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Abstract. This paper introduces a novel approach to uncertainty quan-
tification of image labelings determined by assignment flows. Local un-
certainties caused by ambiguous data and noise are estimated by fitting
Dirichlet distributions and pushed forward to the tangent space. The
resulting first- and second-order moments are then propagated using a
linear ODE parametrization of assignment flows. The corresponding mo-
ment evolution equations can be solved in closed form and numerically
evaluated using iterative Krylov subspace techniques and low-rank ap-
proximation. This results in a faithful representation and quantification
of uncertainty in the output space of image labelings, which is important
in all applications where confidence in pixelwise decisions matters.

Keywords: image labeling · uncertainty quantification · assignment
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1 Introduction

1.1 Overview, Motivation

Quantifying the uncertainty of image segmentations and labelings is an impor-
tant topic in the field of image analysis and computer vision. For more than
three decades, probabilistic graphical models [35] and Bayesian inference was
the method of choice. Due to the intractability of exact inference, however,
quantifying uncertainty of inference, e.g. by evaluating marginal probabilities
of the posterior distribution, requires either computational expensive MCMC-
based sampling methods or variational approximations [9] whose performance
is difficult to assess. Another line of research relying on continuous variational
approaches to image segmentation, like the relaxed Mumford-Shah functional
[3], employs polynomial chaos expansions for uncertainty propagation [22], a
framework for approximate stochastic computing that is widely used in scien-
tific computing [36]. The recent work [7] focuses on binary image segmentation
from the viewpoint of semi-supervised learning using an approach that combines
ideas from phase-field models [3], classical Gaussian processes for classification
[23] and spectral graph theory [12].

In summary, before the era of deep networks, methods for quantifying the
uncertainty of image segmentations mainly stressed the Bayesian viewpoint and
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employed established methods for approximate inference. Accordingly, there are
two aspects that put into question the trustworthiness of corresponding uncer-
tainty estimates: On the one hand, uncertainty quantification using methods
where exact inference is intractable defines an intractable problem as well, and
quantifying the approximation error is a hard task. On the other hand, Bayesian
inference itself has been increasingly criticized recently as being too sensitive to
misspecification of models and priors [20,13].

For several years, the state of the art in image segmentation is based on
deep networks [19]. It is well-known too, however, that current deep network
architectures come along with deficiencies: sensitivity against tiny perturbations
(e.g. adversarial attacks) with unpredictable consequences, and with insufficient
theoretical understanding of how predictions are generated. It is not surprising,
therefore, that uncertainty quantification based on deep networks is an unsolved
problem that has been tackled by hundreds of different architectures and heuris-
tics during the last years – see [1] and more than 700 references therein.

1.2 Contribution, Organization

This paper is based on the assignment flow approach to image labeling [4,30]
that provides a framework for studying the mathematics of deep networks in
‘small controlled’ steps, yet outperforms already in its present form traditional
variational and graphical models (cf., e.g. [31,32]). Specifically, we consider the
linearized assignment flow [38] which enjoys a parametrization through a lin-
ear ODE (ordinary differential equation) on the tangent space and reasonably
approximates the (full) assignment flow [38,37].

We employ a basic method for estimating locally initial first- and second-order
statistical moments from given input data. Next, we exploit the specific structure
of the linearized assignment flow for propagating these initial uncertainties to
the nonlocal labelings that result from integrating numerically the flow.

Our approach should not be confused with ‘normalizing flows’ [18,21] that
estimate a generative model of the data distribution through optimal transport
of a reference distribution to a given empirical distribution (data). Rather, we
quantify the uncertainty of label assignments performed by a context-sensitive
nonlocal process (linearized assignment flow), caused by uncertainties of noisy
and ambiguous initial data.

Section 2 collects basic material required for presenting our contribution in
Section 3. Details of our implementation are specified in Section 4. Proof-of-
concept experiments validate and illustrate our approach in Section 5. We con-
clude in Section 6.

2 Preliminaries

2.1 Categorial Distributions, Dirichlet Distribution

We denote in this paper by c the number of classes (labels, categories). Categorial
distributions are points p ∈ ∆c−1 = {q ∈ Rc+ : 〈1c, q〉 = 1} in the probability
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simplex. The subset of strictly positive vectors

S = {p ∈ ∆c−1 : p1 > 0, . . . , pc > 0} (1)

together with the Fisher-Rao metric gp(u, v) = 〈u,Diag(p)−1v〉, u, v ∈ T0 [2]
becomes a Riemannian manifold (S, g) with trivial tangent bundle TS = S ×T0
and tangent space T0 = {v ∈ Rc : 〈1c, v〉 = 0}. The orthogonal projection onto
T0 is denoted by

Π0 : Rc → T0, v 7→ v − 〈1S , v〉1c, 1S =
1

c
1c. (2)

The Dirichlet distribution [17,8]

Dα(p) =
Γ (α0)

Γ (α1) · · ·Γ (αc)
pα1−1
1 · · · pαc−1

c IS(p), α ∈ Rc>0, α0 = 〈1c, α〉 (3)

with IS(p) = 1 if p ∈ S and 0 otherwise, belongs to the exponential family of
distributions [5,35]. It is strictly unimodal as long as the concentration param-
eters satisfy α1, . . . , αc ≥ 1. We denote by Eα[·],Covα[·] the expectation and
covariance operator with respect to Dα and record the relations for a random
vector p ∼ Dα

Eα[log p] = ψ(α)− ψ(α0)1c, (4a)

Covα[log p, log p] = Diag(ψ′(α))− ψ′(α0)1c1
>
c , (4b)

where ψ(α) := (ψ(α1), . . . , ψ(αc))
> and ψ,ψ′ are the digamma and trigamma

functions, respectively [16, pp. 8–9].
We will use Dirichlet distributions in Section 3.1 for estimating local uncer-

tainties of input data, to be propagated to uncertainties of non-local labelings
by linearized assignment flows in Sections 3.2 and 3.3.

2.2 Linearized Assignment Flows

Linearized assignment flows (LAFs) were introduced by [38] as approximations
of (full) assignment flows [4,30] for metric data labeling on graphs G = (I, E).
The linearization concerns the parametrization of assignment flows on the tan-
gent space T0 through a linear ODE with respect to a linearization point W0 ∈
W := S×· · ·×S (n = |I| factors). Each point W ∈ W ⊂ Rn×c of the assignment
manifoldW comprises as row vector a categorial distribution Wi ∈ S, i ∈ I, with
S defined by (1). Adopting the barycenter W0 = 1W of the assignment manifold
defined by (1W)i = 1S (cf. (2)) as simplest choice of the point of linearization,
the LAF takes the form

V̇ = VD +ΩV, VD = Π0LD, V (0) = 0, (5)

where V (t) ∈ T0 = T0 × · · · × T0 ⊂ Rn×c (|I| factors), i.e. each row vector Vi(t)
evolves on T0, Ω ∈ Rn×n+ is a parameter matrix that defines the regularization
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properties of the LAF, and

LD ∈ W, LD;i = exp1S
(−Di/ρ) :=

e−Di/ρ

〈1c, e−Di/ρ〉
, ρ > 0, i ∈ I (6)

encodes the input data as point on the assignment manifold (here, the exponen-
tial function applies componentwise). The input data are given as distance vector
field D ∈ Rn×c, where each vector Di ∈ Rc encodes the distances Dij , j ∈ [c]
of the datum (feature) observed at vertex i ∈ I to c pre-specified labels (class
prototypes). Both integration (inference) of (5) and supervised learning of the
parameter matrix Ω by minimizing a LAF-constrained loss function can be com-
puted efficiently [38,37]. Once V (T ) has been computed for a sufficiently large
time t = T , almost hard label assignments to the data are given by the assign-
ment vectors

W (T ), Wi(T ) = exp1S
(Vi(T )) =

eVi(T )

〈1c, eVi(T )〉
, i ∈ I. (7)

Our contribution in this paper to be developed subsequently is to augment la-
belings (7) with uncertainty estimates, by propagating initial local uncertainties
that are estimated from the data using the LAF.

3 Modeling and Propagating Uncertainties

3.1 Data-Based Local Uncertainty Estimation

Local initial labeling information is given by the input data (6) and the weight
patches

Ωi = {ωik : k ∈ Ni}, Ni = {i} ∪ {k ∈ I : i ∼ k}, i ∈ I, (8)

that form sparse row vectors of the weight matrix Ω of the LAF equation (5).
We denote the weighted geometric averaging of the categorial distributions (6)
by

Si := Ωi ∗ LD :=

∏
k∈Ni

(LD;k)wik

〈1c,
∏
k∈Ni

(LD;k)wik〉
, i ∈ I, (9)

where exponentiation is done componentwise. This formula can be derived by
performing a single step towards the Riemannian center of mass of the vec-
tors (6), but with the e-connection from information geometry in place of the
Riemannian (Levi-Civita) connection [30, Section 2.2.2].

Local data variations can thus be represented at every pixel i ∈ I by the set

Fi := {Sj : j ∈ Ni}, where Sj = Ωj ∗ LD. (10)

We use Dirichlet distributions as a natural statistical model to represent the
initial uncertainties of these data, i.e. Fi ∼ Dαi at every pixel i ∈ I. We es-
timate the parameters αi by maximizing the corresponding log-likelihood. To
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this end, we exploit the structure of the Dirichlet distribution as member of the
exponential family and rewrite the densities (3) in the form

Dαi : S 7→ e〈T (S),F (αi)〉−ζ(αi), i ∈ I, (11)

where

T (S) = log(S), F (αi) = αi−1c, ζ(αi) =

c∑
k=1

logΓ (αik)− logΓ (αi0). (12)

Assuming that S1, . . . , S|Ni| are i.i.d. samples at every pixel i ∈ I, for simplicity,
it follows that SFi :=

∑
j∈Ni

T (Sj) is a sufficient statistic for the Dirichlet class

Dαi [10, Theorem 1.11]. Hence the parameters αi which best fit the data Fi can
be obtained by maximizing the log-likelihood functions

Li : Rc>0 → R, α 7→ Li(α) = 〈SFi , F (α)〉 − |Ni|ζ(α), i ∈ I. (13)

This is a concave optimization problem [25], [10, Lemma 5.3] with derivatives of
the objective function given by

∇Li(α) = |Ni|
(
ψ (α0) 1c − ψ(α) +

1

|Ni|
∑
j∈Ni

log(Sj)
)
, (14a)

H(Li)(α) = |Ni|
(
−Diag(ψ′(α)) + ψ′(α0)1c1

>
c

)
. (14b)

We solve this problem numerically as specified in Section 4 and point here merely
out that Hessian-based algorithms are convenient to apply due to the structure
of (14a), since H(Li)−1(α) can be computed in linear time [15].

3.2 Local Uncertainty Representation

We transfer the local data uncertainties obtained in the preceding section in
terms of the Dirichlet distributions Dαi , i ∈ I to the tangent space T0, in order
to compute first- and second-order moments. These moments will be propagated
to labelings using the LAF in Section 3.3.

The following proposition uses the inverse of the diffeomorphism exp1S
de-

fined by (6),

φ : S → T0, p 7→ φ(p) := exp−11S
(p) = Π0 log p, (15)

where the log applies componentwise. See [29, Lemma 3.1] for more details.

Proposition 1. Let Dα be a given Dirichlet distribution, and let ν = φ]Dα
denote the pushforward measure of Dα by φ and Eν ,Covν the corresponding
expectation and covariance operators. Then, for a random vector v ∼ ν,

Eν [v] = Π0ψ(α), (16a)

Covν [v, v] = Π0 Diag
(
ψ′(α)

)
Π0. (16b)
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Proof. By definition of the pushforward operation, for any integrable function
f : T0 → R and v = φ(p), one has Eν [f(v)] = Eα[f ◦ φ(p)] and consequently

Eν [vj ] = Eα[φ(p)j ]
(15),(2)

= Eα[log pj − 〈1S , log p〉] (4a)
= ψ(αj)− 〈1S , ψ(α)〉, (17)

which implies (16a). Regarding (16b), we compute

Covν [v, v] = Eν [(v − Eν [v])(v − Eν [v])>]=Π0 Covα[log p, log p]Π0 (18)

which implies (16b) by (4b) and by the equation Π01c = 0. ut

Applying this proposition with Vi(0) and αi in place of v and α, respectively,
we get the first- and second-order Dirichlet moments lifted to T0,

m0,i := Π0ψ(αi), (19a)

Σ0,i := Π0 Diag
(
ψ′(αi)

)
Π0. (19b)

3.3 Uncertainty Propagation

In this section, we model the initial data of the LAF (5) as Gaussian Markov
random field (GMRF) and study the Gaussian random process induced by the
LAF, as a model for propagating the initial data uncertainties to the resulting
labeling.

Given the lifted Dirichlet moments (19), we regard each initial vector Vi(0), i ∈
I of the LAF (5) as normally distributed vector

Vi(0) ∼ N (m0,i;Σ0,i). (20)

The formulae (19) show that these normal distributions are supported on the
tangent space T0.

Next, we stack the row vectors Vi(0), i ∈ I of V (0) and denote the resulting
vector by

v(0) := vecr(V (0)) :=
(
V1(0)>, V2(0)>, . . . , Vn(0)>

)>
, n = |I|. (21)

Thus, v(0) is governed by the GMRF

v(0) ∼ N (m0, Σ0), m0 = vecr(m0,i)i∈I , Σ0 = BlockDiag(Σ0,i)i∈I . (22)

In fact, since the covariance matrices Σ0,i are singular with rank c − 1, this is
an intrinsic GMRF of first order – cf. [26, Chapter 3]. Conforming to (21), we
transfer the LAF equation to its vectorized version

v̇ = vD +Ωcv, v(0) ∼ N (m0, Σ0), (23)

where v̇ = vecr(V̇ ), v = vecr(V ), vD = vecr(VD) and Ωc = Ω ⊗ Ic using
the stacking convention vecr(ABC) = (A ⊗ C>) vecr(B) using the Kronecker
product ⊗ [34] for arbitrary matrices A,B,C with compatible dimensions.
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The evolution of the initial probability distribution that governs the evolving
state v(t) of (23) is generally described by the Fokker-Planck equation [24,28].
For the specific simple case considered here, i.e. a linear deterministic ODE with
random initial conditions, this is a Gaussian random process with moments
determined by the differential equations

ṁ(t) = E[v̇(t)], m(0) = m0 (24a)

Σ̇(t) = E[v̇(t)(v(t)−m(t))>] + E[(v(t)−m(t))v̇(t)>], Σ(0) = Σ0, (24b)

with initial moments given by (23). Equations (24) propagate the uncertainty
on the tangent space until the time of point t = T and to the labeling in terms
of the distribution governing the state v(T ) = vecr(V (T )) ∼ N (m(T ), Σ(T ))
and equation (7). Regarding the quantitative evaluation of these uncertainties,
we focus on the marginal distributions of the subvectors Vi(t), i ∈ I.

Proposition 2. Let v(t) be the random vector solving (23). Then the first- and
second-order moments of the marginal distributions of Vi(t) = (vec−1r (v(t)))i are
given by

(mi(t))i∈I = m(t) = expm(t(Ωc))m0 + tϕ(tΩc)vD (25a)

Σi(t) =
∑
j∈I

(
(expm(tΩ))ij

)2
Σ0,j , i ∈ I, (25b)

where expm denotes the matrix exponential and ϕ the matrix-valued function
given by the entire function ϕ : z 7→ ez−1

z .

Proof. The solution (25a) results from the linear equation

ṁ(t) = E[v̇(t)] = E[Ωcv(t) + vD] = Ωcm(t) + vD (26)

and applying Duhamel’s formula [33, Eq. (3.48)], to obtain

m(t) = expm(tΩc)m0 + expm(tΩc)

∫ t

0

expm(−sΩc)vD ds (27a)

= expm(tΩc)m0 + t expm(tΩc)

∞∑
k=0

[
(−tΩc)k

(k + 1)!

]
vD (27b)

= expm(t(Ωc))m0 + tϕ(tΩc)vD. (27c)

In order to derive (25b), we first compute separately the two terms on the r.h.s.
of (24b) which yields

Σ̇(t) = ΩcΣ(t) +Σ(t)Ω>c . (28)

This differential Lyapunov equation has the solution [6, Theorem 1]

Σ(t) = expm(tΩc)Σ0 (expm(tΩc))
>
. (29)
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In order to compute the marginal covariance matrices, we use properties of the
Kronecker product [34] and compute

expm((tΩc)) =

∞∑
k=0

(tΩ)k ⊗ (Ic)
k

k!
=

∞∑
k=0

(
(tΩ)k

k!

)
⊗ Ic = expm(tΩ)⊗ Ic, (30)

which together with expm(t(Ω⊗ Ic))> = expm(t(Ω>⊗ Ic)) transforms (29) into

Σ(t) = (expm(tΩ)⊗ Ic)Σ0

(
expm(tΩ>)⊗ Ic

)
. (31)

Since the matrix Σ(0) = Σ0 is block diagonal, we have

(expm(tΩ)⊗ Ic)Σ0 =

expm(tΩ)1,1Σ0,1 · · · expm(tΩ)1,nΣ0,n

...
. . .

...
expm(tΩ)n,1Σ0,1 · · · expm(tΩ)n,nΣ0,n,

 , n = |I|

(32)

and thus can extract from (31) the covariance matrices

Σi(t)=
∑
j∈I

(expm(tΩ))ij Σ0,j

(
expm(tΩ>)

)
ji

=
∑
j∈I

(
(expm(tΩ))ij

)2
Σ0,j (33)

ut

of the marginal distributions. The direct numerical evaluation of the equations
(25) is infeasible for typical problem sizes, but can be conveniently done using a
low-rank approximation; see Section 4.2.

4 Algorithms

4.1 Estimating Local Uncertainties and Moments

We use gradient ascent to maximize numerically the log-likelihoods Li in (13)
for every pixel i ∈ I. The corresponding global maxima correspond to param-
eter values αi which best represent local data variations Sj in (10) in terms of
Dirichlet distributions Dαi given by (3) and (11), respectively. While numerical
gradient ascent is safe, Hessian-based optimization method (cf. (14a)) may be
more time-efficient but require numerical damping to ensure convergence [25,15].

4.2 Moment Evolution

The explicit computation of the moments mi(t) and Σi(t) of the marginal un-
certainty distributions in (25) require the evaluation of the matrix exponential
followed by a matrix-vector multiplication. Such operations are typically in-
tractable numerically due to the large size of the involved matrices. Recall that
the size of Ω ∈ R|I|×|I| is quadratic in the number of pixels. We overcome this nu-
merical problem by using low-rank Krylov subspace approximation [27,14] that
has shown to perform very well in connection with the linearized assignment
flow [38,37].
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Evolution of means. We first describe the numerical evaluation of the mean
m0 := m(0) in (25a) at any pixel i ∈ I. Using the Arnoldi iteration, we compute
an orthonormal basis for each of the Krylov subspaces

Kd(Ω,m0) := span{m0, Ωm0, . . . , Ω
d−1m0}, (34)

Kd(Ω, vD) := span{vD, ΩvD, . . . , Ωd−1vD}, (35)

of dimension d � |I|. This iterative method yields a basis Vd = (v1, . . . , vd)
together with the upper Hessenberg matrix

Hd = V >d ΩVd, (36)

without having to compute explicitly the right-hand side of (36). We use this
Hessenberg matrix, which represents the projection of Ω onto the Krylov sub-
space, to approximate the action of the matrix exponential [27]

expm(tΩ)m0 ≈ ‖m0‖Vd expm(tHd)e1, (37)

where e1 denotes the first unit vector. In agreement with [38,37], our experience
is that the computational costs are reduced remarkably while still very accurate
approximations are obtained even when working with low-dimensional Krylov
subspaces (d ≈ 10).

In order to approximate the second term on the right-hand side of (25a), we
consider the matrices Hd, Vd corresponding to the Krylov space (35) and employ
the approximation

tϕ(tΩ)vD ≈ t‖vD‖Vd ϕ(tHd)e1, (38)

where the action of the matrix-valued ϕ-function on the vector e1 can be derived
using an evaluation of the matrix exponential of the form [27, Proposition 2.1]

expm

(
t

(
Hd e1
0 0

))
=

(
expm(tHd) tϕ(tHd)e1

0 1

)
. (39)

Evolution of covariance matrices. For the evolution of each covariance ma-
trix (25b), we compute the vectors

σi = expm(tΩ>)ei ∈ R|I|, i ∈ I (40)

using the Krylov approximation (37) as described above and evaluate the co-
variance matrices of the marginal distributions by

Σi(t) =
∑
j∈I

σ2
i,jΣ0,j , i ∈ I. (41)

Here, the matrices Σ0,j correspond to the initial local uncertainties estimated at
pixel j ∈ I, as described in connection with (19b).
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5 Experiments and Findings

We illustrate our approach (Section 3) in a number of proof-of-concept experi-
ments. We refer to Section 4 for implementation details and to the figure captions
for a description of the experiments and our findings.

Unless otherwise specified, we used the following options in the experiments:

– The linear assignment flow was integrated up to time t = T := 15. This
suffices to obtain almost integral assignments by (7).

– All Krylov dimensions (cf. (34), (35)) were set to d = 10.
– We used |Ni| = 3× 3 neighborhoods for specifying the regularizing parame-

ters (weights) by (8).
– The weight matrix Ω with sparse row vectors due to (8) were either taken

as uniform weights or computed using a nonlocal means algorithm [11].

Computation of Uncertainties. The uncertainty of assigning a label to the
data observed at pixel i ∈ I is the probability that the random vector Vi ∼
N (mi(T ), Σi(T )) yields a different label assignment by (7), where mi(T ), Σi(T )
are given by (25) at time t = T . In practice, we compute these uncertainties
as normalized frequencies of label confusion using a sufficiently large number
of samples Vi ∼ N (mi(T ), Σi(T )). These computations can be carried out in
parallel for each pixel i ∈ I.

(a) Noiseless Test
Image

0

0.2

0.4

0.6

0.8

1.0

(b) Lifted Dirichlet
Uncertainties

0

0.2

0.4

0.6

0.8

1.0

(c) Uncertainties after
LAF-Propagation

Fig. 1: Uncertainties for labeling a noiseless image. (a) Noiseless test im-
age, where each of the eight colors ( , , , , , , , ) represents a label. (b)
Initial uncertainties at t = 0 based on the lifted Dirichlet moments (19). Label
assignments in the interior of the cells have uncertainty zero, in agreement with
the fact that local rounding already produces the correct labeling. The initial
decisions at the boundaries between cells are uncertain, however. (c) Uncertain-
ties of final label assignments through the LAF. Regularization performed by
the LAF largely removed the initial uncertainties shown by (b), up to pixels in
(a) with color values that do not correspond to any label due to rasterization
effects (visible after zooming in on the screen).
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(a) Noisy Test Image
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(b) Lifted Dirichlet
Uncertainties
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(c) Uncertainties after
LAF-Propagation

Fig. 2: Uncertainties for labeling noisy data. (a) Noisy version of the image
from Fig. 1a, (b) Initial uncertainties at t = 0 based on the lifted Dirichlet
moments (19). Smaller uncertainties in yellow regions reflects the fact that the
yellow label has the largest distance to all other labels. (c) Uncertainties of final
label assignments through the LAF. The LAF effectively removes noise and feels
confident, except for pixels at signal transitions.
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(a) Uniform Weights
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0.8

1.0

(b) NLM Weights

Fig. 3: Uncertainties for labeling with different weight types. Both panels
display uncertainties of final label assignments through the LAF, obtained using
weights computed in two ways, for the noisy data depicted by Figure 2a. (a)
Uniform weights size using large patches of size 11×11 pixels, i.e., each weight has
the value 1

121 . Such ‘uninformed’ weights (regularization parameters) increase the
uncertainty of both label assignments and localization, in particular at small-
scale image structures relative to the patch size that determines the strength of
regularization of the LAF. (b) Using nonlocal means weights in patches of size
11× 11 avoids the effects displayed by (a), despite using the same patch size.
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(a) Ni = 3× 3
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(b) Ni = 7× 7
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(c) Ni = 11× 11

Fig. 4: Uncertainties of labelings using different neighborhood sizes.
This figure illustrates the influence of the neighborhood size |Ni|, i ∈ I on the
uncertainties of initial label assignments (top row) and on the uncertainties
of final label assignments through the LAF (bottom row), for the noisy data
depicted by Figure 2a: (a) |Ni| = 3 × 3 (left column), (b) |Ni| = 7 × 7 (center
column), and (c) |Ni| = 11× 11 (right column). Larger neighborhoods increase
the initial uncertainties, whereas final uncertainties are fairly insensitive against
variation of the neighborhood size due to regularization performed by the LAF.

6 Conclusion and Further Work

We introduced a novel approach to uncertainty quantification of image labelings.
The approach is based on simplifying assumptions, like the i.i.d. assumption un-
derlying maximum-likelihood parameter estimation in Section 4.1, regarding the
estimation and representation of initial uncertainties of local label assignments
using the given data. These initial uncertainties are rigorously propagated using
the mathematical representation of assignment flows. Numerical results validate
and illustrate the approach.

Our further work will mainly focus (i) on studying how learning regulariza-
tion parameters of the LAF [37] affects uncertainty quantification, and (ii) on
an extension to the full assignment flow approach by approximating the flow
through a composition of the linearized assignment flow (LAF) determined at
few points of time.
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