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Abstract. We study the task to infer and to track the viewpoint onto
a 3D rigid object by observing its image contours in a sequence of im-
ages. To this end, we consider the manifold of invariant planar contours
and learn the low-dimensional submanifold corresponding to the object
contours by observing the object off-line from a number of different view-
points. This submanifold of object contours can be parametrized by the
view sphere and, in turn, be used for keeping track of the object ori-
entation relative to the observer, through interpolating samples on the
submanifold in a geometrically proper way. Our approach replaces ex-
plicit 3D object models by the corresponding invariant shape submani-
folds that are learnt from a sufficiently large number of image contours,
and is applicable to arbitrary objects.

1 Introduction

Motivation and Contribution. The representation of planar shapes has been
a focus of research during the last few years [5, 4, 3, 1]. By mathematically sepa-
rating similarity transforms and potentially also reparametrisations from other
deformations of planar curves, an invariant representation of planar shapes is
obtained in terms of a smooth manifold embedded in a euclidean space. Fur-
thermore, distances between shapes can be computed that are only sensitive to
shape deformations, by determining the geodesic path between the correspond-
ing points of the shape manifold (Fig. 3 below provides an illustration).

In this paper, we adopt this representation and show that it is accurate
enough to infer the change in aspect of a given rigid 3D object, represented by
a point on the view sphere, just by observing 2D shapes of its silhouette in a
given image sequence – see the left panel of Fig. 1 below.

To this end, we assume to be given a collection of silhouettes of any known
object, that we represent one-to-one by a corresponding set of points on the
view sphere. These data can be acquired off-line by observing the object from
different directions. We regard these shapes as samples of an object-specific
submanifold of the manifold of all planar shapes, that is parametrized by the view
sphere. Taking into account the geometry of this submanifold and interpolating
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the shape samples accordingly, we show that either the viewpoint of a moving
camera, or object pose relative to the observer, can be tracked by observing
deformations of the object’s silhouette in an image sequence.

We point out the 3D models are not utilized in this work, besides illustrat-
ing graphically various points below. Rather, a sample set of object contours
observed from different viewpoints, along with the information to what object
they belong, define the input data. Our results are novel and relevant, for in-
stance, for reaching and maintaining a reference position relative to a moving
object, through vision based control, in man-made and industrial scenes.

Related work. Related work has been published recently in [10, 11, 2, 12]. Etyn-
gier et al. [10] use Laplacian eigenmaps [16] for embedding a set of training
shapes into a low dimensional standard euclidean space. They present a method
for projecting novel shapes to the submanifold representing the training sam-
ples, in order to model a shape prior for image segmentation. Similarly, Lee and
Elgammal [11] use locally linear embedding (LLE) [17] to learn separately a
configuration manifold of human gaits and a view manifold corresponding to a
circle on the view sphere, based on a tensor factorization of the input data.

While nonlinear euclidean embeddings (Laplacian eigenmap, LLE) of locally
connected similarity structures (weighted adjacency graphs) are employed in
[10, 11], we use directly the intrinsic manifold of invariant shapes as developed
in [5, 1]. Statistical models based on this manifold have been elaborated in [2,
12] for deformable objects and shapes of classes of rigid objects, respectively, in
connection with image segmentation and computational anatomy.
By contrast, we focus on tracking and pose estimation of a single rigid object,
based on contour deformations and the corresponding shape submanifold. This
approach is novel. Our work may be regarded as a learning-based approach for
associating views and contours of arbitrary objects, that is both more general
and easier to apply than earlier work on model-based contour representations of
specific objects [25, 26].

Organization. We describe in Section 2 the mathematical shape and object
representation, and the corresponding data acquisition. Section 3 details our
approach for pose inference and object tracking on the view sphere. For the
sake of completeness, we briefly discuss in Section 4 two major approaches to
image segmentation for extracting object contours from images, although this is
not the main focus of our present work. We validate our approach by numerical
experiments in Section 5 and conclude in Section 6.

2 Shape Model, Object Representation, Learning

We work with the elastic closed pre-shape space covering closed regular two-
dimensional curves, proposed in [1]. A regular curve α : [0, 1] 7→ R

2 is represented

by α(t) = α0 +
∫ t

0
eΦ(t)eiΘ(t) dt, with the integrand denoting a velocity function

along the curve. eΦ(t) describes the curve speed, while Θ(t) is the tangent an-
gle relative to the real axis in the complex plane. To achieve invariance under
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translation, the integral constant α0 is left out, and shapes are represented by
pairs (Φ, Θ) as elements of a vector space of functions denoted by H. To also
achieve scale and rotation invariance and to restrict to closed regular curves,
further constraints turn H into the space of pre-shapes C:

C :=







(Φ, Θ) ∈ H :

∫ 1

0
eΦ(t)eiΘ(t) dt = 0 (closure)

∫ 1

0 eΦ(t) dt = 1 (scale)
∫ 1

0
Θ(t)eΦ(t) dt = π (rotation)







. (1)

So, curves are restricted to length 1 and an angle function average of π. Note
that this is an arbitrary choice, we adopted π from [1]. Invariance with respect
to reparametrisations is not handled intrinsically, since it would raise a consider-
able additional computational burden. Instead, shapes are matched by dynamic
programming, following [15].
The elastic Riemannian metric [6] used on C is

〈(p1, t1), (p2, t2)〉(Φ,Θ) := a

∫ 1

0

p1(t)p2(t)e
Φ(t) dt + b

∫ 1

0

t1(t)t2(t)e
Φ(t) dt (2)

with constants a, b ∈ R that weight the amount of stretching and bending, and
with tangent vectors (p{1,2}, t{1,2}) at (Φ, Θ). [1] proposes ways to numerically
approximate geodesics on a discrete representation of C, as well as to approx-
imate the inverse exponential map by gradient descent on C. Another recent
representation of elastic shape is discussed in [7], also cf. [9], which allows for
faster computations. However, rotation invariance is not easy to achieve. [8]
introduces an optimisation approach to find minimal geodesics between orbits
under the action of rotations and reparametrisations.

View Sphere Sampling. The input data of our approach are given samples
on the view sphere S

2 from any object, at known positions (see Fig. 1). These
data are acquired off-line and result in a sample set of points in C.

3 Pose Inference and Tracking on the View Sphere

This section describes a model that we use for modelling motion of a point on
the sphere that represents the object’s shape in a submanifold of C, as well as a
simple scheme to predict positions locally. We also explain how we keep track of
points on the view sphere that correspond to shapes measured from images in an
image sequence. To avoid confusion with tracking an object in the image plane,
we call the process of tracking the position on the view sphere sphere tracking.

Motion Model. We model a mass point on the sphere as motion in a potential
field V (x) = m · g · (x−P )2, together with a friction component. m is a constant
inertia, g weights the impact of V , and β in Equation (3) weights the impact of
friction. The motion is governed by the differential equation

−2 · m · g · (s(t) − P )
︸ ︷︷ ︸

−∇V

−β · ṡ(t)
︸ ︷︷ ︸

Stokes friction

= m · s̈(t) . (3)
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Fig. 1. Illustration of a view sphere. Right hand: indicated are three sampled contours
of an airplane seen from a camera from points on the view sphere. The object is
located in the centre of the sphere. Left hand: illustration of the shape sub-manifold.
The green lines between sphere and manifold indicate corresponding points, the blue
arrow indicates a point that is interpolated using, in this case, three points which are
neighbours on the sphere. This specific object was taken from the Princeton 3D shape
benchmark [14].

This is applied to a point in the tangent space of the group of 3D rotations,
i.e. s(t), P ∈ TSO3, with rotations representing motions of a point on the
sphere S

2. The corresponding exponential and logarithmic maps for SO3 can
be efficiently computed in closed form. The “centre of gravitation” P is updated
whenever a new measurement Pk is available. Fig. 2 shows an illustration of the
motion model following a path of points P .

Fig. 2. Representing and tracking shape changes as motions on the view sphere. Blue:
measurements Pk. Red: path s(t) of the mass point. Magenta: predicted points. The
start point of the trajectory is at the far left end. The green grid lines indicate the
underlying sphere.

Predictions. Given past measurements pi ∈ S
2, we would like to predict s(t)

locally. Assume to be given a new measurement Pk at time tk, and the motion
model to be at point s(tk). We then follow the trajectory governed by (3) until the
distance d(s(tk), Pk) has been travelled, say at time t′k, so that d(s(tk), s(t′k)) =
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d(s(tk), Pk), and then continue for an additional fixed time period ∆t = t′k − tk
to obtain the prediction

ppred := s(t′k + ∆t) . (4)

As illustrated in Fig. 2, this simple “mechanical” model can result in rather
sensible paths and corresponding predictions of shape changes, as detailed below.

Shape Interpolation. Interpolation of shapes on the view sphere at a point
s ∈ S

2 is realised by Karcher means using a local neighbourhood M of sampled
shapes around s. The empirical Karcher mean is

µ = arg min
m∈C

|M|
∑

i=1

ai · d(m, pi)
2 , (5)

with d(·, ·) the geodesic distance on C, and weights ai ≥ 0 with
∑

i ai = 1.
µ can in practice be calculated by gradient descent [18]. Fig. 3 illustrates the
interpolation of three shapes depicted at the corners of the triangle.

Fig. 3. Illustration of shape in-
terpolation with Karcher means
in the closed pre-shape space C.
The corners represent the orig-
inal shapes, the other contours
are interpolations weighted with
their barycentric coordinates.
The corner curves are randomly
chosen from the MPEG-7-CE1
shape data base.

Keeping Track of the Spherical Position. Assume that we know initially
a point ck ∈ C and the corresponding position tk ∈ S

2. Now, suppose a new
shape q ∈ C is to be considered, typically delivered by an image segmentation
algorithm that tracks an object over a number of frames (see the next section).
Fig. 4 illustrates the following problem: We wish to determine a point ck+1 ∈ C
at tk+1 ∈ S

2 on the sub-manifold modeled by the samples pi from the view
sphere at spherical coordinates ti ∈ S

2, that is as close as possible to q. That
is, we would like to minimise the geodesic distance d(m, q) = ‖Logm(q)‖m by
minimising

F (m, q) = ‖Logm(q)‖2
m , (6)

where m results from minimizing (5),

m(t) = arg min
m̃∈C





|M|
∑

i=1

ai(t) · d(m̃, pi)
2



 (7)
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Fig. 4. Keeping track of the
spherical position: Shape ck and
position tk are known, as well as
a new shape q. What is the (ap-
proximate) position tk+1 on the
view sphere corresponding to q?

with both the neighbourhood M and the weights ai depending on the spherical
position t. We then solve at frame k + 1

t⋆k+1 = arg min
t

F (m(t), q) (8)

using non-linear conjugate gradient descent on the view sphere, as follows: choose
bℓ,1, bℓ,2 ∈ R

3 to be orthonormal basis vectors of the tangent space Ttℓ(S2), and
a small constant ∆ > 0. Notice that in the following equations, Exp and Log
denote the exponential and inverse exponential maps on the sphere S

2, not on
the pre-shape space C.

trans : T (S2) × S
2 × S

2 7→ T (S2), v2 = trans(v1, t1, t2) (9)

is a function that takes a tangent vector at t1 and translates it along a geodesic
from t1 to t2. Then, let t0 = t⋆k, β−1 = 0, d̃−1 = 0, and

vℓ =

2∑

i=1

bℓ,i ·
F (m(Exptℓ(∆ · bℓ,i)), q) − F (m(tℓ), q)

∆
(10)

dℓ = −vℓ + βℓ−1d̃ℓ−1 (11)

tℓ+1 = Exptℓ(α · dℓ) (12)

d̃ℓ = trans(dℓ, t
ℓ, tℓ+1) (13)

ṽℓ = trans(vℓ, t
ℓ, tℓ+1) (14)

βℓ =
[vℓ+1 − ṽℓ]

⊤vℓ+1

v⊤ℓ vℓ

. (15)

vℓ takes the role of the gradient direction, in the tangent space of S
2 at

the current point tℓ. dℓ is the search direction, computed from the gradient vℓ

and the previous search direction d̃ℓ−1, with factor βℓ−1 calculated using the
Polak-Ribière variant of the non-linear conjugate gradient method in Equation
(15), which is more robust than the Fletcher-Reeves variant according to [19].
The rest of the above equations are needed to adapt to the geometry of the
sphere. Specifically, we need to translate tangent vectors to the current iterate
tℓ to be able to combine them, and we need to go back to the sphere using the



View Point Tracking of Rigid Objects Based on Shape Sub-Manifolds 7

exponential map.
In order to find a step length R ∋ α > 0 for use in Equation (12), we use a
standard line search procedure with the Armijo or sufficient decrease condition

F (m(Exptℓ(α · dℓ)), q) ≤ F (m(tℓ), q) + c · α · (v⊤ℓ dℓ) , 0 < c < 1 . (16)

Figures 5 and 6 depict paths on the view sphere.

4 Segmentation and Image Contours

There are several possibilities to obtain contours from actual images, and to track
contours while they are moving in the image plane. We have so far applied two
methods: the well known region based level set method [21] and the related, more
recent method from [24]. Since [24] finds a global optimum, it is suitable if the
images contain only a more or less homogeneous background and a single object.
In more complex scenes containing clutter and heterogeneous background, the
level set method that only finds local optima is advantageous. We sketch these
two approaches below, and how results from the sphere tracking are used as
prior for steering the segmentation process.

Level sets. Our implementation of level set segmentation uses the image energy
from [21] and additionally the curvature diffusion regularisation term from [13],
replacing the more common mean curvature term in the evolution in all our
experiments. We also optionally use a prior energy based on [23] and [22]:

Eshape =
1

2

∫

D

[

H(Φ(x)) − H(Φ̃(s Γ x + T ))
]2

dx . (17)

H denotes the Heaviside function, Φ and Φ̃ are the embedding functions of the
evolving contour and the prior contour, respectively. s, Γ, T are transformation
parameters as described further below.

Global Segmentation Method. The variational segmentation model of [21]
suffers from the existence of local minima due to the non-convexity of the energy
functional. Segmentation results depend on the initialisation. To overcome this
limitation, Chan et al. [24] propose algorithms which are guaranteed to find
global optima as follows: For a normalised grey scale image f(x) : D 7→ [0, 1]
on the domain D and constants λ, c1, c2 ∈ R, a global minimiser u can be found
by minimising the convex functional

min
0≤u≤1

∫

D

|∇u| dx + λ

∫

D

{(c1 − f(x))2 − (c2 − f(x))2} u(x) dx . (18)

It is proved in [24] that if u(x) is a solution of (18), then for almost every
µ ∈ [0, 1], 1{x:u(x)>µ}(x) is a global minimizer of [21].

In order to segment an object of interest in the image plane, we modify (18)
by adding an additional term as shape prior

min
0≤u≤1

∫

D

|∇u| dx+λ

∫

D

{(c1−f(x))2−(c2−f(x))2+(û(x)−ũ(x))} u(x) dx , (19)
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where û is a ’frozen’ u which gets updated after each time step in the numerical
implementation, and ũ is the prior template. We would like (19) to be invariant
with respect to euclidean transformations of the object in the 2D image plane.
To this end, we add transformation parameters, as in [23], of the fixed û with
respect to the prior ũ by minimising

Eshape =

∫

D

[û(x) − ũ(s Γ x + T )]u(x) dx (20)

for the scale s, translation T , and rotation matrix Γ (rotation by an angle θ).
As a result, we obtain

min
u,s,Γ,T

∫

D

|∇u| dx

+ λ

∫

D

{(c1 − f(x))2 − (c2 − f(x))2 + (û(x) − ũ(s Γ x + T ))} u(x) dx , (21)

which is minimised by gradient descent. This functional is no longer convex in
all unknowns, but the convexity with respect to u facilitates the computation of
the transformation parameters.

Possible Priors. Points on the view sphere predicted by the motion model
can be used to provide a prior when segmenting subsequent frames of an image
sequence. This can be done in several ways — the most obvious is to take the
shape at ppred ∈ S

2 from Equation (4) as a template. To incorporate the prior
into the segmentation method, it is most appealing to impose a vector field
defined on a contour C that drives C along a geodesic in shape space towards
the prior; this appears to be a sensible choice and has been proposed amongst
others in [2]. Parametric active contour methods seem to be naturally suited for
this sort of modification, since they work directly on points lying on the contour.
For the implicit level set method [20, 21] or the method described in [24], applying
a vector field that is defined only on the level set defining the interface is a little
more involved. Imposing a flow along a geodesic in the implicit framework for
other distance measures has been proposed, e.g., in [27]. The prior we use is a
single shape predicted by the motion model on the view sphere. The shape is
interpolated using a weighted Karcher mean and converted to a binary image.
This binary image is then used as a prior for segmentation.

5 Experiments and Evaluation

Figures 5 and 6 show the results of the following experiment: for a given sequence
{I1, . . . , In} of images depicting a moving object, the contour c1 and view sphere
position t1 for the first image were initialised manually. Then, using the methods
from Sections 3 and 4, for each subsequent image Ii+1 the contour ci+1 and the
respective view sphere point ti+1 were updated. The contour ci from the previous
image was used for initialisation and as a weak prior for the segmentation of
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image Ii+1. The segmentation result from Ii+1 was then used to calculate ti+1,
starting at ti, using the method described in Section 3.
In Fig. 6, an occluding object was added in a different scene, which could be
successfully handled by using ci as prior template for the segmentation algorithm.
For these experiments, the level set algorithm was used. The figures depict a few
snapshots from the whole sequences, which respectively consist of 100 and 50
frames each. These experiments show that the sphere tracking mechanism is
capable of keeping track of the view sphere position fairly well, given a sufficient
number of samples on the view sphere for interpolating the shape submanifold
corresponding to the object. Fig. 7 shows results for a real recorded sequence.

Fig. 5. Experiment tracking the view sphere position using only the segmented con-
tours from a sequence of images. Right: shown are measurements obtained on the view
sphere, for the complete sequence. Left: a few images from the sequence are shown, the
corresponding interpolated contours from the shape space C to their right. The initial
position t0 ∈ S

2 and shape s0 were given manually. Then for each image, the result
from the previous one was used as initialisation. A region based level set segmentation
was used, with a curvature regularisation term after [13].

6 Conclusions and Further Work

We presented a method that combines techniques from elastic shape manifold
modelling, segmentation and optimisation, to track the change of pose of a 3D
object through tracking its contour. While the given contours of the object are
currently sampled more or less uniformly on the view sphere, an adaptive sam-
pling strategy may be investigated in future work: the amount of contour change
depends on the position on S

2 and the object in question. Advanced sampling
should adapt the density of points in areas of rapid shape change on S

2, thus ex-
ploiting the geometry of the shape submanifold already during data acquisition.
However, in our experiments sampling 162 points appeared to be sufficient.

Another point concerns initialisation, which is currently done manually. Au-
tomatic initialisation may be achieved for example by a voting scheme on the
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Fig. 6. Sphere tracking experiment with occlusion. The top row shows the tracked view
sphere path on the right (the arrows indicate the direction of motion), and an illus-
tration of the image sequence on the left. The colour coding shows the corresponding
contours and view sphere positions. Using the resulting shape from each previous frame
to create a prior for the segmentation algorithm enables the sphere tracking to keep
going for this sequence, where a small occluding object moves in front of the object.
Each row shows the area of interest from 3 subsequent frames with the superimposed
segmentation result, followed by the contour representing the shape tracked on the
view sphere.

first few frames, for sequences where the first few contours can be extracted well
enough by any extraction method.

Regarding the segmentation prior, another option is to investigate weighted
combination of a local neighbourhood of shapes around ppred to create a tem-
plate with a “fuzzy” boundary, in order to take more into account inherent
uncertainties of the predicted path of shapes.

A last matter worth mentioning is computation speed. Specifically, potential
for speed-up is in the numerical calculation of the Log map for C.
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Frame 0 Frame 97

Fig. 7. Sphere tracking with a real recorded sequence totalling 97 frames. Roughly
every 20th is shown, the last three are closer. Indicated in each frame are the segmen-
tation result (green) and aligned interpolated shape (red). Difficult situations where
the view tracking goes wrong are indicated in red, yellow are situations which are just
ok. The time line on the bottom indicates the situation for the whole 97 frames. The
spheres on the right indicate the inferred view positions along the sequence.


