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ABSTRACT. We introduce a novel approach to Maximum A Posteriori inference based on discrete graphical
models. By utilizing local Wasserstein distances for coupling assignment measures across edges of the un-
derlying graph, a given discrete objective function is smoothly approximated and restricted to the assignment
manifold. A corresponding multiplicative update scheme combines in a single process (i) geometric integration
of the resulting Riemannian gradient flow and (ii) rounding to integral solutions that represent valid labelings.
Throughout this process, local marginalization constraints known from the established LP relaxation are sat-
isfied, whereas the smooth geometric setting results in rapidly converging iterations that can be carried out in
parallel for every edge.
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1. INTRODUCTION

1.1. Overview and Motivation. Let Ω ⊂ R2 be a domain where image data are observed, and let G =
(V, E), |V| = m, denote a grid graph embedded into Ω. Each vertex i ∈ V indexes the location of a pixel,
to which a random variable

xi ∈ X = {`1, . . . , `n} (1.1)
is assigned which takes values in a finite set X of labels. The image labeling problem is the task to assign to
each xi a label such that the discrete objective function

min
x∈Xm

E(x), E(x) =
∑
i∈V

Ei(xi) +
∑
ij∈E

Eij(xi, xj) (1.2)

is minimized. This function comprises for each pixel i ∈ V local energy terms Ei(xi) that evaluate local
label predictions for each possible value of xi ∈ X . In addition, E(x) comprises for each edge ij ∈ E
local distance functions Eij(xi, xj) that evaluate the joint assignment of labels to xi and xj . If the local
energy functions Eij(xi, xj) = d(xi, xj) are defined by a metric d : X × X → R, then (1.2) is called
the metric labeling problem [KT02]. In general, the presence of these latter terms makes image labeling a
combinatorially hard task. We refer to [KAH+15] for a recent survey on the image labeling problem and on
algorithms for solving either approximately or exactly problem (1.2).

A major class of algorithms for approximately solving (1.2) is based on the linear (programming) relax-
ation [Wer07] (see Section 2.2 for details)

min
µ∈LG

〈θ, µ〉. (1.3)

Solving the linear program (LP) (1.3) returns a globally optimal relaxed indicator vector µ whose com-
ponents take values in [0, 1]. If µ is a binary vector, then it corresponds to a solution of problem (1.2). In
realistic applications, this is not the case, however, and the relaxed solution µ has to be rounded to an integral
solution in a post-processing step.

In this paper, we present an alternative inference algorithm that deviates from the traditional two-step
process: convex relaxation and rounding. It is based on the recently proposed geometric approach [ÅPSS17]
to image labeling. The basic idea underlying this approach is to restrict indicator vector fields to the relative
interior of the probability simplex, equipped with the Fisher-Rao metric, and to regularize label assignments
by iteratively computing Riemannian means (see Section 3 for details). This results in a highly parallel,
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multiplicative update scheme, that rapidly converges to an integral solution. Because this model of label
assignment does not interfere with data representation, the approach applies to any data given in a metric
space. The recent paper [BFPS17] reports the application of our scheme to a range of challenging labeling
problems of manifold-valued data.

Adopting this starting point, the objectives of the present paper are:
• Show how the approach [ÅPSS17] can be used to efficiently compute high-quality (low-energy)

solution for an arbitrary given instance of the labeling problem (1.2).
• Devise a novel labeling algorithm that tightly integrates both relaxation and rounding to an integral

solution in a single process.
• Stick to the smooth geometric model suggested by [ÅPSS17] so as to overcome the inherent non-

smoothness of convex polyhedral relaxations and the slow convergence of corresponding first-order
iterative methods of convex programming.

Regarding the last point, a key ingredient of our approach is a smooth approximation

Eτ (µV) = 〈θV , µV〉+
∑
ij∈E

dθij ,τ (µi, µj), τ > 0 (1.4)

of problem (1.3), where dθij ,τ denotes the local smoothed Wasserstein distance between the discrete label
assignment measures µi, µj coupled along the edge ij of the underlying graph. Besides achieving the degree
of smoothness required for our geometric setting, this approximation also properly takes into account the
regularization parameters that are specified in terms of the local energy terms Eij of the labeling problem
(1.2). Our approach restricts the function Eτ to the so-called assignment manifold and iteratively determines
a labeling by tightly combining geometric optimization with rounding to an integral solution in a smooth
fashion.

1.2. Related Work. Problem sizes of linear program (LP) (1.3) are large in typical applications of image
labeling, which rules out the use of standard LP codes. In particular, the theoretically and practically most
efficient interior point methods based on self-concordant barrier functions [NN87, Ren95] are infeasible due
to the dense linear algebra steps required to determine search and update directions.

Therefore, the need for dedicated solvers for the LP relaxation (1.3) has stimulated a lot of research.
A prominent example constitute subclasses of objective functions (1.2) as studied in [KZ04], in particular
binary submodular functions, that enable to reformulate the labeling problem as maximum-flow problem in
an associated network and the application of discrete combinatorial solvers [BVZ01, BK04].

Since the structure of such algorithms inherently limits fine-grained parallel implementations, however,
belief-propagation and variants [YFW05] have been popular among practitioners. These fixed point schemes
in terms of dual variables iteratively enforce the so-called local polytope constraints that define the feasible
set of the LP relaxation (1.3). They can be efficiently implemented using ‘message passing’ and exploit the
structure of the underlying graph. Although convergence is not guaranteed on cyclic graphs, the performance
in practice may be good [YMW06]. The theoretical deficiencies of basic belief propagation in turn stimulated
research on convergent message passing schemes, either using heuristic damping or utilizing in a more
principled way convexity. Prominent examples of the latter case are [WJW05, HS10]. We refer to [KAH+15]
for many more references and a comprehensive experimental evaluation of a broad range of algorithms for
image labeling.

The feasible set of the relaxation (1.3) is a superset of the original feasible set of (1.2). Therefore, globally
optimal solutions to (1.3) generally do not constitute valid labelings but comprise non-integral components
µi(xi) ∈ (0, 1), xi ∈ X , i ∈ V . Randomized rounding schemes for converting a relaxed solution vector
µ to a valid labeling x ∈ Xm, along with suboptimality bounds, were studied in [KT02, CKNZ05]. The
problem to infer components x∗i of the unknown globally optimal combinatorial labeling that minimizes
(1.2), through partial optimality and persistency, was studied in [SSK+16]. We refer to [Wer07] for the
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history and more information about the LP relaxation of labeling problems, and to [WJ08] for connections
to discrete probabilistic graphical models from the variational viewpoint.

Optimal transport and the Wasserstein distance have become a major tool of signal modeling and analysis
[KPT+17]. Regarding the finite-dimensional formulation in terms of linear programs, the design of efficient
algorithms for large-scale problems requires sophisticated techniques [Sch16]. The problems of discrete
optimal transport studied in this paper, in connection with the local Wasserstein distances of (1.4), have a
small or moderate size (n2: number of labels squared). We apply the standard device of enhancing convex-
ity through entropic regularization, which increases smoothness in the dual domain. We refer to [Sch90]
and [Bru06, Ch. 9] for basic related work and the connection to matrix scaling algorithms and the history.
Smoothing of the Wasserstein distance and Sinkhorn’s algorithm has become popular in machine learning
due to [Cut13a]. The authors of [Pey15, CP16] comprehensively investigated barycenters and interpola-
tion based on the Wasserstein distance. Our approach to image labeling, in conjunction with the geometric
approach of [ÅPSS17], is novel and elaborates the preliminary announcement [ÅHS+17].

1.3. Contribution and Organization. We collect basic notation, background material and details of the LP
relaxation (1.3) in Section 2. Section 3 summarizes the basic concepts of the geometric labeling approach
of [ÅPSS17], in particular the so-called assignment manifold, and the general framework of [SHÅ+17] for
numerically integrating Riemannian gradient flows of functionals defined on the assignment manifold. This
section provides the basis for the two subsequent sections that contain our main contribution.

Section 4 studies the approximation (1.4) and provides explicit expressions for the Riemannian gradient
the restriction of Eτ to the assignment manifold. A key property of this set-up concerns the local polytope
constraints that define the feasible setLG of the LP relaxation (1.3): by construction, they are always satisfied
throughout the resulting iterative process of label assignment. Thus, our formulation is both more tightly
constrained and smooth, in contrast to the established convex programming approaches based on (1.3).

Section 5 details the combination of all ingredients into a single, smooth, geometric approach that per-
forms simultaneously minimization of the objective function (1.4) and rounding to an integral solution (label
assignment). This tight integration is a second major property that distinguishes our approach from re-
lated work. Section 5 also explains the notion ‘Wasserstein distances’ in the title of this paper due to the
dual variables that are numerically utilized to evaluate gradients of local Wasserstein distances, akin to how
dual (multiplier) variables in basic belief propagation schemes are used to enforce local marginalization con-
straints. Unlike the latter computations they have the structure of message passing on a dataflow architecture,
however, message passing induced by our approach is fully parallel along all edges of the underlying graph
and hence resembles the structure of numerical solvers for PDEs.

The remaining two sections are devoted to numerical evaluations of our approach. To keep this paper at a
reasonable length, we merely consider the most elementary iterative update scheme, based on the geometric
integration of the Riemannian gradient flow with the (geometric) explicit Euler scheme. The potential of
the framework outlined by [SHÅ+17] for more sophisticated numerical schemes will be explored elsewhere.
Furthermore, working out any realistic application is beyond the scope of this paper. Rather, the experimental
results are supposed to demonstrate major properties of our approach.

Section 6 provides all details of our implementation that are required to reproduce our computational
results. Section 7 reports and discussed the results of four types of experiments:

(1) The interplay between two parameters τ and α that control smoothness of the approximation (1.4)
and rounding, respectively, is studied. In order to miminize efficiently (1.2), the Riemannian flow
with respect to the smooth approximation (1.4) must reveal proper descent directions. This imposes
an upper bound on the smoothing parameter τ . Naturally, the effect of rounding has to be stronger
to make the iterative process converge to an integral solution. A corresponding choice of α controls
the compromise between quality of integral labelings in terms of the energy (1.4) and speed of
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convergence. Fortunately, the upper bound on τ is large enough to achieve attractive convergence
rates.

(2) We comprehensively explore numerically the entire model space of the minimal binary graphical
model on the cyclic triangle graph K3, whose relaxation in terms of the so-called local polytope
already constitutes a superset of the marginal polytope as admissible set for valid integral labelings.
In this way, we explore the performance of our approach in view of the LP relaxation and established
inference based on convex programming, and with respect to the (generally intractable) feasible set
of integral solutions. Corresponding phase diagrams display and support quantitatively the trade-off
between accuracy of optimization and rate of convergence through the choice of the single parameter
α.

(3) A labeling problem of the usual size was conducted to confirm and demonstrate that the finding
of the preceding points for ‘all’ models on K3 also hold in a typical application. A comparison to
sequential tree-reweighted message passing (TRWS) [Kol06] which defines the state of the art, and
to loopy belief propagation (BP) based on the OpenGM package [ABK12], shows that our approach
is on par with these methods regarding the energy level E(x) of the resulting labeling x.

(4) A final experiment based on the graphical model with a pronounced non-uniform (non-Potts) prior
demonstrates that our approach is able to perform inference for any given graphical model.

We conclude in Section 8 and relegated to an Appendix a series of proofs that otherwise would interrupt too
much the line of reasoning.

2. PRELIMINARIES

We introduce basic notation in Section 2.1 and the common linear programming (LP) relaxation of the
labeling problem in Section 2.2. In order to clearly distinguish between the LP relaxation and our geometric
approach to the labeling problem based on [ÅPSS17] (see Section 3.1), we keep the standard notation in
the literature for the former approach and the notation from [ÅPSS17] for the latter one. Remark 3.1 below
identifies variables of both approaches that play a similar role.

2.1. Basic Notation. For an undirected graph G = (V, E), the adjacency relation i ∼ j means that vertices
i and j are connected by an undirected edge ij ∈ E , where the latter denotes the unordered pair {i, j} =
ij = ji. The neighbors of vertex i form the set

N (i) = {j ∈ V : i ∼ j} (2.1)

of all vertices adjacent to i, and its cardinality d(i) = |N (i)| is the degree of i. G is turned into a directed
graph by assigning an orientation to every edge ij, which then form ordered pairs denoted by (i, j) = ij 6=
ji = (j, i). We only consider graphs without multiple edges between any pair of nodes i, j ∈ V .

We use the abbreviation [n] = {1, 2, . . . , n} for n ∈ N. R = R ∪ {+∞} denotes the extended real
line. All vectors are regarded as column vectors, and x> denotes transposition of a vector x. We ignore
transposition however when vectors are explicitly specified by their components; e.g. we write x = (y, z)
instead of the more cumbersome x = (y>, z>)>. We set 1n = (1, 1, . . . , 1) ∈ Nn and write 1 if n is clear
from the context. 〈x, y〉 =

∑
i∈[n] xiyi denotes the Euclidean inner product. Given a matrix

A =

A1
...
Am

 =
(
A1 . . . An

)
∈ Rm×n, (2.2)

we denote the row vectors byAi, i ∈ [m] and the column vectors byAj , j ∈ [n]. The canonical matrix inner
product is 〈A,B〉 = tr(A>B), where tr denotes the trace of a matrix, i.e. tr(A>B) =

∑
i∈[m]〈Ai, Bi〉 =∑

j∈[n]〈Aj , Bj〉 =
∑

i∈[m],j∈[n]AijBij .
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The set of nonnegative vectors x ∈ Rn is denoted by Rn+ and the set of strictly positive vectors by Rn++.
The probability simplex ∆n = {p ∈ Rn+ : 〈1n, p〉 = 1} contains all discrete distributions on [n]. A doubly
stochastic matrix µij ∈ Rn×n+ , also called coupling measure in this paper in connection with discrete optimal
transport, has the property: µij1n ∈ ∆n and µ>ij1n ∈ ∆n. We denote these two marginal distributions of
µij by µi and µj , respectively, and the linear mapping for extracting them by

A : Rn×n → R2n, µij 7→ Aµij =

(
µij1n
µ>ij1n

)
=

(
µi
µj

)
. (2.3a)

Its transpose is given by

A> : R2n → Rn×n, (νi, νj) 7→ A>
(
νi
νj

)
= νi1

>
n + 1nν

>
j . (2.3b)

The kernel (nullspace) of a linear mapping A is denoted by N (A) and its range byR(A).
The functions exp, log apply componentwise to strictly positive vectors x ∈ Rn++, e.g. ex = (ex1 , . . . , exn),

and similarly for strictly positive matrices. Likewise, if x, y ∈ Rn++, then we simply write

x · y = (x1y1, . . . , xnyn),
x

y
=
(x1

y1
, . . . ,

xn
yn

)
(2.4)

for the componentwise multiplication and subdivision.
We define F0 to be the class of proper, lower-semicontinuous and convex functions defined on Rn. For

any function f ∈ F0, ∂f(x) denotes its subdifferential at x, and the conjugate function f∗ ∈ F0 of f is
given by the Legendre-Fenchel transform (cf. [RW09, Section 11.A])

f∗(y) = sup
x∈Rn
{〈y, x〉 − f(x)}. (2.5)

For a given closed convex set C, its indicator function is denoted by

δC(x) =

{
0, if x ∈ C,
+∞, otherwise,

(2.6)

and
PC : Rn → C, PC(x) = argminy∈C ‖x− y‖ (2.7)

denotes the orthogonal projection onto C. The shorthand “s.t.” means: “subject to” in connection to the
specification of some constraints.

The log-exponential function logexpε ∈ F0 is defined as

logexpε(x) = ε log

(∑
i∈[n]

e
xi
ε

)
. (2.8a)

It uniformly approximates the function vecmax ∈ F0 [RW09, Ex. 1.30], i.e.

lim
ε↘0

logexpε(x) = vecmax(x) = max{xi}i∈[n]. (2.8b)

We will use the following basic result from convex analysis (cf., e.g. [RW09, Ch. 11]), where ∂f(x) denotes
the subdifferential of a function f ∈ F0 at x.

Theorem 2.1 (inversion rule for subgradients). Let f ∈ F0. Then

p̂ ∈ ∂f(x̂) ⇔ x̂ ∈ ∂f∗(p̂) ⇔ f(x̂) + f∗(p̂) = 〈p̂, x̂〉 (2.9a)
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and

p̂ ∈ ∂f(x̂) ⇐⇒ 〈p̂, x̂〉 = f(x̂) + f∗(p̂). (2.9b)

We will also apply the following classical theorem of Danskin and its extension by Rockafellar.

Theorem 2.2 ([Dan66, Roc91]). Let f(z) = maxw∈W g(z, w), where W is compact and the function g is
differentiable and ∇zg(z, w) is continuously depending on (z, w). If in addition g(z, w) is convex in z, and
if z is a point such that arg maxw∈W g(z, w) = {w}, then f is differentiable at z with

∇f(z) = ∇zg(z, w). (2.10)

2.2. The Local Polytope Relaxation of the Labeling Problem. We sketch in this section the transition
from the discrete energy minimization problem (1.2) to the LP relaxation (1.3) and thereby introduce addi-
tional notation needed in subsequent sections.

The first step concerns the definition of local model parameter vectors and matrices

θi =
(
θi(`1), . . . , θi(`n)

)
∈ Rn, θij =

(
θij(`k, `l)

)
`k,`l∈X

∈ Rn×n (2.11)

which merely encode the values of the discrete objective function (1.2): θi(`j) = Ei(`j), θij(`k, `l) =
Eij(`k, `l). These local terms are commonly called unary and pairwise terms in the literature. Recall from
the discussion of (1.2) that the unary terms represent the data and the pairwise terms specify a regularizer.
All these local terms are indexed by the vertices i ∈ V and edges ij ∈ E of the underlying graph G = (V, E)
and assembled into the vectors

θ := (θV , θE), θV := (. . . , θi, . . . ), i ∈ V, θE := (. . . , θij , . . . ), ij ∈ E , (2.12)

where we conveniently regard θij ∈ Rn
2

either as local vector or as local matrix θij ∈ Rn×n, depending on
the context. Next we define local indicator vectors

µi =
(
µi(`1), . . . , µi(`n)

)
∈ {0, 1}n, µij =

(
µij(`k, `l)

)
`k,`l∈X

∈ {0, 1}n×n (2.13)

indexed in the same way as (2.11) and assembled into the vectors

µ = (µV , µE), µV := (. . . , µi, . . . ), i ∈ V, µE := (. . . , µij , . . . ), ij ∈ E . (2.14)

The combinatorial optimization problem (1.2) now reads minµ〈θ, µ〉. The corresponding linear program-
ming relaxation consists in replacing the discrete feasible set of (2.13) by the convex polyhedral sets

µi ∈ ∆n, µij ∈ Π(µi, µj), i ∈ V, ij ∈ E , (2.15a)

Π(µi, µj) =
{
µij ∈ Rn×n+ : µij1 = µi, µ

>
ij1 = µj , µi, µj ∈ ∆n

}
. (2.15b)

As a result, the linear programming relaxation (1.3) of (1.2) reads more explicitly

min
µ∈LG

〈θ, µ〉 = min
µ∈LG

〈θV , µV〉+ 〈θE , µE〉, (2.16)

where the so-called local polytope LG is the set of all vectors µ of the form (2.14) with components ranging
over the sets specified by (2.15). The adjective “local” refers to the local marginalization constraints (2.15b).

3. IMAGE LABELING ON THE ASSIGNMENT MANIFOLD

This section sets the stage for our approach to solving approximately the labeling problem (1.2). We
first introduce in Section 3.1 in terms of the assignment manifold the setting for the smooth approach to
image labeling [ÅPSS17], to be sketched in Section 3.2. Section 3.3 summarizes the general framework of
[SHÅ+17] for numerically integrating Riemannian gradient flows of functionals defined on the assignment
manifold.
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3.1. The Assignment Manifold. The relative interior of the probability simplex S := rint(∆n), given by
S = {p ∈ Rn++ : 〈1, p〉 = 1}, is a n− 1 dimensional smooth manifold with constant tangent space

TpS = {v ∈ Rn : 〈1, v〉 = 0} =: T ⊂ Rn , for p ∈ S. (3.1)

Due to 〈1, v〉 = 0 for all v ∈ T , we have the orthogonal decomposition Rn = T ⊕ R1. The orthogonal
projection onto T is given by

PT : Rn → T , x 7→ PT (x) = x− 1

n
〈1, x〉1 = Πx, Π := I − 1

n
11>, (3.2)

where I denotes the (n× n) identity matrix. The manifold S becomes a Riemannian manifold by endowing
it with the Fisher-Rao metric. At a point p ∈ S, this metric is given by

〈·, ·〉p : TpS × TpS → R , (u, v) 7→ 〈u, v〉p =
〈 u
√
p
,
v
√
p

〉
, (3.3)

where all operations are applied componentwise, i.e. u√
p = ( u1√

p1
, . . . , un√

pn
). In this setting, there is an

important map, called the lifting map (cf. [ÅPSS17, Def. 4]), defined as

L̃ : Rn → S, x 7→ L̃p(x) :=
p · ex

〈p, ex〉
. (3.4)

By restricting L̃ onto the tangent space, we obtain a diffeomorphism

L := L̃|T : T → S, L̃ = L ◦ PT . (3.5)

This restricted lifting map L is also a local first order approximation to the exponential map of the Riemann-
ian manifold S (cf [ÅPSS17, Prop. 3]), with the inverse mapping given by

L−1
p : S → T , q 7→ L−1

p (q) := PT

(
log

q

p

)
= Π log

q

p
. (3.6)

The assignment manifold is defined as the product manifoldW :=
∏
i∈[m] S and can be identified with

the spaceW = {W ∈ Rm×n++ : W1 = 1} of row-stochastic matrices with full support. With the Riemannian
product metric,W also becomes a Riemannian manifold with constant tangent space

TWW =
∏
i∈[m]

T = {V ∈ Rm×n : V 1 = 0} =: Tm at W ∈ W. (3.7)

The Fisher-Rao product metric reads

〈U, V 〉W =
∑
i∈[m]

〈 Ui√
Wi

,
Vi√
Wi

〉
at W ∈ W, U, V ∈ Tm. (3.8)

The orthogonal decomposition of T induces the orthogonal decomposition

Rm×n = Tm ⊕ {λ1>n ∈ Rm×n : λ ∈ Rm} (3.9)

together with the orthogonal projection

PTm : Rm×n → Tm, X 7→ PTm(X) = XΠ , (3.10)

where Π is the projection matrix from (3.2) above. Thus, the projection of a matrix X onto Tm is just the
projection (3.2) applied to every row of X . The lifting map, the restricted lifting map and its inverse are
naturally extended to

L̃W : Rm×n →W, LW : Tm →W and L−1
W : W → Tm (3.11)
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for every W ∈ W , by applying L̃ : Rn → S, L : T → S and L−1 : S → T from (3.4), (3.5), (3.6) to every
row,(

L̃W (X)
)
i

:= L̃Wi(Xi),
(
LW (V )

)
i

:= LWi(Vi) and
(
L−1
W (Q)

)
i

:= L−1
Wi

(Qi), (3.12)

for i ∈ [m], X ∈ Rm×n, V ∈ Tm and Q ∈ W .

3.2. Image Labeling onW . In [ÅPSS17] the following approach was proposed. Let G = (V, E) be a graph
with vertex set V = [m]. Suppose a function is given on this graph with values in some feature space F ,

f : V = [m]→ F , i 7→ fi. (3.13)

Furthermore, let the set X = {`1, . . . , `n} from (1.1) denote a set of prototypes or labels (possibly X ⊂ F)
and assume a distance function is specified,

d : F × X → R, (3.14)

measuring how well a feature is represented by a certain prototype. We are interested in the assignment of
the prototypes to the data in terms of an assignment matrix W ∈ W ⊂ Rm×n. The elements of W can be
interpreted as the posterior probability

Wij = Pr(`j |fi), i ∈ [m], j ∈ [n], (3.15)

that `j generated the observation fi. The assignment task of determining an optimal assignmentW ∗ can thus
be interpreted as finding an ‘explanation’ of the data in terms of the prototypes X .

Remark 3.1 (W vs. µ). Each row vector Wi, i ∈ [m] plays the role of a corresponding vector µi of the
basic LP relaxation as defined by (2.13), with relaxed domain due to (2.15). Unlike µi, however, vectors
Wi ∈ Rn++ always have full support and live on the manifold S.

The objective function for measuring the quality of an assignment involves three matrices defined next.
First, all distance information between observed feature vectors and prototypes (labels) are gathered by the
distance matrix

D ∈ Rm×n, Dij = d(fi, `j) (3.16)
and then lifted onto the assignment manifold at W ∈ W . By using (3.11) we obtain the likelihood matrix

L = L̃W

(
− 1

ρ
D
)

= LW

(
− 1

ρ
DΠ

)
, ρ > 0 (3.17)

where each row i of L is given by Li = L̃Wi(−1
ρDi). Finally, the similarity matrix

S = S(W ) ∈ W (3.18)

is defined as a local geometric average of assignment vectors at neighboring nodes, i.e. the i-th row Si is
defined to be the Riemannian mean (cf. [ÅPSS17, Def. 2])

Si = meanS{Lj}j∈N (i) (3.19)

of the lifted distances Lj in the neighborhood N (i) = N (i) ∪ {i}.
The correlation between W and the local averages defining S(W ), as measured by the basic matrix inner

product, is used as the objective function

max
W∈W

J(W ), J(W ) := 〈W,S(W )〉 (3.20)

to be maximized. The optimization strategy is to follow the Riemannian gradient ascent flow on W (see
Section (3.3) for the formal definition of the Riemannian gradient)

Ẇ (t) = ∇WJ(W (t)), W (0) =
1

n
1m1>n =: C. (3.21)
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The initialization Wi(0) = 1
n1>n with the barycenter of S constitutes an uninformative uniform assignment

which is not biased towards any prototype.
To obtain an efficient numerical algorithm, the Riemannian mean is approximated using the geometric

mean

Si(W ) =
meang{Lj}j∈N (i)〈

1,meang{Lj}j∈N (i)

〉 , meang{Lj}j∈N (i) =
( ∏
j∈N (i)

Lj

) 1
|N (i)| . (3.22)

Based on the simplifying, plausible assumption that the mean only changes slowly and by using the ex-
plicit Euler-method directly onW with a certain adaptive step-size (cf. [ÅPSS17, chap. 3.3]), the following
multiplicative update scheme is obtained

W
(k+1)
i =

W
(k)
i · Si(W (k))

〈W (k)
i , Si(W (k))〉

, W
(0)
i =

1

n
1>n , i ∈ [m]. (3.23)

3.3. Geometric Integration of Gradient Flows. In this section we collect the basic ingredients needed in
the remainder of this paper, of a general framework due to [SHÅ+17] for integrating a Riemannian gradient
flow of an arbitrary function J : W → R defined on the assignment manifold.

We first recall the definition of the Riemannian gradient. Let M be a Riemannian manifold with an inner
product gM on the tangent space and f : M → R a smooth function. Using the identification TrR = R for
r ∈ R, the Riemannian gradient ∇Mf(x) ∈ TxM of f at x ∈ M can be defined as the unique element of
TxM satisfying

gMx (∇Mf(x), v) = Df(x)[v], ∀v ∈ TxM, (3.24)

where Df(x) : TxM → Tf(x)R = R is the differential of f .

Suppose J : W → R is a general smooth objective function modeling an assignment problem and we are
interested in minimizing J by following the Riemannian gradient descent flow

Ẇ (t) = −∇WJ(W (t)) , W (0) = C ∈ W , (3.25)

with the barycenter C = 1
n1m1>n . Instead of directly minimizing J onW , the basic idea of [SHÅ+17] is to

pull the optimization problem back onto the tangent space Tm = TCW by setting

J := J ◦ LC , (3.26)

using the diffeomorphism LC : Tm → W given by (3.11). Furthermore, the pullback of the Fisher-Rao
metric under LC is used to equip Tm with a Riemannian metric and to turn LC into an isometry. In this
setting, the Riemannian gradient of J : Tm → R at V ∈ Tm is given by [SHÅ+17, sec. 3]

∇TmJ(V ) = ∇J
(
LC(V )

)
∈ Tm , (3.27)

where ∇J denotes the standard Euclidean gradient of J : W → R. Based on this construction, solving the
gradient flow (3.25) is equivalent to

W (t) = LC(V (t)), (3.28)

where V (t) ∈ Tm solves

V̇ (t) = −∇TmJ(V (t)) = −∇J
(
W (t)

)
, V (0) = 0 . (3.29)

Choosing the explicit Euler method for solving this gradient flow problem on the vector space Tm, results in
the numerical update scheme

V (k+1) = V (k) − h∇J
(
LC(V (k))

)
, V (0) = 0, (3.30)
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with step-size h ∈ R. Lifting this update scheme to the assignment manifold W yields a multiplicative
update rule

W (k+1) =
W (k) · e−h∇J(W (k))〈
W (k), e−h∇J(W (k))

〉 , W (0) = C. (3.31)

4. ENERGY, GRADIENTS AND WASSERSTEIN MESSAGES

In this section we study the smooth objective function (1.4) restricted to the assignment manifold, in order
to prepare the application of the approach of Section 3 to graphical models in Section 5.

After detailing the rationale behind (1.4) in Section 4.1, we compute the Euclidean gradient of the ob-
jective function in Section 4.2 on which the Riemannian gradient will be based. This gradient involves the
gradients of local Wasserstein distances that are considered in Section 4.3. From the viewpoint of belief
propagation, these gradients can be considered as ‘Wasserstein messages’, as discussed in Section 5.

4.1. Smooth Approximation of the LP Relaxation. The starting point (3.16) for applying the labeling
approach of Section 3.2 to a given problem is a definition of suitable distances. Regarding problem (1.2)
and the corresponding model parameter vector θ defined by (2.12), this is straightforward to do for the unary
terms θi that typically measure a local distance to observed data. But this is less obvious for the pairwise
terms θij that do not have a direct counterpart in the geometric labeling approach.

The following Lemma explains why the local Wasserstein distances

dθij (µi, µj) := min
µij∈Π(µi,µj)

〈θij , µij〉 , (4.1)

defined for every edge ij ∈ E with Π(µi, µj) due to (2.15b), are natural candidates for taking into account
pairwise model parameters θij .

Lemma 4.1. The local polytope relaxation (2.16) is equivalent to the problem

min
µV∈∆m

n

(∑
i∈V
〈θi, µi〉+

∑
ij∈E

dθij (µi, µj)
)

(4.2)

involving the local Wasserstein distances (4.1).

Proof. The claim follows from reformulating the LP-relaxation based on the local polytope constraints (2.15)
as follows.

min
µ∈LG

〈θ, µ〉 = min
µ∈LG

〈θV , µV〉+ 〈θE , µE〉

= min
µV

(
〈θV , µV〉+ min

µE

∑
ij∈E

(
〈θij , µij〉+ δΠ(µi,µj)(µij)

))
= min

µV∈∆m
n

(∑
i∈V
〈θi, µi〉+

∑
ij∈E

min
µij∈Π(µi,µj)

〈θij , µij〉
)

= min
µV∈∆m

n

(∑
i∈V
〈θi, µi〉+

∑
ij∈E

dθij (µi, µj)
)
.

�

In order to conform to our smooth geometric setting, we regularize the convex but non-smooth (piecewise-
linear) local Wasserstein distances (4.1) with a general convex smoothing function Fτ ,

dθij ,τ (µi, µj) = min
µij∈Π(µi,µj)

{
〈θij , µij〉+ Fτ (µij)

}
, ij ∈ E , Fτ ∈ F0, τ > 0, (4.3)

with smoothing parameter τ .
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Remark 4.1 (role of the smoothing). The influence of the smoothing parameter τ will be examined in detail
in the remainder of this paper. We wish to point out from the beginning, however, that the ability of our
smooth geometric approach to compute integral labeling assignments does not necessarily imply values of
τ ≈ 0 close to zero, because the rounding mechanism to integral assignments is a different one, as will be
shown in Section 5. As a consequence, larger feasible values of τ weaken the nonlinear relation (4.3) and
considerably speed up the convergence of numerical algorithm for iterative label assignment.

Remark 4.2 (local polytope constraints). Using the regularized local Wasserstein distances (4.3) implies by
their definition that the local marginalization constraints (2.15) are always satisfied. This is in sharp contrast
to alternative labeling schemes, like loopy belief propagation, were these constraints are gradually enforced
during the iteration and are guaranteed to hold only after convergence of the entire iteration process.

This elucidates two key properties that distinguish the manifold setting of our labeling approach from
established work:

(i) inherent smoothness and
(ii) anytime validity of the local polytope constraints.

Based on Lemma 4.1 and the regularized local Wasserstein distances (4.3), we study in this paper the
objective function (1.4), which is a smooth approximation of the local polytope relaxation (2.16) of the
original labeling problem (1.2), with the local polytope constraints (2.15) built in.

In order to get an intuition about suitable smoothing functions Fτ , we inspect the smoothed local Wasser-
stein distance (4.1) in more detail. To this end, it will be convenient to simplify temporarily our notation in
the remainder of this section by dropping indices as follows.

notation for any edge ij : M = µij ∈ Rn×n, Θ = θij ∈ Rn×n, (4.4a)

µ =

(
µ1

µ2

)
=

(
M1n
M>1n

)
, ν =

(
ν1

ν2

)
, (4.4b)

with the marginal vector µ playing the role of
( µi
µj

)
in (2.15). The local (non-smooth) Wasserstein distance

(4.1) then reads, for any edge ij ∈ E ,

dΘ(µ1, µ2) = min
M∈Π(µ1,µ2)

〈Θ,M〉 . (4.5)

Using the linear map A defined by (2.3a), we rewrite expression (4.5) as

dΘ(µ1, µ2) = min
M∈Rn×n

〈Θ,M〉 s.t. AM =

(
µ1

µ2

)
, M ≥ 0 . (4.6)

The corresponding dual LP of (4.6) is given by

max
ν∈R2n

〈µ, ν〉 s.t. A>ν ≤ Θ . (4.7)

The smoothed local Wasserstein distance (4.3) is given by

dΘ,τ (µ1, µ2) := min
M∈Rn×n

〈Θ,M〉+ Fτ (M) s.t. AM =

(
µ1

µ2

)
, M ≥ 0,

= min
M∈Rn×n

〈Θ,M〉+ Fτ (M) + δRn×n+
(M) + δ{0}

(
AM − ( µ1µ2 )

)
,

(4.8)

for Fτ ∈ F0 and τ > 0, and the dual problem to (4.8) reads

max
ν∈R2n

〈µ, ν〉 −G∗τ
(
A>ν −Θ

)
, (4.9)

with the conjugate function G∗τ of

Gτ (M) = Fτ (M) + δRn×n+
(M). (4.10)
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Suitable candidates of functions Gτ for smoothing dΘ suggest themselves by comparing the dual LP (4.7)
with the dual problem (4.9) of the smoothed LP. Rewriting the constraints of (4.7) in the form

δRn×n−
(A>ν −Θ) (4.11)

and comparing with (4.9) shows that G∗τ should be a smooth approximation of the indicator function δRn×n−
.

We get back to this point in Section 6.2.

4.2. Energy Gradient ∇Eτ . The pairwise model parameters θE may not be symmetric, θij 6= θ>ij , ij ∈ E ,
in general, which implies that the smoothed local Wasserstein distances are not symmetric either:
dθij ,τ (Wi,Wj) 6= dθij ,τ (Wj ,Wi). In order to compute the Euclidean gradient∇Eτ of the objective function
(1.4), we therefore introduce an arbitrary fixed orientation (i, j) (ordered pair) of all edges ij ∈ E , which
means ij ∈ E =⇒ ji 6∈ E . As a consequence, (1.4) reads

Eτ (W ) =
∑
i∈V

(
〈θi,Wi〉+

∑
j : (i,j)∈E

dθij ,τ (Wi,Wj)
)
. (4.12)

The following proposition specifies the gradient∇Eτ in terms of an expression that involves local gradients
of the smoothed Wasserstein distances dθij ,τ . These latter gradients are studied in Section 4.3 (Theorem 4.5).

Proposition 4.2 (objective function gradient). Suppose the edges E have an arbitrary fixed orientation.
Then the Euclidean gradient of the objective function Eτ : W → R due to (1.4), at W ∈ W , is the matrix
∇Eτ (W ) ∈ Tm whose i-th row is given by

∇iEτ (W ) = PT (θi) +
∑

j : (i,j)∈E

∇1dθij ,τ (Wi,Wj) +
∑

j : (j,i)∈E

∇2dθji,τ (Wj ,Wi) , (4.13)

where∇1dθij ,τ (Wi,Wj) ∈ T and∇2dθji,τ (Wj ,Wi) ∈ T are the Euclidean gradients of

dθij ,τ (·,Wj) : S → R, dθij ,τ (Wj , ·) : S → R. (4.14)

Proof. Appendix A.1. �

We now consider after a preparatory Lemma the specific case that all pairwise model parameters θij = θ>ij
are symmetric (Corollary 4.4). Recall definition (2.15b) of the set Π(·, ·) of coupling measures having its
arguments as marginals and Remark 3.1 regarding notation.

Lemma 4.3. Suppose the convex smoothing function Fτ defining the regularized local Wasserstein distances
(4.3) satisfies Fτ (M) = Fτ (M>) for all M ∈ Π(Wi,Wj). Then

dθij ,τ (Wi,Wj) = dθ>ij ,τ
(Wj ,Wi). (4.15)

Proof. Appendix A.2. �

As a consequence of Lemma 4.3, if all pairwise model parameters θij are symmetric, in addition to
Fτ (M) = Fτ (M>) for all M ∈ [0, 1]n×n, then there is no need to choose an edge orientation as was done
in connection with (4.12). Rather, using (2.1), we may rewrite (4.12) as

Eτ (W ) =
∑
i∈V

(
〈θi,Wi〉+

1

2

∑
j∈N (i)

dθij ,τ (Wi,Wj)
)

(4.16)

and reformulate Proposition 4.2 accordingly.
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Corollary 4.4 (objective function gradient: symmetric case). Suppose Fτ (T ) = Fτ (T>) for all T ∈
[0, 1]n×n and θij is symmetric for all ij ∈ E . Then the i-th row of the Euclidean gradient ∇Eτ is given
by

∇iEτ (W ) = PT (θi) +
∑

j∈N (i)

∇1dθij ,τ (Wi,Wj). (4.17)

Proof. Appendix A.3. �

4.3. Local Wasserstein Distance Gradient. In this section, we check differentiability of the distance func-
tions dθij ,τ (µi, µj), ij ∈ E , given by (4.3), and specify an expression for the corresponding gradient. To
formulate the main result of this section, we again use the simplified notation (4.4).

Theorem 4.5 (Wasserstein distance gradient). Consider S ⊂ Rn as an Euclidean submanifold with tangent
space T defined by (3.1), and let

g(µ, ν) = 〈µ, ν〉 −G∗τ (A>ν −Θ) (4.18)

denote the dual objective function (4.23). Then the smoothed Wasserstein distance dΘ,τ : S × S → R is
differentiable, and the Euclidean gradient of dΘ,τ at p = (p1, p2) ∈ S × S is given by

∇dΘ,τ (p) = ∇dΘ,τ (p1, p2) = νT := PT×T (ν) =

(
PT (ν1)
PT (ν2)

)
, (4.19)

where

ν =

(
ν1

ν2

)
∈ argmax

ν∈R2n

g(p, ν). (4.20)

The proof follows below after some preparatory Lemmas.

Lemma 4.6. Let
Gτ (M) = Fτ (M) + δRn×n+

(M) (4.21)

with the convex smoothing function Fτ of eq. (4.3), and assume the conjugate function G∗τ is continuously
differentiable. Then the dual problem of

min
M∈Π(µ1,µ2)

{
〈Θ,M〉+ Fτ (M)

}
(4.22)

is given by
max
ν1,ν2

{
〈µ, ν〉 −G∗τ (A>ν −Θ)

}
. (4.23)

Furthermore, assuming that strong duality holds, the conditions for optimal primalM and dual ν = (ν1, ν2)
solutions are

M = ∇G∗τ
(
A>ν −Θ

)
, A>ν −Θ ∈ ∂Gτ (M) (4.24a)

together with the affine constraint

AM = µ. (4.24b)

Proof. Appendix A.4. �

Remark 4.3 (smoothness of G∗τ ). The smoothness assumption with respect to G∗τ enables to compute con-
veniently the gradient of the smoothed Wasserstein distance dΘ,τ . It corresponds to a convexity assumption
on Gτ . These aspects are further discussed in Section 6.2 as well.

Remark 4.4 (strong duality). The condition of strong duality made by Lemma 4.6 is crucial for what follows.
This condition will be satisfied later on when working in a geometric setting with local measures M,µ1, µ2

with full support, as introduced in Section 3.1.
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Lemma 4.7. Let the linear mapping A> be defined by (2.3b). Then

N (A>) =

{
α

(
1n
−1n

)
∈ R2n : α ∈ R

}
and N (A>)⊥ =

{
x ∈ R2n :

〈
x,

(
1n
−1n

)〉
= 0

}
. (4.25)

Proof. Appendix A.5. �

The following Lemma characterizes the set of optimal dual solutions to problem (4.23).

Lemma 4.8. Let the function G∗τ of the dual objective function (4.23) resp. (4.18) be continuously differen-
tiable and strictly convex, and let p ∈ R2n

++. Then the set of optimal dual solutions has the form

argmax
ν∈R2n

g(p, ν) =

{
{ν}, if

〈
p,
( 1n
−1n

)〉
6= 0,

ν +N (A>), if
〈
p,
( 1n
−1n

)〉
= 0.

(4.26)

Proof. Appendix A.6. �

We next clarify the attainment of optimal dual solutions due to Lemma 4.8.

Lemma 4.9. Consider the orthogonal decomposition R2n = N (A>) ⊕ R(A) into linear subspaces and
denote the corresponding components of a vector ν ∈ R2n by ν = νN + νR. Then, for p ∈ R2n

++ satisfying
〈p,
( 1n
−1n

)
〉 = 0, we have

argmax
νR∈R(A)

g(p, νR) = {νR}, νR = PR(A)(ν) for any ν ∈ argmax
ν∈R2n

g(p, ν), (4.27a)

g(p, νR) = max
νR∈R(A)

g(p, νR) = max
ν∈R2n

g(p, ν), (4.27b)

that is a unique dual maximizer exists in the subspaceR(A).

Proof. Appendix A.7. �

We are now in a position to prove Theorem 4.5.

Proof of Theorem 4.5. In the following, we proceed in three steps: First, we relate the orthogonal decompo-
sition R2n = N (A>)⊕R(A) to the tangent space Tp(S×S) = T ×T ⊂ R2n for any p = (p1, p2) ∈ S×S.
Second, the existence of a global isometric chart for the manifold S × S is shown in order to represent the
smoothed Wasserstein distance dΘ,τ and the dual objective function g(µ, ν) in a convenient way. Third, we
apply Theorem 2.2.

(1) Consider the unique decomposition ν = νN + νR ∈ N (A>)⊕R(A) of any point ν ∈ R2n. Then

PT×T (νR) = νT = PT×T (ν). (4.28)

At first, we show T×T ⊆ R(A). For this, take an arbitrary v = ( v1v2 ) ∈ T×T . Due to the definition
of T , we have 〈1n, v1〉 = 〈1n, v2〉 = 0 and thus 〈v,

( 1n
−1n

)
〉 = 0, which according to Lemma 4.7

means v ∈ N (A>)⊥ = R(A). As a consequence of T × T ⊆ R(A) we have PT×T (νN ) = 0 and
therefore Statement (4.28) follows from

PT×T (ν)− PT×T (νR) = PT×T (ν − νR) = PT×T (νN ) = 0. (4.29)

(2) There exists an open subset U ⊂ R2(n−1) and an isometry φ : U → S × S such that φ−1 is a global
isometric chart of the manifold S × S . φ can be constructed as follows. Choose an orthonormal
basis {v1, . . . , v2(n−1)} of the tangent space T × T , set b = 1

n

( 1n
1n

)
and define the isometry

ψ : R2(n−1) →
(
T × T

)
+ b, x 7→ ψ(x) := Bx+ b, Bx =

2(n−1)∑
i=1

xivi. (4.30)
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Because S × S is an open subset of
(
T × T

)
+ b and ψ an isometry, we have that the set U :=

ψ−1(S × S) ⊂ R2(n−1) is also open and

φ := ψ|U : U → S × S (4.31)

the desired isometric mapping. Furthermore, since the basis {vi}2(n−1)
i=1 is orthonormal, the orthogo-

nal projection reads
PT×T = BB>. (4.32)

(3) Using φ given by (4.31), we obtain the coordinate representations

dΘ,τ := dΘ,τ ◦ φ, g(x, ν) := g
(
φ(x), ν

)
(4.33)

of the smoothed Wasserstein distance dΘ,τ and the dual objective function g(p, ν). Since we as-
sume strong duality, that is equality of the optimal values of (4.22) and (4.23), we have dΘ,τ (p) =
maxν∈R2n g(p, ν). Setting xp = φ−1(p), this equation translates in view of Lemma 4.9 to

g(xp, νR) = max
νR∈R(A)

g(xp, νR) = g(xp, ν) = max
ν∈R2n

g(xp, ν) = dΘ,τ (xp), (4.34)

with unique maximizer νR = PR(A)(ν). Let Bδ ⊂ R(A) be a compact neighborhood of νR.
Then (4.34) remains valid after restricting R(A) to Bδ. Because g given by (4.18) is linear in
the first argument and the mapping φ is affine, the function g is convex in the first argument and
differentiable, hence satisfies the assumptions of Theorem 2.2.

In order to compute the gradient∇xg(x, νR), it suffices to consider the first term 〈φ(x), νR〉 of g,
which only depends on x. Using (4.31), we have

〈φ(x), νR〉 = 〈Bx+ b, νR〉 = 〈x,B>νR〉+ 〈b, νR〉. (4.35)

Thus, ∇xg(x, νR) = B>νR which continuously depends on νR. As a consequence, we may apply
Theorem 2.2 and obtain due to (2.10)

∇dΘ,τ (xp) = ∇xg(xp, νR) = B>νR. (4.36)

Using the differential Dφ(x) = B, we finally get

∇dΘ,τ (p) = B∇dΘ,τ (xp) = BB>νR
(4.28)
= PT×T (νR)

(4.28)
= νT , (4.37)

which proves (4.19).
�

5. APPLICATION TO GRAPHICAL MODELS

This section explains how the labeling approach on the assignment manifold of Section 3 can be applied
to a graphical model, using the global and local gradients derived in Section 4. The graphical model is
given in terms of an energy function E(x) of the form (1.2). The basic idea, worked out in Section 5.1, for
determining a labeling xwith low energyE(x) is to combine minimization of the convex relaxation (1.3) and
non-convex rounding to an integral solution in a single smooth process. This idea is realized by restricting
the smooth approximation (1.4) of the objective function to the assignment manifold due to Section 3.1, and
by combining numerical integration of the corresponding Riemannian gradient flow due to Section 3.3 with
the assignment mechanism suggested by [ÅPSS17] due to Section 3.2.

Section 5.2 complements our preliminary observations stated as Remarks 4.1 and 4.2, in order to high-
light the essential properties of this process as a novel way of ‘belief propagation’ using dually computing
gradients of local Wasserstein distances, that we call Wasserstein messages.
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5.1. Smooth Intergration of Minimizing and Rounding on the Assignment Manifold. We recall how
regularization is performed by the assignment approach of [ÅPSS17]: distance vectors (3.16) representing
the data term of classical variational approaches are lifted to the assignment manifold by (3.17) and geomet-
rically averaged over spatial neighborhoods – eq. (3.19) resp. (3.22).

Given a graphical model in terms of an energy function (1.2), regularization is already defined by the pair-
wise model parametersEij(`i, `j) resp. θij(`i, `j), so that evaluating the gradient of the regularized objective
function (1.4) implies averaging over spatial neighborhoods, as eq. (4.13) clearly displays. Taking addition-
ally into account the simplest (explicit Euler) update rule (3.31) for geometric integration of Riemannian
gradient flows on the assignment manifold, a natural definition of the similarity matrix that consistently
incorporates the graphical model into the geometric approach of [ÅPSS17], is

Si(W
(k)) =

W
(k)
i · e−h∇iEτ (W (k))

〈W (k)
i , e−h∇iEτ (W (k))〉

, i ∈ [m], h > 0, W (0) =
1

n
1m1>n , (5.1)

where h is a stepsize parameter and the partial gradients ∇iEτ (W (k)) are given by (4.13). The sequence
(W (k)) is initialized in an unbiased way at the barycenter W (0) ∈ W . Adopting the fixed point iteration
proposed by [ÅPSS17] leads to the update of the assignment matrix

W
(k+1)
i =

W
(k)
i · Si(W (k))

〈W (k)
i , Si(W (k))〉

, i ∈ [m]. (5.2)

These two interleaved update steps represent two objectives: (i) minimize the function Eτ on the assignment
manifoldW (Section 3.3) and (ii) converge to an integral solution, i.e. a valid labeling. Plugging (5.1) into
(5.2) gives

W
(k+1)
i =

(W
(k)
i )2 · e−h∇iEτ (W (k))

〈(W (k)
i )2, e−h∇iEτ (W (k))〉

, (5.3)

which suggests to control more flexibly the latter rounding mechanism by a rounding parameter α and the
update rule

W
(k+1)
i =

(W
(k)
i )1+α · e−h∇iEτ (W (k))

〈(W (k)
i )1+α, e−h∇iEτ (W (k))〉

, α ≥ 0. (5.4)

The following proposition reveals the continuous gradient flow that is approximated by the sequence (5.4).

Proposition 5.1. Let Eτ be given by (1.4) and denote the entropy of the assignment matrix W by

H(W ) = −〈W, logW 〉. (5.5)

Then the sequence of updates (5.4) are geometric Euler-steps for numerically integrating the Riemannian
gradient flow of the extended objective function

fτ,α(W ) := Eτ (W ) + αhH(W ), αh =
α

h
. (5.6)

Proof. An Euler-step for minimizing fτ,α on the tangent space reads (with∇i = ∇Wi)

V
(k+1)
i = V

(k)
i − h∇if(W (k)) = V

(k)
i − h∇iEτ (W (k))− α∇iH(W (k)), i ∈ [m], (5.7)

where the i-th row of W (k) is given by W (k)
i = Lc(V

(k)
i ), c = 1

n1n. In order to compute the gradient of the
entropy, consider a smooth curve γ : (−ε, ε)→W with γ(0) = W and γ̇(0) = X . Then

d

dt
H(γ(t))

∣∣
t=0

= −〈X, log(W )〉 − 〈W, 1

W
·X〉 = −〈X, log(W )〉 − 〈11>, X〉. (5.8)
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Since 〈log(W ), X〉 = 〈PTm log(W ), X〉 and 〈11>, X〉 = 〈1, X1〉 = 〈1, 0〉 = 0, we have

〈∇H(W ), X〉 =
d

dt
H(γ(t))

∣∣
t=0

= 〈−PTm log(W ), X〉. (5.9)

Thus, using PT (log(Wi)) = L−1
c (Wi) from (3.6), we obtain

∇iH(W (k)) = −PT log(W
(k)
i ) = −L−1

c

(
Lc(V

(k)
i )

)
= −V (k)

i . (5.10)

Substitution into (5.7) gives

V
(k+1)
i = (1 + α)V

(k)
i − h∇iEτ (W (k)) (5.11)

and in turn the update

W
(k+1)
i = Lc(V

(k+1)
i ) =

e(1+α)V
(k)
i · e−h∇iEτ (W (k))

〈1n, e(1+α)V
(k)
i · e−h∇iEτ (W (k))〉

(5.12a)

=
(eV

(k)
i )(1+α) · e−h∇iEτ (W (k))

〈1n, (eV
(k)
i )1+α · e−h∇iEτ (W (k))〉

=
(W

(k)
i )(1+α) · e−h∇iEτ (W (k))

〈1n, (W (k)
i )1+α · e−h∇iEτ (W (k))〉

(5.12b)

=
(W

(k)
i )(1+α) · e−h∇iEτ (W (k))

〈(W (k)
i )1+α, e−h∇iEτ (W (k))〉

(5.12c)

which is (5.4). �

Remark 5.1 (continuous DC programming). Proposition 5.1 and (5.6) admit to interpret the update rule
(5.4) as a continuous difference of convex (DC) programming strategy. Unlike the established DC approach
[PDHA97, PDHA98], however, which takes large steps by solving to optimality a sequence of convex pro-
grams in connection with updating an affine upper bound of the concave part of the objective function,
our update rule (5.4) differs in two essential ways: geometric optimization by numerically integrating the
Riemannian gradient flow tightly interleaves with rounding to an integral solution.

5.2. Wasserstein Messages. We get back to the informal discussion of belief propagation in Section 1.2 in
order to highlight properties of our approach (1.4) from this viewpoint. We first sketch belief propagation
and the origin of corresponding messages, and refer to [YFW05, WJ08] for background and more details.

Starting point is the primal linear program (LP) (1.3) written in the form

min
µ∈LG

〈θ, µ〉 = min
µ
〈θ, µ〉 subject to Aµ = b, µ ≥ 0, (5.13)

where the constraints represent the feasible set LG which is explicitly given by the local marginalization
constraints (2.15). The corresponding dual LP reads

max
ν
〈b, ν〉 = max

ν
〈1, νV〉, A>ν ≤ θ, (5.14)

with dual (multiplier) variables

ν = (νV , νE) = (. . . , νi, . . . , νij(xi), . . . , νij(xj), . . . ), i ∈ V, ij ∈ E (5.15)

corresponding to the affine primal constraints. In order to obtain a condition that relates optimal vectors
µ and ν without subdifferentials that are caused by the non-smoothness of these LPs, one considers the
smoothed primal convex problem

min
µ∈LG

〈θ, µ〉 − εH(µ), ε > 0, H(µ) =
∑
ij∈E

H(µij)−
∑
i∈V

(
d(i)− 1

)
H(µi) (5.16)
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with smoothing parameter ε > 0, degree d(i) of vertex i, and with the local entropy functions

H(µi) = −
∑
xi∈X

µi(xi) logµi(xi), H(µij) = −
∑

xi,xj∈X
µij(xi, xj) logµij(xi, xj). (5.17)

Setting temporarily ε = 1 and evaluating the optimality condition ∇µL(u, v) = 0 based on the correspond-
ing Lagrangian

L(u, v) = 〈θ, µ〉 −H(µ) + 〈ν,Aν − b〉, (5.18)
yields the relations connecting µ and ν,

µi(xi) = eνie−θi(xi)
∏

j∈N (i)

eνij(xi), xi ∈ X , i ∈ V, (5.19a)

µij(xi, xj) = eνi+νje−θij(xi,xj)−θi(xi)−θj(xj)
∏

k∈N (i)\{j}

eνik(xi)
∏

k∈N (j)\{i}

eνjk(xj), (5.19b)

xi, xj ∈ X , ij ∈ E , where the terms eνi , eνi+νj normalize the expressions on the right-hand side whereas
the so-called messages eνij(xi) enforce the local marginalization constraints µij ∈ Π(µi, µj). Invoking these
latter constraints enables to eliminate the left-hand side of (5.19) to obtain after some algebra the fixed point
equations

eνij(xi) = eνj
∑
xj∈X

(
e−θij(xi,xj)−θj(xj)

∏
k∈N (j)\{i}

eνik(xj)
)
, ij ∈ E , xi ∈ X , (5.20)

solely in terms of the dual variables, commonly called sum-product algorithm or loopy belief propagation by
message passing. Repeating this derivation, after weighting the entropy function H(µ) of (5.18) by ε as in
(5.16), and taking the limit limε↘0, yields relation (5.20) with the sum replaced by the max operation, as a
consequence of taking the log of both sides and relation (2.8). This fixed point iteration is called max-product
algorithm in the literature.

In order to highlight subsequently major differences to our approach, we make the following key obser-
vations:

(1) Local non-convexity. The negative −H(µ) of the so-called Bethe entropy function H(µ) is non-
convex in general for graphs G with cycles [WJ08, Section 4.1], due to the negative sign of the second
sum of (5.16).

(2) Local rounding at each step. The max-product algorithm performs local rounding at every step
of the iteration so as to obtain integral solutions, i.e. a labeling after convergence. This operation
results as limit of a non-convex function, due to (1).

(3) Either nonsmoothness or strong nonlinearity. The latter max-operation is inherently nonsmooth.
Preferring instead a smooth approximation with 0 < ε � 1 necessitates to choose ε very small so
as to ensure rounding. This, however, leads to strongly nonlinear functions of the form (2.8) that are
difficult to handle numerically.

(4) Invalid constraints. Local marginalization constraints are only satisfied after convergence of the
iteration. Intuitively it is plausible that, by only gradually enforcing constraints in this way, the
iterative process becomes more susceptible to getting stuck in unfavourable stationary points, due to
the non-convexity according to (1).

Our geometric approach removes each of these issues. Message passing with respect to vertex i ∈ V is
defined by evaluating the local Wasserstein gradients of (4.13) for all edges incident to i. We therefore call
Wasserstein messages these local gradients that are ‘passed along edges’. Similarly to (5.20), each such
message is given by dual variables through (4.19), that solve the regularized local dual LPs (4.18). As a
consequence, local marginalization constraints are always satisfied, throughout the iterative process.
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In addition, we make the following observations in correspondence to the points (1)-(4) above:
(1) Local convexity. Wasserstein messages of (4.13) are defined by local convex programs (4.18). This

contrasts with loopy belief propagation and holds true for any pairwise model parameters θij of the
prior of the graphical model and the corresponding coupling of µi and µj . This removes spurious
minima introduced through non-convex entropy approximations.

(2) Smooth global rounding after convergence. Rounding to integral solutions is gradually enforced
through the Riemannian flow induced by the extended objective function (5.6). In particular, repeated
‘aggressive’ local max operations of the max-product algorithm are replaced by a smooth flow.

(3) Smoothness and weak nonlinearity. The role of the smoothing parameter τ of (1.4) differs from the
role of the smoothing parameter ε of (5.16). While the latter has to be chosen quite close to 0 so as to
achieve rounding at all, τ merely mollifies the dual local problems (4.18) and hence should be chosen
small, but may be considerably larger than ε. In particular, this does not impair rounding due to (2),
which happens due to the global flow which is smoothly driven by the Wasserstein messages. This
decoupling of smoothing and rounding enables to numerically compute labelings more efficiently.
The results reported in Section 7 demonstrate this fact.

(4) Valid constraints. By construction, computation of the Wasserstein messages enforces all local
marginalization constraints throughout the iteration. This is in sharp contrast to belief propagation
where this generally holds after convergence only. Intuitively, it is plausible that our more tightly
constrained iterative process is less susceptible to getting stuck in poor local minima. The results
reported in Section 7.2 provide evidence of this conjecture.

6. IMPLEMENTATION

In this section we discuss several aspects of the implementation of our approach. The numerical update
scheme used in our implementation is given by (5.4),

W
(k+1)
i =

(W
(k)
i )1+α · e−h∇iEτ (W (k))

〈(W (k)
i )1+α, e−h∇iEτ (W (k))〉

, W
(0)
i =

1

n
1n, i ∈ V (6.1)

where α ≥ 0 is the rounding parameter, h > 0 the step-size and τ the smoothing parameter for the local
Wasserstein distances.

Section 6.1 details a strategy for maintaining in a numerically stable way strict positivity of all variables
defined on the assignment manifold. Numerical aspects of computing local Wasserstein gradients are dis-
cussed in Section 6.2, and the natural role of the entropy function is highlighted for assuming the role of the
smoothing function Fτ in eq. (4.3). Our criterion for convergence and terminating the iterative process (6.1)
of label assignment is specified in Section 6.3.

6.1. Assignment Normalization. The rounding mechanism addressed by Prop. 5.1 and Remark 5.1 will
be effective if αh in (5.6) is chosen large enough so as to compensate the influence of the function Fτ that
regularizes the local Wasserstein distances (4.3).

In this case, each vector Wi approaches some vertex ei of the simplex and thus some entries of Wi

converge to zero. However, due to our optimization scheme every vector Wi evolves on the interior of the
simplex S, that is all entries of Wi have to be positive all the time – see also Remark 4.4. Since there is
a difference between mathematical and numerical positivity, we avoid numerical problems by adopting the
normalization strategy of [ÅPSS17]. After each iteration, we check all Wi and whenever an entry drops
below ε = 10−10, we rectify Wi by

Wi ←
1

〈1, W̃i〉
W̃i , W̃i = Wi − min

j=1,...,n
{Wij}+ ε , ε = 10−10 . (6.2)
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Thus, the constant ε plays the role of 0 in our implementation. Our numerical experiments showed that this
operation removed any numerical issues without affecting convergence.

6.2. Computing Wasserstein Gradients. A core subroutine of our approach concerns the computation of
the local Wasserstein gradients as part of the overall gradient (4.13). We argue in this section why the
negative entropy function that we use in our implementation for smoothing the local Wasserstein distances,
plays a distinguished role. To this end, we adopt again in this section the notation (4.4).

Using this notation the smooth entropy regularized Wasserstein distance (4.3) reads

dΘ,τ (µ1, µ2) = min
M∈Rn×n

〈Θ,M〉 − τH(M) s.t. AM =

(
µ1

µ2

)
, M ≥ 0 , (6.3)

with the entropy function

H(M) = −
∑
i,j

Mij logMij . (6.4)

As shown in Section 4.3 and according to Theorem 4.5, the gradients of (6.3) are the maximizer of the
corresponding dual problem. Using the notation (4.4), the dual problem of (6.3) reads

max
ν∈R2n

〈µ, ν〉 − τ
∑
k,l

exp
[1

τ

(
A>ν −Θ

)
kl

]
. (6.5)

In particular, in view of the general form (4.9) of this dual problem, the indicator function (4.11) is smoothly
approximated by the function τ exp( 1

τ x). Figure 6.1 compares this approximation with the classical loga-
rithmic barrier − log(−x) function for approximating the indicator function δR− of the nonpositive orthant.
Log-barrier penalty functions are the method of choice for interior point methods [NN87, Ter96], which
strictly rule out violations of the constraints. While this is essential for many applications where constraints
represent physical properties that cannot be violated, it is not essential in the present case for calculating
the Wasserstein messages. Moreover, the bias towards interior points by log-barrier functions, as Figure 6.1
clearly shows, is detrimental in the present context and favours the formulation (6.5).

FIGURE 6.1. Approximations of the indicator function δR− of the nonpositive orthant. The
log-barrier function (black curves) strictly rule out violations of the constraints but induce
a bias towards interior points. Our formulation (blue curves) is less biased and reasonable
approximates the δ-function (red curve) depending on the smoothing parameter τ .
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We now make explicit how the local Wasserstein gradients (4.19) are computed based on the formulation
(6.3) and examine numerical aspects depending on the smoothing parameter τ . It is well known that doubly
stochastic matrices as solutions of convex programs like (6.3) can be computed by iterative matrix scaling
[Sin64, Sch90], [Bru06, ch. 9]. This has been made popular in the field of machine learning by [Cut13b].

The optimality condition (4.24) takes the form

M = exp
[1

τ

(
A>ν −Θ

)]
, (6.6)

and rearranging makes explicit the connection to matrix scaling:

M = exp
[1

τ

(
A>ν −Θ

)]
(2.3b)
= exp

[1

τ

(
ν11>n + 1nν

>
2 −Θ

)]
=
(

exp(ν1τ ) exp(ν2τ )T
)
· exp

(
− 1

τΘ
)

= Diag
(

exp(ν1τ )
)

exp
(
− 1

τΘ
)

Diag
(

exp(ν2τ )
)
,

(6.7)

where Diag(·) denotes the diagonal matrix with the argument vector as entries. For given marginals µ =
(µ1, µ2) due to (6.3) and with the shorthand K = exp

(
− 1

τΘ
)
, the optimal dual variables ν = (ν1, ν2)

can be determined by the Sinkhorn’s iterative algorithm [Sin64], up to a common multiplicative constant.
Specifically, we have

Lemma 6.1 ([Cut13b, Lemma 2]). For τ > 0, the solution M of (6.3) is unique and has the form M =
diag(v1)Kdiag(v2), where the two vectors v1, v2 ∈ Rn are uniquely defined up to a multiplicative factor.

Accordingly, by setting
v1 := exp(ν1τ ), v2 := exp(ν2τ ), (6.8)

the corresponding fixed point iterations read

v
(k+1)
1 =

µ1

K
(

µ2

K>v
(k)
1

) , v
(k+1)
2 =

µ2

K>
(

µ1

Kv
(k)
j

) , (6.9)

which are iterated until the change between consecutive iterates is small enough. Denoting the iterates after
convergence by v1, v2, resubstitution into (6.8) determines the optimal dual variables

ν1 = τ log v1, ν2 = τ log v2. (6.10)

Due to Theorem 4.5, the local Wasserstein gradients then finally are given by

∇dΘ,τ (µ1, µ2) =

(
PT (ν1)
PT (ν2)

)
, (6.11)

where the projection PT due to (3.2) removes the common multiplicative constant resulting from Sinkhorn’s
algorithm.

While the linear convergence rate of Sinkhorn’s algorithm is known theoretically [Kni08], the numbers of
iterations required in practice significantly depends on the smoothing parameter τ . In addition, for smaller
values of τ , an entry of the matrix K = exp

(
− 1

τΘ
)

might be too small to be represented on a computer,
due to machine precision. As a consequence, the matrix K might have entries which are numerically treated
as zeros and Sinkhorn’s algorithm does not necessarily converge to the true optimal solution.

Fortunately, our approach does not encounter such problems because merely a sufficiently accurate ap-
proximation of the gradient of the Wasserstein distance is required, rather than an approximation of the
Wasserstein distance itself, to obtain valid descent directions for the energy function to be minimized. Fig-
ures 6.2 and 6.3 demonstrate that this indeed holds for relatively large values of τ , e.g. τ ∈ {1

5 ,
1
10 ,

1
15}, no

matter if the number of labels is n = 10 or n = 1000.
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FIGURE 6.2. The plots show the entropy-regularized Wasserstein distance dΘ,τ (c, γ(t)) for
varying parameter τ and increasing number of labels n. Here, γ(t) = t(e1 − c) + c ∈ ∆n

with t ∈ [0, 1] is the line segment from the barycenter c = 1
n1 to the vertex e1 on the simplex

∆n. The cost matrix Θ is given by the Potts regularizer. In all three plots the parameter τ
has been chosen as τ = 1

5 (cyan), τ = 1
10 (green), τ = 1

20 (blue), τ = 1
50 (red) and

τ = 1
100 (black). Even though the values of the approximation of the distance itself differ

considerably, the slope of the distance that really matters, is approximated already for larger
values of τ quite well and uniformly for small up to large numbers n of labels.

6.3. Termination Criterion. In all experiments, the normalized averaged entropy

− 1

m log(n)

∑
i∈V

n∑
k=1

Wik log
(
Wik

)
(6.12)

was used as a termination criterion, i.e. if the value drops below a certain threshold the algorithm is termi-
nated. Due to this normalization, the value does not depend on the number of labels and thus the threshold
is comparable across different models with a varying number of pixels and labels.

For example, a threshold of 10−4 means in practice that, up to a small fraction of nodes i ∈ V , all rows
Wi of the assignment matrix W are very close to unit vectors and thus indicate an almost unique assignment
of the prototypes or labels to the observed data.

7. EXPERIMENTS

We demonstrate in this section main properties of our approach. The dependency of label assignment on
the smoothing parameter τ and the rounding parameter α is illustrated in Section 7.1. We comprehensively
explored the space of binary graphical models defined on the minimal cyclic graph, the complete graph with
three vertices K3, whose LP-relaxation is known to have a substantial part of nonbinary vertices. The results
reported in Section 7.2 exhibit a relationship between α and τ so that in fact a single effective parameter
only controls the trade off between accuracy of optimization and the computational costs. A competitive
evaluation of our approach in Section 7.3 together with two established and widely applied approaches,
sequential tree-reweighted message passing (TRWS) [Kol06] and loopy belief propagation reveals similar
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FIGURE 6.3. The plot shows the entropy-regularized Wasserstein distance with the Potts
regularizer from the barycenter to every point on ∆3 for different values of τ . Used values
are (a) τ = 1

5 , (b) τ = 1
10 , (c) τ = 1

20 and (d) τ = 1
50 . These plots confirm that even

for relatively large values of τ , e.g. 1
10 and 1

20 , the gradient of the Wasserstein distance
is sufficiently accurate approximated so as to obtain valid descent directions for distance
minimization.

performance of our approach. Finally, Section 7.4 demonstrates for a graphical model with pronounced non-
uniform pairwise model parameters (non-Potts prior) that our geometric approach accurately takes them into
account.

All experiments have been selected to illustrate properties of our approach, rather than to demonstrate and
work out a particular application which will be the subject of follow-up work.

7.1. Parameter Influence. We assessed the parameter influence of our geometric approach by applying it
to a labeling problem. The task was to label a noisy RGB-image f : V → [0, 1]3, depicted in Fig. 7.2, on
the grid graph G = (V, E) with minimal neighborhood size |N (i)| = 3 × 3, i ∈ V . Prototypical colors
P = {l1, . . . , l8} ⊂ [0, 1]3 (Fig. 7.2) were used as labels. The unary (or data term) was defined using the
‖ · ‖1 distance and a scaling factor ρ > 0 by

θi =
1

ρ

(
‖f(i)− l1‖1, . . . , ‖f(i)− l8‖1

)
, i ∈ V, (7.1)
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FIGURE 7.1. The normalized average entropy (6.12) as a function of iterations for the
smoothing parameter value τ = 0.1. With increasing values for α the entropy drops more
rapidly and hence converges faster to an integral labeling.

and Potts regularization was used for defining the pairwise parameters of the model

(
θij
)
kp

= δk,p =

{
1 if k = p,

0 else,
ij ∈ E . (7.2)

The feature scaling factor was set to ρ = 0.3, the step-size h = 0.1 was used for numerically integrating the
Riemannian descent flow, and the threshold for the normalized average entropy termination criterion (6.12)
was set to 10−4.

Figure 7.1 displays the empirical convergence rate depending on the rounding parameter α, for a fixed
value of the smoothing parameter τ = 0.1 that ensures a sufficiently accurate approximation of the Wasser-
stein distance gradients and hence of the Riemannian descent flow. Less agressive rounding in terms of
smaller values of α leads to a more accurate numerical integration of the flow using a larger number of iter-
ations, and thus to higher quality label assignments with a lower energy of the objective function. This latter
aspect is demonstrated quantitatively in Section 7.2. Overall, the total number of iterations is significantly
smaller than the number of iterations which first-order methods of convex programming require for solving
the LP relaxation [LS11]. For too small values of the rounding parameter α, the algorithm does naturally not
converge to an integral solution.

Fig. 7.2 shows the influence of the rounding strength α and the smoothing parameter τ for the Wasserstein
distance. All images marked with an ’∗’ in the lower right corner do not show an integral solution, which
means that the normalized average entropy (6.12) of the assignment vectors Wi did not drop below the
threshold during the iteration and thus, even though the assignments show a clear tendency, they stayed far
from integral solutions. As just explained for Fig. 7.1, this is not a deficiency of our approach but must
happen if either no rounding is performed (α = 0) or if the influence of rounding is too small compared to
the smoothing of the Wasserstein distance (e.g. α = 0.1 and τ = 0.5). Increasing the strength of rounding
(larger α) leads to a faster decrease in entropy (cf. Fig. 7.1 for the case of τ = 0.1) and therefore to an
earlier convergence of the process to a specific labeling. Thus, a more aggressive rounding scheme yields a
less regularized result due to the rapid decision for a labeling at an early stage of the algorithm.
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Original data

Noisy data

Prototypes

τ = 0.5 0.1 0.05

0 ∗ ∗ ∗

0
.1 ∗

0
.5

1
α

=
2

FIGURE 7.2. Influence of the rounding parameter α and the smoothing parameter τ on the
assignment of 8 prototypical labels to noisy input data. All images marked with an ’∗’
do not show integral solutions because too large smoothing of the Wasserstein distance in
terms of τ , relative to α, overcompensated the effect of rounding. Likewise, a too strong
smoothing of the Wasserstein distance (left column, τ = 0.5) yields poor approximations
of the objective function gradient and to erroneous label assignments. For the remaining
parameter regime, i.e. smoothing below a still reasonably large upper bound τ = 0.1 that
leads to fast numerical convergence, the label assignment can be precisely controlled by α.

On the other hand, choosing the smoothing parameter τ too large lead to poor approximations of the
Wasserstein distance gradients and consequently to erroneous non-regularized labelings, as displayed in
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FIGURE 7.3. LEFT: The minimal binary cyclic graphical model K3 = (V, E) =
({1, 2, 3}, {12, 13, 23}). RIGHT: The 8 vertices (white background) of the minimally rep-
resented marginal polytope PK3 ⊂ R6

+ and the 4 additional non-integer vertices (red back-
ground) of the minimally represented local polytope LK3 ⊂ R6

+.

the left-most column of Fig. 7.1. Once τ is small enough, in our experiments: τ < 0.1, the Wasserstein
distance gradients are properly approximated, and the label assignment is regularized as expected and can be
conveniently controlled by α. In particular, this upper bound on τ is sufficiently large to ensure very rapid
convergence of the fixed point iteration for computing the Wasserstein distance gradients.

7.2. Exploring all Cyclic Graphical Models on K3. In this section, we report an exhaustive exploration
of all possible binary models, X = {0, 1}, on the minimal cyclic graph K3 (Fig. 7.3, left panel). Due to the
single cycle, models exist where the LP relaxation (1.3) returns a non-binary solution (red part of the right
panel of Fig. 7.3). As a consequence, evaluating such models with our geometric approach for minimizing
(1.4) enables to check two properties:

(i) Whenever solving the LP relaxation (1.3) by convex programming returns the global binary minimum
of (1.2) as solution, we assess if our geometric approach based on the smooth approximation (1.4)
returns this solution as well.

(ii) Whenever the LP relaxation has a non-binary vector as global solution, which therefore is not optimal
for the labeling problem (1.2), we assess the rounding property of our approach by comparing the result
with the correct binary labeling globally minimizing (1.2).

The graph K3 enables to specify the so-called marginal polytope PK3 , whose vertices (extreme points) are
the feasible binary combinatorial solutions that correspond to valid labelings (cf. Section 1.1), and to exam-
ine the difference to the local polytope LK3 whose representation only involves a subset of the constraints
corresponding to PK3 . We refer to [Pad89] for background and details.

The constraints are more conveniently stated using the so-called minimal representation of binary graph-
ical models [WJ08, Sect. 3.2], that involves the variables1

µi := µi(1), i ∈ V, µij := µi(1)µj(1), ij ∈ E (7.3)

and encodes the local vectors (2.15) by

(
1− µi
µi

)
←
(
µi(0)
µ(1)

)
,


(1− µi)(1− µj)

(1− µi)µj
µi(1− µj)

µij

 ←

µij(0, 0)
µij(0, 1)
µij(1, 0)
µij(1, 1)

 . (7.4)

1We reuse the symbol µ for simplicity and only ‘overload’ in this subsection the symbols µi, µij for local vectors (2.15) by the
variables on the left-hand sides of (7.3)
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FIGURE 7.4. EVALUATION OF THE MINIMAL GRAPHICAL MODEL K3: For every pair of
parameters (τ, α), we evaluated 105 models, which were generated as explained in the text.
In all experiments, we terminate the algorithm if the average entropy dropped below 10−3

or if the maximum number of 600 iterations was reached. In addition we chose a constant
step-size h = 0.5. LEFT: The plot shows the percentage of experiments where the energy
returned by our algorithm had a relative error smaller then 1% compared to the minimal
energy of the globally optimal integral labeling. RIGHT: This plot shows the corresponding
average number of iterations. The black color indicates that the maximum number of 600
iterations was reached, because too strong smoothing of the Wasserstein distance (large τ )
overcompensates the effect of rounding (small α), so that the convergence criterion (6.12)
which measures the distance to integral solutions, cannot be satisfied. In the remaining large
parameter regime, the choice of α enables to control the trade-off between high-quality
(low-energy) solutions and computational costs.

Thus, it suffices to use a single variable µi for every node i ∈ V instead of two variables µi(0), µi(1), and also
a single variable µij for every edge ij ∈ E instead of four variables µij(0, 0), µij(0, 1), µij(1, 0), µij(1, 1).
The local polytope constraints (2.15) then take the form

0 ≤ µij , µij ≤ µi, µij ≤ µj , µi + µj − µij ≤ 1, ∀ij ∈ E . (7.5)

The marginal polytope constraints additionally involve the so-called triangle inequalities [DL97]∑
i∈V

µi −
∑
jk∈E

µjk ≤ 1, (7.6a)

µ12 + µ13 − µ23 ≤ µ1, µ12 − µ13 + µ23 ≤ µ2, −µ12 + µ13 + µ23 ≤ µ3. (7.6b)

Figure 7.3, right panel, lists the 8 vertices of PK3 and the 4 additional vertices of LK3 that arise when
dropping the subset of constraints (7.6).

We evaluated 105 models generated by randomly sampling the model parameters (2.11): With U [a, b]
denoting the uniform distribution on the interval [a, b] ⊂ R, we set

θi =

(
1− p
p

)
− 1

2

(
1
1

)
, p ∼ U [0, 1], θij =

(
p1 p2

p3 p4

)
, pi ∼ U [−2, 2], i ∈ [4]. (7.7)

Note the different scale, θi ∈ [−1
2 ,+

1
2 ]2, θij ∈ [−2,+2]2×2, which results in a larger influence of the

pairwise terms and hence make inference more difficult. Suppose, for example, that the diagonal terms of
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FIGURE 7.5. These plots show the same results as Fig. 7.4 together with additional data
boxes and information for three different configurations of parameter values. Comparing the
success rate (left panel) and the number of iterations until convergence (right panel) clearly
demonstrate the trade-off between the accuracy of optimization and the convergence rate,
depending on the rounding variable α and the smoothing parameter τ . Overall, the number
of iterations is significantly smaller than for first-order methods of convex programming for
solving the LP relaxation, that additionally require rounding as a post-processing step to
obtain an integral solution.

θij are large, which favours the assignment of different labels to the nodes 1, 2, 3 ∈ V . Then assigning say
the labels 0 and 1 to the vertices 1 and 2, respectively, will inherently lead to a large energy contribution due
to the assignment to node 3, no matter if this third label is 0 or 1, because it must agree with the assignment
either to node 1 or to2.

Every binary vertex listed by Fig. 7.3, right panel, is the global optimum of both the linear relaxation (1.3)
and the original objective function (1.2) in approximately ≈ 11.94% of the 105 scenarios, whereas every
non-binary vertex is optimal in approximately ≈ 1.12%.

Fig. 7.4 presents the results of the experiments for the minimal cyclic graphical model K3. To get an
intuition of our rounding parameter α and the smoothing parameter τ , we evaluated all 105 models for each
pair of (τ, α), where τ ∈ {1

2 ,
1

2.5 , . . . ,
1

6.5 ,
1
7} and α ∈ {0.1, 0.11, . . . , 0.99, 1}.

Fig. 7.5 presents exactly the same results as Fig. 7.4, except that we include data boxes for three different
configurations of parameter. E.g., for α = 0.22 and τ = 1

5 our algorithm found in 97.35% of the experi-
ments an energy with relative error smaller then 1% compared to the optimal energy. At the same time, the
algorithm required 45 iterations on average to converge. As shown by the following parameter, α = 0.58 and
τ = 0.15, a larger value of α means that the rounding mechanism in each iteration step (5.4) is increased.
The average number of iterations is reduced to 9, but the accuracy is also dropped to 88.6%.

Overall, these experiments clearly demonstrate
• the ability to control the trade-off between high-quality (low energy) labelings and computational

costs in terms of α, for all values of τ below a reasonably large upper bound,
• a small or very small number of iterations required to converge, depending on the choice of α.
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7.3. Comparison to other Methods. We compared our geometric approach to sequential tree-reweighted
message passing (TRWS) [Kol06] and loopy belief propagation [Wei01] (Loopy-BP) based on the OpenGM
package [ABK12].

Original data Noisy data

FIGURE 7.6. Noisy image labeling problem: a binary ground truth image (left) to be recov-
ered from noisy input data (right).

For this comparison, we evaluate the performance of the methods for a noisy binary labeling scenario
depicted by Fig. 7.6. Let f : V → [0, 1] denote the noisy image data given on the grid graph G = (V, E) with
a 4-neighborhood and X = {0, 1} be the prototypes. Then the used data term and Potts prior are given by

θi =

(
f(i)

1− f(i)

)
for i ∈ V and θij =

(
0 1
1 0

)
for ij ∈ E . (7.8)

In the experiments, the threshold for the normalized average entropy termination criterion (6.12) was 10−4.
Figure 7.7 shows the visual reconstruction as well as the corresponding energy values and percentage of
correct labels for all three methods. Our method has the same accuracy and returns the same optimal energy
level as TRWS and Loopy-BP.

To investigate once more the influence of the rounding mechanism, we repeated the same experiment as
explained above, but for different values of the rounding parameter α ∈ {0.1, 1, 2, 5}. As shown by Fig.
7.8, the results confirm the finding of the experiments of the preceding section: A more aggressive rounding
scheme (α large) leads to faster convergence but yields less regularized results with higher energy values.

Geometric TRWS Loopy-BP
4977.24 / 98.31% 4979.61 / 98.07% 4977.75 / 98.38%

FIGURE 7.7. Results for the noisy labeling problem from Fig. 7.6 using a standard data
term with Potts prior, with Energy / Accuracy values. Parameter values for the geometric
approach: smoothing τ = 0.1, step-size h = 0.2 and rounding strength α = 0.1. The
threshold for the termination criterion was 10−4. All methods show equal performance.
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α = 0.1 α = 1 α = 2 α = 5

4977.24 / 98.31% 5071.25 / 98.46% 5472.71 / 96.97% 7880.64 / 91.25%

FIGURE 7.8. Results for the noisy labeling problem from Fig. 7.6 using different values of
the rounding parameter α ∈ {0.1, 1, 2, 5} with Energy / Accuracy values: more aggressive
rounding scheme (α large) leads to less regularized results with higher energy values. Pa-
rameter values of the geometric approach: smoothing τ = 0.1, step-size h = 0.2 and the
threshold for the termination criterion was 10−4.

7.4. Non-Uniform (Non-Potts) Priors. We examined the behavior of our approach for a non-Potts prior by
applying it to a non-binary labeling problem with noisy input image, as depicted by Fig. 7.9. Our objective
is to demonstrate that pre-speficied pairwise model parameters (regularization) by a graphical model are
properly taken into account.

Assume additional information about a labeling problem is available. For example, let the RGB-color
dark blue in the image represent the direction ”top”, light blue ”bottom”, yellow ”right”, orange ”left” and
cyan ”center” (Fig. 7.9 left). Suppose it is known beforehand that ”top” and ”bottom” as well as ”left”
and ”right” cannot be adjacent to each other but are separated by another label corresponding to the center.
This prior knowledge about the labeling problem was taken into account by specifying non-uniform pairwise
model parameters accordingly, as specified below.

l1
l2
l3
l4
l5

original image noisy image labels

FIGURE 7.9. Original image (left), encoding the image directions ”top”, ”bottom”, ”cen-
ter”, ”left” and ”right” by the RGB-color labels l1, l2, l3, l4 and l5 (right). The noisy test
image (middle) was created by randomly selecting 40% of the original image pixels and
then uniformly sampling a label at each chosen positions. The label constraints suggested
by the labeling order leads to a non-Potts prior (7.11).

The label indices corresponding to the five RGB-colors of the original image (Fig. 7.9 right) are

X = {`1 = ”dark blue”, `2 = ”light blue”, `3 = ”cyan”, `4 = ”orange”, `5 = ”yellow”} ⊂ [0, 1]3 . (7.9)

Let f : V → [0, 1]3 denote the noisy input image (Fig. 7.9, center panel) given on the grid graph G = (V, E)
with a 4-neighborhood. This image was created by randomly selecting 40% of the original image pixels and
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then uniformly sampling a label at each chosen position. The unary term was defined using the ‖·‖1 distance
and a scaling factor ρ > 0 by

θi =
1

ρ

(
‖f(i)− l1‖1, . . . , ‖f(i)− l5‖

)
, i ∈ V. (7.10)

The non-Potts prior representing the prior knowledge of our problem was chosen as

θij =
1

10


0 10 1 1 1
10 0 1 1 1
1 1 0 1 1
1 1 1 0 10
1 1 1 10 0

 , ij ∈ E , (7.11)

that is, every entry of θij corresponding to a label configuration l1 = ”dark blue” (”top”) next to l2 =
”light blue” (”bottom”) or l4 = ”orange” (”left”) next to l5 = ”yellow” (”right”) penalizes such label transi-
tions with a large weight of 1, while all other ”natural” configurations are treated as with the Potts prior and
lower weights of 0 resp. 0.1 and are therefore less penalized.

To demonstrate that these model parameters influence label assignments accordingly, we compared the
evaluation of this model against one with a uniform Potts prior

(
θ′ij
)
kp

= 1
10δk,p =

{
1
10 if k = p,

0 else,
ij ∈ E . (7.12)

For our experiments, we used the scaling factor ρ = 15 for the unaries, step-size h = 0.1, rounding param-
eter α = 0.01, smoothing parameter τ = 0.01 and 10−4 as threshold for the normalized average entropy
termination criterion (6.12).

Potts non-Potts
Acc : 87.12% Acc : 99.34%

FIGURE 7.10. Results of the labeling problem using the Potts and non-Potts prior model to-
gether with the Accuracy (Acc) values. Parameters for this experiment are ρ = 15, smooth-
ing τ = 0.01, step-size h = 0.1 and rounding strength α = 0.01. The threshold for the
termination criterion (6.12) was 10−4.

The results depicted in Fig. 7.10, clearly show the influence of the non-Potts prior (labeling accuracy
99.34%) whereas using the Potts prior lowers accuracy to only 87.12%. This is due to the fact that the color
labels `4 and `5 as well as `1 and `2 have a relatively small ‖ · ‖1 distance and are therefore not easy to
distinguish using a Potts model. The additional prior information about valid label configurations encoded
by (7.11) suffices to overcome this difficulty and to separate the regions correctly.
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8. CONCLUSION

We presented a novel approach to the evaluation of discrete graphical models in a smooth geometric
setting. The novel inference algorithm propagates in parallel ‘Wasserstein messages’ along edges. These
messages are lifted to the assignment manifold and drive a Riemannian gradient flow, that terminates at an
integral labeling. Local marginalization constraints are satisfied throughout the process. A single parameter
enables to trade-off accuracy of optimization and speed of convergence.

Our work motivates to address applications using graphical models with higher edge connectivity, where
established inference algorithms based on convex programming noticeably slow down. In addition, our
future work will leverage the inherent smoothness of our mathematical setting for designing more advanced
numerical schemes based on higher-order geometric integration and multiple spatial scales.

APPENDIX A. PROOFS

A.1. Proof of Proposition 4.2. Let γ : (−ε, ε) → W be a smooth curve, with ε > 0, γ(0) = W and
γ̇(0) = V . We then have

〈∇Eτ (W ), V 〉 =
d

dt
Eτ
(
γ(t)

)∣∣∣
t=0

(4.12)
=
∑
i∈V

(
〈PT (θi), Vi〉+

∑
j : (i,j)∈E

d

dt
dθij ,τ (γi(t), γj(t))

∣∣∣
t=0

)
, (A.1)

where γk(t) denotes the k-th row of the matrix γ(t) ∈ W ⊂ Rm×n. Since

d

dt
dθij ,τ (γi(t), γj(t))

∣∣∣
t=0

= 〈∇1dθij ,τ (Wi,Wj), Vi〉+ 〈∇2dθij ,τ (Wi,Wj), Vj〉 , (A.2)

the r.h.s. of (A.1) becomes

〈∇Eτ (W ), V 〉 =
∑
i∈V

(
〈PT (θi), Vi〉+

∑
j : (i,j)∈E

〈∇1dθij ,τ (Wi,Wj), Vi〉
)

+
∑
i∈V

∑
j : (i,j)∈E

〈∇2dθij ,τ (Wi,Wj), Vj〉 ,

(A.3)
where we deliberately separated the outer sum into two parts. Let δ(k,l)∈E be the function with value 1 if
(k, l) ∈ E and 0 if (k, l) /∈ E . Then the second sum of the expression above reads∑

i∈V

∑
j : (i,j)∈E

〈
∇2dθij ,τ (Wi,Wj), Vj

〉
=
∑
i∈V

∑
j∈V

δ(i,j)∈E
〈
∇2dθij ,τ (Wi,Wj), Vj

〉
(A.4a)

=
∑
j∈V

∑
i∈V

δ(i,j)∈E
〈
∇2dθij ,τ (Wi,Wj), Vj

〉
(A.4b)

=
∑
j∈V

∑
i : (i,j)∈E

〈
∇2dθij ,τ (Wi,Wj), Vj

〉
(A.4c)

=
∑
i∈V

∑
j : (j,i)∈E

〈
∇2dθji,τ (Wj ,Wi), Vi

〉
, (A.4d)

where the last equation follows by renaming the indices of summation. Substitution into (A.3) gives

〈∇Eτ (W ), V 〉 =
∑
i∈V

〈
PT (θi) +

∑
j : (i,j)∈E

∇1dθij ,τ (Wi,Wj) +
∑

j : (j,i)∈E

∇2dθji,τ (Wj ,Wi), Vi

〉
(A.5a)

=
∑
i∈V
〈∇iEτ (W ), Vi〉 (A.5b)

which proves (4.13).
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A.2. Proof of Lemma 4.3. Let M∗ ∈ Π(Wi,Wj) be a minimizer of (4.8). Then due to the assumption on
Fτ , we have

dθij ,τ (Wi,Wj) = 〈θij ,M∗〉+ Fτ (M∗) = 〈θ>ij ,M>∗ 〉+ Fτ (M>∗ ) . (A.6)

Let M̃ ∈ Π(Wj ,Wi) be arbitrary. Then M̃> ∈ Π(Wi,Wj) and we have

〈θ>ij , M̃〉+ Fτ (M̃) = 〈θij , M̃>〉+ Fτ (M̃>) ≥ 〈θij ,M∗〉+ Fτ (M∗) = 〈θ>ij ,M>∗ 〉+ Fτ (M>∗ ) . (A.7)

This shows that M>∗ ∈ Π(Wj ,Wi) is a minimizer of dθ>ij ,τ (Wj ,Wi) and establishes equation (4.15).

A.3. Proof of Corollary 4.4. Applying the equation∇2dθji,τ (Wj ,Wi) = ∇1dθij ,τ (Wi,Wj) due to Lemma 4.3
to Eqn. (4.13), we obtain

∇iEτ (W ) = PT (θi) +
∑

j : (i,j)∈E

∇1dθij ,τ (Wi,Wj) +
∑

j : (j,i)∈E

∇1dθij ,τ (Wi,Wj) (A.8a)

= PT (θi) +
∑

j∈N (i)

∇1dθij ,τ (Wi,Wj), (A.8b)

which is (4.17).

A.4. Proof of Lemma 4.6. Taking into account (2.15b), we write the right-hand side of (4.8) in the form

min
M
〈Θ,M〉+Gτ (M) s.t. AM = µ, (A.9)

Let ν = (ν1, ν2) ∈ R2n denote the dual variables corresponding to the affine constraint of (A.9). Then
problem (A.9) rewritten in Lagrangian form reads

min
M

{
〈Θ,M〉+Gτ (M) + max

ν
〈ν, µ−AM〉

}
(A.10a)

⇔ min
M

{
max
ν
〈ν, µ〉+Gτ (M)−

〈
A>ν −Θ,M

〉}
. (A.10b)

Since strong duality holds by assumption, interchanging min and max yields the dual problem (4.23). More-
over, the optimal primal and dual objective function values are equal, which gives with (A.10a) and (4.23)

〈M,A>ν −Θ〉+Gτ (M) +G∗τ (A>ν −Θ) = 0. (A.11)

This implies (4.24a) by the subgradient inversion rule [RW09, Prop. 11.3], whereas the primal constraint
(4.24b) is obvious.

A.5. Proof of Lemma 4.7. Let z = ( xy ) ∈ R2n with 0 = A>z = x1>n + 1ny>. Applying A, we get

0 = AA>z = A(x1>) +A>(1y>) =

(
nx+ 〈y,1n〉1n
〈x, 1n〉1n + ny

)
⇔ z =

(
x
y

)
= − 1

n

(
〈y,1n〉1n
〈x,1n〉1n

)
.

(A.12)
This implies 〈x, 1n〉 = −〈y,1n〉, and setting α = 1

n〈x,1n〉 ∈ R shows that z has the form (4.25). Con-
versely, in view of the definition (2.3b), it is clear that any vector from the set (4.25) is in N (A>). The
characterization of N (A>)⊥ directly follows from the definitions.
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A.6. Proof of Lemma 4.8. We first show that, if ν is an optimal dual solution, then

argmax
ν∈R2n

g(p, ν) ⊆ ν +N (A>). (A.13)

Let ν ′ 6= ν be another optimal dual solution, that is g(p, ν) = g(p, ν ′). By (4.18), this equation reads

G∗τ (A>ν −Θ)−G∗τ (A>ν ′ −Θ) = 〈p, ν − ν ′〉 . (A.14)

Moreover, due to the optimality conditions (4.24), ν ′ satisfies

M
′
= ∇G∗τ (A>ν ′ −Θ), AM ′ = p, (A.15)

with a corresponding primal optimal solution M ′. Hence

〈p, ν − ν ′〉 = 〈AM ′, ν − ν ′〉 = 〈M ′,A>(b− b′)〉 (A.15)
= 〈∇G∗τ (A>ν ′ −Θ),A>(ν − ν ′)〉 . (A.16)

Using the shorthands
w = A>ν −Θ, w′ = A>ν ′ −Θ, (A.17)

we have
w′ − w = A>(ν ′ − ν) (A.18)

and therefore
G∗τ (w′)−G∗τ (w)

(A.14)
= 〈p, ν ′ − ν〉 (A.16)

= 〈∇G∗τ (w′), w′ − w〉. (A.19)
Since G∗τ is strictly convex, this equality can only hold if

0 = w′ − w (A.18)
= A>(ν ′ − ν). (A.20)

This shows that ν and ν ′ can only differ by a nullspace vector, i.e. we have shown relation (A.13). It remains
to show the reverse inclusion, that is vectors characterized by the right-hand side of (4.26) maximize the dual
objective function g(p, ν).

Let again ν be an optimal dual solution, and let ν ′ ∈ ν + N (A>) be an arbitrary vector. Lemma 4.7
implies that ν ′ takes the form

ν ′ = ν + α
( 1n
−1n

)
, α ∈ R. (A.21)

Now suppose
〈
p,
( 1n
−1n

)〉
= 0. Then, since A>ν ′ = A>ν, we have

g(a, ν ′) = 〈p, ν + α
( 1n
−1n

)
〉 −G∗τ

(
A>
(
ν + α

( 1n
−1n

) )
−Θ

)
(A.22a)

= 〈p, ν〉 −G∗τ (A>ν −Θ) = g(a, ν), (A.22b)

that is ν ′ ∈ argmaxν∈R2n g(p, ν).
Finally, suppose

〈
p,
( 1n
−1n

)〉
6= 0, ν is an optimal dual solution and ν ′ is another optimal dual vector,

which has the form (A.21) as just shown. Inserting (A.21) into (A.14) yields

0 = 〈p, ν ′ − ν〉 = α〈p,
( 1n
−1n

)
〉. (A.23)

Since
〈
p,
( 1n
−1n

)〉
6= 0, this can only hold if α = 0. Thus, ν ′ = ν by (A.21), which shows uniqueness of ν

as claimed by (4.26).

A.7. Proof of Lemma 4.9. We first shown (4.27b). Let ν be an optimal dual solution. Since
〈
p,
( 1n
−1n

)〉
=

0, Lemma 4.8 yields argmaxν∈R2n g(p, ν) = ν + N (A>) = νN + νR + N (A>). This shows νR ∈
ν +N (A>), that is νR ∈ R(A) is a maximizer, which implies (4.27b).

Let ν ′R ∈ R(A) be another maximizer. As before, we have the representation ν ′R ∈ ν +N (A>), that is
ν ′R = νN + νR + ν̃N for some ν̃N ∈ N (A>), which implies ν ′R = νR, i.e. uniqueness (4.27a) of the dual
maximizer inR(A).
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[ÅHS+17] F. Åström, R. Hühnerbein, F. Savarino, J. Recknagel, and C. Schnörr, MAP Image Labeling Using Wasserstein Mes-
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[LS11] J. Lellmann and C. Schnörr, Continuous Multiclass Labeling Approaches and Algorithms, SIAM J. Imaging Science 4
(2011), no. 4, 1049–1096.

[NN87] Y. Nesterov and A. Nemirovskii, Interior Point Polynomial Algorithms in Convex Programming, Studies in Applied
Mathematics, Society for Industrial and Applied Mathematics, 1987.

[Pad89] M. Padberg, The Boolean Quadratic Polytope: Some Characteristics, Facets and Relatives, Math. Progr. 45 (1989),
139–172.

[PDHA97] T. Pham Dinh and L. Hoai An, Convex Analysis Approach to D.C. Programming: Theory, Algorithms and Applications,
Acta Math. Vietnamica 22 (1997), no. 1, 289–355.

[PDHA98] T. Pham Dinh and L.T. Hoai An, A D.C. Optimization Algorithm for Solving the Trust-Region Subproblem, SIAM
J. Optimization 8 (1998), no. 2, 476–505.
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