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Abstract. We introduce and study the inverse problem of model pa-
rameter learning for image labeling, based on the linear assignment flow.
This flow parametrizes the assignment of labels to feature data on the as-
signment manifold through a linear ODE on the tangent space. We show
that both common approaches are equivalent : either differentiating the
continuous system and numerical integration of the state and the adjoint
system, or discretizing the problem followed by constrained parameter
optimization. Experiments demonstrate how a parameter prediction map
based on kernel regression and optimal parameter values, enables the as-
signment flow to perform adaptive regularization that can be directly
applied to novel data.

Keywords: image labeling, assignment manifold, linear assignment flows,
parameter learning, geometric integration, adaptive regularization.

1 Introduction

The image labeling problem, i.e. the problem to classify images depending on the
spatial context, has been thoroughly investigated during the last two decades.
While the evaluation (inference) of such models is well understood [10], learning
the parameters of such models has remained elusive, in particular for models
with higher connectivity of the underlying graph. Various sampling-based and
other approximation methods exist (cf., e.g. [17] and references therein), but the
relation between approximations of the learning problem on the one hand, and
approximations of the subordinate inference problem on the other hand, is less
well understood [14].

This paper is based on the assignment flow for image labeling introduced
in [2] and on the linear assignment flow introduced and studied in [16]. These
flows are induced by dynamical systems that evolve on an elementary statistical
manifold, the so-called assignment manifold. Regarding the inference task, it has
been shown recently that the assignment flow can evaluate discrete graphical
models [3].

Contribution. In this paper, we take a first step towards learning the model
parameters using the linear assignment flow. These parameters control local
geometric averaging as part of the vector field which drives the flow. The problem
to learn these parameters was raised in [2, Section 5 and Fig. 14]. See Figure 1
below for an illustration. Our contribution can be characterized as follows.
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(a) noisy input image (b) close-up view
(c) labeling with
uniform weights

(d) labeling with
adaptive weights

Fig. 1. Running the linear assignment flow with uniform weights for geometric averag-
ing corresponds – roughly speaking – to labeling with a graphical model that involves
a Potts prior (uniform label distances) for regularization. As it is well known, this does
not work, e.g., for fine spatial structures contaminated with noise (cf. panels (a), (b)
and the result (c)). This paper presents a general method for learning how to regu-
larize image labeling using linear assignment flows, by Riemannian gradient flows on
the manifold of regularization parameters, so as to recognize ‘familiar’ image structure
(panel (d)).

Exact inference. The inference problem is solved exactly during learning,
unlike in work based on discrete graphical models, as discussed above. As a
consequence, the ‘predictive power’ of learned parameters can be expected to be
larger.

Reproducible results. Our results are based on a simple algorithm for
numerical geometric integration and hence are reproducible. This contrasts with
current research on deep networks and complex software tools for training, that
are more powerful in applications but are also less well understood [13].

Networks as dynamical systems. Our work ties in with research on net-
works from a dynamical systems point of view, that emanated from [9] in com-
puter science and has also been promoted recently in mathematics [4]. The recent
work [7], for example, studied stability issues of discrete-time network dynam-
ics using techniques of numerical ODE integration. The authors adopted the
discretize-then-differentiate viewpoint on the parameter estimation problem and
suggested symplectic numerical integration in order to achieve better stability.

Commuting modelling diagram. Our work contrasts in that inference is
always exact during learning, unlike [7] where learning is based on approximate
inference. Furthermore, symplectic numerical integration is a consequence, in our
case, of resolving the dilemma of what path to choose in the ‘modelling diagram’
of Figure 2: the fact that both paths commute qualifies our approach as a proper
(though rudimentary) method of optimal control (cf. [12]).

Organization of the paper. Section 2 summarizes the assignment flow,
the linear assignment flow and related concepts. Section 3 details our approach:
both paths of the diagram of Fig. 2 are worked out and shown to be equivalent.
Experiments in Section 4 demonstrate that a basic kernel-based regression esti-
mator based on optimal parameter values and corresponding features makes the
assignment flow adaptive and directly applicable to novel data.
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Fig. 2. Illustration of the methodological part of this paper. left: The sensitivity
of an objective function E with respect to parameters Ω to be estimated, defines a
gradient flow on the parameter manifold for adapting initial parameter values. The
parameter dependency of E is implicitly given through the linear assignment flow V (t)
at the terminal point of time t = T , whose state equation depends on Ω. right: Our
approach satisfies the commuting diagram, i.e. identical results are obtained either if
the continuous problem is differentiated first and than discretized (blue path), or the
other way around (violet path).

2 Preliminaries

This section summarizes the assignment flow and its approximation, the linear
assignment flow, introduced in [2] and [16], respectively. The latter provides the
basis for our appoach to parameter estimation developed in Section 3.

2.1 Assignment Flow

Let G = (I, E) be a given undirected graph with vertices i ∈ I indexing data
FI = {fi : i ∈ I} ⊂ F given in a metric space (F , d). The edge set E specifies
neighborhoods Ni = {k ∈ I : ik = ki ∈ E} for every pixel i ∈ I along with
positive weight vectors wi ∈ rint∆|Ni|, where rint∆n = ∆n ∩ Rn++ denotes the
relative interior of the probability simplex ∆n.

Along with FI , prototypical data (labels) LJ = {lj ∈ F : j ∈ J} are given
that represent classes j = 1, . . . , |J |. Supervised image labeling denotes the task
to assign precisely one prototype lj to each datum fi in a spatially coherent way.
These assignments are represented at each pixel i by probability vectors

Wi ∈ S := (rint∆|J|, gFR), i ∈ I (2)

on the relative interior of the simplex ∆|J|, that together with the Fisher-Rao
metric gFR becomes a Riemannian manifold denoted by S. Collecting all assign-
ment vectors into a strictly positive, row-stochastic matrix

W = (W1, . . . ,W|I|)
> ∈ W = S × · · · × S ⊂ R|I|×|J| (3)

defines a point on the assignment manifold W. Image labeling is accomplished
by geometrically integrating the assignment flow (the r.h.s. is defined below)

Ẇ = ΠW

(
S(W )

)
, W (0) = 1W :=

1

|J |
1|I|1

>
|J| (barycenter), (4)

that evolves from the barycenter W (0) towards pure assignment vectors, i.e. each
vector Wi approaches the ε-neighborhood of some unit vector at some vertex of
S and hence a labeling after trivial rounding.
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In order to explain the rationale behind (4), we need the following maps based
on the affine e-connection of information geometry [1] in place of the Levi-Civita
connection on the tangent bundle of the manifolds S andW: With tangent space
T0 = TpS independent of the base point p ∈ S, we define

R|J| 3 z 7→ Πp(z) =
(

Diag(p)− pp>
)
z ∈ T0, (5a)

S × T0 3 (p, v) 7→ Expp(v) =
e
v
p

〈p, e
v
p 〉
p ∈ S, (5b)

S × S 3 (p, q) 7→ Exp−1
p (q) = Πp log

q

p
∈ T0, (5c)

S × R|J| 3 (p, z) 7→ expp(z) = Expp ◦Πp(z) =
pez

〈p, ez〉
∈ S, (5d)

where multiplication, subdivision and the exponential function e(·) apply compo-
nentwise to strictly positive vectors in S. Corresponding maps ΠW ,ExpW , expW
in connection with the product manifold (3) are defined analogously, as is the
tangent space T0 = T0 × · · · × T0.

The vector field defining the assignment flow on the right-hand side of (4)
is defined as follows. Given a metric d, data FI and labels LJ , distance vectors

Di = (d(fi, l1), . . . , d(fi, l|J|)
)>

are defined at each pixel i ∈ I and mapped to
the assignment manifold by

L(W ) = expW (− 1
ρD) ∈ W, Li(Wi) = expWi

(− 1
ρDi) =

Wie
− 1
ρDi

〈Wi, e
− 1
ρDi〉

, (6)

where ρ > 0 is a user parameter for normalizing the scale of the data. These
likelihood vectors represent ‘data terms’ in conventional variational approaches,
and they are spatially regularized in a way conforming to the geometry of S, to
obtain

S(W ) = Gω(L(W )) ∈ W, Gωi (W ) := ExpWi

( ∑
k∈Ni

wik Exp−1
Wi

(Wk)
)
. (7)

Note that (7) is parametrized by the ‘weight patches’ (wik)k∈Ni , i ∈ I. Learning
these parameters from data is the subject of this paper.

The assignment flow (4) now simply approximates the Riemannian gradient
ascent flow Ẇ = ∇WJ(W ) with respect to the correlation functional J(W ),

∇WJ(W ) = ΠW (∇J(W )), J(W ) = 〈W,S(W )〉, (8)

based on the approximation of the Euclidean gradient ∇J(W ) ≈ S(W ), which
is justified by the slow dynamics of S(W (t)) due to averaging (7), relative to the
fast dynamics of W (t).
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2.2 Linear Assignment Flow

The linear assignment flow, introduced by [16], approximates the mapping (7)
as part of the assignment flow (4) by

Ẇ = ΠW

(
S(W0) + dSW0ΠW0 log

W

W0

)
, W (0) = W0 = 1W ∈ W. (9)

This flow is still nonlinear but admits the following parametrization [16, Prop. 4.2]

W (t) = ExpW0

(
V (t)

)
, V̇ = ΠW0

(
S(W0) + dSW0

V
)
, V (0) = 0, (10)

where the latter ODE is linear and defined on the tangent space T0. Assuming
that V results from stacking row-wise the tangent vectors Vi for each pixel i ∈ I,
the Jacobian dSW0 is given by the block matrix

dSW0 =
(
Aik(W0)

)
i,k∈I , Aik(W0)(Vk) =

{
wikΠSi(W0)(

Vk
W0k

), k ∈ Ni,
0, k 6∈ Ni.

(11)

It is the linearity of (10) with respect to both the tangent vector V and the
parameters wik (see (11)), that makes this approach attractive for parameter
estimation.

3 Learning Adaptive Regularization Parameters

This section describes our contribution as illustrated by Fig. 2: an objective
function for determining optimal weights – called parameters – that steer the
linear assignment flow towards given ground-truth labelings (Sect. 3.1); a contin-
uous approach to parameter estimation based on the adjoint dynamical system
(Sect. 3.2), which is the method of choice when estimating many parameters
[5]; alternatively, a discrete approach based on discretizing first the parameter
estimation problem followed by nonlinear programming (Sect. 3.3); showing that
either way yields the same result (Sect. 3.4); specifying the resulting algorithm
(Sect. 3.5); finally, closing the loop by learning a simple predictor function that
maps features extracted from novel data to proper weights (Sect. 3.6).

3.1 Parameter Estimation by Trajectory Optimization

We consider the following constrained optimization problem

min
Ω∈P

E
(
V (T )

)
(12a)

s.t. V̇ (t) = f(V (t), Ω), t ∈ [0, T ], V (0) = 0|I|×|J|. (12b)

where (12b) is given by (10) and the remaining symbols are defined as follows.
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Ω parameters (wik)k∈Ni , i ∈ I of (11) to be estimated;

P manifold of parameters Ω ∈ P := rint∆
|I|
|N | = rint(∆|N | × · · · ×∆|N |);

|N | equal size of each local neighborhood |N | = |Ni| of pixel i ∈ I;
V (T ) tangent vectors solving (12b) at termination time V (t = T );

V (T ) = V (T,Ω) depends on Ω through (12b).

A concrete example for an objective (12a) is

E
(
V (T )

)
= DKL

(
W ∗, exp1W

(
V (T )

))
, (13)

which evaluates the Kullback-Leibler distance of the labeling induced by V (T )
from a given ground-truth labeling W ∗ ∈ W. In words, our objective is to
estimate parameters Ω that control the linear assignment flow (9), by minimizing
E. Since the dependencyΩ 7→ E is only implicitly given through (12b), the major
task – illustrated by Fig. 2 – is to determine the sensitivity d

dΩE(V (T )), which
in turn is used to adapt the parameters. Next, we detail both paths of Figure 2
for evaluating Eq. (1).

3.2 Parameter Estimation: Continuous Approach

The following theorem makes precise the upper path to the right of Figure 2.

Theorem 1 (parameter sensitivity: continuous case). Let the objective E
be defined by (12). Then

dE

dΩ
=

∫ T

0

( ∂f
∂Ω

)>
λ(t)dt, (14a)

where λ(t) satisfies the adjoint differential equation

λ̇(t) = −
( ∂f
∂V

)>
λ(t), λ(T ) =

∂E

∂V

(
V (T )

)
, (14b)

which has to be solved backwards in time.

Proof. Setting up the Lagrangian

L(V,Ω) = E
(
V
)∣∣
t=T
−
∫ T

0

〈
λ, F (V̇ , V,Ω)

〉
dt (15)

with multiplier λ(t) and F (V̇ , V,Ω) := V̇ (t)− f(V (t), Ω) ≡ 0, we get

dE

dΩ
=
dL

dΩ
=
(∂V
∂Ω

)> ∂E
∂V

∣∣∣∣
t=T

−
∫ T

0

(∂F
∂V̇

∂V̇

∂Ω
+
∂F

∂V

∂V

∂Ω
+
∂F

∂Ω

)>
λ dt (16)

where integration applies componentwise. Using ∂F
∂V̇

= I, we partially integrate
the first term under the integral,∫ T

0

(∂V̇
∂Ω

)>
λdt =

(∂V
∂Ω

)>
λ

∣∣∣∣T
t=0

−
∫ T

0

(∂V
∂Ω

)>
λ̇ dt, (17)
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to obtain with ∂F
∂Ω = − ∂f

∂Ω , ∂F
∂V = − ∂f

∂V

dE

dΩ
=
(∂V
∂Ω

)> ∂E
∂V

∣∣∣∣
t=T

−
(∂V
∂Ω

)>
λ

∣∣∣∣T
t=0

+

∫ T

0

(∂V
∂Ω

)>
λ̇ dt (18a)

+

∫ T

0

( ∂f
∂V

∂V

∂Ω
+
∂f

∂Ω

)>
λ dt. (18b)

Thus, with ∂V
∂Ω (0) = 0, factoring out the unknown Jacobian ∂V

∂Ω and choosing
λ(t) such that the corresponding coefficient vanishes, we obtain

dE

dΩ
=

∫ T

0

( ∂f
∂Ω

)>
λ(t) dt, where λ(t) solves (19a)

λ̇(t) = −
( ∂f
∂V

)>
λ(t), λ(T ) =

∂E

∂V

(
V (T )

)
. (19b)

ut
Discretization. Due to lack of space, we only consider the simplest geometric
scheme for numerically integrating the ODEs (12b) and (14b),

namely the symplectic Euler method [8], and get

Vk+1 = Vk + hkf(Vk, Ω), (20a)

λk+1 = λk − hk
(
∂V f(Vk, Ω)

)>
λk+1, (20b)

with iteration index k = 0, . . . , N − 1, step sizes hk and
∑
k∈[N ] hk = T . This

amounts to apply the explicit Euler scheme to the linear assignment flow and
the implicit Euler scheme to the adjoint system. We can avoid the implicit step
(20b) by reversing the order of integration k = N − 1, . . . , 0, to obtain

λk = λk+1 + hk
(
∂V f(Vk, Ω)

)>
λk+1, (21)

with initial condition λN = λ(T ) given by (14b). As a consequence, we first
iterate (20a), store all iterates Vk and then iterate (21).

3.3 Parameter Estimation: Discrete Approach

In contrast to the previous section, we first discretize problem (12) and then
differentiate the resulting nonlinear program (Fig. 2: violet path).

As mentioned in the previous section, we only consider the simplest integra-
tion scheme, the explicit Euler method. Using (20a), problem (12) becomes the
nonlinear optimization problem

min
Ω∈P

E(VN ) s.t. Vk+1 = Vk + hkf(Vk, Ω), k = 0, . . . , N − 1, (22)

with V0 = 0|I|×|J|. The result analogous to Theorem 1 follows.

Theorem 2 (parameter sensitivity: discrete case). The sensitivity of prob-
lem (22) with respect to the parameter Ω is given by

dE

dΩ
=

N∑
k=1

hk−1

(∂f(Vk−1, Ω)

∂Ω

)>
λk, (23a)
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where the discrete adjoint vectors λk are given by

λk =
∂E(VN )

∂Vk
, k = 0, . . . , N. (23b)

Proof. Skipped due to lack of space. ut

We notice that (23a) corresponds to a discretization of (14a). Likewise, the dis-
crete adjoints (23b) can be based on the theory of automatic differentiation
(AD) [6]. Specifically, in view of the geometric numerical integration of the sys-
tem (20), formula (23a) can be seen as a non-Euclidean version of the reverse
mode of AD.

3.4 Differentiate or Discretize First?

We briefly indicate why either approach of Section 3.2 or Section 3.3 yields the
same result, that is diagram of Fig. 2 commutes indeed.

We take a closer look at expression (23b) due to the discrete problem formu-
lation and compute

λk =
∂E(VN )

∂Vk
=
(∂Vk+1

∂Vk

)> ∂E(VN )

∂Vk+1
=
(∂Vk+1

∂Vk

)>
λk+1 (24a)

(22)
=
(∂(Vk + hkf(Vk, Ω)

)
∂Vk

)>
λk+1 =

(
I + hk∂V f(Vk, Ω)

)>
λk+1 (24b)

λk = λk+1 + hk
(
∂V f(Vk, Ω)

)>
λk+1, (24c)

which agrees with (21) derived from the continuous problem formulation.

3.5 Parameter Estimation Algorithm

Our strategy for parameter adaption is to follow the Riemannian gradient descent
flow on the parameter manifold P,

Ω̇ = −∇PE
(
V (T,Ω)

)
= −ΠΩ

( d

dΩ
E
(
V (T,Ω)

))
, Ω(0) = 1P , (25)

with ΠΩ given by (5a) and with the unbiased initialization Ω(0) = 1P , i.e. uni-
form weights at every patch Ni around pixel i ∈ I. We discretize flow (25) using
the geometric explicit Euler scheme (cf. [16])

Ωk+1 = expΩk
(
− hk∇PE(VN (Ωk))

)
, Ω0 = Ω(0), k = 1, 2, . . . (26)

We summarize the two main procedures for parameter learning.

Algorithm 1: Discretized Riemannian flow. (25)

Data: initial weights Ω0 = 1P , objective function E
(
V (T )

)
Result: weight parameter estimates Ω∗

// geometric Euler integration

1 for k = 0, . . . ,K do
2 compute d

dΩE
(
VN (Ωk))

)
; // Algorithm 2

3 Ωk+1 = expΩk
(
− hkΠΩ

(
d
dΩk

E(VN )
))

;
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In practice, we terminate the iteration when ‖Ωk+1 − Ωk‖ ≤ ε. This deter-
mines K.

Algorithm 2: Compute the sensitivity dE(VN )
dΩ by (23a).

Data: current weights Ωj
Result: objective value E(VN (Ωj)), sensitivity dE(VN )

dΩj

// forward Euler integration

1 for k = 0, . . . , N − 1 do
2 Vk+1 = Vk + hf(Vk, Ωj);

3 compute λN = ∂E(VN )
∂VN

;

4 set dE(VN )
dΩ = 0;

// backward Euler integration

5 for k = N − 1, . . . , 0 do

6 λk = λk+1 + hk
(∂f(Vk,Ωj)

∂V

)>
λk+1;

7
dE(VN )
dΩ += hk−1

(∂f(Vk−1,Ωj)
∂Ω

)>
λk ; // summand of (23a)

3.6 Parameter Prediction

We apply kernel-based local regression in order to generalize the relation between
features and optimal weight parameters for regularization to novel data.

Specifically, let Ω∗ = (w∗ik)k∈Ni , i ∈ I denote the output of Algorithm 1,
and let F∗i = (f∗k )k∈Ni , i ∈ I denote the corresponding image ‘feature patches’
of the training data that were used to compute Ω∗. The goal of regression is
to generalize the relation between F∗i , i ∈ I and Ω∗ to novel image data and
features Fi in terms of a weight map

ŵ : Fi → P, (fk)k∈Ni → (wik)k∈Ni , i ∈ I, (27)

where ŵ does not depend on the pixel location i ∈ I. In words, the local
spatial context in terms of novel features fk observed within an image patch
k ∈ Ni around each pixel i ∈ I, is used to predict the regularization parameters
(wik)k∈Ni .

Using the basic Nadaraya–Watson kernel regression estimator [15, Section
5.4] based on the data (

F∗i , (w∗ik)k∈Ni
)
i∈N (28)

which constitutes a coreset [11] of the data produced offline by Algorithm 1
from (possibly many) training images, we explore (see Section 4) the predictor
map

ŵ(Fi) =
∑
j∈[N ]

Kh(Fi,F∗j )∑
j′∈[N ]Kh(Fi,F∗j′)

w∗j , w∗j = (w∗jk)k∈Nj , (29)

where Kh(·, ·) is a standard kernel function (Gaussian, Epanechnikov, etc.) ap-
plied to a suitable distance between the feature sets Fj and F∗j′ . The bandwidth
parameter h is determined by cross-validation using the data (28).
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(a) training data (d) novel (test) data

(b) uniform weights (e) uniform weights

(c) adaptive weights (f) adaptive weights

training data test data feature patches

Fig. 3. Patch-based adaptive regularization of binary letters. left column:
(a) Training data and corresponding 5× 5 feature patches (rightmost column). (b)
Uniform regularization fails even with perfect features. (c) Perfect adaptive reconstruc-
tion (sanity check). Center column: (d) Test data to be labelled using the features
and regularizer trained on (a). (e) Uniform regularization fails. (f) Adaptive regular-
ization predicts curvilinear structures of (d) using ‘knowledge’ based on (a) where only
vertical and horizontal structures occur.

4 Experiments

We illustrate adaptive regularization for image labeling by two further experi-
ments, based on the objective function (13), in addition to the experiment with
non-binary data illustrated by Figure 1.

Figure 3 shows patch-based labeling of curvilinear letters (center column) us-
ing an adaptive regularizer trained on letters with vertical and horizontal struc-
tures only (left column). See the figure caption for details. This result indicates
adaptivity in a two-fold way: use of non-uniform weights that are predicted
online as optimal parameters for novel image data not seen before.

Figure 4 shows results for curvilinear line structures contaminated by noise.
The geometry of these scenes correspond to random Voronoi diagrams, that is
training and test scenes differ. The raw grayvalue data together with the outputs
of a ridge filter and a Laplacian-of-Gaussian filter were used as feature vectors
of dimension 3. The results illustrate the labeling with uniform regularization
using the smallest scale |N | = 3 × 3 returns dilated and incomplete structures,
and fails completely at the larger scale |N | = 5 × 5. The adaptive regularizer
yields almost perfect results except for minor boundary effects. This illustrates
that after the training phase, when using optimal parameters Ω∗ determined for
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training data, then the linear assignment flow has enough predictive power in
order to ‘know’ how to average geometrically when confronted with novel image
data not seen before.

noisy training data optimal weights novel (test) data

|N
|=

3
×

3
|N
|=

5
×

5

(a) uniform weights (b) adaptive weights (c) difference

Fig. 4. Adaptive regularization and labeling of curvilinear noisy line struc-
tures. Training and test data were randomly generated and hence differ completely.
Non-adaptive regularization (uniform weights) returns dilated incomplete structures
at the smallest scale (|N | = 3 × 3) or fails completely (|N | = 5 × 5). Panel ‘optimal
weights’ illustrates a sample of non-uniform optimal weight patches (w∗ik)k∈Ni , for a
couple of pixels i ∈ I, computed during the training phase. Panels ‘difference’ illustrate
the deviation of weight patches from uniform weights during the test phase for each
pixel. The corresponding labelings (panels (b)) are almost perfect except for minor
boundary effects.

5 Conclusion

We introduced an novel approach to image labeling based on adaptive regular-
ization of the linear assignment flow. Parameter estimation relies on a consistent
discretization and geometric numerical integration that is easy to reproduce.
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The prediction component can be based on any state-of-the-art kernel method
from machine learning.

Our future work will extend the numerics to more general symplectic in-
tegrators and the approach itself to state-dependent parameter prediction, in
connection with spatial multiscale representations of image data.

Acknowledgement. Support from the German Science Foundation, grant GRK
1653, is gratefully acknowledged.
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