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Abstract Variational methods are employed in situations
where exact Bayesian inference becomes intractable due to

the difficulty in performing certain integrals. Typically,

variational methods postulate a tractable posterior and
formulate a lower bound on the desired integral to be

approximated, e.g. marginal likelihood. The lower bound is

then optimised with respect to its free parameters, the so-
called variational parameters. However, this is not always

possible as for certain integrals it is very challenging (or

tedious) to come up with a suitable lower bound. Here, we
propose a simple scheme that overcomes some of the

awkward cases where the usual variational treatment

becomes difficult. The scheme relies on a rewriting of the
lower bound on the model log-likelihood. We demonstrate

the proposed scheme on a number of synthetic and real

examples, as well as on a real geophysical model for which
the standard variational approaches are inapplicable.

Keywords Bayesian inference ! Posterior estimation !
Expectation maximisation

1 Introduction

Bayesian inference is becoming the standard mode of

inference as computational resources increase, algorithms

advance and scientists across fields become aware of the
importance of uncertainty. However, exact Bayesian

inference is hardly ever possible whenever the model

likelihood function deviates from mathematically conve-
nient forms (i.e. conjugacy). Deterministic approximations

are constantly gaining ground on the ubiquitous and com-

putationally intensive Monte Carlo sampling methods that
are capable of producing high-quality approximations to

otherwise intractable quantities such as posterior densities

or marginal likelihoods.
Often, however, deterministic schemes are tailored to a

particular model, or family of models, and hence previously

derived methods might not be transferable to a new setting
(e.g. in [4], a specialised algorithm for Bayesian inference

in neural networks is considered). This introduces practical
difficulties, mostly in fields beyond machine learning,

whenever an implementation of Bayesian inference is

required, particularly in early explorative stages where the
model formulation is likely to keep changing. In this work,

we introduce a scheme for approximate Bayesian inference

that aims to be general enough so that it can accommodate a
variety of models. The proposed scheme is conceptually

simple and requires only that the gradient of the model log-

likelihood with respect to its parameters be available.
Specifically, we consider the task of computing a global

Gaussian approximation qðwÞ ¼ N ðwjl;RÞ to a given

& Nikolaos Gianniotis
nikos.gianniotis@h-its.org

Christoph Schnörr
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intractable posterior distribution representing a probabilis-

tic model by maximizing a standard variational lower
bound [14]. This lower bound involves the expectation of

the log-likelihood of the model distribution with respect to

the approximating distribution qðwÞ. To enable the com-
putation of these expectations either in closed form or

through computationally tractable numerical approxima-

tions, the likelihoods are typically restricted to condition-
ally factorized forms. This step of the approach specifically

depends on the model at hand.
By contrast, our conceptually simple method presented

below is more generally applicable to various models in the

same way. We demonstrate this by working out examples
for a variety of models. In particular, we demonstrate

empirically that our approach results in Gaussian approx-

imations that are superior to the basic Laplace approxi-
mation [6], which is the typical objective of variational

approximation schemes. A formal comparison to related

state-of-the-art methods for computing improved Gaussian
approximations, e.g. through the nested Laplace approxi-

mation [18] or by expectation propagation [9], is however

beyond the scope of this paper.
Our paper is organized as follows. In Sect. 2, we

introduce in general terms the proposed scheme. Starting

from a standard formulation that typically variational
methods use, we postulate a Gaussian posterior qðwÞ and

show how to form an approximation to the lower bound of

the marginal log-likelihood. The obtained approximation
allows us to optimise the variational parameters l and R of

qðwÞ by gradient optimisation. For the reader who wishes

to refresh her/his memory or obtain a more detailed
explanation of the equations presented in Sect. 2, we refer

to [5, 21].

In Sect. 3, we demonstrate the proposed scheme on a
number of applications and compare it against the exact

inference, Laplace and variational approximations.

Specifically, in Sect. 3.1, we show a visual comparison of
approximating flexible bivariate densities using the

Laplace approximation and the proposed scheme. In Sect.

3.2 ,we apply our approach to the problem of Bayesian
linear regression which actually does admit an analytical

and exact solution. This is useful as it allows us to

empirically verify the correctness of our scheme against the
posterior obtained by exact inference. Subsequently, in

Sects. 3.3 and 3.4, we compare the proposed scheme with

approaches that take into account the functional forms of
classification problems. We show that despite its general

formulation, the proposed scheme performs up to par in

this setting without exploiting any such problem-specific
knowledge. In Sect. 3.5, we show how a change in the

model likelihood of probabilistic principal component

analysis [20], which renders inference problematic, can
easily be accommodated by the proposed scheme. This

demonstrates the versatility of our approach in handling

such cases in a direct and simple manner. Finally, in Sect.
3.6, we show how the proposed scheme can be applied

beyond the usual statistical models, namely on a real

geophysical model [7]. We believe that the proposed
method raises a range of interesting questions and direc-

tions of research; we briefly discuss them in Sect. 4.

2 Proposed scheme for approximate variational
inference

Assume an observed dataset of inputs X ¼ ðx1; . . .; xNÞT

and outputs Y ¼ ðy1; . . .; yNÞT modelled by a model f

parametrised by w 2 RM . For observed outputs corrupted
by Gaussian noise of precision b, the following likelihood1

arises:

pðYjX;w; bÞ ¼
YN

n¼1

N ðynjf ðxn;wÞ; b%1Þ

¼N ðYjf ðX;wÞ; b%1INÞ;
; ð1Þ

where f ðX;wÞ ¼ ðf ðx1;wÞ; . . .; f ðxN ;wÞÞ is the vector of

model outputs calculated on all inputs xn. Furthermore,

assume a Gaussian prior on the parameters w:

pðwjaÞ ¼ N ðwj0; a%1IMÞ: ð2Þ

Our wish is to approximate the true posterior of the

parameters pðwjY;X; a; bÞ. We do not make any assump-

tions about the model having conjugate priors for the
parameters w. Model f may have a complex functional

form that hinders exact Bayesian inference, or even the

application of an approximate Bayesian scheme such as
VBEM [5] with a factorised prior. However, we do have to

make an assumption on the form of the posterior. We

choose to postulate an approximate Gaussian posterior for
the parameters w:

qðwÞ ¼ N ðwjl;RÞ: ð3Þ

Parameters l 2 RM and R 2 RM&M of the posterior are
called variational parameters. For reasons that will become

obvious shortly, we choose to parametrise the covariance

matrix as R ¼ LLT with L 2 RM&M . The postulated pos-
terior now reads:

qðwÞ ¼ N ðwjl;LLTÞ: ð4Þ

Hence, the actual variational parameters are l and L.

1 Besides the likelihood based on the Gaussian density, others can
also be accommodated as shown in Sects. 3.3–3.5. The choice of the
Gaussian is made for ease of exposition.
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2.1 Approximate lower bound

The first step in introducing the proposed scheme is writing
the marginal log-likelihood and lower-bounding it in the

standard way using Jensens’ inequality [5, Eq. (2.46)]:

log pðYjX; a; bÞ ¼ log

Z
pðYjX;w; bÞpðwjaÞdw

¼ log

Z
qðwÞ
qðwÞ

pðYjX;w; bÞpðwjaÞdw

'
Z

qðwÞ log pðYjX;w; bÞpðwjaÞ
qðwÞ

dw

¼
Z

qðwÞ log pðYjX;w; bÞdw

þ
Z

qðwÞ log pðwjaÞ
qðwÞ dw

¼
Z

qðwÞ log pðYjX;w; bÞdw
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð1Þ

%
Z

qðwÞ log qðwÞ
pðwjaÞ dw|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð2Þ

,Lðl;L; a; bÞ:
ð5Þ

An alternative motivation of the lower bound is provided in

[21, Eq. (15)]. Maximising the lower bound L in Eq. (5)
with respect to the free variational parameters l and L of

qðwÞ results in the best Gaussian approximation to the true

posterior. Term (1), the integrated likelihood in Eq. (5), is a
potentially intractable integral. We approximate term (1)

using Monte Carlo sampling:

1

S

XS

s¼1

log pðYjX;wðsÞ; bÞ; ð6Þ

where we draw S samples wðsÞ from the postulated posterior

qðwÞ. Due to the sampling, however, the variational
parameters no longer appear in the approximation Eq. (6) .

Nevertheless, it is possible to re-introduce them by

rewriting the sampled weights wðsÞ as
2:

wðsÞ ¼ lþ LzðsÞ; ð7Þ

where variables zðsÞ are sampled from the standard normal

z)N ð0; IMÞ. We summarise all samples zðsÞ by

Z ¼ fzð1Þ. . .; zðSÞg. Hence, we can rewrite Eq. (6) as:

1

S

XS

s¼1

log pðYjX; lþ LzðsÞ; bÞ: ð8Þ

Hence, the variational parameters l and L are now made

explicit in this approximation. We expand the approxima-
tion of term (1) further:

1

S

XS

s¼1

log pðYjX; lþ LzðsÞ; bÞ

¼ 1

S

XS

s¼1

logN ðYjf ðX; lþ LzðsÞÞ; b%1INÞ

¼ 1

S

XS

s¼1

N

2
logðbÞ % b

2
kY % f ðX; lþ LzðsÞÞk2

þ const:

ð9Þ

Term (2) in Eq. (5) is simply the Kullback–Leibler diver-
gence (KLD) between the two Gaussian densities qðwÞ and
pðwjaÞ, and can be calculated in closed form:

1

2

"
trðaLTLÞ þ alTl%M % ln jaLLTj

#
: ð10Þ

We can now put together the approximated term (1) in

Eq. (9) and the KLD term (2) in Eq. (10), to formulate the
following objective function3 LðFSÞ. Discarding constants,

the proposed approximate lower bound reads:

LðFSÞðl;L; a; b; ZÞ

¼ 1

S

XS

s¼1

N

2
logðbÞ % b

2
kY % f ðX; lþ LzðsÞÞk2

% 1

2

"
trðaLLTÞ þ alTl% ln jaLLTj

#
:

ð11Þ

Objective LðFSÞ is an approximation to the intractable

lower bound L in Eq. (5). It consists of two parts, the
approximation to the integrated likelihood [term (1)] and

the exact KLD [term (2)]. The proposed lower bound LðFSÞ
becomes more accurate when the number S of samples zðsÞ
is large.

2.2 Optimisation of approximate lower bound

Gradients of LðFSÞ can be calculated with respect to the

variational parameters l and L to find the best approxi-

mating posterior qðwÞ:

rlLðFSÞðl;L; a; b; ZÞ

¼ 1

S

XS

s¼1

bðrwf ÞTðsÞðY % f ðX; lþ LzðsÞÞÞ % al;
ð12Þ

2 This is where the parametrisation R ¼ LLT becomes useful. 3 The subscript FS stands for finite sample.
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rLLðFSÞðl;L; a; b; ZÞ

¼ 1

S

XS

s¼1

bðrwf ÞTðsÞðY % f ðX; lþ LzðsÞÞÞzTðsÞ

% aLþ LþT
;

ð13Þ

where rwf denotes the Jacobian matrix of f and Lþ is the
pseudo-inverse of L due to the derivation of the log-de-

terminant4 in Eq. (11). Analogous equations for the case of

exact variational inference can be found in [5, Eq. (2.64)].
Given the current posterior qðwÞ, hyperparameters a and b
have analytical updates:

a ¼ M

lTlþ trðLLTÞ
; ð14Þ

b ¼ SN
PS

s¼1 kY % f ðX; lþ LzðsÞÞk2
: ð15Þ

Again, analogous equations for the above hyperparameter
updates can be found in [21, Eqs. (38), (39)].

The proposed scheme is summarised with the pseudocode

in Algorithm 1. Convergence was established in the exper-
iments by checking whether the difference between the

objective function values LðFSÞ between two successive

iterations is less than 10%4. Gradient optimisation of l and L
was carried out using the scaled conjugate gradient algorithm
[13]. The outcome of the above scheme is the approximation

LðFSÞ to the marginal log-likelihood log pðYjX; a; bÞ (also

called log-evidence). The scheme imparts us with the

approximate Gaussian posterior qðwÞ ¼ N ðwjl;LLTÞ.

2.3 Monitoring generalisation performance

For large values of S, the proposed lower bound LðFSÞ
approximates the true bound L in Eq. (5) closely.

Therefore, we expect that optimising LðFSÞ will yield

approximately the same optimal variational parameters
l;L as the optimisation of the intractable true lower

bound L would.

The proposed scheme exhibits some fluctuation as
LðFSÞðl;L; a; b; ZÞ is a function of the random set of

samples Z. Hence, if the algorithm, as summarised in

Algorithm 1, is run again, a new set ZðnewÞ will be drawn

and a different function LðFSÞðl;L; a; b; ZðnewÞÞ will be

optimised. However, for large enough S the fluctuation due

to Z will be innocuous and approximately the same varia-

tional parameters will be found for any drawn Z.5

However, if on the other hand, we choose a small S,

then the variational parameters will overly depend on the

small set of samples Z that happened to be drawn at the
beginning of the algorithm. As a consequence, LðFSÞ will

approximate L poorly, and the resulting posterior qðwÞ
will also be a poor approximation to the true posterior.

Hence, the variational parameters will be overfitted to the
small set of samples Z that happened to be drawn.

Naturally, the question arises: how to choose a large

enough S to avoid overfitting the variational parameters on
Z. A practical answer to this question is the following: at

the beginning of the algorithm, we draw a second inde-

pendent set of samples Z 0 ¼ fz0ð1Þ; . . .; z0ðS0Þg where S0 is

preferably a number larger than S. At each (or every few)
iteration(s), we monitor the quantity LðFSÞðl;L; a; b;Z 0Þ on
the independent6 sample set Z 0. If the variational parame-

ters are not overfitting the drawn Z, then we should see that

as the lower bound LðFSÞðl;L; a; b; ZÞ increases, the

quantity LðFSÞðl;L; a; b; Z 0Þ should also display a tendency

to increase. If on the other hand, the variational parameters

overfit the drawn Z, then though LðFSÞðl;L; a; b; ZÞ
increases, we will notice that LðFSÞðl;L; a; b; Z 0Þ actually

deteriorates. This is a clear sign that a larger S is required.

The described procedure is reminiscent of monitoring
the generalisation performance of a learning algorithm on

a validation set during training. A significant difference,

however, is that while validation sets are typically of
limited size, here we can set S0 arbitrarily large. For

practical purposes, we found that S0 ¼ 5S was good

enough to detect overfitting. An illustration of overfitting
the variational parameters in provided in Sect. 3.2.

Algorithm 1 Proposed approximate variational infer-
ence

Initialisation:
– Initialise variational parameters e.g. µ ∼ N (0, I) and

L = cI . % e.g. c = 0.1
Initialise hyperparameters e.g. α = β = 0.1.

– Alternative to above, ML estimates may be useful as
initial values.

– Draw S samples z ∼ N (0, I) that remain fixed
throughout the algorithm.

Alternating optimisation of L(FS):
for iter = 1 : MaxIter do % e.g. MaxIter = 1000
– Record Lprv ← L(FS).
– Optimise µ for J iterations using the gradient in Eq.

(12). % e.g. J = 10
– Optimise L for J iterations using the gradient in Eq.

(13).
– Update α and β using Eqs. (14) and (15) respectively.
– Record Lnew ← L(FS).
– Break if e.g. Lnew − Lprv < 10−4.

end for

Result:
– Lower bound L(FS) to marginal log-likelihood.
– Gaussian Posterior N (µ,LLT ).

4 See derivative rule 55 in [15].

5 Discounting other sources of randomness like initialisation, etc.
6 We stress that Z 0 is not used in training.
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3 Applications

In this section, we apply the proposed approach on a
variety of applications, namely regression, classification,

denoising and geophysical modelling. In particular, the

geophysical example shows how the method can be applied
beyond standard statistical models.

3.1 Fitting bivariate posteriors

We test our proposed scheme on some artificially con-

structed posteriors by using a flexible parametric class of
densities, according to [3], which reads:

f ðw1;w2Þ ¼ 2N ðw1;w2j0; I2ÞUðhðw1;w2ÞÞ; ð16Þ

where U is the cumulative distribution function of the

standard normal distribution, and in general h is a real-value
function such that hð%wÞ ¼ %hðwÞ. Here, we take h to be

the dot product of a row and column vector, hðw1;w2Þ ¼
ðw1;w2;w1w

2
2;w

2
1w2;w3

1;w
3
2Þa; as in [3]. The goal is to find

the best Gaussian approximation to instances of Eq. (16) for

different column vectors a. To that end, we tried to find the
best Gaussian using the Laplace approximation and the

proposed scheme. We used S ¼ 50. The results are shown in

Fig. 1. The Gaussian approximations are drawn as black
dashed curves with their mean marked as a red cross. The

goodness of each approximation has been measured as the

Kullback–Leibler divergence and noted in the respective
captions. We note that the proposed scheme fares better than

the Laplace approximation, as the latter evidently focuses on

themode of the target density instead of where the volume of
the density lies. The KLD in these examples was calculated

numerically as there is no closed form between a Gaussian

and a member of the densities in Eq. (16)

3.2 Bayesian linear regression

Bayesian linear regression constitutes a useful example for

corroborating that the proposed scheme works correctly as

we can compare the obtained posterior qðwÞ with the
posterior obtained by exact Bayesian inference [6].

We consider data targets yn generated by the equation

y ¼ 2 cosðxÞ sinðxÞ % 0:1x2; ð17Þ

with inputs xn uniformly drawn in the range ½%6; 6+. We

add white Gaussian noise to the data targets with a standard

deviation of r ¼ 0:2. We calculate a set of radial basis
functions on the data inputs

/n ¼ ½/ðxn; r; c1Þ. . ./ðxn; r; cM%1Þ1+T ;

where /ðxn; r; cmÞ ¼ expð% kxn%cmk2
2r2 Þ. The last element 1 in

/n serves as a bias term. We set r ¼ 1 and adopt the linear

model y ¼ /Tw; where w 2 RM . We complete the model

by choosing the following densities:

– Likelihood: pðYjX;w; bÞ ¼
QN

n¼1 N ðynj/T
nw; b

%1Þ.
– Prior: pðwÞ ¼ N ðwj0; a%1IMÞ.
– Postulated posterior: qðwÞ ¼ N ðwjl;LLTÞ, where l 2

RM and L 2 RM&M .

We set the number of samples of variables z to S ¼ 100.

We inferred the Gaussian posterior of the weights w using

both exact Bayesian inference [6] and the proposed
scheme. In Fig. 2, we plot the mean predictions as obtained

by the two schemes and note that they are very similar,

especially in the areas where enough data items are present.
Similarly, in Fig. 3, we plot the covariance matrices found

by the two schemes and note their close similarity. Hence,

we conclude that the proposed scheme stands in close
agreement with the exact Bayesian solution.

Finally, we demonstrate on the same dataset the effect of

overfitting the variational parameters when S is set too low.
In Fig. 4, we monitor the lower bounds LðFSÞðl;L; a; b; ZÞ
and LðFSÞðl;L; a; b; Z 0Þ; see Sect. 2.3. In the left, we run the
algorithm for S ¼ 100 and S0 ¼ 500: we see that as
LðFSÞðl;L; a; b; ZÞ increases with each iteration, so does

LðFSÞðl;L; a; b; Z 0Þ. This means that the fitted variational

parameters l;L generalise well. On the right hand side, we

run the algorithm for S ¼ 10; but keep S0 ¼ 500. Here, we

clearly see that while LðFSÞðl;L; a; b; ZÞ increases, the

lower bound LðFSÞðl;L; a; b; Z 0Þ deteriorates. This a clear

sign that a larger S is required and that the variational

parameters are overfitted.

3.3 Bayesian logistic regression

In this section, we apply the proposed scheme to Bayesian

logistic regression and compare with the variational

approach presented in [11]. The data are input–label pairs
ðx; yÞ with y 2 f0; 1g. Again, like in Sect. 3.2, we calculate

basis functions /n on the input data xn and take r ¼ 0:5.
We set S ¼ 200. We complete the model by choosing the
following densities:

– Likelihood: pðYjX;wÞ ¼
YN

n¼1

rð/T
nwÞ

yn

ð1% rð/T
nwÞÞ

1%yn :

– Prior: pðwÞ ¼ N ðwj0; a%1IMÞ.
– Postulated posterior: qðwÞ ¼ N ðwjl;LLTÞ.
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We evaluated both schemes on datasets preprocessed by
Rätsch et al.7 Each preprocessed dataset has been randomly

partitioned into a 100 non-overlapping training and testing

sets. Hence, the performance of both schemes was evalu-
ated as the accuracy on the test set, that is the ratio of

correctly classified test samples over all test samples. The

predictive distribution for the proposed scheme was
approximated using a Monte Carlo estimate. We drew 200

parameter samples from the fitted Gaussian posterior q and
measured performance on the testing set as the average

accuracy under each sample of parameters. The results

reported in Table 1, mean squared error and standard
deviation, show that both the proposed schemes and the

variational bound in [11] perform virtually similarly. We

note that, as opposed to [11] which exploits the functional
form of logistic regression to design a bespoke lower

bound, the proposed method does not take into account any

such knowledge and still is capable of delivering compa-
rable performance. Hence, we find the results in this sec-

tion encouraging.
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Fig. 1 Top a ¼
ð%3; 1;%1;%1;%1;%1ÞT;
middle a ¼
ð0;%2;%4;%1;%3; 0ÞT; bottom
a ¼ ð1; 0; 2; 1;%1; 0ÞT. The
KLD values reveal (lower is
better) that the proposed scheme
fares better than the Laplace
approximation

7 http://www.raetschlab.org/Members/raetsch/benchmark.
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3.4 Bayesian multiclass classification

In this section, we apply the proposed scheme on Bayesian
multiclass classification. The data are input–label pairs

ðx; yÞ. Vectors y are binary vectors encoding class labels

using 1-of-K coding scheme, e.g. [0 1 0] encodes class label 2

in a three-class problem. A typical way of formulating
multiclass classification is multiclass logistic regression

(MLR); see [6, Chapter 4] for more details. MLRmodels the

probability pðCkj/nÞ of the n-th data item belonging to class

Ck via the softmax function pðCkj/nÞ ¼
expð/T

nwkÞPK

‘¼1
expð/T

nw‘Þ
.

K denotes the total number of classes, and each class Ck is
associated with a weight vector wk. Similarly to logistic

regression,MLR does not allow direct Bayesian inference as

the use of the softmax function renders integrals over the
likelihood term intractable. Thus, Bayesian MLR is a good

candidate problem for the proposed approach. We specify

the following model:

– Likelihood: pðYjX;w1; . . .;wKÞ ¼
YN

n¼1

YK

k¼1

pðCkj/nÞ
ynk :

– Prior:
QK

k¼1 pðwkÞ ¼ N ðwkj0; a%1IMÞ.
– Postulated posterior: qðw1; . . .;wKÞ ¼

QK
k¼1 qðwkÞ, with

qðwkÞ ¼ N ðwkjlk;LkL
T
k Þ.
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Fig. 2 Mean predictions. The red line is the true underlying function,
and the green points are noisy realisations of it (data items). The black
(circles) and cyan (crosses) linesare themeanpredictions that correspond
to exact and approximate inference, respectively. We see that the
approximate scheme stands in close agreement to the exact solution
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Fig. 3 Posterior covariance
matrices found by both
schemes. We note their close
similarity which indicates that
the proposed scheme stands in
close agreement to the exact
solution
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Fig. 4 Monitoring generalisation performance. Green solid line is LðFSÞðl;L; a;b;Z 0Þ, and blue dashed line is LðFSÞðl;L; a;b;ZÞ. Overfitting of

the variational parameters occurs when the number S of samples z is not large enough
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As a corroboration of the usefulness of our approxima-

tion to Bayesian MLR, we compare with the multiclass
generalisation of the relevance vector machine (RVM) [19]

presented in [16]. We use the multiclass UCI datasets

suggested therein. Amongst the two generalisations of the
RVM suggested in [16], we use the mRVM2 version. We

also follow the suggestion of [16] concerning the choice of

kernels for the different datasets. We set S ¼ 200. Table 2
summarises the results of our numerical simulations along

with details of the datasets. While mRVM2 designs a
refined probabilistic model to make probabilistic multiclass

classification possible, the proposed scheme does not take

into account any kind of such knowledge and is still able to
deliver competitive performance, in terms of predictive

accuracy, as seen in Table 2. The good performance

demonstrates both the usefulness and versatility of the
proposed method.

3.5 Probabilistic image denoising

In this section, we further demonstrate how the proposed

method can take in its stride a change in the model like-
lihood that complicates computations. The model consid-

ered here is the ubiquitous probabilistic principal

component analysis (PPCA) introduced in [20]. PPCA

assumes that the observed high-dimensional data y 2 Rd

are manifestations of low-dimensional latent variables

x 2 Rq, under a linear mapping expressed by a matrix W 2
Rd&q and an offset n 2 Rd, corrupted by Gaussian noise !:

y ¼ Wxþ nþ !: ð18Þ

PPCA formulates a computationally amenable linear-

Gaussian model which allows integrating out the latent

variables x and obtaining the marginal log-likelihood.
Estimating W and l follows by maximising the marginal

log-likelihood [20]. Various works extend PPCA by

replacing the noise model with other choices, e.g. [2] uses
the Student’s t distribution, to deal with different types of

noise. A recent interesting suggestion is the choice of the

Cauchy density as the noise model [22], albeit in a non-
probabilistic formulation. The Cauchy density with loca-

tion x0 and scale c[ 0 parameters reads:

pc 1þ x% x0
c

" #2
" # !%1

: ð19Þ

Choosing the Cauchy density as the noise model leads to a
version of PPCA where the marginal log-likelihood is no

longer tractable and so the latent variables x cannot be

integrated out. This is simply because the prior on x is not
conjugate to the Cauchy likelihood. However, the proposed

method can be used to approximate this intractable mar-

ginal log-likelihood. Formally, we specify the following
Cauchy-PPCA model:

– Likelihood: pðYjX;W; n; cÞ

¼
YN

n¼1

pc 1þ yn %Wxn % n

c

" #2
" # !%1

:

– Prior: pðXÞ ¼ N ðXj0; INÞ.
– Postulated posterior: qðXÞ ¼ N ðXjl;LLTÞ.
Parameters W, n and c are obtained by gradient optimisa-
tion of the proposed lower bound LðFSÞ.

We applied the original PPCA [20] and the proposed
Cauchy-PPCA on a task concerning the denoising of images

that have undergone pixel corruption. The aim here is to

show the ease with which the proposed method can accom-
modate a change in the specification (i.e. change from normal

to Cauchy likelihood) and deliver a well-performing model.
The data Y are 2,414 face images of 38 individuals

obtained from the Extended Yale B Database [10]. There

are 64 images per individual under 9 poses and 64

Table 1 Classification performance for Bayesian logistic regression
(higher is better)

Dataset Bound in [11] Proposed

Banana 0.8893 ± 0.0055 0.8893 ± 0.0054

Cancer 0.7119 ± 0.0456 0.7116 ± 0.0454

Heart 0.5528 ± 0.0445 0.5500 ± 0.0476

Solar 0.6449 ± 0.0172 0.6445 ± 0.0167

Table 2 Classification
performance for Bayesian
multiclass classification (higher
is better)

Dataset C Suggested Kernel mRVM2 Proposed

Ecoli 8 Gaussian 0.855 ± 0.047 0.852 ± 0.060

Glass 6 Polynomial 0.581 ± 0.143 0.667 ± 0.112

Iris 3 Gaussian 0.913 ± 0.071 0.947 ± 0.053

Wine 3 Linear 0.959 ± 0.062 0.976 ± 0.030

Soybean (small) 4 Linear 1.000 ± 0.000 1.000 ± 0.000

Vehicle 4 Polynomial 0.481 ± 0.054 0.539 ± 0.103

Balance 3 Polynomial 0.931 ± 0.044 0.947 ± 0.029

Crabs 4 Linear 0.915 ± 0.071 0.950 ± 0.033
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illumination conditions. The images are grayscale images

whose pixels have values between 0 and 255. We rescale
the images to 96& 84 pixels. Hence, d ¼ 96& 84 ¼ 8064

and we set q ¼ 2, i.e. both PCA schemes project the images

to a latent space of dimension equal to 2. We corrupt
33.33% of the pixels in each image by drawing a new value

uniformly in the range ½0; . . .; 255+. For each individual, we

use half of the corrupted images as the training set and the
other half as the test set.

Figure 5 presents results obtained on test images from four
individuals. The figure shows from left to right the original

and corrupted test image followed by the two reconstructions

obtained by PPCA and Cauchy-PPCA, respectively. To
quantify the quality of reconstruction, we use the following

measure between the original and reconstructed images:

kyorig % yreck
2=kyorigk

2. This measure is quoted below each

image. The results in Fig. 5 evidently show that Cauchy-

PPCA achieves better denoising levels than PPCA. In actual
fact, in our numerical experiments we found that Cauchy-

PPCA outperformed PPCA on all 38 individuals.

The present numerical experiment demonstrates the
versatility of the proposed method in how it can easily

extend PPCA to incorporate a Cauchy likelihood. This is

achieved without exploiting any particular knowledge
pertaining to the probabilistic specification of the model.

3.6 Bayesian inference for the stochastic model
by Boore

In this section, we apply the proposed scheme on a geo-

physical model called the stochastic model. The stochastic

model, due to Boore [7], is used to predict ground motion at

Fig. 5 Columns from left to
right: original image, corrupted
image, reconstruction by PPCA
and reconstruction by Cauchy-
PPCA. Columns two to four:
below each image we quote its
distance to the original image in
the first column (lower is
better), i.e. the quality of
reconstruction
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a given site of interest caused by an earthquake. Ground

motion is simply the shaking of the earth and is a funda-
mental quantity in estimating the seismic hazard of struc-

tures. From a physical point of view, the stochastic model

describes the radiated source spectrum and its amplitude
changes in the frequency domain due to wave propagation

from the source to the site of interest. The inputs to the

stochastic model are the distance R of the site of interest to
the seismic source, the magnitudeMw of the earthquake, and

the frequency f of ground motion. The stochastic model, in
its simple form, has a parameter associated with the seismic

source known in the literature as stress parameter (Dr), two
parameters associated with the path attenuation called geo-
metrical spreading (g) and quality factor (Q), and one more

parameter associated with the site called near-surface

attenuation (j0). All aforementioned parameters are boun-
ded within a physical range. In the case of multiple seismic

sources, each source is associated with its own distinct stress

parameter. The scalar output of the model y is the mean
Fourier amplitude of the ground motion. The type of ground

motion we consider here is acceleration. We denote the

stochastic model as a function y ¼ gðMw;R; f ;wÞ, where
w ¼ ½Dr1; . . .;DrE; g;Q; j0+, in which E is the number of

seismic sources. This situation is depicted in Fig. 6. We refer

the interested reader to [7] for more details. Estimating the
posterior uncertainty of the model parameters is important in

seismic hazard analysis, as the propagation of uncertainty in

the parameters can have an impact on the estimated hazard
curve [17]. A discussion of how these posteriors can be

utilised in later stages of seismic hazard analysis is beyond

the scope of this work.
We specify the model by choosing the following

densities:

– Likelihood: pðYjD;wÞ¼
YN

n¼1

N ðynjgðMwn;Rn;fn;wÞ;r2Þ:

– Flat prior: pðwÞ / 1.

– Postulated posterior: qðwÞ ¼ N ðwjl;LLTÞ.
In contrast to the previous applications, here we choose a
very flat prior. Ground motion data inputs are denoted by D
and targets by Y.

We performed experiments on a subset of the
recently compiled RESORCE database [1] which is a

pan-European database of strong motion recordings. In

particular, we focused on data records originating from
a station in the region of L’Aquilla for E ¼ 8 seismic

sources. Hence, the total number of free model

parameters in w is 11. We experimented with varying
numbers of data records, N 2 f100; 200; 500; 1000g, to

test the robustness of the Laplace and the proposed

approximation in scenarios of limited data. Such situa-
tions arise in geophysical studies when data recordings

are incomplete due to distortions in frequencies caused

by instrumentation errors. The performance of Laplace
and the proposed scheme was evaluated as the predic-

tion error on test sets. Both schemes were run ten

times, and each run involved a new random realisation
of the training and testing set. Parameter S was set to

1000 for all experiments in this section. The predictive

distribution for the proposed scheme was approximated
using a Monte Carlo estimate. We drew 200 parameter

samples from the Gaussian fitted posterior q and esti-
mated performance on the testing set as the average of

the mean-squared error under each parameter sample.

The results are reported in Table 3.
The results show that the proposed approximation fares

better than Laplace, although at N ¼ 1000 the perfor-

mances are virtually identical. For lower N, however, the
Laplace approximation exhibits much higher variance than

the proposed scheme.

4 Discussion and conclusion

We have presented a scheme for Bayesian variational

inference that is applicable in cases where the likelihood

function renders more standard approaches difficult. The
scheme is conceptually simple, as it relies on a simpleMonte

Carlo average of the intractable part of the variational lower

bound, see Eq. (5), and the re-introduction of the variational

Fig. 6 Physical setting of seismic wave propagation from the source
to the site of interest. Recorded at the site is the signal Fourier
amplitude against frequency of ground motion

Table 3 Prediction error for ground motion problem (lower is better)

N Laplace Proposed

100 0.8550 ± 0.4008 0.6040 ± 0.0307

200 0.7411 ± 0.4925 0.5776 ± 0.0403

500 0.6926 ± 0.4790 0.5496 ± 0.0451

1000 0.5395 ± 0.0230 0.5323 ± 0.0273
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parameters resulting in the objective of Eq. (11). The scheme

can thus be generally applied to other models where varia-
tional inference is difficult, requiring only the gradients of

the log-likelihood function with respect to the parameters.

In the numerical experiments, we have shown that (a) the
proposed scheme stands in close agreement with exact

inference in Bayesian linear regression, (b) it performs on

par in classification tasks against methods that design
bespoke model formulations, (c) it fares better than the

Laplace approximation in a number of cases, and (d) it is
very versatile and can be applied to a variety of problems.

Future work will address the relationship of our approach

to variational approaches [9, 18] that provide alternative
ways to compute improved Gaussian approximations to

intractable posteriors relative to the Laplace approximation.

Another aspect concerns ways to cope with very large
problems that would require a large number of samples S to

obtain a sufficiently accurate approximation in Eq. (8). A

natural choice would be to turn the scheme in Algorithm 1
into a recursive stochastic optimisation scheme [12] that

employs small sample sets computed at each iteration, akin

to stochastic gradient-based large-scale empirical risk
minimisation [8]. These two approaches should not be

confused, however. The latter employs subsampling of the

data ðX;YÞwhereas our scheme generates samples based on
current parameter estimates of the approximate posterior.

Clearly, our scheme could incorporate sequential subsam-

pling of the data as well. The problem of proving conver-
gence of such an overall stochastic approximation approach

in a suitable sense [12] seems to be open.
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