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Abstract. We introduce a novel approach to Maximum A Posteriori (MAP) inference based on discrete graphical
models. By utilizing local Wasserstein distances for coupling assignment measures across edges of the
underlying graph, a given discrete objective function is smoothly approximated and restricted to the
assignment manifold. A corresponding multiplicative update scheme combines in a single process
(i) geometric integration of the resulting Riemannian gradient flow, and (ii) rounding to integral
solutions that represent valid labelings. Throughout this process, local marginalization constraints
known from the established LP relaxation are satisfied, whereas the smooth geometric setting results
in rapidly converging iterations that can be carried out in parallel for every edge.
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1. Introduction.

1.1. Overview and motivation. Let Ω ⊂ R2 be a domain where image data are observed,
and let G = (V, E), |V| = m, denote a grid graph embedded into Ω. Each vertex i ∈ V indexes
the location of a pixel, to which a random variable

(1.1) xi ∈ X = {`1, . . . , `n}

is assigned, which takes values in a finite set X of labels. The image labeling problem is the
task of assigning to each xi a label such that the discrete objective function

(1.2) min
x∈Xm

E(x), E(x) =
∑
i∈V

Ei(xi) +
∑
ij∈E

Eij(xi, xj)

is minimized. This function comprises for each pixel i ∈ V local energy terms Ei(xi) that
evaluate local label predictions for each possible value of xi ∈ X . In addition, E(x) comprises
for each edge ij ∈ E local distance functions Eij(xi, xj) that evaluate the joint assignment of
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labels to xi and xj . If the local energy functions Eij(xi, xj) = d(xi, xj) are defined by a metric
d : X × X → R, then (1.2) is called the metric labeling problem [25]. In general, the presence
of these latter terms makes image labeling a combinatorially hard task. Function E(x) has
the common format of variational problems for image analysis comprising a data term and a
regularizer. From a Bayesian perspective, therefore, minimizing E corresponds to maximum
a posteriori inference with respect to the probability distribution p(x) = 1

Z exp(−E(x)). We
refer the reader to [23] for a recent survey on the image labeling problem and on algorithms
for solving either approximately or exactly problem (1.2).

A major class of algorithms for approximately solving (1.2) is based on the linear (pro-
gramming) relaxation [52] (see section 2.2 for details)

(1.3) min
µ∈LG

〈θ, µ〉.

Solving the linear program (LP) (1.3) returns a globally optimal relaxed indicator vector µ,
whose components take values in [0, 1]. If µ is a binary vector, then it corresponds to a
solution of problem (1.2). In realistic applications, this is not the case, however, and the
relaxed solution µ has to be rounded to an integral solution in a postprocessing step.

In this paper, we present an alternative inference algorithm that deviates from the tradi-
tional two-step process: convex relaxation and rounding. It is based on the recently proposed
geometric approach [5] to image labeling. The basic idea underlying this approach is to re-
strict indicator vector fields to the relative interior of the probability simplex, equipped with
the Fisher–Rao metric, and to regularize label assignments by iteratively computing Rieman-
nian means (see section 3 for details). This results in a highly parallel, multiplicative update
scheme that rapidly converges to an integral solution. Because this model of label assignment
does not interfere with data representation, the approach applies to any data given in a metric
space. Adopting this starting point, the objectives of the present paper are as follows:

• Show how the approach [5] can be used and extended to efficiently compute a high-
quality (low-energy) solution for an arbitrary given instance of the labeling problem
(1.2).
• Devise a novel labeling algorithm that tightly integrates both relaxation and rounding

to an integral solution in a single process.
• Stick to the smooth geometric model suggested by [5] so as to overcome the inherent

nonsmoothness of convex polyhedral relaxations and the slow convergence of corre-
sponding first-order iterative methods of convex programming.

Regarding the last point, a key ingredient of our approach is a smooth approximation

(1.4) Eτ (µV) = 〈θV , µV〉+
∑
ij∈E

dθij ,τ (µi, µj), τ > 0,

of problem (1.3), where dθij ,τ denotes the local smoothed Wasserstein distance between the
discrete label assignment measures µi, µj coupled along the edge ij of the underlying graph.
Besides achieving the degree of smoothness required for our geometric setting, this approx-
imation also properly takes into account the regularization parameters that are specified in
terms of the local energy terms Eij of the labeling problem (1.2). Our approach restricts
the function Eτ to the so-called assignment manifold and iteratively determines a labeling by
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1319

tightly combining geometric optimization with rounding to an integral solution in a smooth
fashion.

1.2. Related work. Problem sizes of LP (1.3) are large in typical applications of image
labeling, which rules out the use of standard LP codes. In particular, the theoretically and
practically most efficient interior point methods based on self-concordant barrier functions
[31, 38] are infeasible due to the dense linear algebra steps required to determine search and
update directions.

Therefore, the need for dedicated solvers for the LP relaxation (1.3) has stimulated a lot of
research. A prominent example constitutes subclasses of objective functions (1.2) as studied
in [28], in particular binary submodular functions, that enable reformulation of the labeling
problem as a maximum-flow problem in an associated network and the application of discrete
combinatorial solvers [12, 11].

Since the structure of such algorithms inherently limits fine-grained parallel implemen-
tations, however, belief propagation (BP) and variants [54] have been popular among practi-
tioners. These fixed point schemes in terms of dual variables iteratively enforce the so-called
local polytope constraints that define the feasible set of the LP relaxation (1.3). They can be
efficiently implemented using “message passing” and exploit the structure of the underlying
graph. Although convergence is not guaranteed on cyclic graphs, the performance in practice
may be good [53]. The theoretical deficiencies of basic BP in turn stimulated research on
convergent message passing schemes, either using heuristic damping or utilizing in a more
principled way convexity. Prominent examples of the latter case are [49, 22]. We refer the
reader to [23] for many more references and a comprehensive experimental evaluation of a
broad range of algorithms for image labeling.

The feasible set of the relaxation (1.3) is a superset of the original feasible set of (1.2).
Therefore, globally optimal solutions to (1.3) generally do not constitute valid labelings but
comprise nonintegral components µi(xi) ∈ (0, 1), xi ∈ X , i ∈ V. Randomized rounding
schemes for converting a relaxed solution vector µ to a valid labeling x ∈ Xm, along with
suboptimality bounds, were studied in [25, 15]. The problem of inferring components x∗i of
the unknown globally optimal combinatorial labeling that minimizes (1.2), through partial
optimality and persistency, was studied in [47]. We refer the reader to [52] for the history and
more information about the LP relaxation of labeling problems, and to [50] for connections
to discrete probabilistic graphical models from the variational viewpoint.

The approach in [37] applies the mirror descent scheme [30] to the LP (1.3). This amounts
to sequential proximal minimization [41], yet it uses a Bregman distance as proximity measure
instead of the squared Euclidean distance [14]. A key technical aspect concerns the proper
choice of entropy functions related to the underlying graphical model that qualify as convex
functions of Legendre type (cf. [6]). The authors of [37] observed a fast convergence rate.
However, the scheme does not scale up to the typically large problem sizes used in image
analysis, especially when graphical models with higher edge connectivity are considered, due
to the memory requirements when working entirely in the primal domain.

Optimal transport and the Wasserstein distance have become major tools of signal mod-
eling and analysis [29]. In connection with the metric labeling problem, using the Wasserstein
distance (aka optimal transport costs, earthmover metrics) was proposed in [1, 15]. These
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1320 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

works study bounds on the integrality gap of an “earthmover LP” and performance guaran-
tees of rounding procedures applied as postprocessing. While the earthmover LP corresponds
to our approach (1.4) without smoothing, authors do not specify how to solve such LPs effi-
ciently, especially when the LP relates to large-scale graphical models as in image analysis.
Moreover, the bounds derived by [1] become weak with increasing numbers of variables, which
are fairly large in typical problems of image analysis. In contrast, the focus of the present
paper is on a smooth geometric problem reformulation that scales well with both the problem
size and the number of labels, and performs rounding simultaneously. If and how theoret-
ical guarantees regarding the integrality gap and rounding carry over to our setting is an
interesting open problem of future research.

Regarding the finite-dimensional formulation of optimal discrete transport in terms of LPs,
the design of efficient algorithms for large-scale problems requires sophisticated techniques [43].
The problems of discrete optimal transport studied in this paper, in connection with the local
Wasserstein distances of (1.4), have a small or moderate size (n2: number of labels squared).
We apply the standard device of enhancing convexity through entropic regularization, which
increases smoothness in the dual domain. We refer the reader to [45] and [13, Chap. 9] for
basic related work, the connection to matrix scaling algorithms, and history. When entropic
regularization is very weak and for large problem sizes, the related fixed point iteration suffers
from numerical instability, and dedicated methods for handling them have been proposed
[44]. Smoothing of the Wasserstein distance and Sinkhorn’s algorithm have become popular in
machine learning due to [16]. The authors of [34, 17] comprehensively investigated barycenters
and interpolation based on the Wasserstein distance. Our approach to image labeling, in
conjunction with the geometric approach of [5], is novel and elaborates [4].

Finally, since our approach is defined on a graph and works with data on a graph, our work
may be assigned to the broad class of nonlocal methods for image analysis on graphs, from a
more general viewpoint. Recent major related work includes [9] on the connection between the
Ginzburg–Landau functional for binary regularized segmentation and spectral clustering, and
[8] on generalizing PDE-like models on graphs to manifold-valued data. We refer the reader
to the bibliographies in these works and to the seminal papers [2] on regularized variational
segmentation using Γ-convergence and [21, 20] on nonlocal variational image processing on
graphs that initiated these rapidly evolving lines of research. The focus of the present paper,
however, is on discrete graphical models and the corresponding labeling problem, in terms of
any discrete objective function of the form (1.2).

1.3. Contribution and organization. We collect basic notation, background material, and
details of the LP relaxation (1.3) in section 2. Section 3 summarizes the basic concepts of the
geometric labeling approach of [5], in particular the so-called assignment manifold, and the
general framework of [42] for numerically integrating Riemannian gradient flows of functionals
defined on the assignment manifold. This section provides the basis for the two subsequent
sections that contain our main contribution.

Section 4 studies the approximation (1.4) and provides explicit expressions for the Rie-
mannian gradient of the restriction of Eτ to the assignment manifold. A key property of
this setup concerns the local polytope constraints that define the feasible set LG of the LP
relaxation (1.3): by construction, they are always satisfied throughout the resulting itera-
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1321

tive process of label assignment. Thus, our formulation is both more tightly constrained and
smooth, in contrast to the established convex programming approaches based on (1.3).

Section 5 details the combination of all ingredients into a single, smooth, geometric ap-
proach that performs simultaneously minimization of the objective function (1.4) and rounding
to an integral solution (label assignment). This tight integration is a second major property
that distinguishes our approach from related work. Section 5 also explains the notion of
“Wasserstein messages” in the title of this paper due to the dual variables that are numeri-
cally utilized to evaluate gradients of local Wasserstein distances, akin to how dual (multiplier)
variables in basic BP schemes are used to enforce local marginalization constraints. Unlike
the latter computations, they have the structure of message passing on a dataflow architec-
ture; however, message passing induced by our approach is fully parallel along all edges of the
underlying graph and hence resembles the structure of numerical solvers for PDEs.

The remaining two sections are devoted to numerical evaluations of our approach. The
recent paper [7] reports a convergence analysis and the application of the scheme of [5] to a
range of challenging labeling problems of manifold-valued data. The results of [7] concern the
boundary of the underlying simplex domains, however, which are excluded from the assign-
ment manifold by definition. In addition, the approach worked out in this paper extends [5]
so that any convergence results regarding [5] would not directly apply to the present paper.
To keep this paper at a reasonable length, we merely considered the most elementary iterative
update scheme, based on the geometric integration of the Riemannian gradient flow with the
(geometric) explicit Euler scheme. The potential of the framework outlined by [42] for more
sophisticated numerical schemes will be explored elsewhere along with establishing bounds
for parameter values that provably ensure stability of numerical integration of the underlying
gradient flow. Furthermore, working out any realistic application is beyond the scope of this
paper. Rather, the experimental results demonstrate major properties of our approach.

Section 6 provides all details of our implementation that are required to reproduce our
computational results. Section 7 reports and discusses the results of the following four types
of experiments:

1. We study the interplay between two parameters τ and α that control smoothness of
the approximation (1.4) and rounding, respectively. In order to minimize efficiently
(1.2), the Riemannian flow with respect to the smooth approximation (1.4) must
reveal proper descent directions. This imposes an upper bound on the smoothing
parameter τ . Naturally, the effect of rounding has to be stronger to make the iterative
process converge to an integral solution. A corresponding choice of α controls the
compromise between quality of integral labelings in terms of the energy (1.4) and
speed of convergence. Fortunately, the upper bound on τ is large enough to achieve
attractive convergence rates.

2. We comprehensively explore numerically the entire model space of the minimal binary
graphical model on the cyclic triangle graph K3, whose relaxation in terms of the
so-called local polytope already constitutes a superset of the marginal polytope as an
admissible set for valid integral labelings. In this way, we explore the performance of
our approach in view of the LP relaxation and established inference based on convex
programming, and with respect to the (generally intractable) feasible set of integral
solutions. Corresponding phase diagrams display and support quantitatively the trade-
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1322 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

off between accuracy of optimization and rate of convergence through the choice of
the single parameter α.

3. We conducted a labeling problem of the usual size to confirm and demonstrate that
the finding of the preceding points for “all” models on K3 also holds in a typical ap-
plication. A comparison to sequential tree-reweighted message passing (TRWS) [27],
which defines the state of the art, and to loopy belief propagation (loopy-BP) based
on the OpenGM package [3], shows that our approach is on par with these methods
regarding the energy level E(x) of the resulting labeling x. Regarding runtime on an
off-the-shelf PC, our (nonoptimized) research code runs as fast as the OpenGM im-
plementation of loopy BP, whereas TRWS terminates more rapidly on such sequential
machines. The TRWS algorithm, however, does not exhibit the PDE-like structure of
our approach that enables massive parallel implementations.

4. In a final experiment based on the graphical model with a pronounced nonuniform
(non-Potts) prior, we demonstrate that our approach is able to perform inference for
any given graphical model.

We conclude in section 8 and relegate some proofs to an appendix to minimize interruption
of the overall line of reasoning.

2. Preliminaries. We introduce basic notation in section 2.1 and the common LP relax-
ation of the labeling problem in section 2.2. In order to clearly distinguish between the LP
relaxation and our geometric approach to the labeling problem based on [5] (see section 3.1),
we keep the standard notation in the literature for the former approach and the notation from
[5] for the latter. Remark 3.1 below identifies variables of both approaches that play a similar
role.

2.1. Basic notation. For an undirected graph G = (V, E), the adjacency relation i ∼ j
means that vertices i and j are connected by an undirected edge ij ∈ E , where the latter
denotes the unordered pair {i, j} = ij = ji. The neighbors of vertex i form the set

(2.1) N (i) = {j ∈ V : i ∼ j}

of all vertices adjacent to i, and its cardinality d(i) = |N (i)| is the degree of i. G is turned
into a directed graph by assigning an orientation to every edge ij, which then forms ordered
pairs (i, j) 6= (j, i). By abuse of notation we also sometimes write (i, j) = ij in the oriented
case; however, the exact meaning will be clear from the context. We only consider graphs
without multiple edges between any pair of nodes i, j ∈ V.

We use the abbreviation [n] = {1, 2, . . . , n} for n ∈ N. R = R ∪ {+∞} denotes the
extended real line. All vectors are regarded as column vectors, and x> denotes transposition
of a vector x. We ignore transposition, however, when vectors are explicitly specified by their
components; e.g., we write x = (y, z) instead of the more cumbersome x = (y>, z>)>. We set
1n = (1, 1, . . . , 1) ∈ Nn and write 1 if n is clear from the context. 〈x, y〉 =

∑
i∈[n] xiyi denotes

the Euclidean inner product. Given a matrix

(2.2) A =

A1
...
Am

 =
(
A1 . . . An

)
∈ Rm×n,
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1323

we denote the row vectors by Ai, i ∈ [m], and the column vectors by Aj , j ∈ [n]. The
canonical matrix inner product is 〈A,B〉 = tr(A>B), where tr denotes the trace of a ma-
trix, i.e., tr(A>B) =

∑
i∈[m]〈Ai, Bi〉 =

∑
j∈[n]〈Aj , Bj〉 =

∑
i∈[m],j∈[n]AijBij . Superscripts in

brackets, e.g. , A
(k)
i , index iterative steps.

The set of nonnegative vectors x ∈ Rn is denoted by Rn+ and the set of strictly positive
vectors by Rn++. The probability simplex ∆n = {p ∈ Rn+ : 〈1n, p〉 = 1} contains all discrete
distributions on [n]. A doubly stochastic matrix µij ∈ Rn×n+ , also called coupling measure in
this paper in connection with discrete optimal transport, has the property µij1n ∈ ∆n and
µ>ij1n ∈ ∆n. We denote these two marginal distributions of µij by µi and µj , respectively,
and the linear mapping for extracting them by

A : Rn×n → R2n, µij 7→ Aµij =

(
µij1n
µ>ij1n

)
=

(
µi
µj

)
.(2.3a)

Its transpose is given by

A> : R2n → Rn×n, (νi, νj) 7→ A>
(
νi
νj

)
= νi1

>
n + 1nν

>
j .(2.3b)

The kernel (nullspace) of a linear mapping A is denoted by N (A) and its range by R(A).
The functions exp, log apply componentwise to strictly positive vectors x ∈ Rn++, e.g., ex =

(ex1 , . . . , exn), and similarly for strictly positive matrices. Likewise, if x, y ∈ Rn++, then we
simply write

(2.4) x · y = (x1y1, . . . , xnyn),
x

y
=
(x1

y1
, . . . ,

xn
yn

)
for the componentwise multiplication and division.

We define F0 to be the class of proper, lower-semicontinuous, and convex functions defined
on Rn. For any function f ∈ F0, ∂f(x) denotes its subdifferential at x, and the conjugate
function f∗ ∈ F0 of f is given by the Legendre–Fenchel transform (cf. [40, section 11.A])

(2.5) f∗(y) := sup
x∈Rn
{〈y, x〉 − f(x)}.

For a given closed convex set C, its indicator function is denoted by

(2.6) δC(x) :=

{
0 if x ∈ C,
+∞ otherwise,

and

(2.7) PC : Rn → C, PC(x) := argminy∈C ‖x− y‖

denotes the orthogonal projection onto C. The shorthand “s.t.” means “subject to” in
connection to the specification of constraints.
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1324 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

The log-exponential function logexpε ∈ F0 is defined as

logexpε(x) := ε log

(∑
i∈[n]

e
xi
ε

)
.(2.8a)

It uniformly approximates the function vecmax ∈ F0 [40, Ex. 1.30], i.e.,

lim
ε↘0

logexpε(x) = vecmax(x) = max{xi}i∈[n].(2.8b)

We will use the following basic result from convex analysis (cf., e.g., [40, Chap. 11]), where
∂f(x) denotes the subdifferential of a function f ∈ F0 at x.

Theorem 2.1 (inversion rule for subgradients). Let f ∈ F0. Then

(2.9) p̂ ∈ ∂f(x̂) ⇔ x̂ ∈ ∂f∗(p̂) ⇔ f(x̂) + f∗(p̂) = 〈p̂, x̂〉.

We will also apply the following classical theorem of Danskin and its extension by Rock-
afellar.

Theorem 2.2 (see [18, 39]). Let f(z) = maxw∈W g(z, w), where W is compact and the
function g(·, w) is differentiable and ∇zg(z, w) is continuously dependent on (z, w). If in
addition g(z, w) is convex in z, and if z is a point such that arg maxw∈W g(z, w) = {w}, then
f is differentiable at z with

(2.10) ∇f(z) = ∇zg(z, w).

2.2. The local polytope relaxation of the labeling problem. We sketch in this section
the transition from the discrete energy minimization problem (1.2) to the LP relaxation (1.3)
and thereby introduce additional notation needed in subsequent sections.

The first step concerns the definition of local model parameter vectors and matrices

(2.11) θi :=
(
θi(`k)

)
k∈[n]

∈ Rn, θij :=
(
θij(`k, `r)

)
k,r∈[n]

∈ Rn×n, with `k, `r ∈ X ,

which merely encode the values of the discrete objective function (1.2): θi(`k) = Ei(`k),
θij(`k, `r) = Eij(`k, `r). These local terms are commonly called unary and pairwise terms in
the literature. Recall from the discussion of (1.2) that the unary terms represent the data
and the pairwise terms specify a regularizer. All these local terms are indexed by the vertices
i ∈ V and edges ij ∈ E of the underlying graph G = (V, E) and assembled into the vectors

(2.12) θ := (θV , θE), where θV := (θi)i∈V , and θE := (θij)ij∈E ,

where we conveniently regard θij ∈ Rn2
as either local vector or local matrix θij ∈ Rn×n,

depending on the context. Next we define local indicator vectors
(2.13)
µi :=

(
µi(`k)

)
k∈[n]

∈ {0, 1}n, µij :=
(
µij(`k, `r)

)
k,r∈[n]

∈ {0, 1}n×n, with `k, `r ∈ X ,
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1325

indexed in the same way as (2.11) and assembled into the vectors

(2.14) µ := (µV , µE), where µV := (µi)i∈V , and µE := (µij)ij∈E .

The combinatorial optimization problem (1.2) now reads minµ〈θ, µ〉. The corresponding LP
relaxation consists of replacing the discrete feasible set of (2.13) by the convex polyhedral sets

µi ∈ ∆n, µij ∈ Π(µi, µj), i ∈ V, ij ∈ E ,(2.15a)

Π(µi, µj) :=
{
µij ∈ Rn×n+ : µij1 = µi, µ

>
ij1 = µj , µi, µj ∈ ∆n

}
.(2.15b)

As a result, the LP relaxation (1.3) of (1.2) reads more explicitly as

(2.16) min
µ∈LG

〈θ, µ〉 = min
µ∈LG

〈θV , µV〉+ 〈θE , µE〉,

where the so-called local polytope LG is the set of all vectors µ of the form (2.14) with com-
ponents ranging over the sets specified by (2.15). The adjective “local” refers to the local
marginalization constraints (2.15b).

3. Image labeling on the assignment manifold. This section sets the stage for our ap-
proach to solving approximately the labeling problem (1.2). We first introduce in section 3.1
in terms of the assignment manifold the setting for the smooth approach to image labeling
[5], to be sketched in section 3.2. Section 3.3 summarizes the general framework of [42] for
numerically integrating Riemannian gradient flows of functionals defined on the assignment
manifold.

3.1. The assignment manifold. The relative interior of the probability simplex S :=
rint(∆n), given by S = {p ∈ Rn++ : 〈1, p〉 = 1}, is an n− 1 dimensional smooth manifold with
constant tangent space

(3.1) TpS = {v ∈ Rn : 〈1, v〉 = 0} =: T ⊂ Rn, p ∈ S.

Due to 〈1, v〉 = 0 for all v ∈ T , we have the orthogonal decomposition Rn = T ⊕ R1. The
orthogonal projection onto T is given by

(3.2) PT : Rn → T , x 7→ PT (x) = x− 1

n
〈1, x〉1 =

(
I − 1

n
11>

)
x,

where I denotes the (n×n) identity matrix. The manifold S becomes a Riemannian manifold
by endowing it with the Fisher–Rao metric. At a point p ∈ S, this metric is given by

(3.3) 〈·, ·〉p : TpS × TpS → R , (u, v) 7→ 〈u, v〉p =
〈 u
√
p
,
v
√
p

〉
.

In this setting, there is an important map, called the lifting map (cf. [5, Def. 4]), defined as

(3.4) L̃p : Rn → S, x 7→ L̃p(x) :=
p · ex

〈p, ex〉
, p ∈ S.
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1326 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

By restricting L̃p onto the tangent space, we obtain a diffeomorphism

(3.5) Lp := L̃p|T : T → S, L̃p = Lp ◦ PT .

This restricted lifting map Lp is also a local first-order approximation to the exponential map
of the Riemannian manifold S (cf. [5, Prop. 3]), with the inverse mapping given by

(3.6) L−1
p : S → T , q 7→ L−1

p (q) := PT

(
log

q

p

)
.

The assignment manifold is defined as the product manifold W :=
∏
i∈[m] S and can be

identified with the space W = {W ∈ Rm×n++ : W1 = 1} of row-stochastic matrices with full
support. With the Riemannian product metric, W also becomes a Riemannian manifold with
constant tangent space

(3.7) TWW =
∏
i∈[m]

T = {V ∈ Rm×n : V 1 = 0} =: Tm, W ∈ W.

The Fisher–Rao product metric reads

(3.8) 〈U, V 〉W =
∑
i∈[m]

〈 Ui√
Wi

,
Vi√
Wi

〉
, W ∈ W, U, V ∈ Tm.

The orthogonal decomposition of T induces the orthogonal decomposition

(3.9) Rm×n = Tm ⊕ {λ1>n ∈ Rm×n : λ ∈ Rm},

together with the orthogonal projection

(3.10) PTm : Rm×n → Tm, X 7→ PTm(X) = X

(
I − 1

n
11>

)
.

Thus, the projection of a matrix X onto Tm is just the projection (3.2) applied to every row
of X. The lifting map, and the restricted lifting map and its inverse, are naturally extended
to

(3.11) L̃W : Rm×n →W, LW : Tm →W, and L−1
W : W → Tm

for every W ∈ W by applying L̃Wi : Rn → S, LWi : T → S, and L−1
Wi

: S → T from (3.4), (3.5),
(3.6) to every row i,
(3.12)(

L̃W (X)
)
i

:= L̃Wi(Xi),
(
LW (V )

)
i

:= LWi(Vi), and
(
L−1
W (Q)

)
i

:= L−1
Wi

(Qi),

for i ∈ [m], X ∈ Rm×n, V ∈ Tm, and Q ∈ W.
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1327

3.2. Image labeling on W. In [5] the following approach was proposed. Let G = (V, E)
be a graph with vertex set V = [m]. Suppose a function is given on this graph with values in
some feature space F ,

(3.13) f : V = [m]→ F , i 7→ fi.

Furthermore, let the set X = {`1, . . . , `n} from (1.1) denote a set of prototypes or labels
(possibly X ⊂ F), and assume a distance function is specified,

(3.14) d : F × X → R,

measuring how well a feature is represented by a certain prototype. We are interested in the
assignment of the prototypes to the data in terms of an assignment matrix W ∈ W ⊂ Rm×n.
The elements of W can be interpreted as the posterior probability

(3.15) Wi,j = Pr(`j |fi), i ∈ [m], j ∈ [n],

that `j generated the observation fi. The assignment task of determining an optimal assign-
ment W ∗ can thus be interpreted as finding an “explanation” of the data in terms of the
prototypes X .

Remark 3.1 (W vs. µ). Each row vector Wi, i ∈ [m], plays the role of a corresponding
vector µi of the basic LP relaxation as defined by (2.13), with relaxed domain due to (2.15).
Unlike µi, however, vectors Wi ∈ Rn++ always have full support and live on the manifold S.

The objective function for measuring the quality of an assignment involves three matrices,
defined next. First, all distance information between observed feature vectors and prototypes
(labels) is gathered by the distance matrix

(3.16) D ∈ Rm×n, Di,j = d(fi, `j)

and then lifted onto the assignment manifold at W ∈ W. By using (3.11) we obtain the
likelihood matrix

(3.17) L = L̃W

(
− 1

ρ
D
)

= LW

(
− 1

ρ
PTm(D)

)
, ρ > 0,

where each row i of L is given by Li = L̃Wi(−1
ρDi) and PTm is given by (3.10). Finally, the

similarity matrix

(3.18) S = S(W ) ∈ W

is defined as a local geometric average of assignment vectors at neighboring nodes; i.e., the
ith row Si is defined to be the Riemannian mean (cf. [5, Def. 2] in the present context and
[24] for the general definition)

(3.19) Si = meanS{Lj}j∈N (i)

of the lifted distances Lj in the neighborhood N (i) = N (i) ∪ {i}.
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1328 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

The correlation between W and the local averages defining S(W ), as measured by the
basic matrix inner product, is used as the objective function

(3.20) sup
W∈W

J(W ), J(W ) := 〈W,S(W )〉

to be maximized. The optimization strategy is to follow the Riemannian gradient ascent flow
on W (see section 3.3 for the formal definition of the Riemannian gradient)

(3.21) Ẇ (t) = ∇WJ(W (t)), W (0) =
1

n
1m1

>
n =: C.

The initialization Wi(0) = 1
n1
>
n with the barycenter of S constitutes an uninformative uniform

assignment, which is not biased towards any prototype.
To obtain an efficient numerical algorithm, the Riemannian mean is approximated using

the geometric mean

(3.22) Si(W ) =
meang{Lj}j∈N (i)〈
1,meang{Lj}j∈N (i)

〉 , meang{Lj}j∈N (i) =

( ∏
j∈N (i)

Lj

) 1
|N (i)|

.

Based on the simplifying, plausible assumption that the mean only changes slowly, and by
using the explicit Euler-method directly on W with a certain adaptive step-size (cf. [5, sec-
tion 3.3]), the following multiplicative update scheme is obtained:

(3.23) W
(k+1)
i =

W
(k)
i · Si(W (k))

〈W (k)
i , Si(W (k))〉

, W
(0)
i =

1

n
1>n , i ∈ [m], k ∈ N.

3.3. Geometric integration of gradient flows. In this section we collect the basic ingre-
dients needed in the remainder of this paper of a general framework due to [42] for integrating
a Riemannian gradient flow of an arbitrary function J : W → R defined on the assignment
manifold.

We first recall the definition of the Riemannian gradient. Let M be a Riemannian manifold
with an inner product gMx on each tangent space TxM varying smoothly with x ∈ M and
f : M → R a smooth function. Using the identification TrR = R for r ∈ R, the Riemannian
gradient∇Mf(x) ∈ TxM of f at x ∈M can be defined as the unique element of TxM satisfying

(3.24) gMx (∇Mf(x), v) = Df(x)[v] ∀v ∈ TxM,

where Df(x) : TxM → Tf(x)R = R is the differential of f .

Suppose J : W → R is a general smooth objective function modeling an assignment prob-
lem and we are interested in minimizing J by following the Riemannian gradient descent
flow

(3.25) Ẇ (t) = −∇WJ(W (t)) , W (0) = C ∈ W ,
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1329

with the barycenter C = 1
n1m1

>
n . Instead of directly minimizing J on W, the basic idea of

[42] is to pull the optimization problem back onto the tangent space Tm = TCW by setting

(3.26) J := J ◦ LC ,

using the diffeomorphism LC : Tm → W given by (3.11). Furthermore, the pullback of the
Fisher–Rao metric under LC is used to equip Tm with a Riemannian metric and to turn LC
into an isometry. In this setting, the Riemannian gradient of J : Tm → R at V ∈ Tm is given
by [42, section 3]

(3.27) ∇TmJ(V ) = ∇J
(
LC(V )

)
∈ Tm ,

where ∇J denotes the standard Euclidean gradient of J : W → R. Based on this construction,
solving the gradient flow (3.25) is equivalent to

(3.28) W (t) = LC(V (t)),

where V (t) ∈ Tm solves

(3.29) V̇ (t) = −∇TmJ(V (t)) = −∇J
(
W (t)

)
, V (0) = 0 .

Choosing the explicit Euler-method for solving this gradient flow problem on the vector space
Tm results in the numerical update scheme for every row i ∈ [m],

(3.30) V
(k+1)
i = V

(k)
i − h∇J

(
LC(V

(k)
i )

)
, V

(0)
i = 0, k ∈ N,

with step-size h ∈ R. Lifting this update scheme to the assignment manifold W yields a
multiplicative update rule

(3.31) W
(k+1)
i =

W
(k)
i · e−h∇J(W

(k)
i )〈

W
(k)
i , e−h∇J(W

(k)
i )
〉 , W

(0)
i =

1

n
1n, i ∈ [m], k ∈ N.

4. Energy, gradients, and Wasserstein messages. In this section we study the smooth
objective function (1.4) restricted to the assignment manifold, in order to prepare the appli-
cation of the approach of section 3 to graphical models in section 5.

After detailing the rationale behind (1.4) in section 4.1, we compute the Euclidean gradient
of the objective function in section 4.2 on which the Riemannian gradient will be based. This
gradient involves the gradients of local Wasserstein distances that are considered in section
4.3. From the viewpoint of BP, these gradients can be considered as “Wasserstein messages”
as discussed in section 5.

4.1. Smooth approximation of the LP relaxation. The starting point (3.16) for applying
the labeling approach of section 3.2 to a given problem is a definition of suitable distances.
Regarding problem (1.2) and the corresponding model parameter vector θ defined by (2.12),
this is straightforward for the unary terms θi that typically measure a local distance to ob-
served data. But this is less obvious for the pairwise terms θij that do not have a direct
counterpart in the geometric labeling approach.
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1330 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

The following lemma explains why the local Wasserstein distances

(4.1) dθij (µi, µj) := min
µij∈Π(µi,µj)

〈θij , µij〉 ,

defined for every edge ij ∈ E with Π(µi, µj) due to (2.15b), are natural candidates for taking
into account pairwise model parameters θij .

Lemma 4.1. The local polytope relaxation (2.16) is equivalent to the problem

(4.2) min
µV∈∆m

n

(∑
i∈V
〈θi, µi〉+

∑
ij∈E

dθij (µi, µj)

)

involving the local Wasserstein distances (4.1).

Proof. The claim follows from reformulating the LP relaxation based on the local polytope
constraints (2.15) as follows:

min
µ∈LG

〈θ, µ〉 = min
µ∈LG

〈θV , µV〉+ 〈θE , µE〉

= min
µV∈∆m

n

(
〈θV , µV〉+ min

µE

∑
ij∈E

(
〈θij , µij〉+ δΠ(µi,µj)(µij)

))

= min
µV∈∆m

n

(∑
i∈V
〈θi, µi〉+

∑
ij∈E

min
µij∈Π(µi,µj)

〈θij , µij〉

)

= min
µV∈∆m

n

(∑
i∈V
〈θi, µi〉+

∑
ij∈E

dθij (µi, µj)

)
.

In order to conform to our smooth geometric setting, we regularize the convex but nons-
mooth (piecewise-linear (cf. [40, Def. 2.47])) local Wasserstein distances (4.1) with a general
convex smoothing function Fτ ,

(4.3) dθij ,τ (µi, µj) = min
µij∈Π(µi,µj)

{
〈θij , µij〉+ Fτ (µij)

}
, ij ∈ E , Fτ ∈ F0, τ > 0,

with smoothing parameter τ .

Remark 4.2 (role of the smoothing). The influence of the smoothing parameter τ will be
examined in detail in the remainder of this paper. We wish to point out from the beginning,
however, that the ability of our smooth geometric approach to compute integral labeling
assignments does not necessarily imply values of τ ≈ 0 close to zero, because the rounding
mechanism to integral assignments is a different one, as will be shown in section 5. As a
consequence, larger feasible values of τ weaken the nonlinear relation (4.3) and considerably
speed up the convergence of the numerical algorithm for iterative label assignment.

Remark 4.3 (local polytope constraints). Using the regularized local Wasserstein distances
(4.3) implies by their definition that the local marginalization constraints (2.15) are always
satisfied. This is in sharp contrast to alternative labeling schemes, such as loopy BP, where
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1331

these constraints are gradually enforced during the iteration and are guaranteed to hold only
after convergence of the entire iteration process.

This elucidates the following two key properties that distinguish the manifold setting of
our labeling approach from established work:

1. inherent smoothness, and
2. anytime validity of the local polytope constraints.

Based on Lemma 4.1 and the regularized local Wasserstein distances (4.3), we study the
objective function (1.4), which is a smooth approximation of the local polytope relaxation
(2.16) of the original labeling problem (1.2), with the local polytope constraints (2.15) built
in.

In order to get an intuition about suitable smoothing functions Fτ , we inspect the smoothed
local Wasserstein distance (4.3) in more detail. To this end, it will be convenient to simplify
temporarily our notation in the remainder of this section by dropping indices as follows:

For any edge ij : M = µij ∈ Rn×n, Θ = θij ∈ Rn×n,(4.4a)

µ =

(
µ1

µ2

)
=

(
M1n
M>1n

)
, ν =

(
ν1

ν2

)
,(4.4b)

with the marginal vector µ playing the role of
( µi
µj

)
in (2.15). The local (nonsmooth) Wasser-

stein distance (4.1) then reads, for any edge ij ∈ E , as

(4.5) dΘ(µ1, µ2) = min
M∈Π(µ1,µ2)

〈Θ,M〉 .

Using the linear map A defined by (2.3a), we rewrite expression (4.5) as

(4.6) dΘ(µ1, µ2) = min
M∈Rn×n

〈Θ,M〉 s.t. AM =

(
µ1

µ2

)
, M ≥ 0 .

The corresponding dual LP of (4.6) is given by

(4.7) max
ν∈R2n

〈µ, ν〉 s.t. A>ν ≤ Θ .

The smoothed local Wasserstein distance (4.3) is given by

(4.8)
dΘ,τ (µ1, µ2) := min

M∈Rn×n
〈Θ,M〉+ Fτ (M) s.t. AM =

(
µ1

µ2

)
, M ≥ 0,

= min
M∈Rn×n

〈Θ,M〉+ Fτ (M) + δRn×n+
(M) + δ{0}

(
AM − ( µ1

µ2 )
)
,

for Fτ ∈ F0 and τ > 0, and the dual problem to (4.8) reads as

(4.9) max
ν∈R2n

〈µ, ν〉 −G∗τ
(
A>ν −Θ

)
,

with the conjugate function G∗τ of

(4.10) Gτ (M) = Fτ (M) + δRn×n+
(M).
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1332 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

Suitable candidates of functions Gτ for smoothing dΘ suggest themselves by comparing
the dual LP (4.7) with the dual problem (4.9) of the smoothed LP. Rewriting the constraints
of (4.7) in the form

(4.11) δRn×n−
(A>ν −Θ)

and comparing with (4.9) shows that G∗τ should be a smooth approximation of the indicator
function δRn×n−

. We return to this point in section 6.2.

4.2. Energy gradient ∇Eτ . The pairwise model parameters θE may not be symmetric,
θij 6= θ>ij , ij ∈ E , in general, which implies that the smoothed local Wasserstein distances
are not symmetric either: dθij ,τ (Wi,Wj) 6= dθij ,τ (Wj ,Wi). In order to compute the Euclidean
gradient ∇Eτ of the objective function (1.4), we therefore introduce an arbitrary fixed ori-
entation (i, j) (ordered pair) of all edges ij ∈ E , which means ij ∈ E =⇒ ji 6∈ E . As a
consequence, (1.4) reads as

(4.12) Eτ (W ) =
∑
i∈V

(
〈θi,Wi〉+

∑
j : (i,j)∈E

dθij ,τ (Wi,Wj)

)
.

The following proposition specifies the gradient ∇Eτ in terms of an expression that involves
local gradients of the smoothed Wasserstein distances dθij ,τ . These latter gradients are studied
in section 4.3 (Theorem 4.7).

Proposition 4.4 (objective function gradient). Suppose the edges E have an arbitrary fixed
orientation. Then the Euclidean gradient of the objective function Eτ : W → R due to (1.4),
at W ∈ W, is the matrix ∇Eτ (W ) ∈ Tm, whose ith row is given by

(4.13) ∇iEτ (W ) = PT (θi) +
∑

j : (i,j)∈E

∇1dθij ,τ (Wi,Wj) +
∑

j : (j,i)∈E

∇2dθji,τ (Wj ,Wi) ,

where ∇1dθij ,τ (Wi,Wj) ∈ T and ∇2dθji,τ (Wj ,Wi) ∈ T are the Euclidean gradients of

(4.14) dθij ,τ (·,Wj) : S → R, dθij ,τ (Wj , ·) : S → R.

Proof. See section A.1 of the appendix.

We now consider, after a preparatory lemma, the specific case when all pairwise model
parameters θij = θ>ij are symmetric (Corollary 4.6). Recall definition (2.15b) of the set Π(·, ·)
of coupling measures having its arguments as marginals and Remark 3.1 regarding notation.

Lemma 4.5. Suppose the convex smoothing function Fτ defining the regularized local Wasser-
stein distances (4.3) satisfies Fτ (M) = Fτ (M>) for all M ∈ Π(Wi,Wj). Then

(4.15) dθij ,τ (Wi,Wj) = dθ>ij ,τ
(Wj ,Wi).

Proof. Let M∗ ∈ Π(Wi,Wj) be a minimizer of (4.8). Then due to the assumption on Fτ ,
we have

(4.16) dθij ,τ (Wi,Wj) = 〈θij ,M∗〉+ Fτ (M∗) = 〈θ>ij ,M>∗ 〉+ Fτ (M>∗ ) .
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1333

Let M̃ ∈ Π(Wj ,Wi) be arbitrary. Then M̃> ∈ Π(Wi,Wj), and we have

(4.17) 〈θ>ij , M̃〉+Fτ (M̃) = 〈θij , M̃>〉+Fτ (M̃>) ≥ 〈θij ,M∗〉+Fτ (M∗) = 〈θ>ij ,M>∗ 〉+Fτ (M>∗ ) .

This shows that M>∗ ∈ Π(Wj ,Wi) is a minimizer of dθ>ij ,τ
(Wj ,Wi) and establishes (4.15).

As a consequence of Lemma 4.5, if all pairwise model parameters θij are symmetric, in
addition to Fτ (M) = Fτ (M>) for all M ∈ [0, 1]n×n, then there is no need to choose an edge
orientation as was done in connection with (4.12). Rather, using (2.1), we may rewrite (4.12)
as

(4.18) Eτ (W ) =
∑
i∈V

(
〈θi,Wi〉+

1

2

∑
j∈N (i)

dθij ,τ (Wi,Wj)

)
and reformulate Proposition 4.4 accordingly.

Corollary 4.6 (objective function gradient: Symmetric case). Suppose Fτ (T ) = Fτ (T>) for
all T ∈ [0, 1]n×n and that θij is symmetric for all ij ∈ E. Then the ith row of the Euclidean
gradient ∇Eτ is given by

(4.19) ∇iEτ (W ) = PT (θi) +
∑

j∈N (i)

∇1dθij ,τ (Wi,Wj).

Proof. Applying the equation ∇2dθji,τ (Wj ,Wi) = ∇1dθij ,τ (Wi,Wj) due to Lemma 4.5 to
(4.13), we obtain

∇iEτ (W ) = PT (θi) +
∑

j : (i,j)∈E

∇1dθij ,τ (Wi,Wj) +
∑

j : (j,i)∈E

∇1dθij ,τ (Wi,Wj)(4.20a)

= PT (θi) +
∑

j∈N (i)

∇1dθij ,τ (Wi,Wj),(4.20b)

which is (4.19).

4.3. Local Wasserstein distance gradient. In this section, we check differentiability of
the distance functions dθij ,τ (µi, µj), ij ∈ E , given by (4.3), and specify an expression for
the corresponding gradient. To formulate the main result of this section, we again use the
simplified notation (4.4).

Theorem 4.7 (Wasserstein distance gradient). Consider S ⊂ Rn as a Euclidean submanifold
with tangent space T defined by (3.1), and let

(4.21) g(µ, ν) = 〈µ, ν〉 −G∗τ (A>ν −Θ)

denote the dual objective function (4.26). Then the smoothed Wasserstein distance dΘ,τ : S ×
S → R is differentiable, and the Euclidean gradient of dΘ,τ at p = (p1, p2) ∈ S ×S is given by

(4.22) ∇dΘ,τ (p) = ∇dΘ,τ (p1, p2) = νT := PT×T (ν) =

(
PT (ν1)
PT (ν2)

)
,

where

(4.23) ν =

(
ν1

ν2

)
∈ argmax

ν∈R2n

g(p, ν).
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1334 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

The proof follows below after some preparatory lemmas, which also clarify the structure
of the dual solution set. In particular, this set restricted to R(A) is a singleton (Lemma 4.9).

Lemma 4.8. Let

(4.24) Gτ (M) = Fτ (M) + δRn×n+
(M),

with the convex smoothing function Fτ of (4.3), and assume the conjugate function G∗τ is
continuously differentiable. Then the dual problem of

(4.25) min
M∈Π(µ1,µ2)

{
〈Θ,M〉+ Fτ (M)

}
is given by

(4.26) max
ν1,ν2

{
〈µ, ν〉 −G∗τ (A>ν −Θ)

}
.

Furthermore, assuming that strong duality holds, the conditions for optimal primal M and
dual ν = (ν1, ν2) solutions are

M = ∇G∗τ
(
A>ν −Θ

)
, A>ν −Θ ∈ ∂Gτ (M),(4.27a)

together with the affine constraint

AM = µ.(4.27b)

Proof. Taking into account (2.15b), we write the right-hand side of (4.8) in the form

(4.28) min
M∈Rn×n

〈Θ,M〉+Gτ (M) s.t. AM = µ, M ≥ 0.

Let ν = (ν1, ν2) ∈ R2n denote the dual variables corresponding to the affine constraint of
(4.28). Then problem (4.28) rewritten in Lagrangian form reads as

min
M∈Rn×n

{
〈Θ,M〉+Gτ (M) + max

ν
〈ν, µ−AM〉

}
(4.29a)

⇔ min
M∈Rn×n

{
max
ν
〈ν, µ〉+Gτ (M)−

〈
A>ν −Θ,M

〉}
.(4.29b)

Since strong duality holds by assumption, interchanging min and max yields the dual problem
(4.26). Moreover, the optimal primal and dual objective function values are equal, which gives,
with (4.29a) and (4.26),

(4.30) − 〈M,A>ν −Θ〉+Gτ (M) +G∗τ (A>ν −Θ) = 0.

This implies (4.27a) by the subgradient inversion rule [40, Prop. 11.3], whereas the primal
constraint (4.27b) is obvious.

Remark 4.9 (smoothness of G∗τ ). The smoothness assumption with respect to G∗τ enables
us to compute conveniently the gradient of the smoothed Wasserstein distance dΘ,τ . It corre-
sponds to a convexity assumption on Gτ . These aspects are further discussed in section 6.2
as well.
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1335

Remark 4.10 (strong duality). The condition of strong duality (cf. [10, Section I.5]) made
by Lemma 4.8 is crucial for what follows. This condition will be satisfied later on when
working in a geometric setting with local measures M,µ1, µ2 with full support, as introduced
in section 3.1.

Lemma 4.11. Let the linear mapping A> be defined by (2.3b). Then
(4.31)

N (A>) =

{
λ

(
1n
−1n

)
∈ R2n : λ ∈ R

}
and N (A>)⊥ =

{
x ∈ R2n :

〈
x,

(
1n
−1n

)〉
= 0

}
.

Proof. Let z = ( xy ) ∈ R2n with 0 = A>z = x1>n + 1ny
>. Applying A, we get

(4.32)

0 = AA>z = A(x1>n ) +A(1ny
>) =

(
nx+ 〈y,1n〉1n
〈x,1n〉1n + ny

)
⇔ z =

(
x
y

)
= − 1

n

(
〈y,1n〉1n
〈x,1n〉1n

)
.

This implies 〈x,1n〉 = −〈y,1n〉, and setting λ = 1
n〈x,1n〉 ∈ R shows that z has the form

(4.31). Conversely, in view of the definition (2.3b), it is clear that any vector from the set
(4.31) is in N (A>). The characterization of N (A>)⊥ directly follows from the definitions.

The following lemma characterizes the set of optimal dual solutions to problem (4.26).

Lemma 4.12. Let the function G∗τ of the dual objective function (4.26), respectively, (4.21),
be continuously differentiable and strictly convex, and let p ∈ R2n

++. Then the set of optimal
dual solutions has the form

(4.33) argmax
ν∈R2n

g(p, ν) =

{
{ν} if

〈
p,
(
1n
−1n

)〉
6= 0,

ν +N (A>) if
〈
p,
(
1n
−1n

)〉
= 0.

Proof. See section A.2 in the appendix.

We next clarify the attainment of optimal dual solutions due to Lemma 4.12.

Lemma 4.13. Consider the orthogonal decomposition R2n = N (A>) ⊕ R(A) into linear
subspaces, and denote the corresponding components of a vector ν ∈ R2n by ν = νN + νR.
Then, for p ∈ R2n

++ satisfying 〈p,
(
1n
−1n

)
〉 = 0, we have

argmax
νR∈R(A)

g(p, νR) = {νR}, νR = PR(A)(ν) for any ν ∈ argmax
ν∈R2n

g(p, ν),(4.34a)

g(p, νR) = max
νR∈R(A)

g(p, νR) = max
ν∈R2n

g(p, ν);(4.34b)

that is, a unique dual maximizer exists in the subspace R(A).

Proof. We first show (4.34b). Let ν be an optimal dual solution. Since
〈
p,
(
1n
−1n

)〉
= 0,

Lemma 4.12 yields argmaxν∈R2n g(p, ν) = ν + N (A>) = νN + νR + N (A>). This shows
νR ∈ ν +N (A>), that is, νR ∈ R(A) is a maximizer, which implies (4.34b).

Let ν ′R ∈ R(A) be another maximizer. As before, we have the representation ν ′R ∈
ν + N (A>), that is, ν ′R = νN + νR + ν̃N for some ν̃N ∈ N (A>), which implies ν ′R = νR,
i.e., uniqueness (4.34a) of the dual maximizer in R(A).
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1336 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

We are now in position to prove Theorem 4.7.

Proof of Theorem 4.7. We proceed by subsequently proving the following: First, we relate
the orthogonal decomposition R2n = N (A>)⊕R(A) to the tangent space Tp(S×S) = T×T ⊂
R2n for any p = (p1, p2) ∈ S × S. Second, the existence of a global isometric chart for the
manifold S × S is shown in order to represent the smoothed Wasserstein distance dΘ,τ and
the dual objective function g(µ, ν) in a convenient way. Third, we apply Theorem 2.2.

1. Consider the unique decomposition ν = νN + νR ∈ N (A>) ⊕ R(A) of any point
ν ∈ R2n. Then we have

(4.35) PT×T (νR) = νT = PT×T (ν).

At first, we show T × T ⊆ R(A). For this, take an arbitrary v = ( v1
v2 ) ∈ T × T .

Due to the definition of T , we have 〈1n, v1〉 = 〈1n, v2〉 = 0 and thus 〈v,
(
1n
−1n

)
〉 = 0,

which according to Lemma 4.11 means v ∈ N (A>)⊥ = R(A). As a consequence of
T × T ⊆ R(A) we have PT×T (νN ) = 0, and therefore statement (4.35) follows from

(4.36) PT×T (ν)− PT×T (νR) = PT×T (ν − νR) = PT×T (νN ) = 0.

2. There exist an open subset U ⊂ R2(n−1) and an isometry φ : U → S×S such that φ−1 is
a global isometric chart of the manifold S×S. φ can be constructed as follows. Choose
an orthonormal basis {v1, . . . , v2(n−1)} of the tangent space T × T , set b = 1

n

(
1n
1n

)
,

and define the isometry

(4.37) ψ : R2(n−1) →
(
T × T

)
+ b, x 7→ ψ(x) := Bx+ b, Bx =

2(n−1)∑
i=1

xivi.

Because S × S is an open subset of
(
T × T

)
+ b and ψ an isometry, we have that the

set U := ψ−1(S × S) ⊂ R2(n−1) is also open and

(4.38) φ := ψ|U : U → S × S

is the desired isometric mapping. Furthermore, since the basis {vi}2(n−1)
i=1 is orthonor-

mal, the orthogonal projection reads as

(4.39) PT×T = BB>.

3. Using φ given by (4.38), we obtain the coordinate representations

(4.40) dΘ,τ := dΘ,τ ◦ φ, g(x, ν) := g
(
φ(x), ν

)
of the smoothed Wasserstein distance dΘ,τ and the dual objective function g(p, ν).
Since we assume strong duality, that is, equality of the optimal values of (4.25) and
(4.26), we have dΘ,τ (p) = maxν∈R2n g(p, ν). Setting xp = φ−1(p), this equation trans-
lates, in view of Lemma 4.13, into

(4.41) g(xp, νR) = max
νR∈R(A)

g(xp, νR) = g(xp, ν) = max
ν∈R2n

g(xp, ν) = dΘ,τ (xp),
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1337

with unique maximizer νR = PR(A)(ν). Let Bδ ⊂ R(A) be a compact neighborhood
of νR. Then (4.41) remains valid after restricting R(A) to Bδ. Because g given by
(4.21) is linear in the first argument and the mapping φ is affine, the function g is
convex in the first argument and differentiable, and hence satisfies the assumptions of
Theorem 2.2.
In order to compute the gradient ∇xg(x, νR), it suffices to consider the first term
〈φ(x), νR〉 of g, which depends only on x. Using (4.38), we have

(4.42) 〈φ(x), νR〉 = 〈Bx+ b, νR〉 = 〈x,B>νR〉+ 〈b, νR〉.

Thus, ∇xg(x, νR) = B>νR, which continuously depends on νR. As a consequence, we
may apply Theorem 2.2 and obtain, due to (2.10),

(4.43) ∇dΘ,τ (xp) = ∇xg(xp, νR) = B>νR.

Using the differential Dφ(x) = B, we finally get

(4.44) ∇dΘ,τ (p) = B∇dΘ,τ (xp) = BB>νR
(4.35)

= PT×T (νR)
(4.35)

= νT ,

which proves (4.22).

5. Application to graphical models. This section explains how the labeling approach
on the assignment manifold of section 3 can be applied to a graphical model by using the
global and local gradients derived in section 4. The graphical model is given in terms of
an energy function E(x) of the form (1.2). The basic idea for determining a labeling x
with low energy E(x), worked out in section 5.1, is to combine minimization of the convex
relaxation (1.3) and nonconvex rounding to an integral solution in a single smooth process.
This idea is realized by restricting the smooth approximation (1.4) of the objective function
to the assignment manifold from section 3.1, and by combining numerical integration of the
corresponding Riemannian gradient flow from section 3.3 with the assignment mechanism
suggested by [5] from section 3.2.

Section 5.2 complements our preliminary observations stated as Remarks 4.2 and 4.3
and highlights the essential properties of smooth process as a novel way of BP using dually
computed gradients of local Wasserstein distances, which we call Wasserstein messages.

5.1. Smooth integration of minimizing and rounding on the assignment manifold. We
recall how regularization is performed by the assignment approach of [5]: distance vectors
(3.16) representing the data term of classical variational approaches are lifted to the assign-
ment manifold by (3.17) and geometrically averaged over spatial neighborhoods; see (3.19)
and (3.22).

Given a graphical model in terms of an energy function (1.2), regularization is already
defined by the pairwise model parameters Eij(`k, `r), respectively, θij(`k, `r), so that evalu-
ating the gradient of the regularized objective function (1.4) implies averaging over spatial
neighborhoods, as (4.13) clearly displays. Additionally, taking into account the simplest (ex-
plicit Euler) update rule (3.31) for geometric integration of Riemannian gradient flows on
the assignment manifold, we find that a natural definition of the similarity matrix for the kth
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1338 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

iterate, k ∈ N, that consistently incorporates the graphical model into the geometric approach
of [5], is

(5.1) Si(W
(k)) =

W
(k)
i · e−h∇iEτ (W (k))

〈W (k)
i , e−h∇iEτ (W (k))〉

, i ∈ [m], h > 0, W (0) =
1

n
1m1

>
n ,

where h is a step-size parameter and the partial gradients ∇iEτ (W (k)) are given by (4.13).
The sequence (W (k)) is initialized in an unbiased way at the barycenter W (0) ∈ W. Adopting
the fixed point iteration proposed by [5] leads to the update of the assignment matrix

(5.2) W
(k+1)
i =

W
(k)
i · Si(W (k))

〈W (k)
i , Si(W (k))〉

, i ∈ [m].

These two interleaved update steps represent two objectives: (i) minimize the function Eτ on
the assignment manifoldW (section 3.3), and (ii) converge to an integral solution, i.e., a valid
labeling. Plugging (5.1) into (5.2) gives

(5.3) W
(k+1)
i =

(W
(k)
i )2 · e−h∇iEτ (W (k))

〈(W (k)
i )2, e−h∇iEτ (W (k))〉

,

which suggests that the latter rounding mechanism can be more flexibly controlled by a
rounding parameter α and the update rule

(5.4) W
(k+1)
i =

(W
(k)
i )1+α · e−h∇iEτ (W (k))

〈(W (k)
i )1+α, e−h∇iEτ (W (k))〉

, α ≥ 0.

The following proposition reveals the continuous gradient flow that is approximated by the
sequence (5.4).

Proposition 5.1. Let Eτ be given by (1.4), and denote the entropy of the assignment matrix
W by

(5.5) H(W ) = −〈W, logW 〉.

Then the sequence of updates (5.4) are geometric Euler-steps for numerically integrating the
Riemannian gradient flow of the extended objective function

(5.6) fτ,α(W ) := Eτ (W ) + αhH(W ), αh =
α

h
.

Proof. An Euler-step for minimizing fτ,α on the tangent space reads (with ∇i = ∇Wi) as

(5.7) V
(k+1)
i = V

(k)
i − h∇if(W (k)) = V

(k)
i − h∇iEτ (W (k))− α∇iH(W (k)), i ∈ [m],

where the ith row of W (k) is given by W
(k)
i = Lc(V

(k)
i ), c = 1

n1n. In order to compute
the gradient of the entropy, consider a smooth curve γ : (−ε, ε) → W with γ(0) = W and
γ̇(0) = X. Then

(5.8)
d

dt
H(γ(t))

∣∣
t=0

= −〈X, log(W )〉 −
〈
W,

1

W
·X
〉

= −〈X, log(W )〉 − 〈11>, X〉.
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1339

Since 〈log(W ), X〉 = 〈PTm (log(W )) , X〉 and 〈11>, X〉 = 〈1, X1〉 = 〈1, 0〉 = 0, we have

(5.9) 〈∇H(W ), X〉 =
d

dt
H(γ(t))

∣∣
t=0

= 〈−PTm (log(W )) , X〉.

Thus, using PT (log(Wi)) = L−1
c (Wi) from (3.6), we obtain

(5.10) ∇iH(W (k)) = −PT
(

log(W
(k)
i )

)
= −L−1

c

(
Lc(V

(k)
i )

)
= −V (k)

i .

Substitution into (5.7) gives

(5.11) V
(k+1)
i = (1 + α)V

(k)
i − h∇iEτ (W (k))

and in turn the update

W
(k+1)
i = Lc(V

(k+1)
i ) =

e(1+α)V
(k)
i · e−h∇iEτ (W (k))

〈1n, e(1+α)V
(k)
i · e−h∇iEτ (W (k))〉

(5.12a)

=
(eV

(k)
i )(1+α) · e−h∇iEτ (W (k))

〈1n, (eV
(k)
i )1+α · e−h∇iEτ (W (k))〉

=
(W

(k)
i )(1+α) · e−h∇iEτ (W (k))

〈1n, (W (k)
i )1+α · e−h∇iEτ (W (k))〉

(5.12b)

=
(W

(k)
i )(1+α) · e−h∇iEτ (W (k))

〈(W (k)
i )1+α, e−h∇iEτ (W (k))〉

,(5.12c)

which is (5.4).

Remark 5.2 (continuous DC programming). Proposition 5.1 and (5.6) interpret the update
rule (5.4) as a continuous difference of convex (DC) programming strategy. The established
DC approach [35, 36] takes large steps by solving to optimality a sequence of convex programs
in connection with updating an affine upper bound of the concave part of the objective func-
tion, but our update rule (5.4) differs from this approach in two essential ways: geometric
optimization by numerically integrating the Riemannian gradient flow tightly interleaves with
rounding to an integral solution. The rounding effect is achieved by minimizing the entropy
term of (5.6), which steadily sparsifies the assignment vectors comprising W .

5.2. Wasserstein messages. We return to the informal discussion of belief propagation
(BP) from section 1.2 in order to highlight properties of our approach (1.4) from this viewpoint.
We first sketch BP and the origin of corresponding messages, and we refer the reader to [54, 50]
for background and more details.

Our starting point is the primal linear program (LP) (1.3) written in the form

(5.13) min
µ∈LG

〈θ, µ〉 = min
µ
〈θ, µ〉 s.t. Aµ = b, µ ≥ 0,

where the constraints represent the feasible set LG , which is explicitly given by the local
marginalization constraints (2.15). The corresponding dual LP reads as

(5.14) max
ν
〈b, ν〉 = max

ν
〈1, νV〉, A>ν ≤ θ,
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1340 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

with dual (multiplier) variables

(5.15) ν = (νV , νE) = (. . . , νi, . . . , νij(xi), . . . , νij(xj), . . . ), i ∈ V, ij ∈ E ,

corresponding to the affine primal constraints. In order to obtain a condition that relates
optimal vectors µ and ν without subdifferentials that are caused by the nonsmoothness of
these LPs, one should consider the smoothed primal convex problem

(5.16) min
µ∈LG

〈θ, µ〉 − εH(µ), ε > 0, H(µ) =
∑
ij∈E

H(µij)−
∑
i∈V

(
d(i)− 1

)
H(µi),

with smoothing parameter ε > 0, degree d(i) of vertex i, and local entropy functions

(5.17) H(µi) = −
∑
xi∈X

µi(xi) logµi(xi), H(µij) = −
∑

xi,xj∈X
µij(xi, xj) logµij(xi, xj).

Setting temporarily ε = 1 and evaluating the optimality condition ∇µL(µ, ν) = 0 based on
the corresponding Lagrangian

(5.18) L(µ, ν) = 〈θ, µ〉 −H(µ) + 〈ν,Aν − b〉

yields the relations connecting µ and ν,

µi(xi) = eνie−θi(xi)
∏

j∈N (i)

eνij(xi), xi ∈ X , i ∈ V,(5.19a)

µij(xi, xj) = eνi+νje−θij(xi,xj)−θi(xi)−θj(xj)
∏

k∈N (i)\{j}

eνik(xi)
∏

k∈N (j)\{i}

eνjk(xj),(5.19b)

with xi, xj ∈ X , ij ∈ E , where the terms eνi , eνi+νj normalize the expressions on the right-
hand side, whereas the so-called messages eνij(xi) enforce the local marginalization constraints
µij ∈ Π(µi, µj). Invoking these latter constraints enables us to eliminate the left-hand side of
(5.19) to obtain, after some algebra, the fixed point equations

(5.20) eνij(xi) = eνj
∑
xj∈X

(
e−θij(xi,xj)−θj(xj)

∏
k∈N (j)\{i}

eνik(xj)
)
, ij ∈ E , xi ∈ X ,

solely in terms of the dual variables, commonly called the sum-product algorithm or loopy BP
by message passing. Repeating this derivation, after weighting the entropy function H(µ)
of (5.18) by ε as in (5.16), and taking the limit limε↘0 yields relation (5.20), with the sum
replaced by the max operation as a consequence of taking the log of both sides and relation
(2.8). This fixed point iteration is called the max-product algorithm in the literature.

From this viewpoint, our alternative approach (5.6) emerges as follows, starting at the
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1341

smoothed primal LP (5.16) and following the idea of the proof of Lemma 4.1:

min
µ∈LG

〈θ, µ〉 − εH(µ)(5.21a)

= min
µ∈LG

〈θ, µ〉 − ε
(∑
ij∈E

H(µij)−
∑
i∈V

(
d(i)− 1

)
H(µi)

)
(5.21b)

= min
µ∈LG

〈θV , µV〉+ 〈θE , µE〉 − ε
∑
ij∈E

H(µij) + ε
∑
i∈V

(
d(i)− 1

)
H(µi)(5.21c)

= min
µV∈∆m

n

Eε(µV) + ε
∑
i∈V

(
d(i)− 1

)
H(µi).(5.21d)

Formulation (5.6) results from replacing ε by a smoothing parameter τ, which can be set to
a value not very close to 0 (cf. Remark 4.2), and we absorb the second nonnegative factor,
weighting the entropy term by a second parameter α. As demonstrated in section 7, this latter
parameter enables us to control precisely the trade-off between accuracy of labelings in terms
of the given objective function Eτ of (5.6), which approximates the original discrete objective
function (1.2), and the speed of convergence to an integral (labeling) solution.

Regarding the resulting term Eτ , a key additional step is to use the reformulation (1.4),
because all edge-based variables are locally “dualized away” as done globally with all variables
when using established BP (cf. (5.20)). In this way, we can work in the primal domain,
and with graphs having higher connectivity, without suffering from the enormous memory
requirements that would arise from merely smoothing the LP and solving (5.16) in the primal
domain. Furthermore, the “messages” defined by our approach have a clear interpretation in
terms of the smoothed Wasserstein distance between local marginal measures.

We summarize this discussion by contrasting directly established BP with our approach
in terms of the following key observations:

1. Local nonconvexity. The negative −H(µ) of the so-called Bethe entropy function
H(µ) is nonconvex in general for graphs G with cycles [50, section 4.1] due to the
negative sign of the second sum of (5.16).

2. Local rounding at each step. The max-product algorithm performs local round-
ing at every step of the iteration so as to obtain integral solutions, i.e., a labeling
after convergence. This operation results as a limit of a nonconvex function, due to
observation 1.

3. Either nonsmoothness or strong nonlinearity. The latter max-operation is in-
herently nonsmooth. Preferring instead a smooth approximation with 0 < ε � 1
necessitates choosing ε very small so as to ensure rounding. This, however, leads to
strongly nonlinear functions of the form (2.8) that are difficult to handle numerically.

4. Invalid constraints. Local marginalization constraints are only satisfied after con-
vergence of the iteration. Intuitively it is plausible that, by only gradually enforcing
constraints in this way, the iterative process becomes more susceptible to getting stuck
in unfavorable stationary points, due to the nonconvexity according to observation 1.

Our geometric approach removes each of these issues. Message passing with respect to vertex
i ∈ V is defined by evaluating the local Wasserstein gradients of (4.13) for all edges incident
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1342 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

to i. We therefore call these local gradients Wasserstein messages, which are “passed along
edges.” Similarly to (5.20), each such message is given by dual variables through (4.22) that
solve the regularized local dual LPs (4.21). As a consequence, local marginalization constraints
are always satisfied throughout the iterative process.

In addition, we make the following observations in correspondence to points 1–4 above:
5. Local convexity. Wasserstein messages of (4.13) are defined by local convex pro-

grams (4.21). This contrasts with loopy BP and holds true for any pairwise model
parameters θij of the prior of the graphical model and the corresponding coupling
of µi and µj . This removes spurious minima introduced through nonconvex entropy
approximations.

6. Smooth global rounding after convergence. Rounding to integral solutions is
gradually enforced through the Riemannian flow induced by the extended objective
function (5.6). In particular, repeated “aggressive” local max operations of the max-
product algorithm are replaced by a smooth flow.

7. Smoothness and weak nonlinearity. The role of the smoothing parameter τ of
(1.4) differs from the role of the smoothing parameter ε of (5.16). While the latter
has to be chosen quite close to 0 so as to achieve rounding at all, τ merely mollifies the
dual local problems (4.21), and hence should be chosen small, but may be consider-
ably larger than ε. In particular, this does not impair rounding due to observation 6,
which happens due to the global flow which is smoothly driven by the Wasserstein mes-
sages. This decoupling of smoothing and rounding enables us to numerically compute
labelings more efficiently. The results reported in section 7 demonstrate this fact.

8. Valid constraints. By construction, computation of the Wasserstein messages en-
forces all local marginalization constraints throughout the iteration. This is in sharp
contrast to BP, where this generally holds after convergence only. Intuitively, it is
plausible that our more tightly constrained iterative process is less susceptible to get-
ting stuck in poor local minima. The results reported in section 7.2 provide evidence
of this conjecture.

6. Implementation. In this section we discuss several aspects of the implementation of
our approach. The numerical update scheme used in our implementation is the one given by
(5.4),

W
(k+1)
i =

(W
(k)
i )1+α · e−h∇iEτ (W (k))

〈(W (k)
i )1+α, e−h∇iEτ (W (k))〉

, W
(0)
i =

1

n
1n, i ∈ V, k ∈ N,

where α ≥ 0 is the rounding parameter, h > 0 the step-size, and τ the smoothing parameter
for the local Wasserstein distances.

Section 6.1 details a strategy for maintaining in a numerically stable way strict positivity
of all variables defined on the assignment manifold. Numerical aspects of computing local
Wasserstein gradients are discussed in section 6.2, and the natural role of the entropy function
is highlighted for assuming the role of the smoothing function Fτ in (4.3). Our criterion for
convergence and terminating the iterative process (5.4) of label assignment is specified in
section 6.3.
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1343

6.1. Assignment normalization. The rounding mechanism addressed by Proposition 5.1
and Remark 5.2 will be effective if αh in (5.6) is chosen large enough to compensate for the
influence of the function Fτ that regularizes the local Wasserstein distances (4.3).

In this case, each vector Wi approaches some vertex ei of the simplex, and thus some
entries of Wi converge to zero. However, due to our optimization scheme, every vector Wi

evolves on the interior of the simplex S; that is, all entries of Wi have to be positive all
the time—see also Remark 4.10. Since there is a limit to the precision of representing small
positive numbers on a computer, we avoid numerical problems by adopting the normalization
strategy of [5]. After each iteration, we check all Wi, and whenever an entry drops below
ε = 10−10, we rectify Wi by

(6.1) Wi ←
1

〈1, W̃i〉
W̃i , W̃i = Wi − min

j=1,...,n
{Wi,j}+ ε , ε = 10−10 .

Thus, the constant ε plays the role of 0 in our implementation. Our numerical experiments
showed that this operation avoids numerical issues.

6.2. Computing Wasserstein gradients. A core subroutine of our approach concerns the
computation of the local Wasserstein gradients as part of the overall gradient (4.13). We
argue in this section why the negative entropy function that we use in our implementation for
smoothing the local Wasserstein distances plays a distinguished role. To this end, we adopt
again in this section the notation (4.4).

Using this notation, the smooth entropy-regularized Wasserstein distance (4.3) reads as

(6.2) dΘ,τ (µ1, µ2) = min
M∈Rn×n

〈Θ,M〉 − τH(M) s.t. AM =

(
µ1

µ2

)
, M ≥ 0 ,

with the entropy function

(6.3) H(M) = −
∑
i,j

Mi,j logMi,j .

As shown in section 4.3 and according to Theorem 4.7, the gradients of (6.2) are the
maximizer of the corresponding dual problem. Using the notation (4.4), the dual problem of
(6.2) reads as

(6.4) max
ν∈R2n

〈µ, ν〉 − τ
∑
k,l

exp
[1

τ

(
A>ν −Θ

)
k,l

]
.

In particular, in view of the general form (4.9) of this dual problem, the indicator func-
tion (4.11) is smoothly approximated by the function τ exp( 1

τ x). Figure 6.1 compares this
approximation with the classical logarithmic barrier − log(−x) function for approximating
the indicator function δR− of the nonpositive orthant. Log-barrier penalty functions are the
method of choice for interior point methods [31, 48], which strictly rule out violations of the
constraints. While this is essential for many applications where constraints represent physical
properties that cannot be violated, it is not essential in the present case for calculating the
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1344 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

Figure 6.1. Approximations of the indicator function δR− of the nonpositive orthant. The log-barrier
function (black curves) strictly rules out violations of the constraints but induces a bias towards interior points.
Our formulation (blue curves) is less biased and reasonably approximates the δ-function (red curve) depending
on the smoothing parameter τ . Displayed are the approximations of δR− for τ = 1

5
, 1

10
, 1

50
.

Wasserstein messages. Moreover, the bias towards interior points by log-barrier functions,
as Figure 6.1 clearly shows, is detrimental in the present context and favors the formulation
(6.4).

We now derive how the local Wasserstein gradients (4.22) are computed based on the
formulation (6.2) and examine numerical aspects depending on the smoothing parameter τ .
It is well known that doubly stochastic matrices as solutions of convex programs like (6.2) can
be computed by iterative matrix scaling [46, 45], [13, Chap. 9]. This has been made popular
in the field of machine learning by [16].

The optimality condition (4.27) takes the form

(6.5) M = exp
[1

τ

(
A>ν −Θ

)]
,

and rearranging yields the connection to matrix scaling:
(6.6)

M = exp
[1

τ

(
A>ν −Θ

)]
(2.3b)

= exp
[1

τ

(
ν11

>
n + 1nν

>
2 −Θ

)]
=

(
exp(ν1

τ ) exp(ν2
τ )T

)
· exp

(
− 1

τΘ
)

= Diag
(

exp(ν1
τ )
)

exp
(
− 1

τΘ
)

Diag
(

exp(ν2
τ )
)
,

where Diag(·) denotes the diagonal matrix with the argument vector as entries. For given
marginals µ = (µ1, µ2) due to (6.2) and with the shorthand K = exp

(
− 1

τΘ
)
, the optimal

dual variables ν = (ν1, ν2) can be determined by Sinkhorn’s iterative algorithm [46], up to a
common multiplicative constant. Specifically, we have the following lemma.

Lemma 6.1 (see [16, Lemma 2]). For τ > 0, the solution M of (6.2) is unique and has the
form M = diag(v1)Kdiag(v2), where the two vectors v1, v2 ∈ Rn are uniquely defined up to a
multiplicative factor.
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1345

Accordingly, by setting

(6.7) v1 := exp(ν1
τ ), v2 := exp(ν2

τ ),

the corresponding fixed point iterations read

(6.8) v
(k+1)
1 =

µ1

K
(

µ2

K>v
(k)
1

) , v
(k+1)
2 =

µ2

K>
(

µ1

Kv
(k)
2

) ,
which are iterated until the change between consecutive iterates is small enough. Denoting
the iterates after convergence by v1, v2, resubstitution into (6.7) determines the optimal dual
variables

(6.9) ν1 = τ log v1, ν2 = τ log v2.

Due to Theorem 4.7, the local Wasserstein gradients then finally are given by

(6.10) ∇dΘ,τ (µ1, µ2) =

(
PT (ν1)
PT (ν2)

)
,

where the projection PT due to (3.2) removes the common multiplicative constant resulting
from Sinkhorn’s algorithm.

While the linear convergence rate of Sinkhorn’s algorithm is known theoretically [26], the
numbers of iterations required in practice significantly depends on the smoothing parameter
τ . In addition, for smaller values of τ , an entry of the matrix K = exp

(
− 1

τΘ
)

might be
too small to be represented on a computer, due to machine precision. As a consequence, the
matrix K might have entries which are numerically treated as zeros, and Sinkhorn’s algorithm
does not necessarily converge to the true optimal solution.

Fortunately, our approach does allow larger values of τ because merely a sufficiently ac-
curate approximation of the gradient of the Wasserstein distance is required, rather than an
approximation of the Wasserstein distance itself, to obtain valid descent directions. Figures 6.2
and 6.3 demonstrate that this indeed holds for relatively large values of τ , e.g., τ ∈ {1

5 ,
1
10 ,

1
15},

no matter if the number of labels is n = 10 or n = 1000.

6.3. Termination criterion. In all experiments, the normalized averaged entropy

(6.11)
1

m log(n)
H(W ) = − 1

m log(n)

∑
i∈V

n∑
k=1

Wi,k log
(
Wi,k

)
for W ∈ W,

was used as a termination criterion; i.e., if the value drops below a certain threshold, the
algorithm is terminated. Due to this normalization, the value does not depend on the number
of labels, and thus the threshold is comparable across different models with a varying number
of pixels and labels.

For example, a threshold of 10−4 means in practice that, up to a small fraction of nodes
i ∈ V, all rows Wi of the assignment matrix W are very close to unit vectors and thus indicate
an almost unique assignment of the prototypes or labels to the observed data.
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1346 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

Figure 6.2. The plots show the entropy-regularized Wasserstein distance dΘ,τ (c, γ(t)) for varying parameter
τ and increasing numbers n of labels. Here, γ(t) = t(e1 − c) + c ∈ ∆n, with t ∈ [0, 1], is the line segment
connecting the barycenter c = 1

n
1 to the vertex e1 on the simplex ∆n. The cost matrix Θ is given by the Potts

prior (7.2). In all three plots the parameter τ has been chosen as τ = 1
5

(cyan), τ = 1
10

(green), τ = 1
20

(blue),
τ = 1

50
(red), and τ = 1

100
(black). Even though the values of the approximation of the distance itself differ

considerably, the slope of the distance is already approximated quite well for larger values of τ , uniformly for
small up to large numbers n of labels.

Figure 6.3. The plot shows the exact Wasserstein distance (top) compared to the entropy-regularized
Wasserstein distance with the Potts prior (7.2) from the barycenter to every point on ∆3 for different values
of τ : (a) τ = 1

5
, (b) τ = 1

10
, (c) τ = 1

20,
and (d) τ = 1

50
. These plots confirm that even for relatively large

values of τ , e.g.. 1
10

and 1
20

, the gradient of the Wasserstein distance is a sufficiently accurate approximation
to obtain valid descent directions for distance minimization.
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1347

7. Experiments. We demonstrate in this section the main properties of our approach.
The dependency of label assignment on the smoothing parameter τ and the rounding pa-
rameter α is illustrated in section 7.1. We comprehensively explored the space of binary
graphical models defined on the minimal cyclic graph: the complete graph with three vertices
K3 whose LP relaxation is known to have a substantial part consisting of nonbinary vertices.
The results reported in section 7.2 exhibit a relationship between α and τ so that in fact a
single effective parameter only controls the trade-off between accuracy of optimization and
the computational costs. A competitive evaluation of our approach in section 7.3, together
with the two established and widely applied approaches of sequential TRWS [27] and loopy
BP, reveals a similar performance to our approach. Finally, section 7.4 demonstrates for a
graphical model with pronounced nonuniform pairwise model parameters (non-Potts prior)
that our geometric approach accurately takes them into account.

All experiments have been selected to illustrate properties of our approach rather than
to demonstrate and work out a particular application, which will be the subject of follow-up
work.

7.1. Parameter influence. We assessed the parameter influence of our geometric approach
by applying it to a labeling problem. The task is to label a noisy RGB image f : V → [0, 1]3,
depicted in Figure 7.2, on the grid graph G = (V, E) with minimal neighborhood size |N (i)| =
3 × 3, i ∈ V. Prototypical colors P = {l1, . . . , l8} ⊂ [0, 1]3 (Figure 7.2) were used as labels.
The unary (or data term) is defined, using the ‖ · ‖1 distance and a scaling factor ρ > 0, by

(7.1) θi =
1

ρ

(
‖f(i)− l1‖1, . . . , ‖f(i)− l8‖1

)
, i ∈ V,

and Potts regularization is used for defining the pairwise parameters of the model

(7.2)
(
θij
)
k,r

= 1− δk,r, where δk,r =

{
1 if k = r

0 else
for ij ∈ E .

The feature scaling factor was set to ρ = 0.3, the step-size h = 0.1 was used for numerically
integrating the Riemannian descent flow, and the threshold for the normalized average entropy
termination criterion (6.11) was set to 10−4.

Figure 7.1, top, displays the empirical convergence rate depending on the rounding pa-
rameter α, for a fixed value of the smoothing parameter τ = 0.1 that ensures a sufficiently
accurate approximation of the Wasserstein distance gradients and hence of the Riemannian
descent flow. Figure 7.1, bottom, shows the interplay between minimizing the smoothed en-
ergy Eτ (1.4) and the rounding mechanism induced by the entropy H (5.5) in fτ,α (5.6).
Less aggressive rounding in terms of smaller values of α leads to a more accurate numerical
integration of the flow using a larger number of iterations, and thus to higher quality label
assignments with a lower energy of the objective function. This latter aspect is demonstrated
quantitatively in section 7.2. For too small values of the rounding parameter α, the algorithm
naturally does not converge to an integral solution.
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1348 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

Figure 7.1. The normalized average entropy (6.11) (top) and the smoothed energy Eτ (1.4) (bottom)
are shown, for the smoothing parameter value τ = 0.1, depending on the number of iterations. Top: With
increasing values of the rounding parameter α, the entropy drops more rapidly and hence converges faster to
an integral labeling. Bottom: Two phases of the algorithm depending on the values for α are clearly visible. In
the first phase, the smoothed energy Eτ is minimized up to the point where rounding takes over in the second
phase. Accordingly, the sequence of energy values first drops down to lower values corresponding to the problem
relaxation and then adopts a higher energy level corresponding to an integral solution. For smaller values of
the rounding parameter α, the algorithm spends more time on minimizing the smoothed energy. This generally
results in lower energy values even after rounding, i.e., in higher quality labelings.
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1349

Original data

Noisy data

Prototypes

τ = 0.5 0.1 0.05

0 ∗ ∗ ∗

0.
1

∗

0.
5

1
α

=
2

Figure 7.2. Influence of the rounding parameter α and the smoothing parameter τ on the assignment of
eight prototypical labels to noisy input data. All images marked with “∗” do not show integral solutions due
to smoothing too strongly the Wasserstein distance in terms of τ relative to α, which overcompensates for the
effect of rounding. Likewise, smoothing too strongly the Wasserstein distance (left column, τ = 0.5) yields
poor approximations of the objective function gradient and leads to erroneous label assignments. The remain-
ing parameter regime, i.e., smoothing below a reasonably large upper bound τ = 0.1, leads to fast numerical
convergence, and the label assignment can be precisely controlled by the rounding parameter α.
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1350 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

Figure 7.3. Connection between the objective function fτ,α (5.6) and the discrete energy E (1.2) of the
underlying graphical model, for a fixed value α = 0.5. Minimizing fτ,α (yellow) by our approach also minimizes
E (violet), which was calculated for this illustration by rounding the assignment vectors at every iterative step.
Additionally, as already discussed in more detail in connection with Figure 7.1, the interplay between the two
terms of fτ,α = Eτ + αH is shown, where Eτ (orange) denotes the smoothed energy (1.4) and H (blue) the
entropy (5.5) causing rounding.

Figure 7.2 shows the influence of the rounding strength α and the smoothing parameter
τ for the Wasserstein distance. All images marked with “∗” in the lower right corner do not
show an integral solution, which means that the normalized average entropy (6.11) of the
assignment vectors Wi did not drop below the threshold during the iteration and thus, even
though the assignments show a clear tendency, they stayed far from integral solutions. As just
explained for Figure 7.1, this is not a deficiency of our approach but must happen if either
no rounding is performed (α = 0) or if the influence of rounding is too small compared to the
smoothing of the Wasserstein distance (e.g., α = 0.1 and τ = 0.5). Increasing the strength
of rounding (larger α) leads to a faster decrease in entropy (cf. Figure 7.1 for the case of
τ = 0.1) and therefore to an earlier convergence of the process to a specific labeling. Thus, a
more aggressive rounding scheme yields a less regularized result due to the rapid decision for
a labeling at an early stage of the algorithm.

On the other hand, choosing the smoothing parameter τ too large leads to poor approxi-
mations of the Wasserstein distance gradients and consequently to erroneous nonregularized
labelings, as displayed in the left column of Figure 7.2 corresponding to τ = 0.5. Once τ is
small enough (in our experiments, τ < 0.1), the Wasserstein distance gradients are properly
approximated, and the label assignment is regularized as expected and can be controlled by
α. In particular, this upper bound on τ is sufficiently large to ensure very rapid convergence
of the fixed point iteration for computing the Wasserstein distance gradients.

Figure 7.3 shows the connection between the objective function fτ,α (5.6) and the discrete
energy E (1.2) of the underlying graphical model. Minimizing fτ,α (yellow curve) using our
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1351

approach also minimizes the discrete energy E (violet curve), which was calculated by rounding
the assignment vectors after each iterative step. Figure 7.3 also shows the interplay between
the two terms in fτ,α = Eτ +αH, with smoothed energy (1.4) Eτ plotted as the orange curve
and with the entropy (5.5) plotted as the blue curve. These curves illustrate (i) the smooth
combination of optimization and rounding into a single process, and (ii) that the original
discrete energy (1.2) is effectively minimized by this smooth process.

7.2. Exploring all cyclic graphical models on K3. In this section, we report an exhaus-
tive exploration of all possible binary models, X = {0, 1}, on the minimal cyclic graph K3

(Figure 7.4, left panel). Due to the single cycle, models exist where the LP relaxation (1.3)
returns a nonbinary solution (red part of the right panel of Figure 7.4). As a consequence,
evaluating such models with our geometric approach for minimizing (1.4) enables us to check
the following two properties:

1. Whenever solving the LP relaxation (1.3) by convex programming returns the global
binary minimum of (1.2) as solution, we assess whether our geometric approach based
on the smooth approximation (1.4) returns this solution as well.

2. Whenever the LP relaxation has a nonbinary vector as a global solution, which there-
fore is not optimal for the labeling problem (1.2), we assess the rounding property
of our approach by comparing the result with the correct binary labeling globally
minimizing (1.2).

The graph K3 enables us to specify the so-called marginal polytope PK3 , whose vertices (ex-
treme points) are the feasible binary combinatorial solutions that correspond to valid labelings
(cf. section 1.1), and to examine the difference to the local polytope LK3 , whose representation
only involves a subset of the constraints corresponding to PK3 . We refer the reader to [32] for
background and details.

Figure 7.4. Left: The minimal binary cyclic graphical model K3 = (V, E) = ({1, 2, 3}, {12, 13, 23}). Right:
The eight vertices (white background) of the minimally represented marginal polytope PK3 ⊂ R6

+ and the four
additional noninteger vertices (red background) of the minimally represented local polytope LK3 ⊂ R6

+.
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1352 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

The constraints are more conveniently stated using the so-called minimal representation
of binary graphical models [50, section 3.2], which involves the variables1

(7.3) µi := µi(1), i ∈ V, µij := µi(1)µj(1), ij ∈ E ,

and encodes the local vectors (2.15) by

(7.4)

(
1− µi
µi

)
←
(
µi(0)
µi(1)

)
,


(1− µi)(1− µj)

(1− µi)µj
µi(1− µj)

µij

 ←

µij(0, 0)
µij(0, 1)
µij(1, 0)
µij(1, 1)

 .

Thus, it suffices to use a single variable µi for every node i ∈ V instead of two variables
µi(0), µi(1), and also a single variable µij for every edge ij ∈ E instead of four variables
µij(0, 0), µij(0, 1), µij(1, 0), µij(1, 1). The local polytope constraints (2.15) then take the form

(7.5) 0 ≤ µij , µij ≤ µi, µij ≤ µj , µi + µj − µij ≤ 1 ∀ij ∈ E .

The marginal polytope constraints additionally involve the so-called triangle inequalities [19]∑
i∈V

µi −
∑
jk∈E

µjk ≤ 1,(7.6a)

µ12 + µ13 − µ23 ≤ µ1, µ12 − µ13 + µ23 ≤ µ2, −µ12 + µ13 + µ23 ≤ µ3.(7.6b)

Figure 7.4, right panel, lists the eight vertices of PK3 and the four additional vertices of LK3

that arise when dropping the subset of constraints (7.6).
We evaluated 105 models generated by randomly sampling the model parameters (2.11):

with U [a, b] denoting the uniform distribution on the interval [a, b] ⊂ R, we set

(7.7) θi =

(
1− p
p

)
− 1

2

(
1
1

)
, p ∼ U [0, 1], θij =

(
p1 p2

p3 p4

)
, pi ∼ U [−2, 2], i ∈ [4].

Note the different scale, θi ∈ [−1
2 ,+

1
2 ]2, θij ∈ [−2,+2]2×2, which results in a larger influence

of the pairwise terms and hence makes inference more difficult. Suppose, for example, that
the diagonal terms of θij are large, which favors the assignment of different labels to the
nodes 1, 2, 3 ∈ V. Then assigning, say, labels 0 and 1 to the vertices 1 and 2, respectively, will
inherently lead to a large energy contribution due to the assignment to node 3, no matter if
this third label is 0 or 1, because it must agree with the assignment either to node 1 or to 2.

Every binary vertex listed in Figure 7.4, right panel, is the global optimum of both the
linear relaxation (1.3) and the original objective function (1.2) in approximately 11.94% of
the 105 scenarios, whereas every nonbinary vertex is optimal in approximately 1.12%.

1We reuse the symbol µ for simplicity and only “overload” in this subsection the symbols µi, µij for local
vectors (2.15) by using the variables on the left-hand side of (7.3).
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1353

An example where a nonbinary vertex is optimal for the linear relaxation (1.3) is given
by the model parameter values

(7.8)

θ1 =

(
−0.2261

0.2261

)
, θ12 =

(
−0.9184 −1.6252
−1.8891 −0.9807

)
,

θ2 =

(
−0.4449

0.4449

)
, θ13 =

(
0.3590 0.0958
−1.8668 1.5193

)
,

θ3 =

(
−0.3202

0.3202

)
, θ23 =

(
1.2147 −1.5215
−0.3302 −0.0459

)
.

The corresponding solutions of the marginal polytope MG , the local polytope LG , and our
method are listed in Table 7.1. Due to the nonbinary solution returned by the LP relaxation,
rounding in a postprocessing step amounts to random guessing. In contrast, our method
is able to determine the optimal solution because rounding is smoothly integrated into the
overall optimization process.

Table 7.1
Solutions µ = (µ1, µ2, µ2) of the marginal polytope MG, the local polytope LG, and our method, for the

triangle model with parameter values (7.8). Our method was applied with threshold 10−3 as termination cri-
terion (6.11), step-size h = 0.5, smoothing parameter τ = 0.1, and three values of the rounding parameter
α ∈ {0.2, 0.5, 0.9}. By definition, minimizing over the marginal polytope returns the globally optimal discrete
solution. The local polytope relaxation has a fractional solution for this model, so that rounding in a postprocess-
ing step amounts to random guessing. Our approach returns the global optimum in each case, up to numerical
precision.

µ1 µ2 µ3 Iterations

Marginal polytope MG 1 0 0 -

Local polytope LG 0.5 0.5 0.5 -

Our method
α = 0.2 0.999 0.258e−3 0.205e−3 108

(τ = 1
10

)
α = 0.5 0.999 0.161e−3 0.114e−4 14

α = 0.9 0.999 0.239e−4 0.546e−6 8

Figure 7.5 presents the results of the experiments for the minimal cyclic graphical model
K3. In order to assess clearly the influence of the rounding parameter α and the smoothing
parameter τ , we evaluated all 105 models for each pair of (τ, α), where τ ∈ {1

2 ,
1

2.5 , . . . ,
1

6.5 ,
1
7}

and α ∈ {0.1, 0.11, . . . , 0.99, 1}. These statistics show that our algorithm converges to integral
solutions, except for very unbalanced parameter values: strong smoothing with large τ , weak
rounding with small α. Within the remaining broad parameter regime, parameter α enables
us to control the influence of rounding. In particular, in agreement with Figure 7.1 (bottom),
less aggressive rounding computed labelings closer to the global optimum.

Table 7.2 displays success rate and number of iterations for three different parameter
configurations from Figure 7.5. For instance, using α = 0.22 and τ = 0.2, our algorithm found
in 97.35% of the experiments an energy with relative error smaller than 1% with respect to
the optimal energy. In addition, the algorithm required on average 45 iterations to converge.
Using instead α = 0.58 and τ = 0.15, that is, more aggressive rounding in each iteration step
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1354 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

Figure 7.5. Evaluation of the minimal cyclic graphical model K3. For every pair of parameter values (τ, α),
we evaluated 105 models, which were generated as explained in the text. In each experiment, we terminated the
algorithm if the average entropy dropped below 10−3 or if the maximum number of 600 iterations was reached.
In addition, we chose a constant step-size h = 0.5. Left: The plot shows the percentage of experiments where
the energy returned by our algorithm had a relative error smaller than 1% compared to the minimal energy of
the globally optimal integral labeling. In agreement with Figure 7.1 (bottom), less aggressive rounding yielded
labelings closer to the global optimum. Right: This plot shows the corresponding average number of iterations.
The black region indicates experiments where the maximum number of 600 iterations was reached, because too
strong smoothing of the Wasserstein distance (large τ) overcompensated for the effect of rounding (small α), so
that the convergence criterion (6.11), which measures the distance to integral solutions, cannot be satisfied. In
the remaining large parameter regime, the choice of α enables us to control the trade-off between high-quality
(low-energy) solutions and computational costs.

Table 7.2
Three different parameter configurations extracted from Figure 7.5. The comparison of the success rate and

the number of iterations until convergence clearly demonstrates the trade-off between accuracy of optimization
and convergence rate, depending on the rounding variable α and the smoothing parameter τ . Overall, the
number of iterations is significantly smaller than for first-order methods of convex programming for solving the
LP relaxation, which additionally require rounding as a postprocessing step to obtain an integral solution.

α τ Success rate Iterations

0.22 0.2 97.35% 45
0.5 0.33 93.41% 15
0.58 0.15 88.6% 9

(5.4), the average number of iterations reduced to 9, but the accuracy also dropped to 88.6%.
Overall, these experiments clearly demonstrate
• the ability to control the trade-off between high-quality (low-energy) labelings and

computational costs in terms of α for all values of τ below a reasonably large upper
bound; and
• a small or very small number of iterations required to converge, depending on the

choice of α.

7.3. Comparison to other methods. We compared our geometric approach to sequential
tree-reweighted message passing (TRWS) [27] and loopy belief propagation (loopy-BP) [51]
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1355

Original data Noisy data

Figure 7.6. Noisy image labeling problem: a binary ground truth image (left) to be recovered from noisy
input data (right).

Geometric TRWS Loopy-BP
4977.24 / 98.38% 4979.61 / 98.07% 4977.75 / 98.38%

82.4 sec 0.206 sec 81.4 sec

Figure 7.7. Results for the noisy labeling problem from Figure 7.6 using a standard data term with Potts
prior, with discrete energy/accuracy/runtime. Parameter values for the geometric approach: smoothing τ = 0.1,
step-size h = 0.2, and rounding strength α = 0.1. The threshold for the termination criterion was 10−3. All
methods show similar performance.

based on the OpenGM package [3].
For this comparison, we evaluated the performance of the methods for a noisy binary

labeling scenario depicted in Figure 7.6. Let f : V → [0, 1] denote the noisy image data given
on the grid graph G = (V, E) with a 4-neighborhood and X = {0, 1} as prototypes (labels).
The following data term and Potts prior were used:

(7.9) θi =

(
f(i)

1− f(i)

)
for i ∈ V and θij =

(
0 1
1 0

)
for ij ∈ E .

The threshold 10−3 was used for the normalized average entropy termination criterion (6.11).
Figure 7.7 shows the visual reconstruction as well as the corresponding discrete energy values
and percentage of correct labels for all three methods. Our method has similar accuracy and
returns a slightly better optimal discrete energy level than TRWS and loopy-BP.

We investigated again the influence of the rounding mechanism by repeating the same
experiment but using different values of the rounding parameter α ∈ {0.1, 1, 2, 5}. As shown in
Figure 7.8, the results confirm the finding of the experiments of the preceding section: a more
aggressive rounding scheme (α large) leads to faster convergence but yields less regularized
results with higher energy values.
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1356 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

α = 0.1 α = 1 α = 2 α = 5

4977.24 / 98.38% 5071.25 / 98.49% 5472.71 / 97.01% 7880.64 / 91.27%
82.4 sec 13.1 sec 9.17 sec 6.12 sec

Figure 7.8. Results for the noisy labeling problem from Figure 7.6 using different values of the round-
ing parameter α ∈ {0.1, 1, 2, 5} with discrete energy/accuracy/runtime: more aggressive rounding scheme (α
large) leads to less regularized results with higher energy values. Parameter values of the geometric approach:
smoothing τ = 0.1, step-size h = 0.2, threshold 10−3 for termination.

7.4. Nonuniform (non-Potts) priors. We examined the behavior of our approach for a
non-Potts prior by applying it to a nonbinary labeling problem with noisy input data, as
depicted in Figure 7.9. Our objective is to demonstrate that prespecified pairwise model
parameters (regularization) by a graphical model are properly taken into account.

The label indices corresponding to the five RGB colors of the original image (Figure 7.9,
right) are

(7.10) X = {`1 = dark blue, `2 = light blue, `3 = cyan, `4 = orange, `5 = yellow} ⊂ [0, 1]3 .

Let f : V → [0, 1]3 denote the noisy input image (Figure 7.9, center panel) given on the grid
graph G = (V, E) with a 4-neighborhood. This image was created by randomly selecting 40%
of the original image pixels and then uniformly sampling a label at each chosen position. The
unary term was defined using the ‖ · ‖1 distance and a scaling factor ρ > 0 by

(7.11) θi =
1

ρ

(
‖f(i)− `1‖1, . . . , ‖f(i)− `5‖1

)
, i ∈ V.

Now assume that additional information about a labeling problem was available. For
example, let the RGB color dark blue in the image represent the direction “top,” light blue
“bottom,” yellow “right,” orange “left,” and cyan “center” (Figure 7.9, left). Suppose it
is known beforehand that “top” and “bottom,” as well as “left” and “right,” cannot be
adjacent to each other but are separated by another label corresponding to the center. This
prior knowledge about the labeling problem was taken into account by specifying nonuniform
pairwise model parameters that penalize these unlikely label transitions by a factor of 10:

(7.12) θij =
1

10


0 10 1 1 1
10 0 1 1 1
1 1 0 1 1
1 1 1 0 10
1 1 1 10 0

 , ij ∈ E .
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1357

l1
l2
l3
l4
l5

original image noisy image labels

Figure 7.9. Original image (left), encoding the image directions top, bottom, center, left, and right by the
RGB color labels `1, `2, `3, `4, and `5 (right). The noisy test image (middle) was created by randomly selecting
40% of the original image pixels and then uniformly sampling a label at each position. Unlikely label transitions
`1 ↔ `2 and `4 ↔ `5 are represented by color (feature) vectors that are close to each other, and hence can be
easily confused.

In other words, every entry of θij corresponding to a label transition `1 = “dark blue” (“top”)
next to `2 = “light blue” (“bottom”) or `4 = “orange” (“left”) next to `5 = “yellow” (“right”)
has the large penalty value 1, whereas all other “natural” configurations are treated as with the
Potts prior and smaller penalty values of 0 and 0.1, respectively. We point out that no color
vectors or any other embedding was used to facilitate this regularization task or to represent
it in a more application-specific way. Rather, the nonuniform prior (7.12) was considered as
given in terms of some discrete graphical models and its energy function (1.2). On the other
hand, the pairs of labels (`1, `2) and (`4, `5) forming unlikely label transitions can be easily
confused by the data term, due to the small distance of the color (feature) vectors representing
these labels.

To demonstrate how these nonuniform model parameters influence label assignments, we
compared the evaluation of this model against a model with a uniform Potts prior

(7.13)
(
θ′ij
)
k,r

= 1
10(1− δk,r), where δk,r =

{
1 if k = r

0 else
for ij ∈ E .

In our experiments, we used the scaling factor ρ = 15 for the unaries, step-size h = 0.1,
rounding parameter α = 0.01, smoothing parameter τ = 0.01, and 10−4 as threshold for the
normalized average entropy termination criterion (6.11).

The results depicted in Figure 7.10 clearly show the positive influence of the non-Potts
prior (labeling accuracy 99.34%), whereas using the Potts prior lowers the accuracy to 87.12%.
This is due to the fact that the color labels `4 and `5, as well as `1 and `2, have a relatively small
‖ · ‖1 distance and are therefore not easy to distinguish using both the data term and a Potts
prior. On the other hand, the additional prior information about valid label configurations
encoded by (7.12) was sufficient to overcome this difficulty, despite using the same data term,
and to separate the regions correctly.

8. Conclusion. We presented a novel approach to the evaluation of discrete graphical
models in a smooth geometric setting. The novel inference algorithm propagates in parallel
“Wasserstein messages” along edges. These messages are lifted to the assignment manifold
and drive a Riemannian gradient flow that terminates at an integral labeling. Local marginal-
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1358 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

Potts non-Potts
Acc: 87.12% Acc: 99.34%

Figure 7.10. Results of the labeling problem using the Potts and non-Potts prior models together with the
accuracy (Acc) values. Parameters for this experiment are ρ = 15, smoothing τ = 0.01, step-size h = 0.1, and
rounding strength α = 0.01. The threshold for the termination criterion (6.11) was 10−4.

ization constraints are satisfied throughout the process. A single parameter enables a trade-off
between accuracy of optimization and speed of convergence.

Our work motivates applications using graphical models with higher edge connectivity,
where established inference algorithms based on convex programming noticeably slow down.
Likewise, generalizing our approach to tighter relaxations based on hypergraphs and corre-
sponding entropy approximations [54, 33] seems worth additional investigation. Our future
work will leverage the inherent smoothness of our mathematical setting for designing more
advanced numerical schemes based on higher-order geometric integration and using multiple
spatial scales.

Appendix A. Proofs.

A.1. Proof of Proposition 4.4. Let γ : (−ε, ε) → W be a smooth curve, with ε > 0,
γ(0) = W, and γ̇(0) = V . We then have
(A.1)

〈∇Eτ (W ), V 〉 =
d

dt
Eτ
(
γ(t)

)∣∣∣
t=0

(4.12)
=

∑
i∈V

(
〈PT (θi), Vi〉+

∑
j : (i,j)∈E

d

dt
dθij ,τ (γi(t), γj(t))

∣∣∣
t=0

)
,

where γk(t) denotes the kth row of the matrix γ(t) ∈ W ⊂ Rm×n. Since

(A.2)
d

dt
dθij ,τ (γi(t), γj(t))

∣∣∣
t=0

= 〈∇1dθij ,τ (Wi,Wj), Vi〉+ 〈∇2dθij ,τ (Wi,Wj), Vj〉 ,

the right-hand side of (A.1) becomes

〈∇Eτ (W ), V 〉 =
∑
i∈V

(
〈PT (θi), Vi〉+

∑
j : (i,j)∈E

〈∇1dθij ,τ (Wi,Wj), Vi〉
)

(A.3)

+
∑
i∈V

∑
j : (i,j)∈E

〈∇2dθij ,τ (Wi,Wj), Vj〉 ,

where we deliberately separated the outer sum into two parts. Let δ(k,l)∈E be the function
with value 1 if (k, l) ∈ E and 0 if (k, l) /∈ E . Then the second sum of the expression above
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WASSERSTEIN MESSAGES AND GEOMETRIC ASSIGNMENT 1359

reads as ∑
i∈V

∑
j : (i,j)∈E

〈
∇2dθij ,τ (Wi,Wj), Vj

〉
=
∑
i∈V

∑
j∈V

δ(i,j)∈E
〈
∇2dθij ,τ (Wi,Wj), Vj

〉
(A.4a)

=
∑
j∈V

∑
i∈V

δ(i,j)∈E
〈
∇2dθij ,τ (Wi,Wj), Vj

〉
(A.4b)

=
∑
j∈V

∑
i : (i,j)∈E

〈
∇2dθij ,τ (Wi,Wj), Vj

〉
(A.4c)

=
∑
i∈V

∑
j : (j,i)∈E

〈
∇2dθji,τ (Wj ,Wi), Vi

〉
,(A.4d)

where the last equation follows by renaming the indices of summation. Substitution into (A.3)
gives

〈∇Eτ (W ), V 〉 =
∑
i∈V

〈
PT (θi) +

∑
j : (i,j)∈E

∇1dθij ,τ (Wi,Wj) +
∑

j : (j,i)∈E

∇2dθji,τ (Wj ,Wi), Vi

〉(A.5a)

=
∑
i∈V
〈∇iEτ (W ), Vi〉,(A.5b)

which proves (4.13).

A.2. Proof of Lemma 4.12. We first show that if ν is an optimal dual solution, then

(A.6) argmax
ν∈R2n

g(p, ν) ⊆ ν +N (A>).

Let ν ′ 6= ν be another optimal dual solution, that is, g(p, ν) = g(p, ν ′). By (4.21), this equation
reads as

(A.7) G∗τ (A>ν −Θ)−G∗τ (A>ν ′ −Θ) = 〈p, ν − ν ′〉 .

Moreover, due to the optimality conditions (4.27), ν ′ satisfies

(A.8) M
′
= ∇G∗τ (A>ν ′ −Θ), AM ′ = p,

with a corresponding primal optimal solution M
′
. Hence

(A.9) 〈p, ν − ν ′〉 = 〈AM ′, ν − ν ′〉 = 〈M ′,A>(ν − ν ′)〉 (A.8)
= 〈∇G∗τ (A>ν ′ −Θ),A>(ν − ν ′)〉 .

Using the shorthand

(A.10) w = A>ν −Θ, w′ = A>ν ′ −Θ,

we have

(A.11) w′ − w = A>(ν ′ − ν),
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1360 R. HÜHNERBEIN, F. SAVARINO, F. ÅSTRÖM, C. SCHNÖRR

and therefore

(A.12) G∗τ (w′)−G∗τ (w)
(A.7)
= 〈p, ν ′ − ν〉 (A.9)

= 〈∇G∗τ (w′), w′ − w〉.

Since G∗τ is strictly convex, this equality can hold only if

(A.13) 0 = w′ − w (A.11)
= A>(ν ′ − ν).

This shows that ν and ν ′ can differ only by a nullspace vector; i.e., we have shown relation
(A.6). It remains to show the reverse inclusion; that is, vectors characterized by the right-hand
side of (4.33) maximize the dual objective function g(p, ν).

Again let ν be an optimal dual solution, and let ν ′ ∈ ν +N (A>) be an arbitrary vector.
Lemma 4.11 implies that ν ′ takes the form

(A.14) ν ′ = ν + α
(
1n
−1n

)
, α ∈ R.

Now suppose
〈
p,
(
1n
−1n

)〉
= 0. Then, since A>ν ′ = A>ν, we have

g(a, ν ′) =
〈
p, ν + α

(
1n
−1n

) 〉
−G∗τ

(
A>
(
ν + α

(
1n
−1n

) )
−Θ

)
(A.15a)

= 〈p, ν〉 −G∗τ (A>ν −Θ) = g(a, ν),(A.15b)

that is, ν ′ ∈ argmaxν∈R2n g(p, ν).
Finally, suppose

〈
p,
(
1n
−1n

)〉
6= 0, ν is an optimal dual solution, and ν ′ is another optimal

dual vector, which has the form (A.14) as just shown. Inserting (A.14) into (A.7) yields

(A.16) 0 = 〈p, ν ′ − ν〉 = α
〈
p,
(
1n
−1n

) 〉
.

Since
〈
p,
(
1n
−1n

)〉
6= 0, this can hold only if α = 0. Thus, ν ′ = ν by (A.14), which shows

uniqueness of ν as claimed by (4.33).
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using Wasserstein messages and geometric assignment, in Proc. International Conference on Scale
Space and Variational Methods in Computer Vision (SSVM 2017): Scale Space and Variational
Methods in Computer Vision, Lecture Notes in Comput. Sci. 10302, Springer, 2017, pp. 373–385.
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