter
λ. However, if we adapted this parameter manually for every image pair, we could even achieve
better error measures than the ones shown in figure 14.

4.4.3 Results on Real-World Image Pairs

Figures 16 and 17 show the results for the first real-world image pair (“cylinder wake”) com-
puted with the variational approach and DPIV, respectively. One can clearly see that the varia-
tional approach resembles the true motion field much better than the cross-correlation approach.
At regions with abruptly changing motion (i.e. the turbulence emerging behind the cylinder in
the middle of the image), the DPIV method is not able to accurately determine the velocity
field. This is mainly due to the limited spatial resolution, which leads to a violation of the as-
sumption of a constant velocity inside interrogation windows at these locations. The statistical
character of correlation-based processing, however, prohibits the use of smaller interrogation
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Figure 15: Average relativeL1 error of H&S R+S for the VSJ standard images pairs 01, 05, and
06 for changing smoothness parametersλ.

windows. Furthermore, in regions dominated by out-of-plane velocities (i.e. at the left border
of the image), the cross correlation approach fails as well: Since no global velocity information
is used, the probability of outliers is markedly increased at these locations, hence a valid flow
field cannot be computed.
Figure 18 compares the H&S R+S results of the “freezing” image sequence with the results that
Quénot achieved with ODP2. Both results resemble the true motion field very well. With the
exception of the borders (where the gray value is constant and therefore no reliable motion can
be estimated) and one spot in the middle of the image (where the velocity is high and varies lo-
cally very strongly), the absoluteL1 difference is persistently smaller than 0.5 pixels. From the
visual impression, however, it is impossible to tell which of the two estimates is more precise.

5 Conclusions and Further Work

We have successfully applied a prototypical variational optical flow estimation approach to
Particle Image Velocimetry. The novel approach outperforms the standard cross correlation
methods and computes dense motion fields. We also compared our approach to ODP2, a so-
phisticated optical flow technique that is often used for PIV code validation. While ODP2 led
to slightly better results for noise-free image pairs, our approach produces better results for
noise levels of 5% and above. As a result, we expect that our variational optical flow estimation
approach will perform better in real-world routine computations.

A decisive advantage of the variational approach (7) is its potential for further develop-
ments. Note that the data term (first term in (7)) was originally designed for images from
everyday scenes (e.g. traffic scenes) whose gray value functionsf are quite different and more
well-behaved than PIV-sequences, from the signal processing point-of-view. While we tried to
cope with this difficulty by carefully designing a coarse-to-fine representation of the image data
(section 3), alternative data terms are conceivable, in particular in the critical case of low particle
densities. Furthermore, the data term could be expanded to additionally estimate parameters of
an illumination model to cope with the fact that local intensity changes are common in PIV im-
age sequences. Similarly, various extensions of the simple smoothness term in (7) are possible,
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Figure 16: Dense vector field computed
with the variational approach

Figure 17: None-dense vector field com-
puted with DPIV

such as spatio-temporal regularization [24], div-curl-shear regularization [20] or non-quadratic
discontinuity-preserving regularization [23], for instance. Furthermore, one could add the pos-
sibility of specifying border conditions for regions where a liquid rinses a solid. Finally, the
mathematical formulation leads to sound parallel implementations using off-the-shelf hardware
[4, 10, 11].
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