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ABSTRACT. We study the inverse problem of model parameter learning for pixelwise image labeling, using
the linear assignment flow and training data with ground truth. This is accomplished by a Riemannian gra-
dient flow on the manifold of parameters that determine the regularization properties of the assignment flow.
Using the symplectic partitioned Runge–Kutta method for numerical integration, it is shown that deriving the
sensitivity conditions of the parameter learning problem and its discretization commute. A convenient property
of our approach is that learning is based on exact inference. Carefully designed experiments demonstrate the
performance of our approach, the expressiveness of the mathematical model as well as its limitations, from the
viewpoint of statistical learning and optimal control.
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1. INTRODUCTION

1.1. Overview and Scope. The image labeling problem, i.e. the problem to classify images pixelwise de-
pending on the spatial context, has been thoroughly investigated during the last two decades. While the
evaluation (inference) of such models is well understood [KAH+15], learning the parameters of such mod-
els has remained elusive, in particular for models with higher connectivity of the underlying graph. Various
sampling-based and other approximation methods exist (cf., e.g. [ZL02] and references therein), but the rela-
tion between approximations of the learning problem on the one hand, and approximations of the subordinate
inference problem on the other hand, is less understood [Wai06].

In this paper, we focus on parameter learning for contextual pixelwise image labeling based on the assign-
ment flow introduced by [ÅPSS17]. In comparison with discrete graphical models, an antipodal viewpoint
was adopted by [ÅPSS17] for the design of the assignment flow approach: Rather than performing non-
smooth convex outer relaxation and programming, followed by subsequent rounding to integral solutions that
is common when working with large-scale discrete graphical models, the assignment flow provides a smooth
nonconvex interior relaxation that performs rounding to integral solutions simultaneously. In [HSÅS18] it
was shown that the assignment flow can emulate a given discrete graphical model in terms of smoothed
local Wasserstein distances, that evaluate the edge-based parameters of the graphical model. In comparison
to established belief propagation iterations [YFW05, WJW05], the assignment flow driven by ‘Wasserstein
messages’ [HSÅS18] continuously takes into account basic constraints, which enables to compute good sub-
optimal solutions just by numerically integrating the flow in a proper way [ZSPS18]. We refer to [Sch19] for
summarizing recent work based on the assignment flow and a discussion of further aspects.

In this paper, we ignore the connection to discrete graphical models and focus on the parameter learning
problem for the assignment flow directly. This problem was raised in [ÅPSS17, Section 5 and Fig. 14]. The
present paper provides a detailed solution. Adopting the linear assignment flow as introduced by [ZSPS18],
enables to cast the parameter estimation problem into the general form

min
p∈P

C
(
x(T, p)

)
(1.1a)

s.t. ẋ(t) = f(x(t), p, t), t ∈ [0, T ], x(0) = x0, (1.1b)

where the parameters p determine the vector field of the linear assignment flow (1.1b) whose unique solution
is evaluated at some point of time T by a suitable loss function (1.1a). This problem formulation has a range
of advantages.

• Inference (labeling) that always defines a subroutine of a learning procedure, can be carried out
exactly by means of numerically solving (1.1b). In other words, errors of approximate inference
(e.g. as they occur with graphical models) are absent and cannot compromise the effectiveness of
parameter learning.
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• In addition, discretization effects can be handled in the most convenient way: we show that the
operations of (i) deriving the optimality conditions of (1.1) and (ii) problem discretization commute
if a proper numerical scheme is used.

As a result, we obtain a well-defined and relatively simple algorithm for parameter learning that is easy to
implement and enables reproducible research. We report the results of a careful numerical evaluation in
order to highlight the scope of our approach and its limitations.

We next discuss in a broader context our specific contributions that considerably elaborate a related con-
ference paper [HSPS19].

1.2. Related Work, Contribution and Organization. The task to optimize parameters of a dynamical sys-
tem (1.1) is a familiar one in the communities of scientific computing and optimal control [TV72, CLPS03],
but may be less known to the imaging community. Therefore, we provide the necessary background in
Section 2.1.

Geometric numerical integration of ODEs on manifolds is a mature field as well [HLW06]. Here we have
to distinguish between the integration of the assignment flow [ZSPS18] and integration schemes for numeri-
cally solving (1.1). The task to design the latter schemes faces the ‘optimize-then-discretize’ vs. ‘discretize-
then-optimize’ dilemma. Conditions and ways to resolve this dilemma have been studied in the optimal
control literature [Hag00, Ros06]. See also the recent survey [SS16] and references therein. We provide the
corresponding background in Sections 2.2 and 2.3 including detailed proof of Theorem 2.7 that is merely
outlined in [SS16]. The application to the linear assignment flow (Section 3) requires considerable work,
taking into account that the state equation (1.1b) derives from the full nonlinear geometric assignment flow
(Section 4). Section 4 concludes with specifying Algorithms 1 and 2 whose implementation realizes our
approach.

From a more distant viewpoint, our work ties in with research on networks from a dynamical systems point
of view, that emanated from [HZRS16] in computer science and has also been promoted recently in math-
ematics [E17]. The recent work [HR17], for example, studied stability issues of discrete-time network dy-
namics using techniques of numerical ODE integration. The authors adopted the discretize-then-differentiate
viewpoint on the parameter estimation problem and suggested symplectic numerical integration in order to
achieve better stability. As mentioned above, our work contrasts in that inference is always exact during
learning, unlike the more involved architecture of [HR17] where learning is based on approximate inference.
Furthermore, in our case, symplectic numerical integration is a consequence of making the diagram of Fig-
ure 2.2 (page 8) commute. This property qualifies our approach as a proper (though rudimentary) method of
optimal control (cf. [Ros06]).

We numerically evaluate our approach in Section 5, using a class of computer-generated random images
such that learning the regularization parameters is necessary for accurately labeling each image pixelwise.
It is demonstrated in Section 5.1 that, for each given ground truth labeling, the parameter estimation prob-
lem can be solved exactly. As a consequence, the performance of the assignment flow solely depends on
the prediction map, i.e. the ability to map features extracted from novel data to proper weights as regular-
ization parameters, using as examples both features and optimal parameters computed during the training
phase. For statistical reasons, this task becomes feasible if the domain of the prediction map is restricted
to local contexts, in terms of features observed within local windows. We discuss consequences for future
work in Section 6. Finally, in Section 5.2, we conduct an experiment that highlights the remarkable model
expressiveness of the assignment flow as well as limitations that result from learning constant parameters.

We conclude in Section 6.

1.3. Basic Notation. For the clarity of exposition we use general mathematical notation in Section 2 that
should be standard, whereas specific notation related to the assignment flow is introduced in Section 3.
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We set [n] = {1, 2, . . . , n} for n ∈ N and 1n = (1, 1, . . . , 1)> ∈ Rn. For a matrix A ∈ Rm×n, the i-th
row vector is denoted by Ai, i ∈ [m] and its transpose by A> ∈ Rn×m. 〈a, b〉 denotes the Euclidean inner
product of a, b ∈ Rn and 〈A,B〉 =

∑
i∈[n]〈Ai, Bi〉 the (Frobenius) inner product between two matrices

A,B ∈ Rm×n. The probability simplex is denoted by ∆n = {p ∈ Rn : pi ≥ 0, i ∈ [n], 〈1n, p〉 =
1}. Various orthogonal projections onto a convex set are generally denoted by Π and distinguished by a
corresponding subscript, like Πn,ΠP , · · · , etc.

We assume the reader to be familiar with elementary notions of Riemannian geometry as found, e.g., in
[Lee13, Jos17]. Specifically, given a Riemannian manifold (M, g) with metric g, and a smooth function
f : M→ R, the Riemannian gradient of f is denoted by grad f and given by

〈grad f,X〉g = df(X), ∀X (1.2)

where X denotes any smooth vector field onM, that returns the tangent vector Xp ∈ TpM when evaluated
at p ∈ M. The right-hand side of (1.2) denotes the differential df of f , acting on X . More generally, for a
map F : M→N between manifolds, we write dF (p)[v] ∈ TF (p)N , p ∈M, v ∈ TpM, if the base point p
matters.

In the Euclidean case f : Rn → R, the gradient is a column vector and denoted by ∂f . For F : Rn → Rm,
we identify the differential dF ∈ Rm×n with the Jacobian matrix. If x = (x1, x2)> ∈ Rn = Rn1 ×Rn2 with
n = n1 + n2, then the Jacobian of F (x) = F (x1, x2) with respect to the parameter vector xi is denoted by
dxiF , for i = 1, 2.

2. SENSITIVITY ANALYSIS FOR DYNAMICAL SYSTEMS

In this section, we consider the constrained optimization problem (1.1) with a smooth objective function
C : Rnx → R. The constraints are given by a general initial value problem (IVP), which consist of a system
of ordinary differential equations (ODEs) (1.1b) that is parametrized by a vector p ∈ P ⊂ Rnp , and an
initial value x0 ∈ Rnx . To ensure existence, uniqueness and continuous differentiability of the solution
trajectory x(t) on the whole time horizon [0, T ], we assume that f(·, p, ·) of (1.1b) is Lipschitz continuous
on Rnx × [0, T ], for any p.

Since we assume the initial value x0 and the time horizon [0, T ] to be fixed, the objective function (1.1a)

Φ(p) := C(x(T, p)) (2.1)

effectively is a function of the parameter p, i.e. Φ: Rnp → R. In order to solve (1.1) with a gradient based
method, we have to compute the gradient

∂pΦ(p) = dpx(T, p)>∂xC(x(T, p)). (2.2)

The term dpx(T, p) – called sensitivity – measures the sensitivity of the the solution trajectory x(t) at time T
with respect to changes in the parameter p. Two basic approaches for determining (2.2) are stated in Section
2.1, and we briefly highlight why using one of them, the adjoint approach, is advantageous for comput-
ing sensitivities. In Section 2.2, we recall symplectic Runge-Kutta methods and conditions for preserving
quadratic invariants. The latter property relates to the derivation of a class of numerical methods such that
evaluating (2.2), which derives from the time-continuous problem (1.1), is identical to first discretizing (1.1)
followed by computing the corresponding derived expression (2.2). Two specific instances of the general
numerical scheme are detailed in Section 2.4.

2.1. Sensitivity Analysis. In this section we show that the sensitivity dpx(T, p) can be determined by solv-
ing two initial value problems defined below: the variational system and the adjoint system.
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Theorem 2.1 (Variational System; [HNW08, Chapter I.14, Theorem 14.1]). Suppose the derivatives dxf
and dpf exist and are continuous in the neighborhood of the solution x(t) for t ∈ [0, T ]. Then, the sensitivity
with respect to the parameters

dpx(T, p) =: δ(T ) (2.3)
exists, is continuous and satisfies the variational system

δ̇(t) = dxf(x(t), p, t)δ(t) + dpf(x(t), p, t), t ∈ [0, T ], (2.4a)

δ(0) = 0 ∈ Rnx×np , (2.4b)

with δ(t) ∈ Rnx×np . If the initial value x(0) of (1.1b) depends on the parameters p, the initial value (2.4b)
has to be adjusted as δ(0) = dpx(0).

Proof. A detailed proof can be found in [HNW08, Chapter I.14, Theorem 14.1]. In order to make this paper
self-contained, a sketch follows.

The integral representation of the solution to (1.1b) is given by x(t, p) = x0 +
∫ t

0 f(x(s), p, s)ds. Differ-
entiating with respect to p and exchanging integration and differentiation by the theorem of Lebesgue yields

dpx(t, p) = dpx0 +

∫ t

0
dpf(x(s), p, s)ds (2.5a)

= dpx0 +

∫ t

0
dxf(x(s), p, s)dpx(s, p) + dpf(x(s), p, s)ds. (2.5b)

Substituting δ(t) = dpx(t, p), gives

δ(t) = δ0 +

∫ t

0
dxf(x(s), p, s)δ(s) + dpf(x(s), p, s)ds, (2.6)

which is the integral representation of the trajectory δ(t) solving (2.4). �

For the computation of the variational system (2.4) the solution x(t) is required. Since the variational
system (2.4) is a matrix-valued system of dimension nx×np, the size of the system grows with the number of
parameters np. For small np, solving the variational system is efficient. In practice, it can be simultaneously
integrated numerically together with the system (1.1b).

Theorem 2.2 (Adjoint System). Suppose that the derivatives dxf and dpf exist and are continuous in the
neighborhood of the solution x(t) for t ∈ [0, T ]. Then, the sensitivity with respect to the parameters is given
by

dpx(T, p)> =

∫ T

0
dpf(x(t), p, t)>λ(t)dt, (2.7)

where λ(t) ∈ Rnx×nx solves the adjoint system

λ̇(t) = −dxf(x(t), p, t)>λ(t), t ∈ [0, T ], (2.8a)

λ(T ) = I ∈ Rnx×nx . (2.8b)

Proof. This proof is elaborated on in a broader context in Section 2.3. �

Similar to the variational system of Theorem 2.1, solving the adjoint system (2.8) requires the solution
x(t). The adjoint system is matrix- valued of dimension nx×nx, in contrast to the variational system which
is of dimension nx×np. Thus, if np � nx as will be the case in our scenario, it is more efficient to solve (2.8)
instead of (2.4). Another major difference is that the adjoint system is defined backwards in time, starting
from the endpoint T . This has important computational advantages for our setting. In view of the required
gradient (2.2), we are not interested in the full sensitivity but rather in the derivative along the direction
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η := ∂xC(x(T, p)), i.e. dpx(T, p)>η. This can be achieved by exploiting the structure of the adjoint system,
by multiplying (2.8) from the right by η and setting λ(t) := λ(t)η. The resulting IVP is again an adjoint
system, no longer being matrix-valued but vector-valued λ(t) ∈ Rnx , with λ(T ) = η ∈ Rnx . Thus, from
now on, we consider the latter case and denote λ(t) again by λ(t), which is vector-valued.

As a consequence, we will focus on the adjoint system (2.8) in the remainder of this paper. In particular,
(2.7) will be used to estimate parameters p by solving (1.1) using a gradient descent flow. This requires
to solve the adjoint system numerically. However, a viable alternative to this ‘optimize-then-discretize’ ap-
proach is to reverse this order, that is to discretize problem (1.1) first, and then to derive a corresponding
time-discrete adjoint system. It turns out that both ways are equivalent if a proper class of numerical integra-
tion scheme is chosen for discretizing the system in time. This will be shown in Section 2.3 after collecting
required background material in Section 2.2.

2.2. Symplectic Partitioned Runge-Kutta Methods. In this section, we recall basic concepts of numerical
integration from [HLW06, SS16] in order to prepare Section 2.3. Symplectic schemes are typically applied to
Hamiltonian systems in order to conserve certain quantites, often with a physical background. The pseudo-
Hamiltonian defined below by (2.19) will play a similar role, albeit there is no physical background for our
concrete scenario to be studied in subsequent Sections.

A general s-stage Runge–Kutta (RK) method with s ∈ N is given by [HNW93]

xn+1 = xn + hn

s∑
i=1

bikn,i, hn = tn+1 − tn, (2.9a)

kn,i = f(Xn,i, p, tn + cihn), (2.9b)

Xn,i = xn + hn

s∑
j=1

aijkn,j . (2.9c)

The coefficients aij , bi, ci ∈ R can be arranged in a so-called Butcher tableau (Fig. 2.1), with entries aij
defining the Runge–Kutta matrix A.

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass
b1 b2 . . . bs

=
c A

bT
,

c1

c2 a21

c3 a31 a32
...

...
...

. . .
cs as1 as2 . . . ass−1

b1 b2 . . . bs−1 bs

FIGURE 2.1. LEFT: Butcher tableau of a general s-stage Runge–Kutta method. RIGHT:
Butcher tableau of a s-stage explicit Runge–Kutta method.

Lower-triangular Runge–Kutta matrices A, i.e.

aij = 0 for j ≥ i, (2.10)

result in explicit RK schemes, and in implicit RK schemes otherwise. Implicit Runge–Kutta methods are
well-suited for integrating numerically stiff ODEs, but are also significantly more complex than explicit
ones. Since, (2.9b) can not be solved explicitly, a system of algebraic equations has to be solved. The
following theorem specifies the conditions under which a solution for these equations exists.
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Theorem 2.3 (Existence of a Numerical Solution; [HNW93, Chapter II, Theorem 7.2]). For any p ∈ Rnp

let f(·, p, ·) of (1.1b) be continuous and satisfy a Lipschitz condition on Rnx × [0, T ] with constant L,
independent of p. If

h <
1

Lmaxi=1,...,s
∑s

j=1 |aij |
(2.11)

there exists a unique solution of (2.9), which can be obtained by iteration. If f(x, p, t) is q times differen-
tiable, the functions ki (as functions of h) are also in Cq.

Proof. A detailed proof can be found in [HNW93, Chapter II, Theorem 7.2]. �

Suppose that the given system (1.1b) is partitioned into two parts with x = (q>, p>)>, f = (f>1 , f
>
2 )>

and

q̇ = f1(q, p, t), (2.12a)

ṗ = f2(q, p, t). (2.12b)

Partitioned Runge–Kutta methods integrate (2.12) using two different sets of coefficients

aij , bi, ci ∈ R for (2.12a), aij , bi, ci ∈ R for (2.12b). (2.13)

The following theorems state conditions under which RK methods preserve certain quantities that should be
invariant under the flow of the system that is integrated numerically. In this sense, such RK schemes are
called symplectic.

Theorem 2.4 (Symplectic Runge–Kutta Method; [HLW06, Chapter VI, Theorems 7.6 and 7.10]). Assume
that the system, (1.1b) has a quadratic invariant I , i.e. I(·, ·) is a real-valued bilinear mapping such that
(d/dt)I(x(t), x(t)) = 0, for each t and x0. If the coefficients of a Runge–Kutta method (2.9) satisfy

biaij + bjaji − bibj = 0, (2.14)

then the value I(xn, xn) does not depend on n.

Theorem 2.5 (Symplectic Partitioned RK Method; [SS16, Theorems 2.4 and 2.6]). Assume that S(·, ·)
is a real-valued bilinear mapping such that (d/dt)S(q(t), p(t)) = 0 for each t and x0 of the solution
x(t) = [q(t)>, p(t)>]> of (2.12). If the coefficients of the partitioned Runge–Kutta method (2.13) satisfy

biaij − bibj + bjaji = 0, bi = bi, ci = ci, (2.15)

then the value S(qn, pn) does not depend on n.

Remark 2.1. Assume the first set of Runge–Kutta coefficients are given and denoted by aij , bi, ci with
indices i, j ∈ [s]. This method is used for the first n-variables (2.12a). Furthermore, let bi 6= 0 for all stages
i ∈ [s]. In view of condition (2.15), we can construct a symplectic PRK method by choosing

aij := bj − bjaji/bi, bi := bi, ci := ci, (2.16)

as coefficients for the second n-variables (2.12b). This construction results in an overall symplectic PRK
method of the partitioned system (2.12).

2.3. Computing Adjoint Sensitivities. There are two basic approaches for computing (2.2), the differentiate-
then-discretize approach and the discretize-then-differentiate approach. Figure 2.2 illustrates both approaches
by paths colored with blue and violet, respectively. Details are worked out in this section. Our main objective
is to make this diagram commutative by adopting a class of numerical schemes as outlined in the preceding
section.

In the following, we drop the dependency of x(t) on the parameter p, to simplify notation by just writing
x(t). The following theorem details the blue path of Figure 2.2.
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dynamical system adjoint system

discretization numerical sensitivity

differentiate

discretize discretize

differentiate

FIGURE 2.2. Illustration of the methodological part of this section. Our approach satisfies
the commuting diagram, i.e. identical results are obtained either if the continuous problem
is differentiated first and than discretized (blue path), or the other way around (violet path).

Theorem 2.6 (Adjoint Sensitivity: Differentiate-then-Discretize). The gradient (2.2) of the objective func-
tion (2.1) Φ(p) = C(x(T )) of problem (1.1) with respect to the parameter p is given by

∂Φ(p) =

∫ T

0
dpf(x(t), p, t)>λ(t)dt, (2.17)

where x(t), λ(t) solve the two-point boundary value problem

ẋ(t) = f(x(t), p, t), x(0) = x0, (2.18a)

λ̇(t) = −dxf(x(t), p, t)>λ(t), λ(T ) = ∂C(x(T )). (2.18b)

In terms of the pseudo-Hamiltonian

H(x, λ, p, t) = 〈f(x, p, t), λ〉, (2.19)

the system has the following form

ẋ(t) = dλH(x, λ, p, t), x(0) = x0, (2.20a)

λ̇(t) = −dxH(x, λ, p, t), λ(T ) = ∂C(x(T )). (2.20b)

Proof. See Appendix A.1. �

Remark 2.2. The presence of the pseudo-Hamiltonian (2.19) suggests to use either a symplectic RK method
or a symplectic PRK method to integrate the boundary value problem (2.18). In view of Remark 2.1, we
can use a general RK method with coefficients aij , bi, ci for i, j ∈ [s] for the first variables (2.18a), and
another RK method with aij , bi, ci for i, j ∈ [s] satisfying (2.16) for the second variables (2.18b). Again,
this construction results in an overall symplectic PRK method of the boundary problem (2.18).

Now we consider the alternative violet path of Figure 2.2. Applying a RK method with step-sizes hn =
tn+1 − tn > 0 to problem (1.1) results in the nonlinear optimization problem

min
p∈P

C
(
xN (p)

)
(2.21a)

s.t. xn+1 = xn + hn

s∑
i=1

bikn,i, n = 0, . . . , N − 1, x0 = x(0), (2.21b)

kn,i = f(Xn,i, p, tn + cihn), i ∈ [s], (2.21c)

Xn,i = xn + hn

s∑
j=1

aijkn,j , i ∈ [s]. (2.21d)

Next, we differentiate this problem and state the result in the following theorem.
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Theorem 2.7 (Adjoint Sensitivity: Discretize-then-Differentiate Approach). Suppose the step-size hn
satisfies condition (2.11). Then, the gradient of the objective function Φ(p) = C(xN (p)) from (2.21) with
respect to parameter p is given by

∂Φ(p) =
N−1∑
n=0

hn

s∑
i=1

bi (dpf(Xn,i, p, tn + cihn))> Λn,i, (2.22)

where the discrete adjoint variables are given by

λn+1 = λn + hn

s∑
i=1

bi`n,i, hn = tn+1 − tn, n = 0, . . . , N − 1, (2.23a)

`n,i = −dxf(Xn,i, p, tn + cihn)>Λn,i, i ∈ [s] (2.23b)

Λn,i = λn + hn

s∑
j=1

aij`n,j , i ∈ [s], (2.23c)

where the internal stages Xn,i are given by (2.21d). This scheme is a general Runge–Kutta method (2.9a)-
(2.9c) applied to the adjoint system (2.18b) with bi 6= 0, i = 1, . . . , s, and coefficients

aij = bj −
ajibj
bi

, bi = bi, ci = ci, for i, j = 1, . . . , s. (2.24)

Proof. An outline of the proof can be found in [SS16, Theorem 3.6]. Following the suggested outline, we
provide a detailed proof in Appendix A.2. �

Remark 2.3. Comparing the statements of Theorem 2.6 and Theorem 2.7, we see that the formula of the
discrete sensitivity (2.22) is an approximation of the integral (2.17) with quadrature weights bi. Furthermore,
we observe that the coefficients of the constructed PRK method (2.16) coincides with the derived coefficients
(2.24). Thus, by restricting the class of numerical schemes to symplectic PRK methods satisfying (2.15), the
approaches due to the Theorem 2.6 (and Remark 2.2) and Theorem 2.7 are mathematically identical, and the
diagram depicted by Figure 2.2 commutes.

2.4. Two Specific Numerical Schemes. We complement and illustrate the general result of the preceding
section by specifying two numerical schemes.

2.4.1. Adjoint Sensitivity: Explicit Euler method. We integrate the forward dynamic (2.18a) with the ex-
plicit Euler method [HNW08]. The straightforward use of (2.16) leads to another Runge–Kutta method for
integrating the adjoint system (2.18b). The forward and backward coefficients of this overall symplectic
partitioned Runge–Kutta method are then given by Table 1.

c1 a11

b1
=

0
1

c1 a11

b1
=

0 1
1

forward coefficients backward coefficients
TABLE 1. Symplectic PRK coefficients induced by the explicit Euler method.

By substituting the backward coefficients a11, b1 and c1 into (2.23), we derive the concrete formulas of
the discrete adjoint method

λn+1 = λn + hn`n,1 (2.25a)

`n,1 = −∂xf(Xn,1, tn)>Λn,1 (2.25b)
Λn,1 = λn + hn`n,1. (2.25c)
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Note, that (2.25c) coincides with (2.25a), that is by traversing from n + 1 to n, we can rewrite (2.25) in the
form

λn = λn+1 + hndxf(Xn,1, tn)>λn+1. (2.26)

Formula (2.22) for the gradient of Φ(p) = C(xN (p)) from (2.21) reads

∂Φ(p) =

N−1∑
n=0

hndpf(Xn,1, tn)>λn+1. (2.27)

2.4.2. Adjoint Sensitivity: Heun’s method. We integrate the forward dynamic (2.18a) with Heun’s method
[HNW08]. The straightforward use of (2.16) leads to another Runge–Kutta method for integrating the adjoint
system (2.18b). The forward and backward coefficients of this overall symplectic partitioned Runge–Kutta
method are then given by Table 2

c1 a11 a12

c2 a21 a22

b1 b2

=
0
1 1

1/2 1/2

c1 a11 a12

c2 a21 a22

b1 b2

=
0 1/2 -1/2
1 1/2 1/2

1/2 1/2

forward coefficients backward coefficients
TABLE 2. Symplectic PRK coefficients induced by Heun’s method.

Although the butcher tableau of the backward coefficients (see Table 2, right matrix) is completely dense,
the final update formulas are explicit, as we will show below. Again, we derive the concrete formulas of the
discrete adjoint method by substituting the backward coefficients into (2.23)

λn+1 = λn + hn
(

1
2`n,1 + 1

2`n,2
)

(2.28a)

`n,1 = −dxf(Xn,1, tn)>Λn,1 (2.28b)

`n,2 = −dxf(Xn,2, tn + hn)>Λn,2 (2.28c)

Λn,1 = λn + hn
(

1
2`n,1 −

1
2`n,2

)
(2.28d)

Λn,2 = λn + hn
(

1
2`n,1 + 1

2`n,2
)
. (2.28e)

Note, that (2.28e) coincides with (2.28a), which implies the equations

λn+1 = Λn,2 and `n,2 = −dxf(Xn,2, tn + hn)>λn+1. (2.29)

Using (2.29), we reformulate (2.28d)

Λn,1 = λn + hn
(

1
2`n,1 −

1
2`n,2

)
= λn + hn

(
1
2`n,1 −

1
2`n,2

)
+ (hn`n,2 − hn`n,2) (2.30a)

= λn + hn
(

1
2`n,1 + 1

2`n,2
)
− hn`n,2

(2.28a)
= λn+1 − hn`n,2 (2.30b)

(2.29)
= λn+1 + hndxf(Xn,2, tn + hn)>λn+1. (2.30c)

Formula (2.30c) is an explicit Euler step traversing backwards from n + 1 to n. Thus, we can rewrite the
overall scheme (2.28) as

λ̃n = λn+1 + hndxf(Xn,2, tn + hn)>λn+1 (2.31a)

λn = λn+1 +
hn
2

(
dxf(Xn,1, tn)>λ̃n + dxf(Xn,2, tn + hn)>λn+1

)
. (2.31b)
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Again, this is an explicit method traversing backwards from n + 1 to n. Formula (2.22) for the gradient of
Φ(p) = C(xN (p)) from (2.21) has the form

∂pC(xN ) =
N−1∑
n=0

hn
2

(
dpf(Xn,1, tn)>λ̃n + dpf(Xn,2, tn + hn)>λn+1

)
. (2.32)

3. IMAGE LABELING USING GEOMETRIC ASSIGNMENT

In this section, we summarize material from [ÅPSS17] and [ZSPS18] required in the remainder of this
paper.

Let G = (V, E) be a given undirected graph with m := |V| vertices and let

f : V → F ; i 7→ fi ∈ F with f(V) =: FV ⊂ F (3.1)

be data on the graph given in a metric space (F , d). We call FV image data given by features fi extracted
from a raw image at pixel i ∈ V in a preprocessing step. Along with f we assume prototypical data

X =
{
`1, . . . , `n

}
⊂ F (3.2)

to be given, henceforth called labels. Each label `j represents the data of class j. Image labeling denotes
the problem of finding an assignment V → X assigning class labels to nodes depending on the image data
FV and the local context encoded by the graph structure G. We refer to [HSÅS18] for more details and
background on the image labeling problem.
G may be a grid graph (with self-loops) as in low-level image processing or a less structured graph, with

arbitrary connectivity in terms of the neighborhoods

Ni = {k ∈ V : ik = ki ∈ E} ∪ {i}, i ∈ V, (3.3)

where ik is a shorthand for the undirected edge {i, k} ∈ E . We require these neighborhoods to satisfy the
relations

k ∈ Ni ⇔ i ∈ Nk, ∀i, k ∈ I. (3.4)
We associate with each neighborhood Ni from (3.3) weights ωik ∈ R for all k ∈ Ni, satisfying

ωik > 0 and
∑
k∈Ni

ωik = 1, for all i ∈ V. (3.5)

These weights parametrize the regularization property of the assignment flow below. Learning these weights
from given data is the subject of the remainder of this paper.

3.1. Assignment Manifold. The probabilistic assignment of labels X at one node i ∈ V are represented by
the manifold of discrete probability distributions with full support

Sn := {p ∈ ∆n : p > 0} (3.6)

with constant tangent space

TpSn = {v ∈ Rn : 〈1, v〉 = 0} =: Tn for all p ∈ Sn. (3.7)

Throughout this paper, we only work with Tn. The probability space S is turned into a Riemannian manifold
(Sn, g) by equipping it with the Fisher-Rao (information) metric

gp(u, v) :=
∑
j∈[n]

ujvj
pj

, with u, v ∈ Tn, p ∈ Sn (3.8)

Furthermore, we have the uniform distribution of labels

1Sn :=
1

n
1n ∈ Sn, (barycenter) (3.9)
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the orthogonal projection onto the tangent space with respect to the standard Euclidean structure of Rn

Πn : Rn → Tn, Πn := I − 1Sn1> with ker(Πn) = R1n (3.10)

and the replicator operator given by the linear map

Rp : Rn → Tn, Rp := Diag(p)− pp>, p ∈ Sn (3.11)

satisfying
Rp = RpΠn = ΠnRp. (3.12)

The Riemannian gradient of a smooth function f : S → R is denoted by grad f : S → Tn and relates to the
Euclidean gradient ∂f by [ÅPSS17, Prop. 1] as

grad f(p) = Rp∂f(p) for p ∈ S. (3.13)

Adopting the α-connection with α = 1, also called e-connection, from information geometry [AN00,
Section 2.3], [AJLS17], the exponential map based on the corresponding affine geodesics reads

Exp: Sn × Tn → Sn, (p, v) 7→ Expp(v) =
pe

v
p

〈p, e
v
p 〉

(3.14a)

Exp−1 : Sn × Sn → Tn, (p, q) 7→ Exp−1
p (q) = Rp log

q

p
. (3.14b)

Specifically, we define

expp : Tn → Sn, z 7→ Expp ◦Rp(z) =
pez

〈p, ez〉
, ∀p ∈ Sn (3.15a)

exp−1
p : Sn → Tn, q 7→ Πn log

q

p
, ∀p ∈ Sn. (3.15b)

Applying the map expp to a vector in Rn = Tn ⊕ R1n does not depend on the constant component of the
argument, due to (3.12).

Remark 3.1. The map Exp corresponds to the e-connection of information geometry [AN00], rather than
to the exponential map of the Riemannian connection. Accordingly, the affine geodesics (3.14a) are not
length-minimizing with respect to the Riemannian structure. But locally, they provide a close approximation
[ÅPSS17, Prop. 3] and are more convenient for numerical computations.

Global label assignments on the whole set of nodes V are represented as points on the assignment mani-
fold, given by the product

W := Sn × · · · × Sn (m = |V| times) (3.16)

with constant tangent space

TW := Tn × · · · × Tn (m = |V| times) (3.17)

and Riemannian structure (W, g) given by the Riemannian product metric. We identifyW with the embed-
ding into Rm×n

W = {W ∈ Rm×n : W1n = 1m and Wij > 0 for all i ∈ [m], j ∈ [n]}. (3.18)

Thus, pointsW ∈ W are row-stochastic matricesW ∈ Rm×n with row vectorsWi ∈ Sn, i ∈ V representing
the label assignments for every i ∈ V . Due to this embedding ofW , the tangent space TW can be identified
with

TW = {V ∈ Rm×n : V 1n = 0} (3.19)
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and therefore for V ∈ TW every row vector Vi is contained in Tn for every i ∈ V . The global uniform
distribution, given by the uniform distribution in every row, again called barycenter, is denoted by

1W := (1Sn , . . . ,1Sn) = 1m1Sn
> ∈ W, (3.20)

where the second equality is due to the embedding (3.18). The mappings (3.10)-(3.14a) naturally extend to
the assignment manifoldW

Π[Z] =
(
Πn[Z1], . . . ,Πn[Zm]

)> ∈ TW , W ∈ W, Z ∈ Rm×n (3.21a)

RW [Z] =
(
RW1 [Z1], . . . , RWm [Zm]

)> ∈ TW , W ∈ W, Z ∈ Rm×n (3.21b)

ExpW (V ) =
(

ExpW1
(V1), . . . ,ExpWm

(Vm)
)> ∈ W, W ∈ W, V ∈ TW (3.21c)

and expW ,Exp−1
W , exp−1

W are similarly defined based on (3.15a), (3.14b) and (3.15b). Due to (3.13) , the
Riemannian gradient and the Euclidean gradient of a smooth function f : W → R are also related by

grad f(W ) = RW [∂f(W )] for W ∈ W. (3.22)

3.2. Assignment Flow. Based on the given data (3.1) and labels (3.2), the i-th row of the distance matrix
D ∈ Rm×n is defined by

Di :=
(
d(fi, `1), . . . , d(fi, `n)

)> ∈ Rn, for all i ∈ V. (3.23)

This distance information is lifted onto the manifold by the following likelihood matrix

L(W ) := expW (−D/ρ) ∈ W, (3.24a)

Li(Wi) =
Wie

− 1
ρ
Di

〈Wi, e
− 1
ρ
Di〉

, ρ > 0, i ∈ V, (3.24b)

where ρ > 0 is a scaling parameter to normalize the a-priori unknown scale of the distances induced by the
features fi depending on the application at hand. This representation of the data is regularized by weighted
geometric averaging in the local neighborhoods (3.3) using the weights (3.5), to obtain the similarity matrix
S(W ) ∈ W , with i-th row defined by

Si : W → Sn, Si(W ) := ExpWi

( ∑
k∈Ni

wik Exp−1
Wi

(Lk(Wk))
)
, i ∈ V. (3.25)

If ExpWi
were the exponential map of the Riemannian (Levi-Civita) connection, then the sum inside the

outer brackets of the right-hand side in (3.25) would just be the negative Riemannian gradient with respect
to Wi of the objective function used to define the Riemannian center of mass, i.e. the weighted sum of
the squared Riemannian distances between Wi and Lk [Jos17, Lemma 6.9.4]. In view of Remark 3.1, this
interpretation is only approximately true mathematically, but still correct informally: Si(W ) moves Wi

towards the normalized geometric mean of the likelihood vectors Lk, k ∈ Ni.
The similarity matrix induces the assignment flow through a system of spatially coupled nonlinear ODEs

which evolves the assignment vectors

Ẇ = RWS(W ), W (0) = 1W , (3.26a)

Ẇi = RWiSi(W ), Wi(0) = 1Sn . i ∈ V, (3.26b)

Integrating this flow numerically [ZSPS18] yields curves Wi(t) ∈ Sn for every pixel i ∈ V emanating from
Wi(0) = 1Sn , which approach some vertex (unit vector) of Sn = ∆n and hence a unique label assignment
after a trivial rounding Wi(t) for sufficiently large t > 0.
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3.3. Linear Assignment Flow. The linear assignment flow, introduced by [ZSPS18], uses the exponential
map with respect to the e-connection (3.14a) in order to approximate the mapping (3.25) as part of the
assignment flow (3.26a) by

Ẇ = RW

[
S(W0) + dS(W0)

[
Exp−1

W0
(W )

]]
, W0 = W (0) = 1W ∈ W. (3.27)

This linear assignment flow (3.27) is still nonlinear but admits the following parametrization [ZSPS18,
Prop. 4.2]

W (t) = ExpW0

(
V (t)

)
, V̇ = RW0

[
S(W0) + dS(W0)[V ]

]
, V (0) = 0, (3.28)

where the latter ODE is linear and defined on the vector space TW . Fixing S(W0) in the following, (3.28)
is linear with respect to both the tangent vector V and the parameters ωik in the differential dS(W0) (see
(3.30) and Remark 4.1 below), that makes this approach attractive for parameter estimation.

It can be shown that Si(W ) from (3.25) can equivalently be expressed with exp1Sn
as

Si(W ) = exp1Sn

( ∑
k∈Ni

ωik

(
exp−1

1Sn
(Wk)−

1

ρ
Dk

))
for all i ∈ V, W ∈ W. (3.29)

A standard calculation shows, that the i-th component of the differential dS(W ) : TW → TW is given by

dSi(W ) : TW → Tn, dSi(W )[V ] =
∑
k∈Ni

ωikRSi(W )

[
Vk
Wk

]
for all V ∈ T0, i ∈ V. (3.30)

3.4. Numerical Integration of the Flow. Setting Λ(V,W ) := expW (V ) gives an action Λ: TW×W →W
of the vector space TW viewed as an additive group on the assignment manifoldW . In [ZSPS18] this action
is used to numerically integrate the assignment flow by applying geometric Runge-Kutta methods. The
resulting method for an arbitrary vector field F : W → TW is as follows. Suppose, the ODE

Ẇ (t) = RW (t)[F (W (t)], W (0) = 1W (3.31)

on the assignment manifold is given. Then the parametrization W (t) = exp1W (V (t)) yields an equivalent
reparametrized ODE

V̇ (t) = F (W (t)) = F
(

exp1W (V (t)
)
, V (0) = 0 (3.32)

purely evolving on the vector space TW , where standard Runge-Kutta methods (cf. Section 2) can now be
used for numerical integration. Translating these update schemes back onto W , yields geometric Runge-
Kutta methods onW induced by the Lie-group action Λ = exp.

Remark 3.2. Notice, that the assumption F (W ) ∈ TW is crucial because the transformation of the ODE
(3.31) onto TW in (3.32) uses the inverse of RW , which only exists for elements of TW but not for Rm×n.
However, this is no limitation. Suppose any vector field F̃ : W → Rm×n is given. Due to RW = RW ◦Π by
(3.12), we may consider F (W ) := Π[F̃ (W )] ∈ TW instead, without changing the underlying ODE (3.31)
for W (t).

In the following, we mainly use the Euler method to numerically integrate the flow (3.32) on the vector
space TW , i.e.

V (k+1) = V (k) + hkF
(
W (k)

)
, W (k) = exp1W

(
V (k)

)
, V (0) = 0 (3.33)

with step-size hk > 0. Due to the Lie-group action, this update scheme translates to the geometric Euler
integration onW given by

W (k+1) = expW (k)

(
hkF

(
W (k)

))
, W (0) = 1W , (3.34)

with step-size hk > 0.
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4. LEARNING ADAPTIVE REGULARIZATION PARAMETERS

In this section, we study the parameter learning approach (4.1), which is a specific instance of the general
formulation (1.1). The goal is to adapt the regularization of the linear assignment flow (3.27) on the fixed time
horizon [0, T ] controlled by the weights (3.5), in the following collectively denoted by Ω, so as to preserve
important image structure in a supervised manner. During learning, the image structure is prescribed by given
ground truth labeling information W ∗, where every row W ∗i is some unit basis vector eki of Rn representing
the ground truth label lki at node i ∈ V . The adaptivity of the weights with respect to the desired image
structure is measured by C in terms of the discrepancy between ground truth W ∗ and the labeling induced
by V (T ) = V (T,Ω) at fixed time T . The corresponding optimization problem reads

min
Ω∈P

C
(
V (T,Ω)

)
(4.1a)

s.t. V̇ (t) = F (V (t),Ω), t ∈ [0, T ], V (0) = 0, (4.1b)

with components

P parameter manifold, representing the weights ωik from (3.5), see Section 4.1.
F (V,Ω) modified version of the linear assignment flow (4.14), see Section 4.2.
C a objective function measuring the discrepancy to the ground truth, see Section 4.3.

It is important to note that the dependency of C(V (T,Ω)) on the weights Ω is only implicitly given through
the solution V (T ) = V (T,Ω) of (4.1b). In Section 4.4 we therefore present a numerical first-order scheme
for optimizing (4.1) where the gradient of C(V (T,Ω)) with respect to the parameter Ω is calculated using
the sensitivity analysis from Section 2.

4.1. Parameter Manifold. In the following, we define the parameter manifold representing the weights ωik
from (3.5) associated to the neighborhoodNi, i ∈ V . Based on this parametrization, we can compute the dif-
ferential dS(W0) and thus describe the linear assignment flow (3.28) on the tangent space by a corresponding
expression in Lemma 4.2 below.

To simplify the exposition, we assume that all neighborhoods Ni have the same size

N := |Ni| for all i ∈ V. (4.2)

Due to the constraints (3.5), the weight vector Ωi := (ωi1, . . . , ωiN )> can be viewed as a point in SN .
Accordingly, we define the parameter manifold

P := SN × . . .× SN (m = |V| times) (4.3)

as feasible set for learning the weights, which has the form of an assignment manifold and thus also has a
Riemannian structure (P, g), given by the Fisher-Rao metric. We use the identification

P = {Ω ∈ Rm×N : Ω1N = 1m and Ωik > 0 for all i ∈ [m], k ∈ [N ]}. (4.4)

Points Ω ∈ P now represent the global choice of weights with Ωi representing the weights ωik associated
to the neighborhood Ni in (3.5). The constant tangent space of P is denoted by TP and the corresponding
orthogonal projection by

ΠP : Rm×N → TP , M 7→ ΠP [M ] = (ΠN [M1], . . . ,ΠN [Mm])>. (4.5)

Next, we give a global expression for the differential dS(W ) which will simplify following formulas and
calculations. For this, we define the averaging matrix AΩ ∈ Rm×m with weights Ω ∈ P by

(AΩ)ik := δk∈NiΩik =

{
Ωik , for k ∈ Ni
0 , else,

(4.6)
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where δk∈Ni is the Kronecker-Delta with value 1 if k ∈ Ni and 0 otherwise. We observe that the averaging
matrix AΩ linearly depends on the weight parameters.

Thus,AΩ parametrizes averages depending on the corresponding weights Ω with respect to the underlying
graph structure, given by the neighborhoods (3.3). For a matrix M ∈ Rm×n, the averages of the row vectors
with weights Ω are then just given by the matrix multiplication AΩM , with the i-th row vector given by

(AΩM)i =
∑
k∈Ni

ωikMk. for all i ∈ V. (4.7)

For later use, we record the following formula for the adjoint of AΩ as a linear map with respect to Ω.

Lemma 4.1. If the averaging matrix is viewed as a linear map A : Rm×N → Rm×m, Ω 7→ AΩ, then the
adjoint map A> : Rm×m → Rm×N , B 7→ A>B is given by(

A>B)ij = Bij for i ∈ V, j ∈ Ni. (4.8)

Proof. For arbitrary B ∈ Rm×m and Ω ∈ Rm×N , we obtain 〈AΩ, B〉 =
∑

i,j∈V δj∈NiΩikBik = 〈Ω, A>B〉
due to (4.6). �

Using AΩ with Ω ∈ P , it follows from (3.30) that dS(W ) can be expressed as

dS(W )[V ] = RS(W )

[
AΩ

(
V

W

)]
, for all V ∈ TW , W ∈ W. (4.9)

As a result, the linear assignment flow (3.28) on the vector space TW can be parametrized as follows.

Lemma 4.2. Using the parametrization V := nV , the linear assignment flow (3.28) takes the form

W (t) = exp1W (V (t)), V̇ = Π[S(W0)] +RS(W0)[AΩV ], V (0) = 0. (4.10)

Proof. At p = 1Sn , the linear map (3.12) takes the form

R1Sn = Diag(1Sn)− 1Sn1Sn
> =

1

n

(
I − 1Sn1>

)
=

1

n
Πn, (4.11)

where I ∈ Rn×n denotes the identity matrix. Because of W0 = 1W , RW0 = 1
nΠ follows. Therefore,

V = 1
nV = R1WV which directly yields

W = Exp1W (V ) = Exp1W (R1W [V ]) = exp1W (V ). (4.12)

Using (4.9) together with V
W0

= nV = V , the linear assignment flow (3.28) takes the form

V̇ = RW0

[
S(W0) +RS(W0)

[
AΩ

(
V

W0

)]]
=

1

n
Π
[
S(W0) +RS(W0)[AΩV ]

]
. (4.13)

As a consequence of ΠRS(W0) = RS(W0) by (3.12), the right-hand side of (4.10) follows after multiplying

the equation by n and using nV̇ = V̇ . �

Remark 4.1. To simplify notation, we will write V for V below. Equation (4.10) highlights the importance
to fix S(W0) in order to obtain a model that is linear in both the state vector V and the parameters Ω.
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4.2. Modified Linear Assignment Flow. We now return to our objective to estimate the weight parameters
Ω ∈ P controlling the linear assignment flow on the fixed time interval [0, T ], in the supervised scenario
(4.1). In this formulation, the data represented by the likelihood matrix (3.24), only influence the linear
assignment flow (3.27), or equivalently (4.10), through the constant similarity matrix S(W0) that comprises
averaged data information depending on the initial choice of the weights Ω0. However, since the initial
weights are in general not adapted to any specific image structure, this can lead to a loss of desired structural
information through S(W0) at the outset, that cannot be recovered afterwards.

To avoid this problem, we slightly modify the linear assignment flow in (4.10) to obtain an explicit data
term, independent of the choice of initial weights. This is done through replacing the constant term S(W0)
by the lifted distances L(W0), which results in the modified linear assignment flow

W (t) = expW0

(
V (t)

)
, V̇ = Π[L(W0)] +RS(W0)[AΩV ] =: F (V,Ω), V (0) = 0. (4.14)

Remark 4.2. We point out that, strictly speaking, that the similarity matrix S(W0) is involved in two ways,
in the constant term of (4.10) and in the expression RS(W0) of the differential dS(W0) (cf. (4.9)). However,
the effect of the latter with respect to the initial weights is negligible, and the former appearance only causes
the above mentioned loss of initial data information. We note again that (4.14) is linear with respect to both
the tangent vector V and the parameters Ω only if S(W0) is kept constant.

Proposition 4.3. The differential of the map F : TW×P → TW on the right-hand side of (4.14) with respect
to the first and second argument are given by

dV F (V,Ω): TW → TW , X 7→ dV F (V,Ω)[X] = RS(W0)[AΩX], (4.15a)

dΩF (V,Ω): TP → TW , Ψ 7→ dΩF (V,Ω)[Ψ] = RS(W0)[AΨV ]. (4.15b)

The corresponding adjoint mappings with respect to the standard Euclidean structure of Rm×n are

dV F (V,Ω)> : TW → TW , X 7→ dV F (V,Ω)>[X] = A>ΩRS(W0)[X], (4.16a)

dΩF (V,Ω)> : TW → TP , X 7→ dΩF (V,Ω)>[X] = ΠP
[
A>(RS(W0)

[X])V >

]
, (4.16b)

with the adjoint A>(·) from Lemma 4.1.

Proof. Let V,X ∈ TW and set γ(t) := V + tX ∈ T0 for all t ∈ R. Then

dV F (V,Ω)[X] =
d

dt
F (γ(t),Ω)

∣∣
t=0

= RS(W0)[AΩγ̇(0)] = RS(W0)[AΩX]. (4.17)

Similarly, for Ω ∈ P and Ψ ∈ TP , let η(t) := Ω + tΨ ∈ P be a curve with t ∈ (−ε, ε) for sufficiently small
ε > 0. The linearity of the averaging operator AΩ with respect to Ω gives

dΩF (V,Ω)[X] =
d

dt
F (V, η(t))

∣∣
t=0

=
d

dt
RS(W0)[Aη(t)V ]

∣∣
t=0

= RS(W0)AΨ[V ]. (4.18)

We now determine the adjoint differentials. Consider arbitrary X,Y ∈ TW and note that the linear map
RS(W0) is symmetric, since every component map RSi(W0) is symmetric by (3.11). Thus,

〈dV F (V,Ω)[Y ], X〉 = 〈RS(W0) [AΩY ] , X〉 = 〈Y,A>ΩRS(W0)[X]〉 (4.19)

and therefore dV F (V,Ω)>[X] = A>ΩRS(W0)[X]. Now let arbitrary Ψ ∈ TP and X ∈ TP be given. Then

〈dΩF (V,Ω)[Ψ], X〉 = 〈RS(W0) [AΨV ] , X〉 = 〈AΨ, (RS(W0)[X])V >〉 (4.20a)

= 〈Ψ, A>(RS(W0)
[X])V >〉 = 〈Ψ,ΠP

[
A>(RS(W0)

[X])V >

]
〉, (4.20b)

which proves the expression for the corresponding adjoint. �
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4.3. Objective Function. Let W = exp1W (V ) ∈ W be an assignment induced by V ∈ TW . Accumulating
the KL-divergence between the ground truth W ∗i and Wi for every node i ∈ V ,

KL(W ∗i ,Wi) =
∑
j∈[n]

W ∗ij log

(
W ∗ij
Wij

)
= 〈W ∗i , log(W ∗i )〉 − 〈W ∗i , log(Wi)〉, (4.21)

results in a measure of the global deviation between W induced by V and the ground truth W ∗

C(V ) :=
∑
i∈V

KL(W ∗i , exp1Sn
(Vi)) = 〈W ∗, log(W ∗)〉 − 〈W ∗, log

(
exp1W (V )

)
〉. (4.22)

Remark 4.3. It is important to note that C does not explicitly depend on the weights Ω ∈ P . In the problem
formulation (4.1a), this dependency is only given implicitly through the evaluation of C at V (T,Ω), where
V (t,Ω) is the object depending on the parameter Ω as solution of the modified linear assignment flow (4.14).

Proposition 4.4. The Euclidean gradient of objective (4.22) for fixed W ∗ ∈ W is given by

∂C(V ) = exp1W (V )−W ∗ for V ∈ TW . (4.23)

Proof. Let V ∈ TW . Note that for every i ∈ V

〈W ∗i , log
(

exp1Sn
(Vi)

)
〉 = 〈W ∗i , Vi − log(〈1, eVi〉)1〉 = 〈W ∗i , Vi〉+ log(〈1, eVi〉). (4.24)

Hence the KL-divergence between W ∗i and the induced assignment Wi = exp1Sn
(Vi) takes the form

KL
(
W ∗i ,Wi

)
= 〈W ∗i , log(W ∗i )〉 − 〈W ∗i , Vi〉+ log(〈1, eVi〉) (4.25)

and results in the following expression for C from (4.22),

C(V ) = 〈W ∗, log(W ∗)〉 − 〈W ∗, V 〉+
∑
i∈[m]

log(〈1, eVi〉). (4.26)

Take X ∈ Rm×n and set γ(t) := V + tX for t ∈ R. The above formula for C then implies

〈∂C(V ), X〉 =
d

dt
C(γ(t))

∣∣
t=0

= −〈W ∗, X〉+
∑
i∈[m]

1

〈1, eVi〉
〈eVi , Xi〉 = 〈exp1W (V )−W ∗, X〉. (4.27a)

Since X ∈ Rm×n was arbitrary, the expression (4.23) follows. �

4.4. Numerical Optimization. With the above definitions of C and F , the optimization problem (4.1) for
adapting the weights of the modified linear assignment flow (4.14) takes the form

min
Ω∈P

∑
i∈V

KL(W ∗i ,Wi(T,Ω)) with W (T,Ω) = exp1W (V (T,Ω)) (4.28a)

s.t. V̇ (t) = Π[L(W0)] +RS(W0)[AΩ[V ]], t ∈ [0, T ], V (0) = 0. (4.28b)

Our strategy for parameter learning is to follow the Riemannian gradient descent flow on the parameter
manifold induced by the potential

Φ: P → R, Ω 7→ Φ(Ω) := C(V (T,Ω)) =
∑
i∈V

KL(W ∗i ,Wi(T,Ω)). (4.29)

Due to (3.22), this Riemannian gradient flow on P takes the form

Ω̇(t) = − gradP Φ
(
Ω(t)

)
= −RΩ

[
∂Φ
(
Ω(t))

)]
, with Ω(0) = 1W , (4.30)

where RΩ given by (3.21b) on P and Ω(0) = 1W represents an unbiased initialization, i.e. uniform weights
at every patch Ni at i ∈ V .
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We discretize (4.30) using the geometric explicit Euler scheme (3.34) from Section 3.4 with constant
step-size h′ > 0, which results in Algorithm 1.

Algorithm 1: Discretized Riemannian flow (4.30).

Data: Initial weights Ω(0) = 1W , objective function Φ(Ω) = C
(
V (T,Ω)

)
Result: Weight parameter estimates Ω∗

// geometric Euler integration

1 for k = 0, . . . ,K do
2 compute ∂Φ(Ω(k)) ; // Algorithm 2

3 Ω(k+1) = expΩ(k)

(
− h′RΩ(k)

[
∂Φ(Ω(k))

])
;

Algorithm 1 calls Algorithm 2 that we explain next. As pointed out in Remark 4.3, the dependency
of Φ(Ω) = C(V (T,Ω)) on Ω is only implicitly given through the solution V (t,Ω) of the modified linear
assignment flow (4.14), evaluated at time T . According to (2.2), the gradient of Φ decomposes as

∂Φ(Ω) = dΩV (T,Ω)>
[
∂C(V (T,Ω))

]
, (4.31)

where dΩV (T,Ω)> is the sensitivity of the solution V (T,Ω) with respect to Ω. Thus, the major task is
to determine the sensitivity of V (T,Ω) in order to obtain the gradient ∂Φ(Ω), which in turn drives the
Riemannian gradient descent flow and adapts the weights Ω. To this end, we choose the discretize-then-
differentiate approach (2.22) – recall the commutative diagram of Fig. 2.2 and relations summarized as
Remark 2.3 – with the explicit Euler method and constant step-size h > 0, which results in Algorithm 2.

Algorithm 2: Computation of the Euclidean gradient ∂Φ(Ω(k)) (4.31).

Data: Current weights Ω(k)

Result: Objective value Φ(Ω(k)) = C(V (N)(Ω(k))), adjoint sensitivity ∂Φ(Ω(k))
// forward Euler integration

1 for j = 0, . . . , N − 1 do
2 V (j+1) = V (j) + hF

(
V (j),Ω(k)

)
;

3 compute λ(N) = ∂C(V (N)(Ω(k)));
4 set ∂Φ(Ω) = 0;
// backward Euler integration

5 for j = N − 1, . . . , 0 do
6 λ(j) = λ(j+1) + hdV F

(
V (j),Ω(k)

)>
λ(j+1);

7 ∂Φ(Ω) += hdΩF
(
V (j−1),Ω(k)

)>
λ(j) ; // summand of (4.31)

5. EXPERIMENTS

In this section, we demonstrate and evaluate our approach. In Section 5.1, we consider a scenario with 3
labels and curvilinear line structure, that has to be detected and labeled explicitly in noisy data. Just using
uniform weights for regularization must fail. In addition to the noise, the actual image structure is randomly
generated as well and defines a class of images. We demonstrate empirically that learning the weights to
adapt within local neighborhoods from example data solves this problem.

In Section 5.2, we adopt a different viewpoint and focus on pattern formation, rather than on pattern
detection and recovery. We demonstrate the modeling expressiveness of the assignment flow with respect
to pattern formation. In fact, even when using the linear assignment flow as in the present paper, label
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information can be flexibly transported across the image domain under certain conditions. The experiments
just indicate what can be done, in principle, in order to stimulate future work. We return to this point in
Section 6.

5.1. Adaptive Regularization of Curvilinear Line Structures. We consider a collection of images con-
taining line structures induced by random Voronoi diagrams (Fig. 5.1, panel (a)). The goal is pixel-accurate
labeling of any given image with three labels representing: thin line structure, homogeneous region and tex-
ture. In the figures below these labels are encoded by the three colors

{
, ,

}
= {line, homogeneous,

texture}. As usual in supervised machine learning, our approach is first applied during a training phase in
order to learn weight adaptivity from ground truth labelings, and subsequently evaluated in a test phase using
novel unseen data.

5.1.1. Training Phase. We used 20 randomly generated images together with ground truth as training data:
Figure 5.1(a) shows one of these images and Figure 5.1(b) the corresponding groune truth. Using these
data we learned how to adapt the regularization parameter of the modified linear assignment flow (4.14) by
solving problem (4.1), with the specific form given by (4.28).

(a) input scene (b) ground truth

FIGURE 5.1. Training data. The training data consist of 20 pairs of randomly generated
images: (a) an input scene, and (b) the corresponding ground truth. The ground truth im-
ages encode the labels with colors

{
, ,

}
= {line, homogeneous, texture}. Even though

the global image structure can be easily assessed by the human eye, assigning correct la-
bels pixelwise by an algorithm requires context-sensitive decisions, as the close-up view
illustrates.

Feature Vectors. The basis of our feature vectors are the outputs of simple 7 × 7 first- and second-order
derivative filters, which are tuned to orientations at 0, 15, . . . , 180 degrees (we took absolute values of filter
outputs to eliminate the 180 ∼ 360 degree symmetry). We reduced the dimension of the resulting feature
vectors from 24 to 12 by taking the maximum of the first-order and second-order filter outputs, for each
orientation. To incorporate more spatial information, we extracted 3 × 3 patches from this 12-dimensional
feature vector field. Thus, our feature vectors fi, i ∈ V had dimension 3× 3× 12 = 108 and were given as
a point set in the Euclidean feature space F = R108.

Label Extraction. Using ground truth information, we divided all feature vectors extracted from the
training data into three classes: thin line structure, homogeneous region and texture. We computed 200
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prototypical feature vectors ljc ∈ F , j ∈ [200], in each class c ∈ {line, homogeneous, texture} by k-means
clustering. Thus, each label (line, homogeneous, texture) was represented by 200 feature vectors in F .

Distance Matrix. Even though in the original formulation (3.2) labels are represented by a single feature
vector, multiple representatives can be taken into account as well by modifying the distance matrix (3.23)
accordingly. With the identification c ∈ {line, homogeneous, texture} = {1, 2, 3}, we defined the entries of
the distance matrix Dic, for every i ∈ V , as the distance between fi and the best fitting representative ljc for
class c, i.e.

Dic := min
j∈[200]

‖fi − ljc‖2. (5.1)

The quality of this distance information is illustrated by Figure 5.2(b) that shows the labeling obtained by
local rounding, i.e. by assigning to each pixel i the label c = minc̃Dic̃. Although the result looks similar
to the ground truth shown as Figure 5.1(b), it is actually quite noisy when looking to single pixels in the
close-up view of Figure 5.2(b).

(a) random input data (b) local rounding of
the distances (5.1)

FIGURE 5.2. Input data and local label assignments. The plots illustrate the input data
and the quality of the distances (5.1) between extracted feature vectors. Panel (a) shows a
randomly generated input image from which features are extracted, as described in the text.
Panel (b) shows the labeling obtained by local rounding, i.e. by assigning to each pixel the
label minimizing the corresponding distance. Comparing the close-up views of panel (b)
and Fig. 5.1(b) (ground truth) shows that label assignments to individual pixels are noisy
and incomplete. ({ , , } = {line, homogeneous, texture})

Optimization. For each input image of the training set, we solved problem (4.1) using Algorithms 1 and
2 and the following parameter values: |Ni| = 9 × 9 (size of local neighborhoods, for every i), ρ = 1
(scaling parameter for distance matrix, cf. (3.24)), h = 0.5 (constant step-size for computing the gradient
with Alg. 2), and T = 6 (end of time horizon). As for optimization on the parameter manifold P through
the Riemannian gradient flow (Alg. 1), we used an initial value of h′ = 0.0125 together with backtracking
for adapting the step-size, for a maximal number of 100 iterations, and we terminated the iteration once the
relative change

|Φ(Ω(k))− Φ(Ω(k−1))|
h′|Φ(Ω(k))|

(5.2)

of the objective function Φ
(
Ω(k)

)
= C

(
V (N)(Ω(k))

)
dropped below 0.001.
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(a) input scene (b) local rounding of
distance information

(c) labeling with
uniform weights

(d) labeling with
optimal weights

FIGURE 5.3. Training phase: Labeling results. This figure shows results of the train-
ing phase. Panel (a) shows the given input scene and panel (b) the corresponding locally
rounded distance information. The labeling with uniform regularization (panel (c)) returns
smoothed over regions and completely fails to preserve the line structures. The adaptive
regularizer preserves the line structure nearly perfect (panel (d)), i.e. the optimal weights are
able to steer the linear assignment flow successfully towards the given ground-truth labeling.
({ , , } = {line, homogeneous, texture})

Results. Figure 5.3 shows two results obtained during the training phase. They illustrate that non-adaptive
regularization using uniform weights, which results in blurred partitions and fails completely to detect and
label the line structures (panel (c)). On the other hand, the adapted regularizer preserves and restores the
structure nearly perfect (panel (d)), i.e. the optimal weights steered the linear assignment flow towards the
given ground-truth labeling.

Figure 5.4 shows a close-up view of a 10×10 pixel region together with the corresponding 10×10 optimal
weight patches, extracted from Ω∗. The top row depicts (a) the training data, (b) the corresponding ground
truth, (c) the local label assignments, and (d) the labeling obtained when using the learned weights Ω∗.
Plot (e) shows the corresponding optimal weight patches Ω∗i = (ωi1, . . . , ωiN )> associated to every pixel
i in the 10 × 10 pixel region, where small and large weights are indicated by dark and bright gray values,
respectively. These weight patches illustrate the result of the learning process for adapting the weights.
Close to the line structure, the regularizer increases the influence (with larger weights) of neighbors whose
distance information matches the prescribed ground truth label. Away from the line structure, the regularizer
has learned to suppress (with small weights) neighbors that belong to a line structure.

5.1.2. Test Phase. During the training phase, optimal weights were associated with all training features
through optimization, based on ground truth and a corresponding objective function. In the test phase with
novel data and features, appropriate weights have to be precicted because ground truth no longer is available.
This was done by extracting a coreset [Phi16] from the output generated by Algorithm 1 during the training
phase, and constructing a map from novel features to weights, as desribed next.
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Coreset. Let Ω∗ ∈ P denote the set of optimal weight patches generated by Algorithm 1, and let P ∗

denote the set of all 15× 15 patches of local label assignments based on the corresponding training features
and distance (5.1). We partitioned P ∗ into three classes: thin line structures, homogeneous regions and
texture, and extracted for each class separately 225 prototypical patches by k-means clustering. To each of
these patches and the corresponding cluster, a prototypical weight patch was assigned, namely the weighted
geometric mean of all optimal weight patches in Ω∗ belonging to that cluster. As weights for the averaging we
used the Euclidean distance between the respective patches of local label assignments and the corresponding
cluster centroid.

Figure 5.5 depicts 10 pairs of patches of prototypical label assignments and weights, for each of the three
classes: line, homogenous, texture. Comparing these weight patches with the optimal patches depicted by
Figure 5.4, we observe that the former are regularized (smoothed) by geometric averaging and, in this sense,
summarize and represent all optimal weights computed during the training phase.

Mapping features to weights. For each novel test image, we extracted features using the same procedure
as done in the training phase and computed at each pixel i the patch of local label assignments. For the latter
patch, the closest patch of local label assignments of the coreset was determined, and the corresponding
weight patch was assigned to pixel i.

Note that the patch size 15 × 15 of local label assignments was chosen larger as the patch size 9 × 9 of
the weights that was used both during training and for testing. The former larger neighborhood defines the
local ‘feature context’ that is used to predict weights for novel data.

Inference (labeling novel data). In the test phase, we used the modified linear assignment flow and all
parameter values in the same way, as was done during training. The only difference is that predicted weight
patches were used for regularization, as described above.

Results. Figure 5.6 shows a result of the test phase. Since all data are randomly generated, this result
is representative for the entire image class. The top row shows the input data (panels (a) and (c)), whereas
ground truth (b) is only shown for visual comparison. The bottom row shows the results obtained using
uniform weights (d) and predicted weights (e). The latter result clearly demonstrated the impact of weight
adaptivity. This aspect is further illustrated in panel (f).

Figure 5.7 shows predicted weight patches for novel test data in the same format as Figure 5.4 depicts
optimal weight patches computed during training. The similarity of the behaviour of predicted and optimal
weights for pixels close and away from local line structure, demonstrates that the approach generalizes well
to novel data. Since these data are randomly generated, this performance is achieved for any image data in
this class.
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(a) training data (b) ground truth (c) local rounding of
distance information

(d) labeling with
optimal weights

(e) Optimal weight patches

FIGURE 5.4. Training phase: Optimal weight patches. TOP ROW: (a) Close-up view of
training data (10 × 10 pixel region). (b) The corresponding ground truth section. (c) Local
label assignments. (d) Correct labeling using adapted optimal weights. BOTTOM ROW: (e)
The corresponding optimal weight patches (10 × 10 grid), one patch for each pixel. Close
to the line structure, the regularizer increases the influence of neighbors on the geometric
averaging of assignments whose distances match the prescribed ground truth labels. Away
from the line structure, the regularizer has learned to suppress with small weights neighbors
belonging to a line structure.
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(a) line

(b) homogeneous

(c) texture

FIGURE 5.5. Coreset visualization. This plot shows 3 × 10 prototypical patches of local
label assignments and the corresponding weight patches of the coreset, for each of the 3
classes. (a) 10 prototypical pairs of the class line. Weight patches ‘know’ to which neighbors
large weights have to be assigned, such that the local line structure is labeled correctly.
(b) Weight patches of the homogeneous label class are almost uniform, which is plausible,
because the noisy assignments can be filtered most effectively. (c) The weight patches of
the texture label are comparable to the homogeneous ones and almost uniform, for the same
reason. (Color code

{
, ,

}
= {line, homogeneous, texture}).
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(a) novel (test) data (b) ground truth (c) local rounding of distance information

(d) labeling with uniform weights (e) labeling with adaptive weights (f) difference to uniform weights

FIGURE 5.6. Test phase: Labeling results. TOP ROW: (a) Randomly generated novel in-
put data, (b) the corresponding ground truth (c) the local label assignments. BOTTOM ROW:
(d) Labeling using uniform weights fails to detect and label line structures. (e) Adaptive
regularizer based on predicted weights yields a result that largely agrees with ground truth.
Panel (f) illustrates weights adaptivity at each pixel in terms of the distance of the predicted
weight patch to the uniform weight.
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(a) novel (test) data (b) ground truth (c) rounded distance (d) adaptive labeling

(e) predicted weight patches

FIGURE 5.7. Test phase: Predicted weight patches. TOP ROW: (a) Close-up view of
novel data (10 × 10 pixel window). (b) Corresponding ground truth section (just for visual
comparison, not used in the experiment). (c) Local label assignment. (d) Labeling result us-
ing adaptive regularization with predicted weights. BOTTOM: (e) Corresponding predicted
weight patches (10 × 10 grid), one patch for each pixel of the test data (a). The predicted
weight patches behave similar to the optimal weight patches depicted by Fig. 5.4, that were
computed during the training phase (for different data). This shows that our approach gen-
eralizes to novel data.
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5.2. Pattern Formation by Label Transport. In this section, we illustrate the model expressiveness of
the assignment flow. Specifically, we choose quite different labelings as input and target data, respectively,
and show that our learning approach can determine weights that ‘connect’ these patterns by the assignment
flow. This shows that the weights which determine the regularization properties of the assignment flow
actually encode information for pattern formation. Finally, we briefly point out and illustrate limitations of
our approach.

5.2.1. Pattern Completion. The top row of Figure 5.8 shows input and target labelings. The second row
illustrates our approach to weight parameter learning using the linear assignment flow: Starting with uniform
weights and imposing the very sparse information of the input labeling as constraint, adapting the weights by
the Riemannian gradient flow on the parameter manifold effectively steers the assignment flow to the target
labeling.

Having obtained the optimal weights Ω∗ after convergence, we inserted them into the original nonlinear
assignment flow. The evolution corresponding label assignments is shown by the third row of Figure 5.8. The
fact that the label assignment at the final time T is close to the target labeling which the linear assignment flow
reaches exactly, confirms the remarkably close approximation of the nonlinear flow by the linear assignment
flow, as already demonstrated in [ZSPS18] in a completely different way.

The rightmost panel in the top row of Figure 5.8 shows, for each pixel, the deviation of the optimal weight
patch form uniform weights. While it is obvious that the ‘source labeling’ of the input data receive large
weights, the spatial arrangement of weights at all other locations is hard to predict beforehand, by humans.
This is why learning them is necessary.

Input Target Difference
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t = 0 t = 1 t = 2 t = 3 t = 4 T = 5

FIGURE 5.8. Pattern completion. This figure illustrates the model expressiveness of the
assignment flow. TOP ROW: Input and target labelings. The task was to estimate weights
in order to steer the assignment flow to the target labeling. The rightmore panel illustrates,
for each pixel, the distance of the optimal weight patch from uniform weights. MIDDLE
ROW: Label assignments of the linear assignment flow during weight parameter estimation.
The Riemannian gradient flow on the parameter manifold effectively steers the flow to the
target labeling. BOTTOM ROW: Label assignments of the nonlinear assignment flow using
the optimal weights that were estimated using the linear assignment flow. Closeness of both
labeling patterns at the final point of time T = 5 demonstrates that the linear assignment
flow provides a good approximation of the full nonlinear flow.
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5.2.2. Transporting and Enlarging Label Assignments. We repeated the experiment of the previous section
using the academic scenario depicted by Figure 5.9. A major difference is that locations of the input labeling
do not form a subset of the locations of the target labeling. As a consequence, the corresponding ‘mass’ of
assignments has to be both transported and enlarged.

The results shown by Figure 5.9 closely resemble those of Figure 5.8, such that the corresponding com-
ments apply likewise. We just point out again the following: Looking at the optimal weight patches in terms
of their deviation from uniform weights, as depicted by the rightmost panel in the top row of Figure 5.9, it is
both interesting and not too difficult to understand – after convergence and informally by visual inspection –
how these weights encode this particular ‘label transport’. However, predicting these weights and certifying
their optimality beforehand, seems to be an infeasible task. For example, it is hard to predict that the creation
of intermediate locations where assignment mass temporarily accumulates (clearly visible in Fig. 5.9), ef-
fectively optimizes the constrained functional (4.1). Learning these weights, on the other hand, just requires
to apply our approach.

Input Target Difference
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t = 0 t = 2 t = 3.5 t = 5 t = 6.5 T = 8.5

FIGURE 5.9. Transporting and Enlarging Label Assignments. See Fig. 5.8 for the set-
up. TOP ROW: Label locations of the input data do not form a subset of the target locations.
Thus, ‘mass’ of label assignments has to be both transported and enlarged. Rightmost panel:
Distance of the optimal weight patch from uniform weights, for every pixel. MIDDLE ROW:
Applying our approach to (4.1) effectively solves the problem. BOTTOM ROW: Inserting
the optimal weights that are computed using the linear assignment flow, into the nonlinear
assignment flow, gives a similar result and underlines the good approximation property of
the linear assignment flow. It is interesting to obverse that computing the Riemannian gradi-
ent flow on the parameter manifold entails ‘intermediate locations’ where assignment mass
accumulates temporarily. This underlines the necessity of learning, since it seems hard to
predict such an optimal regularization strategy beforehand.

5.2.3. Parameter Learning vs. Optimal Control. Figure 5.10 illustrates limitations of our parameter learning
approach. In this experiment, we simply exceeded the time horizon in order to inspect labelings induced by
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the linear assignment flow after the point of time T , that was used for determining optimal weights in the
training phase. Starting with T , Figure 5.10 shows these labelings for both experiments corresponding to
Figures 5.8 and 5.9.

Unlike the fern pattern (top row) where the initial label locations formed a subset of the target locations
and were imposed as constraints, the ‘moving mass pattern’ (bottom row) is unsteady in the following quite
natural sense: the linear assignment flow simply continues transporting mass beyond time T . As a result,
assignments to the white label are transported to locations of the black target pattern. Hence, the target
pattern is first created up to time T and destroyed afterwards.

This behaviour is not really a limitation, but a consequence of merely learning constant weight parameters.
Due to the formulation of the optimization problem (4.1), optimal weights not only encode the ‘knowledge’
how to steer the assignment flow in order to solve the problem, but also the time period after which the task
has to be completed. Fixing this issue requires a higher-level of adaptivity: weight functions depending on
time and the current state of assignments would have to be estimated, that may be adjusted online through
feedback in order to control the assignment flow in a more flexibel way.

t = T t = T + 0.5 t = T + 1 t = T + 1.5 t = T + 2

t = T t = T + 1.5 t = T + 3 t = T + 4 t = T + 5

FIGURE 5.10. Parameter Learning vs. Optimal Control. The plots show label assign-
ments by computing the assignment flow beyond the final point of time T used during train-
ing, for the experiments corresponding to Figures 5.8 and 5.9. Unlike the pattern comple-
tion experiment (top row) where few locations of initial label assignments were imposed
as constraint, the target pattern (bottom row, at time T ) of the moving-mass experiment is
unsteady in the following sense: at time T , the flow continues to transport mass which even-
tually erases the target pattern with assignments of the white background label. The reason
is that constant parameters are only learned that not only encode the ‘knowledge’ how to
steer the flow to the target pattern but also the time period [0, T ] for accomplishing this task.
In order to remedy this limitation, weight functions depending on the assignments (state of
the assignment flow) would have to be estimated by applying techniques of optimal control.

6. CONCLUSION

We introduced a parameter learning approach for image labeling based on the assignment flow. During
the training phase, weights for geometric averaging of label assignments are estimated from ground truth
labelings, in order to steer the flow to prescribed labelings. Using the linearized assignment flow, we showed
that, by using a class of symplectic partitioned Runge-Kutta methods, this task can be accomplished by
numerically integrating the adjoint system in a consistent way. Consistent means that discretization and
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differentiation for the training problem commute. An additional convenient property of our approach is that
the parameter manifold has mathematically the structure of an assignment manifold, such that Riemannian
gradient descent can be used for effectively solving the training problem.

The output of the training phase is a database containing features extracted from training data, together
with the respective optimal weights. In order to complete the parameter learning task, a mapping has to be
specified that predicts optimal weights for novel unseen data. We solved this task simply by nearest-neighbor
prediction after partitioning the database using k-means clustering and geometric averaging of the weights,
separately for each cluster. We evaluated this approach for a 3-label scenario involving line structures where
just using uniform weights inevitably fails. We additionally conducted experiments that highlight the model
expressiveness of the assignment flow and also limitations caused by merely learning constant parameters.

Our main insights include the following. Regarding numerical optimization for parameter learning in
connection with image labeling, our approach is more satisfying than working with discrete graphical mod-
els, where parameter learning requires to evaluate the partition function, which is a much more involved
task when working with cyclic grid graphs. This latter problem of computational statistics shows up in our
scenario in similar form as the problem to design the prediction map from features to weight parameters.
A key difference of these two scenarios is that by restricting the scope to statistical predictions at a local
scale, i.e. only within small windows, the prediction task becomes manageable, since regarding numerical
optimization, no further approximations are involved at all.

Regarding future work, we mention two directions. The natural way for broading the scope of the predic-
tion map and the class of images that the assignment flow can represent, is the composition of two or several
assignment flows in a hierarchical fashion. This puts our work closer to current mainstream research on deep
networks, whose parametrizations and internal representations are not fully understood, however. We hope
that using the assignment flow can help to understand hierarchical architectures better.

The second line of research concerns the learning of weight functions, rather than constant parameters, as
motivated in Section 5.2.3, since this would also enhance model expressiveness and adaptivity considerably.
A key problem then is to clarify the role of these functions and the choice of an appropriate time scale, as
part of an hierarchical composition of assignment flows.
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APPENDIX A. PROOFS OF SECTION 2

A.1. Proof of Theorem 2.6. A proof can be found, e.g., in [CLPS03]. However, in order to make this paper
self-contained, we include a proof here.

Proof. Setting up the Lagrangian

L(x, p, λ) = C(x(T ))−
∫ T

0

〈
λ, F (ẋ, x, p, t)

〉
dt (A.1)

with multiplier λ(t) and F (ẋ, x, p, t) := ẋ− f(x, p, t) ≡ 0, we get with Φ(p) = C(x(T )) from (2.1)

∂Φ = ∂pL = dpx(T )>∂C
(
x(T )

)
−
∫ T

0

(
dẋFdpẋ+ dxFdpx+ dpF

)>
λ dt, (A.2)

where integration applies component-wise. By using dẋF = I , where I denotes the identity matrix, we
partially integrate the first term under the integral,∫ T

0
dpẋ
>λ dt = dpx

>λ

∣∣∣∣T
t=0

−
∫ T

0
dpx
>λ̇ dt. (A.3)

We further obtain with dpF = −dpf and dxF = −dxf

∂Φ = dpx(T )>∂C(x(T ))− dpx>λ
∣∣∣∣T
t=0

+

∫ T

0
dpx
>λ̇ dt+

∫ T

0

(
dxfdpx+ dpf

)>
λ dt (A.4a)

= dpx(T )>∂C(x(T ))− dpx(T )>λ(T ) + dpx(0)>λ(0)

+

∫ T

0
dpx
>λ̇+ dpx

>dxf
>λ+ dpf

>λ dt.
(A.4b)

We consider systems where the initial value x0 is independent of the parameter p, i.e. dpx(0) = 0. Addi-
tionally factoring out the unknown Jacobian dpx, we obtain

= dpx(T )>
(
∂C(x(T ))− λ(T )

)
+

∫ T

0
dpx
>
(
λ̇+ dxf

>λ
)

+ dpf
>λ dt. (A.4c)

Now, by choosing λ(t) such that conditions (2.18b) are fulfilled, i.e.

λ̇(t) = −dxf>λ(t), λ(T ) = ∂xC(x(T )),

we finally obtain

∂Φ =

∫ T

0
dpf

>λ(t) dt. (A.5)

�

A.2. Proof of Theorem 2.7. For the proof of this theorem we follow the suggested outline of [SS16]: State
the Lagrangian of the nonlinear problem (2.21) and apply the following lemma, which is a slightly different
version of Lemma 3.5 in [SS16].

Lemma A.1. Suppose that the mapping φ : Rnp×d
′ → Rd

′
is such that the Jacobian matrix dγφ is invertible

at a point (p0, γ0) ∈ Rnp × Rd
′
, that is in the neighborhood of p0, the equation φ(p, γ) = 0 defines γ

as a function of p. For some given function C : Rnp×d
′ → R consider the induced function of the form

Φ: Rnp → R, defined by Φ(p) := C(p, γ(p)). We introduce the Lagrangian

L(p, γ, λ) = C(p, γ) + 〈φ(p, γ), λ〉. (A.6)
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Then, the Euclidean gradient of Φ with respect to p at p0 is given by

∂Φ(p0) = ∂pL(p0, γ0, λ0), (A.7)

where the vectors γ0 = γ(p0) ∈ Rd
′

and λ0 ∈ Rd
′

are uniquely determined by

0 = ∂λL(p0, γ0, λ0) = φ(p0, γ0), (A.8a)

0 = ∂γL(p0, γ0, λ0) ⇐⇒ ∂γC(p0, γ0) = −dγφ(p0, γ0)>λ0. (A.8b)

Proof. Since we evaluate all occurring functions and their derivatives at the same points p0, γ0 and λ0, we
drop them as arguments in the following, to simplify notation.
(i) Equation (A.8a) directly follows by differentiating L with respect to λ at (p0, γ0, λ0).
(ii) Equation (A.8b) is immediately obtained by differentiating L with respect to γ at (p0, γ0, λ0). Since dγφ
is invertible at (p0, γ0), the resulting linear system uniquely determines the vector λ0.
(iii) Next, we show that this λ0 also satisfies the first equation (A.7). By differentiating φ(p, γ) = 0 with
respect to p at (p0, γ0), we obtain

dγφdpγ0 + dpφ = 0
dγφ is invertible⇐⇒ dpγ0 = −(dγφ)−1dpφ. (A.9)

We will make use of this identity for dpγ0 in the following. Differentiating Φ with respect to p at p0 and by
the chain rule, we obtain

∂Φ = ∂pC + dpγ
>
0 ∂γC

(A.8b)
= ∂pC − dpγ>0 dγφ>λ0 (A.10a)

(A.9)
= ∂pC +

(
(dγφ)−1dpφ

)>
dγφ

>λ0 = ∂pC + dpφ
>λ0 (A.10b)

= ∂L, (A.10c)

which shows (A.7). �

Proof of Theorem 2.7. We begin by stating the Lagrangian of problem (2.21)

L(x, p, λ) = C
(
xN
)
− λ>0 (x0 − x(0))−

N−1∑
n=0

λ>n+1

[
xn+1 − xn − hn

s∑
i=1

bikn,i

]
−
N−1∑
n=0

hn

s∑
i=1

biΛ
>
n,i

[
kn,i − f(Xn,i, p, tn + cihn)

]
.

(A.11)

In order to apply Lemma A.1, we explain which role the variables γ, λ, φ play in this situation:

(1) Intermediate stages: The vector γ represents all intermediate stages related to the evaluation of the
function Φ(p) = C(xN (p)), i.e. all intermediate values xi and stages ki of the Runge–Kutta method.
These variables are stacked and arranged as follows

γ =


x0

γ0

γ1
...

γN−1

 ∈ Rd
′
, with γn =

[
kn
xn+1

]
∈ R(s+1)nx , and kn =

kn,1...
kn,s

 ∈ Rsnx . (A.12)
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(2) Lagrange multiplier: The vector λ contains all Lagrange multipliers in (A.11) belonging to the
constraints (2.21b)-(2.21d). The multipliers are stacked and arranged as follows

λ =



−λ0

−Λ0
...

−λN−1

−ΛN−1

−λN


∈ Rd

′
, with Λn =

hnb1Λn,1
...

hnbsΛn,s

 ∈ Rsnx . (A.13)

(3) Intermediate mappings: Analogously, the vector φ contains all intermediate mappings φn, for n =
1, . . . , N −1 of the computation of Φ(p) = C(xN (p)). In our situation, φ is the concatenation of the
forward Runge–Kutta evaluation, which we express using the Kronecker-product as

φ =


x0 − x(0)

Ψ1

Ψ2
...

ΨN−1

 ∈ Rd
′
, with Ψn =

[
kn − Fn(Xn, p)

xn+1 − xn − hn(b> ⊗ Inx)kn

]
=

[
Ψn,1

Ψn,2

]
∈ R(s+1)nx , (A.14)

where Ψn,1 ∈ Rsnx and Ψn,2 ∈ Rnx , as well as

Fn(Xn, p) =

f(Xn,1, p, tn + c1hn)
...

f(Xn,s, p, tn + cshn)

 , Xn = 1s ⊗ xn + hn(A⊗ Inx)kn =

Xn,1
...

Xn,s

 . (A.15)

We proceed by computing the Jacobian dγφ. Note that the intermediate variables γn (A.12) are only con-
tained in the intermediate mappings Ψn (A.14), which results in a sparse block structure of the overall
Jacobian dγφ.

(1) Small block matrices: Each small block matrix represents the derivative of the n-th iteration step Ψn

and is given by

d(xn,kn,xn+1)Ψn =

[
dxnΨn,1 dknΨn,1 dxn+1Ψn,1

dxnΨn,2 dknΨn,2 dxn+1Ψn,2

]
=

[
Dn An
−Inx B>n Inx

]
, (A.16)

with

An = Isnx − hndxFn(Xn, p)(A⊗ Inx), (A.17a)

B>n = −hnb> ⊗ Inx , (A.17b)

Dn = −dxFn(Xn, p)(1s ⊗ Inx), (A.17c)

where A and b are the Runge-Kutta coefficients given by the left tableau of Fig. 2.1.
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(2) Sparse block structure: The overall Jacobian dγφ consists of N − 1 blocks (one for each iteration)
of the form (A.16) and is given by

dγφ =



Inx
D1 A1

−Inx B>1 Inx
D2 A2

−Inx B>2 Inx
. . . . . . . . .

DN−1 AN−1

−Inx B>N−1 Inx


. (A.18)

(3) Invertibility of dγφ: A matrix M is invertible if detM 6= 0. Since the matrix dγφ is lower block
diagonal, its determinant is given by

det dγφ = detA1 · . . . · detAN−1 (A.19)

Thus, we only need to show that detAn 6= 0 for all n = 1, . . . , N − 1. Equation (A.17a) reads in a
more compact form

An = (Isnx − hnM), with M := dxFn(Xn, p)(A⊗ Inx). (A.20)

We show detAn 6= 0 by using the equivalent statement ker(An) = {0}. Now, let x ∈ Rsnx\{0},
then

‖x‖ ≤ ‖x− hnMx‖+ ‖hnMx‖ ≤ ‖Anx‖+ ‖hnM‖‖x‖. (A.21)
By using the row-sum norm ‖ · ‖∞, we have

‖hnM‖∞
(A.20)

= hn‖dxFn(Xn, p)(A⊗ Inx)‖∞ ≤ hn‖dxFn(Xn, p)‖∞‖(A⊗ Inx)‖∞

< hnL max
i=1,...,s

s∑
j=1

|aij |
(2.11)
< 1, (A.22)

where L denotes the Lipschitz constant of f and the step-size hn satisfies the assumption (2.11).
Substituting (A.22) into (A.21) gives

‖x‖ < ‖Anx‖+ ‖x‖ ⇐⇒ 0 < ‖Anx‖ ⇐⇒ x 6∈ ker(An). (A.23)

Since, the kernel of An is trivial, An is invertible and consequently the overall Jacobian dγφ as well.

Now we are in a position to apply Lemma A.1. More precisely, (A.8b) tells us that the vector λ is uniquely
determined by the linear system dγφ

>λ = −∂γC. In our situation, this system is given by

Inx D>1 −Inx
A>1 B1

Inx D>2 −Inx
A>2 B2

. . .

Inx
. . .
. . . D>N−1 −Inx

A>N−1 BN−1

Inx





−λ0

−Λ0

−λ1

−Λ1

...

−λN−1

−ΛN−1

−λN



= −



0

0

0

0
...

0

0

∂xC(xN )



. (A.24)
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We determine the exact identity of λ by backward substitution:

(1) From the last row of (A.24), we immediately obtain

λN = ∂xC(xN ). (A.25)

(2) Next, we prove equation (2.23a). For each n = 0, . . . , N − 1, we obtain

0 =
[
Inx D>n −Inx

]  λn
Λn
λn+1

 = λn +D>n Λn − λn+1 (A.26a)

= λn − (dxFn(Xn, p)(1s ⊗ Inx))>

hnb1Λn,1
...

hnbsΛn,s

− λn+1 (A.26b)

= λn − (1>s ⊗ Inx)dxFn(Xn, p)
>

hnb1Λn,1
...

hnbsΛn,s

− λn+1 (A.26c)

= λn − hn
s∑
i=1

bidxf(Xn,i, p, tn + cihn)>Λn,i − λn+1. (A.26d)

λn+1 = λn + hn

s∑
i=1

bi`n,i, with `n,i = −dxf(Xn,i, p, tn + cihn)>Λn,i. (A.26e)

(3) The last equation (2.23c) follows by

0 =
[
0 A>n Bn

]  λn
Λn
λn+1

 (A.27a)

= A>nΛn +Bnλn+1 (A.27b)

= (Isnx − hndxFn(Xn, p)(A⊗ Inx))> Λn − hn(b⊗ Inx)λn+1 (A.27c)

=
(
Isnx − hn(A> ⊗ Inx)dxFn(Xn, p)

>
)

Λn − hn(b⊗ Inx)λn+1. (A.27d)

In the following, we consider the i-th entry of the previous equation, i.e. hnbiΛn,i of Λn with
i = 1, . . . , s.

0 = hnbiΛn,i − h2
n

s∑
j=1

ajibj∂xf(Xn,j , p, tn + cjhn)>Λn,j − hnbiλn+1 (A.28a)

Λn,i = λn+1 + hn

s∑
j=1

ajibj
bi

dxf(Xn,j , p, tn + cjhn)>Λn,j (A.28b)

(A.26e)
= λn + hn

s∑
i=1

bi`n,i − hn
s∑
j=1

ajibj
bi

`n,j , with `n,j = −dxf(Xn,j , p, tn + cjhn)>Λn,j (A.28c)

= λn + hn

s∑
j=1

(
bj −

ajibj
bi

)
`n,j . (A.28d)
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Finally, we show the formula of the gradient (2.22), which is given by (A.7)

∂Φ = ∂pC + dpφ
>λ0

∂pC=0
= dpφ

>λ0. (A.29)

The Jacobian dpφ> consists of the following building blocks: For the n-th iteration step Ψn the local Jaco-
bian with respect to parameter p reads

dpΨn =

[
dpΨn,1

dpΨn,2

]
=

[
D̄n

0

]
, with D̄n = −dpFn(Xn, p)(1s ⊗ Inp). (A.30)

By concatenating N − 1 of these blocks (one for each iteration n = 1, . . . , N − 1) of (A.30), the overall
Jacobian is given by

dpφ
> =

[
0 D̄>0 0 D̄>1 0 . . . 0 D̄>N−1 0

]
. (A.31)

Now, formula (2.22) is explicitly given by

∂Φ = dpφ
>λ0 (A.32a)

=
[
0 D̄>0 0 . . . 0 D̄>N−1 0

]


−λ0

−Λ0

−λ1
...

−λN−1

−ΛN−1

−λN


= −

N−1∑
n=0

D̄>n Λn (A.32b)

=
N−1∑
n=0

(dpFn(Xn, p)(1s ⊗ Inp))>Λn =
N−1∑
n=0

((1s ⊗ Inp))dpFn(Xn, p)
>Λn (A.32c)

(A.13)
=

N−1∑
n=0

hn

s∑
i=1

bidpf(Xn,i, p, tn + cihn)>Λn,i. (A.32d)

�
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