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Abstract
We study the inverse problem of model parameter learning for pixelwise image labeling, using the linear assignment flow
and training data with ground truth. This is accomplished by a Riemannian gradient flow on the manifold of parameters that
determines the regularization properties of the assignment flow. Using the symplectic partitioned Runge–Kutta method for
numerical integration, it is shown that deriving the sensitivity conditions of the parameter learningproblemand its discretization
commute. A convenient property of our approach is that learning is based on exact inference. Carefully designed experiments
demonstrate the performance of our approach, the expressiveness of the mathematical model as well as its limitations, from
the viewpoint of statistical learning and optimal control.

Keywords Image labeling ·Assignment manifold ·Assignment flow ·Dynamical systems ·Replicator equation ·Evolutionary
dynamics · Sensitivity analysis · Parameter learning · Adaptive regularization

1 Introduction

1.1 Overview and Scope

The image labeling problem, i.e., the problem to classify
images pixelwise depending on the spatial context, has been
thoroughly investigated during the last two decades using
discrete graphical models. While the evaluation (inference)
of such models is well understood [15], learning the param-
eters of such models has remained elusive, in particular for
modelswith higher connectivity of the underlyinggraph.Var-
ious sampling-based and other approximation methods exist
(cf. [28] and references therein), but the relation between
approximations of the learning problem on the one hand,
and approximations of the subordinate inference problem on
the other hand, is less understood [22].

In this paper, we focus on parameter learning for con-
textual pixelwise image labeling based on the assignment
flow introduced by [2]. In comparison with discrete graph-
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ical models, an antipodal viewpoint was adopted by [2]
for the design of the assignment flow approach: Rather
than performing non-smooth convex outer relaxation and
programming, followed by subsequent rounding to integral
solutions that is common when working with large-scale
discrete graphical models, the assignment flow provides a
smooth nonconvex interior relaxation that performs round-
ing to integral solutions simultaneously. Convergence and
stability of the assignment flowhave been studied in [26], and
extensions to unsupervised scenarios are reported in [27,29].
In [12], it was shown that the assignment flow can emulate
a given discrete graphical model in terms of smoothed local
Wasserstein distances that evaluate the edge-based parame-
ters of the graphical model. In comparison with established
belief propagation iterations [23,24], the assignment flow
driven by ‘Wasserstein messages’ [12] continuously takes
into account basic constraints, which enables to compute
good suboptimal solutions just by numerically integrating
the flow in a proper way [25]. We refer to [20] for sum-
marizing recent work based on the assignment flow and a
discussion of further aspects.

In this paper, we ignore the connection to discrete graph-
ical models and focus on the parameter learning problem for
the assignment flow directly. This problem is raised in [2,
Section 5 and Fig. 14]. The present paper provides a detailed
solution. Adopting the linear assignment flow as introduced
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by [25] enables to cast the parameter estimation problem into
the general form

min
p∈P

C
(
x(T , p)

)
(1.1a)

s.t. ẋ(t) = f (x(t), p, t), t ∈ [0, T ], (1.1b)

x(0) = x0, (1.1c)

where the parameters p determine the vector field of the
linear assignment flow (1.1b) whose unique solution is eval-
uated at some point of time T by a suitable loss function
(1.1a). This problem formulation has a range of advantages.

– Inference (labeling) that always defines a subroutine of a
learning procedure can be carried out exactly by means
of numerically solving (1.1b). In other words, errors of
approximate inference (e.g., as they occur with graphical
models) are absent and cannot compromise the effective-
ness of parameter learning.

– In addition, discretization effects can be handled in the
most convenientway:Weshow theoperations of (i) deriv-
ing the optimality conditions of (1.1) and (ii) problem
discretization commute if a proper numerical scheme is
used.

As a result, we obtain a well-defined and relatively simple
algorithm for parameter learning that is easy to implement
and enables reproducible research. We report the results of a
careful numerical evaluation in order to highlight the scope
of our approach and its limitations.

We discuss in Sect. 1.2 our specific contributions that elab-
orate a related conference paper [13] through the content of
Sect. 2 (sensitivity analysis, commutativity of diagram 2,
numerical schemes), Sect. 4 (parameter estimation, algo-
rithm), Sect. 5 (a range of experiments) and the ‘Appendix’
(proofs).

1.2 RelatedWork, Contribution and Organization

The task to optimize parameters of a dynamical system (1.1)
is a familiar one in the communities of scientific computing
and optimal control [4,21], but may be less known to the
imaging community. Therefore, we provide the necessary
background in Sect. 2.1.

Geometric numerical integration of ODEs on manifolds
is a mature field as well [8]. Here, we have to distinguish
between the integration of the assignment flow [25] and inte-
gration schemes for numerically solving (1.1). The task to
design the latter schemes faces the ‘optimize-then-discretize’
versus ‘discretize-then-optimize’ dilemma. Conditions and
ways to resolve this dilemma have been studied in the opti-
mal control literature [7,18]. See also the recent survey [19]

and references therein. We provide the corresponding back-
ground in Sects. 2.2 and 2.3 including a detailed proof of
Theorem 7 that is merely outlined in [19]. The application
to the linear assignment flow (Sect. 3) requires consider-
able work, taking into account that the state equation (1.1b)
derives from the full nonlinear geometric assignment flow
(Sect. 4). Section 4 concludes with specifying Algorithms 1
and 2 whose implementation realizes our approach.

From a more distant viewpoint, our work ties in with
research on networks from a dynamical systems point of view
that emanated from [11] in computer science and has also
been promoted recently in mathematics [5]. The recent work
[6], for example, studied stability issues of discrete-time
network dynamics using techniques of numerical ODE inte-
gration. The authors adopted the discretize-then-differentiate
viewpoint on the parameter estimation problem and sug-
gested symplectic numerical integration in order to achieve
better stability. As mentioned above, our work contrasts in
that inference is always exact1 during learning, unlike the
more involved architecture of [6] where learning is based on
approximate inference. Furthermore, in our case, symplectic
numerical integration is a consequence of making the dia-
gram of Fig. 2 (page 7) commute. This property qualifies
our approach as a proper (though rudimentary) method of
optimal control (cf. [18]).

We numerically evaluate our approach in Sect. 5 using
three different experiments. The first experiment considers
a scenario of two labels and images of binary letters. The
results discussed in Sect. 5.1 illustrate the adaptivity of reg-
ularization by using non-uniform weights that are predicted
for novel unseen image data. The second experiment uses a
class of computer-generated random images such that learn-
ing the regularization parameters is necessary for accurately
labeling each image pixelwise. It is demonstrated in Sect. 5.2
that, for each given ground truth labeling, the parameter esti-
mation problem can be solved exactly. As a consequence,
the performance of the assignment flow solely depends on
the prediction map, i.e., the ability to map features extracted
from novel data to proper weights as regularization parame-
ters, using as examples both features and optimal parameters
computed during the training phase. For statistical reasons,
this task becomes feasible if the domain of the predictionmap
is restricted to local contexts, in terms of features observed
within local windows. We discuss consequences for future
work in Sect. 6. Finally, in Sect. 5.3, we conduct an exper-
iment that highlights the remarkable model expressiveness
of the assignment flow as well as limitations that result from
learning constant parameters.

We conclude in Sect. 6.

1 ‘Exact’ means that T is chosen sufficiently large such that the
assignment W (T ) is almost integral, i.e., a labeling, according to the
entropy-based criterion of [2, Section 3.3.4].
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1.3 Basic Notation

For the clarity of exposition, we use general mathematical
notation in Sect. 2 that should be standard, whereas spe-
cific notation related to the assignment flow is introduced in
Sect. 3.

We set [n] = {1, 2, . . . , n} for n ∈ N and 1n =
(1, 1, . . . , 1)� ∈ R

n . For a matrix A ∈ R
m×n , the i th

row vector is denoted by Ai , i ∈ [m] and its transpose by
A� ∈ R

n×m . 〈a, b〉 denotes the Euclidean inner product of
a, b ∈ R

n and 〈A, B〉 = ∑
i∈[n]〈Ai , Bi 〉 the (Frobenius)

inner product between twomatrices A, B ∈ R
m×n . The prob-

ability simplex is denoted by Δn = {p ∈ R
n : pi ≥ 0, i ∈

[n], 〈1n, p〉 = 1}. Various orthogonal projections onto a
convex set are generally denoted by Π and distinguished by
a corresponding subscript, like Πn,ΠP , · · · , etc.

The functions exp, log apply componentwise to strictly
positive vectors x ∈ R

n++, e.g., ex = (ex1 , . . . , exn ), and
similarly for strictly positive matrices. Likewise, if x, y ∈
R
n++, then we simply write

xy = (x1y1, . . . , xn yn),
x

y
=

( x1
y1

, . . . ,
xn
yn

)
(1.2)

for the componentwise multiplication and division.
We assume the reader to be familiar with elementary

notions of Riemannian geometry as found, e.g., in [14,16].
Specifically, given a Riemannian manifold (M, g)with met-
ric g and a smooth function f : M → R, the Riemannian
gradient of f is denoted by grad f and given by

〈grad f , X〉g = d f (X), ∀X (1.3)

where X denotes any smooth vector field onM, that returns
the tangent vector X p ∈ TpM when evaluated at p ∈ M.
The right-hand side of (1.3) denotes the differential d f of f ,
acting on X .More generally, for amap F : M → N between
manifolds, we write dF(p)[v] ∈ TF(p)N , p ∈ M, v ∈
TpM, if the base point p matters.

In the Euclidean case f : Rn → R, the gradient is a
column vector and denoted by ∂ f . For F : Rn → R

m ,
we identify the differential dF ∈ R

m×n with the Jaco-
bian matrix. If x = (x1, x2)� ∈ R

n = R
n1 × R

n2 with
n = n1 + n2, then the Jacobian of F(x) = F(x1, x2) with
respect to the parameter vector xi is denoted by dxi F , for
i = 1, 2.

2 Sensitivity Analysis for Dynamical Systems

In this section, we consider the constrained optimization
problem (1.1)with a smooth objective functionC : Rnx → R.
The constraints are given by a general initial value prob-

lem (IVP), which consist of a system of ordinary differential
equations (ODEs) (1.1b) that is parametrized by a vector
p ∈ P ⊂ R

n p and an initial value x0 ∈ R
nx . To ensure

existence, uniqueness and continuous differentiability of the
solution trajectory x(t) on the whole time horizon [0, T ], we
assume that f (·, p, ·) of (1.1b) is Lipschitz continuous on
R
nx × [0, T ], for any p.
Since we assume the initial value x0 and the time horizon

[0, T ] to be fixed, the objective function (1.1a)

Φ(p) := C(x(T , p)) (2.1)

effectively is a function of parameter p, i.e., Φ : Rn p → R.
In order to solve (1.1) with a gradient-basedmethod, we have
to compute the gradient

∂pΦ(p) = dpx(T , p)�∂xC(x(T , p)). (2.2)

The term dpx(T , p)—called sensitivity—measures the sen-
sitivity of the solution trajectory x(t) at time T with respect
to changes in the parameter p. Two basic approaches for
determining (2.2) are stated in Sect. 2.1, and we briefly
highlight why using one of them, the adjoint approach, is
advantageous for computing sensitivities. In Sect. 2.2, we
recall symplectic Runge–Kutta methods and conditions for
preserving quadratic invariants. The latter property relates
to the derivation of a class of numerical methods such that
evaluating (2.2), which derives from the time-continuous
problem (1.1), is identical to first discretizing (1.1) followed
by computing the corresponding derived expression (2.2).
Two specific instances of the general numerical scheme are
detailed in Sect. 2.4.

2.1 Sensitivity Analysis

In this section,we describe how the sensitivity dpx(T , p) can
be determined by solving one of the two initial value prob-
lems defined below: the variational system and the adjoint
system.

Theorem 1 (Variational system; [10, Ch. I.14, Thm. 14.1])
Suppose the derivatives dx f and dp f exist and are continu-
ous in the neighborhood of the solution x(t) for t ∈ [0, T ].
Then, the sensitivity with respect to the parameters

dpx(T , p) =: δ(T ) (2.3)

exists, is continuous and satisfies the variational system

δ̇(t) = dx f (x(t), p, t)δ(t) + dp f (x(t), p, t), (2.4a)

δ(0) = 0 ∈ R
nx×n p , (2.4b)
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with t ∈ [0, T ] and δ(t) ∈ R
nx×n p . If the initial value x(0)

(1.1c) depends on the parameters p, the initial value (2.4b)
has to be adjusted as δ(0) = dpx(0).

Proof A detailed proof can be found in [10, Ch. I.14, Thm.
14.1]. In order to make this paper self-contained, a sketch of
the argument follows.

The integral representation of the solution to (1.1b) is
given by x(t, p) = x0 + ∫ t

0 f (x(s), p, s)ds. Differentiating
with respect to p and exchanging integration and differenti-
ation by the theorem of Lebesgue yields

dpx(t, p) = dpx0 +
∫ t

0
dp

(
f (x(s), p, s)

)
ds (2.5a)

= dpx0 +
∫ t

0

(
dx f (x(s), p, s)dpx(s, p)

+ dp f (x(s), p, s)
)
ds.

(2.5b)

Substituting δ(t) = dpx(t, p) gives

δ(t) = δ0 +
∫ t

0
dx f (x(s), p, s)δ(s) + dp f (x(s), p, s)ds,

(2.6)

which is the integral representation of the trajectory δ(t) solv-
ing (2.4). 
�

For the computation of the variational system (2.4), the
solution x(t) is required. Since the variational system (2.4)
is amatrix-valued systemof dimensionnx×n p, the size of the
system grows with the number of parameters n p. For small
n p, solving the variational system is efficient. In practice, it
can be simultaneously integrated numerically together with
system (1.1b).

Theorem 2 (Adjoint system) Suppose that the derivatives
dx f and dp f exist and are continuous in the neighborhood
of the solution x(t) for t ∈ [0, T ]. Then, the sensitivity with
respect to the parameters is given by

dpx(T , p)� =
∫ T

0
dp f (x(t), p, t)

�λ(t)dt, (2.7)

where λ(t) ∈ R
nx×nx solves the adjoint system

λ̇(t) = −dx f (x(t), p, t)
�λ(t), t ∈ [0, T ], (2.8a)

λ(T ) = I ∈ R
nx×nx . (2.8b)

Proof This proof is elaborated on in a broader context in
Sect. 2.3. 
�

Similar to the variational systemof Theorem1, solving the
adjoint system (2.8) requires the solution x(t). The adjoint

system is matrix-valued of dimension nx × nx , in contrast to
the variational systemwhich is of dimension nx×n p. Thus, if
n p � nx aswill be the case in our scenario, it ismore efficient
to solve (2.8) instead of (2.4).Anothermajor difference is that
the adjoint system is defined backwards in time, starting from
the endpoint T . This has important computational advantages
for our setting. In view of the required gradient (2.2), we are
not interested in the full sensitivity but rather in the derivative
along the direction η := ∂xC(x(T , p)), i.e., dpx(T , p)�η.
This can be achieved by exploiting the structure of the adjoint
system, by multiplying (2.8) from the right by η and setting
λ(t) := λ(t)η. The resulting IVP is again an adjoint system,
no longer being matrix-valued but vector-valued λ(t) ∈ R

nx ,
with λ(T ) = η ∈ R

nx . Thus, from now on, we consider the
latter case and denote λ(t) again by λ(t), which is vector-
valued.

As a consequence, we will focus on the adjoint system
(2.8) in the remainder of this paper. In particular, (2.7) will
be used to estimate parameters p by solving (1.1) using a gra-
dient descent flow. This requires to solve the adjoint system
numerically. However, a viable alternative to this ‘optimize-
then-discretize’ approach is to reverse this order, that is,
to discretize problem (1.1) first and then to derive a corre-
sponding time-discrete adjoint system. It turns out that both
ways are equivalent if a proper class of numerical integration
scheme is chosen for discretizing the system in time. Thiswill
be shown in Sect. 2.3 after collecting required background
material in Sect. 2.2.

2.2 Symplectic Partitioned Runge–Kutta Methods

In this section, we recall basic concepts of numerical inte-
gration from [8,19] in order to prepare Sect. 2.3. Symplectic
schemes are typically applied to Hamiltonian systems in
order to conserve certain quantities, often with a physi-
cal background. The pseudo-Hamiltonian defined below by
(2.19)will play a similar role, albeit there is no physical back-
ground for our concrete scenario to be studied in subsequent
sections.

A general s-stage Runge–Kutta (RK) method with s ∈ N

is given by [9]

xn+1 = xn + hn

s∑

i=1

bi kn,i , (2.9a)

kn,i = f (Xn,i , p, tn + ci hn), (2.9b)

Xn,i = xn + hn

s∑

j=1

ai j kn, j , (2.9c)

where hn = tn+1 − tn in (2.9a) denotes a step size. The
coefficients ai j , bi , ci ∈ R can be arranged in a so-called
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Fig. 1 Above: Butcher tableau of a general s-stage Runge–Kutta
method. Below: Butcher tableau of a s-stage explicit Runge–Kutta
method

Butcher tableau (Fig. 1), with entries ai j defining the Runge–
Kutta matrix A.

Lower-triangular Runge–Kutta matrices A, i.e.,

ai j = 0 for j ≥ i, (2.10)

result in explicit RK schemes and in implicit RK schemes
otherwise. Implicit Runge–Kutta methods are well suited
for integrating numerically stiff ODEs, but are also signif-
icantly more complex than explicit ones. Since (2.9b) cannot
be solved explicitly, a system of algebraic equations has to be
solved. The following theorem specifies the conditions under
which a solution for these equations exists.

Theorem 3 (Existence of a numerical solution; [9, Ch. II,
Thm. 7.2]) For any p ∈ R

n p let f (·, p, ·) of (1.1b) be con-
tinuous and satisfy a Lipschitz condition onRnx ×[0, T ]with
constant L, independent of p. If

h <
1

L maxi=1,...,s
∑s

j=1 |ai j | (2.11)

there exists a unique solution of (2.9), which can be obtained
by fixed-point iteration. If f (x, p, t) is q times differentiable,
the functions kn,i (as functions of h) are also in Cq.

Proof A detailed proof can be found in [9, Ch. II, Thm. 7.2].

�

Suppose that the given system (1.1b) is partitioned into
two parts with x = (y�, z�)�, f = ( f �

1 , f �
2 )� and

ẏ = f1(y, z, t), (2.12a)

ż = f2(y, z, t). (2.12b)

Partitioned Runge–Kutta (PRK) methods integrate (2.12)
using two different sets of coefficients

ai j , bi , ci ∈ R for (2.12a), (2.13a)

ai j , bi , ci ∈ R for (2.12b). (2.13b)

The following theorems state conditions under which RK
methods preserve certain quantities that should be invariant
under the flow of the system that is integrated numerically.
In this sense, such RK schemes are called symplectic.

Theorem 4 (Symplectic Runge–Kutta method; [8, Ch. VI,
Thm. 7.6 and 7.10]) Assume that the system (1.1b) has a
quadratic invariant I , i.e., I (·, ·) is a real-valued bilinear
mapping such that (d/dt)I (x(t), x(t)) = 0, for each t and
x0. If the coefficients of a Runge–Kutta method (2.9) satisfy

biai j + b ja ji − bib j = 0, (2.14)

then the value I (xn, xn) does not depend on n.

Theorem 5 (Symplectic PRK method; [19, Thm. 2.4 and
2.6]) Assume that S(·, ·) is a real-valued bilinear mapping
such that (d/dt)S(y(t), z(t)) = 0 for each t and x0 of the
solution x(t) = [y(t)�, z(t)�]� of (2.12). If the coefficients
of the partitioned Runge–Kutta method (2.13) satisfy

biai j − bib j + b ja ji = 0, bi = bi , ci = ci , (2.15)

then the value S(yn, zn) does not depend on n.

Remark 1 Assume the first set of Runge–Kutta coefficients
are given and denoted by ai j , bi , ci with indices i, j ∈ [s].
This method is used for the first n-variables (2.12a). Further-
more, let bi 
= 0 for all stages i ∈ [s]. In view of condition
(2.15), we can construct a symplectic PRKmethod by choos-
ing

ai j := b j − b ja ji/bi , bi := bi , ci := ci , (2.16)

as coefficients for the second n-variables (2.12b). This con-
struction results in an overall symplectic PRK method of the
partitioned system (2.12).

2.3 Computing Adjoint Sensitivities

There are two basic approaches for computing (2.2), the
differentiate-then-discretize approach and the discretize-
then-differentiate approach. Figure 2 illustrates both
approaches by paths colored with blue and violet, respec-
tively. Details are worked out in this section. Our main
objective is to make this diagram commutative by adopting
a class of numerical schemes as outlined in the preceding
section.
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Fig. 2 Illustration of the methodological part of this section. Our
approach satisfies the commuting diagram, i.e., identical results are
obtained either if the continuous problem is differentiated first and then
discretized (blue path), or the other way around (violet path) (Color
figure online)

In the following, we drop the dependency of x(t) on the
parameter p, to simplify notation by just writing x(t). The
following theorem details the blue path of Fig. 2.

Theorem 6 (Adjoint sensitivity: differentiate-then-discretize)
The gradient (2.2) of the objective function (2.1) Φ(p) =
C(x(T )) of problem (1.1) with respect to the parameter p is
given by

∂Φ(p) =
∫ T

0
dp f (x(t), p, t)

�λ(t)dt, (2.17)

where x(t), λ(t) solve the two-point boundary value problem

ẋ(t) = f (x(t), p, t), x(0) = x0, (2.18a)

λ̇(t) = −dx f (x(t), p, t)
�λ(t), λ(T ) = ∂C(x(T )).

(2.18b)

In terms of the pseudo-Hamiltonian

H(x, λ, p, t) = 〈 f (x, p, t), λ〉, (2.19)

the system has the following form

ẋ(t) = dλH(x, λ, p, t), x(0) = x0, (2.20a)

λ̇(t) = −dx H(x, λ, p, t), λ(T ) = ∂C(x(T )). (2.20b)

Proof See Appendix 1. 
�

Remark 2 The presence of the pseudo-Hamiltonian (2.19)
suggests to use either a symplectic RK method or a sym-
plectic PRKmethod to integrate the boundary value problem
(2.18). In view of Remark 1, we can use a general RKmethod
with coefficients ai j , bi , ci for i, j ∈ [s] for the first variables
(2.18a), and another RKmethod with ai j , bi , ci for i, j ∈ [s]
satisfying (2.16) for the second variables (2.18b). Again, this
construction results in an overall symplectic PRK method of
the boundary problem (2.18). Note that (2.18a) is indepen-
dent of variable λ. Due to this property, we can solve (2.18)
sequentially in practice, i.e., we first integrate (2.18a) and
afterward (2.18b).

Now, we consider the alternative violet path of Fig. 2.
Applying a RKmethodwith step-sizes hn = tn+1−tn > 0 to
problem (1.1) results in the nonlinear optimization problem

min
p∈P

C
(
xN (p)

)
(2.21a)

s.t. xn+1 = xn + hn

s∑

i=1

bi kn,i , (2.21b)

kn,i = f (Xn,i , p, tn + ci hn), i ∈ [s], (2.21c)

Xn,i = xn + hn

s∑

j=1

ai j kn, j , i ∈ [s], (2.21d)

x0 = x(0), (2.21e)

with n = 0, . . . , N − 1.
Next, we differentiate this problem and state the result in

the following theorem.

Theorem 7 (Adjoint sensitivity: discretize-then-differentiate)
Suppose the step-size hn satisfies condition (2.11). Then, the
gradient of the objective function Φ(p) = C(xN (p)) from
(2.21) with respect to parameter p is given by

∂Φ(p) =
N−1∑

n=0

hn

s∑

i=1

bi
(
dp f (Xn,i , p, tn + ci hn)

)�
Λn,i ,

(2.22)

where the discrete adjoint variables are given by

λn+1 = λn + hn

s∑

i=1

bi
n,i , (2.23a)


n,i = −dx f (Xn,i , p, tn + ci hn)
�Λn,i , (2.23b)

Λn,i = λn + hn

s∑

j=1

ai j
n, j , (2.23c)

with n = 0, . . . , N −1, i ∈ [s] and step-size hn = tn+1 − tn.
The internal stages Xn,i are given by (2.21d). This scheme
is a general RK method (2.9) applied to the adjoint system
(2.18b) with coefficients

ai j = b j − a ji b j

bi
, bi = bi , ci = ci , (2.24)

for bi 
= 0 and i, j = [s].
Proof An outline of the proof can be found in [19, Thm. 3.6].
Following the suggested outline, we provide a detailed proof
in Appendix 2. 
�
Remark 3 Comparing the statements ofTheorem6andTheo-
rem7,we see that the formula of the discrete sensitivity (2.22)
is an approximation of the integral (2.17) with quadrature
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Table 1 Symplectic PRK
coefficients induced by the
explicit Euler method

weights bi . Furthermore, we observe that the coefficients of
the constructed PRKmethod (2.16) coincidewith the derived
coefficients (2.24). Thus, by restricting the class of numeri-
cal schemes to symplectic PRKmethods satisfying (2.15), the
approaches due to the Theorem 6 (and Remark 2) and Theo-
rem 7 aremathematically identical, and the diagram depicted
in Fig. 2 commutes.

2.4 Two Specific Numerical Schemes

We complement and illustrate the general result of the pre-
ceding section by specifying two numerical RK schemes of
different order, the basic explicit Euler method and Heun’s
method, respectively.

2.4.1 Adjoint Sensitivity: Explicit Euler Method

We integrate the forward dynamic (2.18a) with the explicit
Euler method [10]. The straightforward use of (2.16) leads
to another Runge–Kutta method for integrating the adjoint
system (2.18b). The forward and backward coefficients of
this overall symplectic partitioned Runge–Kutta method are
then given by Table 1.

By substituting the backward coefficients a11, b1 and c1
into (2.23), we derive the concrete formulas of the discrete
adjoint method

λn+1 = λn + hn
n,1 (2.25a)


n,1 = −∂x f (Xn,1, tn)
�Λn,1 (2.25b)

Λn,1 = λn + hn
n,1. (2.25c)

Note that (2.25c) coincides with (2.25a), that is by traversing
from n + 1 to n, we can rewrite (2.25) in the form

λn = λn+1 + hndx f (Xn,1, tn)
�λn+1. (2.26)

Formula (2.22) for the gradient of Φ(p) = C(xN (p)) from
(2.21) reads

∂Φ(p) =
N−1∑

n=0

hndp f (Xn,1, tn)
�λn+1. (2.27)

Table 2 Symplectic PRK coefficients induced by Heun’s method

2.4.2 Adjoint Sensitivity: Heun’s Method

We integrate the forward dynamic (2.18a) with Heun’s
method [10]. The straightforward use of (2.16) leads to
another Runge–Kutta method for integrating the adjoint sys-
tem (2.18b). The forward and backward coefficients of this
overall symplectic partitioned Runge–Kutta method are then
given by Table 2

Although the butcher tableau of the backward coeffi-
cients (see Table 2, right matrix) is completely dense, the
final update formulas are explicit by traversing backward in
time, as we will show below. Again, we derive the concrete
formulas of the discrete adjoint method by substituting the
backward coefficients into (2.23)

λn+1 = λn + hn
( 1
2
n,1 + 1

2
n,2
)

(2.28a)


n,1 = −dx f (Xn,1, tn)
�Λn,1 (2.28b)


n,2 = −dx f (Xn,2, tn + hn)
�Λn,2 (2.28c)

Λn,1 = λn + hn
( 1
2
n,1 − 1

2
n,2
)

(2.28d)

Λn,2 = λn + hn
( 1
2
n,1 + 1

2
n,2
)
. (2.28e)

Note that (2.28e) coincides with (2.28a), which implies the
equations

λn+1 = Λn,2, and (2.29a)


n,2 = −dx f (Xn,2, tn + hn)
�λn+1. (2.29b)

Using (2.29), we reformulate (2.28d)

Λn,1 = λn + hn
( 1
2
n,1 − 1

2
n,2
)

(2.30a)

= λn + hn
( 1
2
n,1 − 1

2
n,2
)

+ (hn
n,2 − hn
n,2)
(2.30b)

= λn + hn
( 1
2
n,1 + 1

2
n,2
) − hn
n,2 (2.30c)

(2.28a)= λn+1 − hn
n,2 (2.30d)

(2.29)= λn+1 + hndx f (Xn,2, tn + hn)
�λn+1. (2.30e)
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Formula (2.30e) is an explicit Euler step traversing backward
from n + 1 to n. Thus, we can rewrite the overall scheme
(2.28) as

λ̃n = λn+1 + hndx f (Xn,2, tn + hn)
�λn+1 (2.31a)

λn = λn+1 + hn
2

(
dx f (Xn,1, tn)

�λ̃n

+ dx f (Xn,2, tn + hn)
�λn+1

)
.

(2.31b)

Again, this is an explicit method traversing backward from
n + 1 to n. Formula (2.22) for the gradient of Φ(p) =
C(xN (p)) from (2.21) has the form

∂pC(xN ) =
N−1∑

n=0

hn
2

(
dp f (Xn,1, tn)

�λ̃n

+ dp f (Xn,2, tn + hn)
�λn+1

)
.

(2.32)

Remark 4 Both example schemes (explicit Euler & Heun’s
method) have in common that the final update schemes of
the adjoint integration can be solved explicitly by traversing
backward from n+1 → n. Note that this holds for these two
specific numerical schemes, but may not hold in general for
other higher-order schemes.

3 Image Labeling Using Geometric
Assignment

In this section, we summarize material from [2,25] required
in the remainder of this paper. See also [20] for a discussion
of the assignment flow approach in a broader context.

LetG = (V, E) be a given undirected graphwithm := |V|
vertices and let

f : V → F , i �→ fi ∈ F with

f (V) =: FV ⊂ F
(3.1)

be data on the graph given in a metric space (F , d). We call
FV image data given by features fi extracted from a raw
image at pixel i ∈ V in a preprocessing step. Along with f ,
we assume prototypical data

X = {

1, . . . , 
n

} ⊂ F (3.2)

to be given, henceforth called labels. Each label 
 j repre-
sents the data of class j . Image labeling denotes the problem
of finding an assignment V → X assigning class labels to
nodes depending on the image data FV and the local context
encoded by the graph structure G. We refer to [12] for more
details and background on the image labeling problem.

G may be a grid graph (with self-loops) as in low-level
image processing or a less structured graph, with arbitrary
connectivity in terms of the neighborhoods

Ni = {k ∈ V : ik = ki ∈ E} ∪ {i}, i ∈ V, (3.3)

where ik is a shorthand for the undirected edge {i, k} ∈ E .
We require these neighborhoods to satisfy the relations

k ∈ Ni ⇔ i ∈ Nk, ∀i, k ∈ I. (3.4)

We associate with each neighborhoodNi from (3.3) weights
ωik ∈ R for all k ∈ Ni , satisfying

ωik > 0 and
∑

k∈Ni

ωik = 1, for all i ∈ V. (3.5)

These weights parametrize the regularization property of the
assignment flow below. Learning these weights from the
given data is the subject of the remainder of this paper.

3.1 Assignment Manifold

The probabilistic assignment of labels X at one node i ∈ V
is represented by the manifold of discrete probability distri-
butions with full support

Sn := {p ∈ Δn : p > 0} (3.6)

with constant tangent space for all p ∈ Sn

TpSn = {v ∈ R
n : 〈1, v〉 = 0} =: Tn . (3.7)

Throughout this paper,we onlyworkwith Tn . The probability
space S is turned into a Riemannian manifold (Sn, g) by
equipping it with the Fisher–Rao (information) metric

gp(u, v) :=
∑

j∈[n]

u jv j

p j
, (3.8)

with u, v ∈ Tn and p ∈ Sn . Furthermore, we have the uni-
form distribution of labels

1Sn := 1

n
1n ∈ Sn, (barycenter) (3.9)

and the orthogonal projection onto the tangent space with
respect to the standard Euclidean structure of Rn

Πn : Rn → Tn, Πn := I − 1Sn1
� (3.10)

with ker(Πn) = R1n . The replicator operator for p ∈ Sn is
given by the linear map

Rp : Rn → Tn, Rp := Diag(p) − pp�, (3.11)
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satisfying

Rp = RpΠn = Πn Rp. (3.12)

The Riemannian gradient of a smooth function f : Sn → R

is denoted by grad f : Sn → Tn and relates to the Euclidean
gradient ∂ f by [2, Prop. 1] as

grad f (p) = Rp∂ f (p) for p ∈ Sn . (3.13)

Adopting the α-connection with α = 1, also called e-
connection, from information geometry [1, Section 2.3],
[3], the exponential map based on the corresponding affine
geodesics reads

Exp : Sn × Tn → Sn,

(p, v) �→ Expp(v) = pe
v
p

〈p, e v
p 〉

(3.14a)

Exp−1 : Sn × Sn → Tn,

(p, q) �→ Exp−1
p (q) = Rp log

q

p
. (3.14b)

Specifically, we define for all p ∈ Sn

expp : Tn → Sn,

z �→ Expp ◦Rp(z) = pez

〈p, ez〉 , (3.15a)

exp−1
p : Sn → Tn, q �→ Πn log

q

p
. (3.15b)

Applying the map expp to a vector in R
n = Tn ⊕ R1n does

not depend on the constant component of the argument, due
to (3.12).

Remark 5 The map Exp corresponds to the e-connection of
information geometry [1], rather than to the exponential
map of the Riemannian connection. Accordingly, the affine
geodesics (3.14a) are not length-minimizing with respect to
the Riemannian structure. But locally, they provide a close
approximation [2, Prop. 3] and are more convenient for
numerical computations.

Global label assignments on the whole set of nodes V are
represented as points on the assignment manifold, given by
the product

W := Sn × · · · × Sn (m = |V| times) (3.16)

with constant tangent space

TW := Tn × · · · × Tn (m = |V| times) (3.17)

and Riemannian structure (W, g) given by the Riemannian
product metric. We identify W with the embedding into
R
m×n

W = {W ∈ R
m×n : W1n = 1m and Wi j > 0

for all i ∈ [m], j ∈ [n]}. (3.18)

Thus, pointsW ∈ W are row-stochasticmatricesW ∈ R
m×n

with row vectors Wi ∈ Sn, i ∈ V representing the label
assignments for every i ∈ V . Due to this embedding of W ,
the tangent space TW can be identified with

TW = {V ∈ R
m×n : V1n = 0} (3.19)

and therefore for V ∈ TW every row vector Vi is contained in
Tn for every i ∈ V . The global uniform distribution, given by
the uniform distribution in every row, again called barycen-
ter, is denoted by

1W := (1Sn , . . . ,1Sn ) = 1m1Sn
� ∈ W, (3.20)

where the second equality is due to the embedding (3.18). The
mappings (3.10)–(3.14a) naturally extend to the assignment
manifold W

Π [Z ] = (
Πn[Z1], . . . ,Πn[Zm])� ∈ TW , (3.21a)

RW [Z ] = (
RW1 [Z1], . . . , RWm [Zm])� ∈ TW , (3.21b)

ExpW (V ) = (
ExpW1

(V1), . . . ,ExpWm
(Vm)

)� ∈ W,

(3.21c)

with W ∈ W , Z ∈ R
m×n and V ∈ TW . The maps

expW ,Exp−1
W , exp−1

W are similarly defined based on (3.15a),
(3.14b) and (3.15b). Due to (3.13) , the Riemannian gradient
and the Euclidean gradient of a smooth function f : W → R

are also related by

grad f (W ) = RW [∂ f (W )] for W ∈ W. (3.22)

3.2 Assignment Flow

Based on the given data (3.1) and labels (3.2), the i th row of
the distance matrix D ∈ R

m×n is defined by

Di := (
d( fi , 
1), . . . , d( fi , 
n)

)� ∈ R
n, (3.23)

for all i ∈ V . This distance information is lifted onto the
manifold by the following likelihood matrix

L(W ) := expW (−D/ρ) ∈ W, (3.24a)

Li (Wi ) = Wie
− 1

ρ
Di

〈Wi , e
− 1

ρ
Di 〉

, ρ > 0, i ∈ V, (3.24b)

123



Journal of Mathematical Imaging and Vision (2021) 63:186–215 195

where ρ > 0 is a scaling parameter to normalize the a priori
unknown scale of the distances induced by the features fi
depending on the application at hand. This representation
of the data is regularized by weighted geometric averaging
in the local neighborhoods (3.3) using the weights (3.5), to
obtain the similarity matrix S(W ) ∈ W , with i th row defined
by

Si : W → Sn,

Si (W ) := ExpWi

( ∑

k∈Ni

wik Exp
−1
Wi

(Lk(Wk))
)
. (3.25)

If ExpWi
were the exponential map of the Riemannian (Levi-

Civita) connection, then the sum inside the outer brackets
of the right-hand side in (3.25) would just be the negative
Riemannian gradientwith respect toWi of the objective func-
tion used to define the Riemannian center of mass, i.e., the
weighted sum of the squared Riemannian distances between
Wi and Lk [14, Lemma6.9.4]. In viewofRemark 5, this inter-
pretation is only approximately true mathematically, but still
correct informally: Si (W ) moves Wi toward the normalized
geometric mean of the likelihood vectors Lk, k ∈ Ni .

The similaritymatrix induces the assignment flow through
a system of spatially coupled nonlinear ODEs which evolves
the assignment vectors

Ẇ = RW S(W ), W (0) = 1W , (3.26a)

Ẇi = RWi Si (W ), Wi (0) = 1Sn . i ∈ V. (3.26b)

Integrating this flow numerically [25] yields curves Wi (t) ∈
Sn for every pixel i ∈ V emanating from Wi (0) = 1Sn ,
which approach some vertex (unit vector) of Sn = Δn and
hence a unique label assignment after a trivial roundingWi (t)
for sufficiently large t > 0.

3.3 Linear Assignment Flow

The linear assignment flow, introduced by [25], uses the
exponential map with respect to the e-connection (3.14a)
in order to approximate the mapping (3.25) as part of the
assignment flow (3.26a) by

Ẇ = RW

[
S(W0) + dS(W0)

[
Exp−1

W0
(W )

]]
, (3.27a)

W0 = W (0) = 1W ∈ W. (3.27b)

This linear assignment flow (3.27) is still nonlinear but
admits the following parametrization [25, Prop. 4.2]:

W (t) = ExpW0

(
V (t)

)
, (3.28a)

V̇ (t) = RW0

[
S(W0) + dS(W0)[V (t)]], (3.28b)

V (0) = 0, (3.28c)

where the latter ODE is linear and defined on the vector
space TW . Fixing S(W0) in the following, (3.28) is linear
with respect to both the tangent vector V and the parameters
ωik in the differential dS(W0) (see (3.30) and Remark 7),
that makes this approach attractive for parameter estimation.

It can be shown that Si (W ) from (3.25) can equivalently
be expressed with exp1Sn

as

Si (W ) = exp1Sn

( ∑

k∈Ni

ωik

(
exp−1

1Sn
(Wk) − 1

ρ
Dk

))

(3.29)

for all i ∈ V, W ∈ W . A standard calculation shows that
the i th component of the differential dS(W ) : TW → TW is
given by

dSi (W ) : TW → Tn,

dSi (W )[V ] =
∑

k∈Ni

ωik RSi (W )

[
Vk
Wk

]
(3.30)

for all V ∈ T0, i ∈ V .

3.4 Numerical Integration of the Flow

Setting Λ(V ,W ) := expW (V ) gives an action Λ : TW ×
W → W of the vector space TW viewed as an additive
group on the assignment manifold W . In [25], this action is
used to numerically integrate the assignment flow by apply-
ing geometric Runge–Kutta methods. The resulting method
for an arbitrary vector field F : W → TW is as follows.
Suppose the ODE

Ẇ (t) = RW (t)[F(W (t)], W (0) = 1W (3.31)

on the assignment manifold is given. Then, the para-
metrization W (t) = exp1W (V (t)) yields an equivalent
reparametrized ODE

V̇ (t) = F(W (t)) = F
(
exp1W (V (t)

)
, (3.32a)

V (0) = 0 (3.32b)

purely evolving on the vector space TW , where standard
Runge–Kutta methods (cf. Sect. 2) can now be used for
numerical integration. Translating these update schemes
back onto W yields geometric Runge–Kutta methods on W
induced by the Lie-group action Λ = exp.

Remark 6 Notice that the assumption F(W ) ∈ TW is crucial
because the transformation of the ODE (3.31) onto TW in
(3.32) uses the inverse of RW , which only exists for elements
of TW but not for Rm×n . However, there is no limitation.
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Suppose any vector field F̃ : W → R
m×n is given. Due

to RW = RW ◦ Π by (3.12), we may consider F(W ) :=
Π [F̃(W )] ∈ TW instead, without changing the underlying
ODE (3.31) for W (t).

In the following, we mainly use the Euler method to
numerically integrate the flow (3.32) on the vector space TW ,
i.e.,

V (k+1) = V (k) + hk F
(
W (k)), V (0) = 0,

W (k) = exp1W
(
V (k)) (3.33)

with step-size hk > 0. Due to the Lie-group action, this
update scheme translates to the geometric Euler integration
on W given by

W (k+1) = expW (k)

(
hk F

(
W (k))

)
, (3.34a)

W (0) = 1W , (3.34b)

with step-size hk > 0.

4 Learning Adaptive Regularization
Parameters

In this section, we study the parameter learning approach
(4.1), which is a specific instance of the general formulation
(1.1). The goal is to adapt the regularization of the linear
assignment flow (3.27) on the fixed time horizon [0, T ] con-
trolled by the weights (3.5), in the following collectively
denoted by Ω , so as to preserve important image structure in
a supervised manner. During learning, the image structure is
prescribed by given ground truth labeling information W ∗,
where every rowW ∗

i is some unit basis vector eki ofR
n repre-

senting the ground truth label lki at node i ∈ V . The adaptivity
of the weights with respect to the desired image structure is
measured by C in terms of the discrepancy between ground
truth W ∗ and the labeling induced by V (T ) = V (T ,Ω) at
fixed time T . The corresponding optimization problem reads

min
Ω∈P

C
(
V (T ,Ω)

)
(4.1a)

s.t. V̇ (t) = F(V (t),Ω), t ∈ [0, T ], (4.1b)

V (0) = 0, (4.1c)

with components

P parameter manifold, representing the weights ωik

from (3.5); see Sect. 4.1.
F(V ,Ω) modified version of the linear assignment flow

(4.11); see Sect. 4.2.

C a objective function measuring the discrepancy to
the ground truth; see Sect. 4.3.

It is important to note that the dependency of C(V (T ,Ω)) on
the weights Ω is only implicitly given through the solution
V (T ) = V (T ,Ω)of (4.1b). InSect. 4.4,we therefore present
a numerical first-order scheme for optimizing (4.1) where the
gradient of C(V (T ,Ω)) with respect to the parameter Ω is
calculated using the sensitivity analysis from Sect. 2.

4.1 Parameter Manifold

In the following, we define the parameter manifold rep-
resenting the weights ωik from (3.5) associated with the
neighborhood Ni , i ∈ V . Based on this parametrization, we
can compute the differential dS(W0) and thus describe the
linear assignment flow (3.28) on the tangent space by a cor-
responding expression in Lemma 2.

To simplify the exposition, we assume that all neighbor-
hoods Ni have the same size

N := |Ni | for all i ∈ V. (4.2)

Due to the constraints (3.5), the weight vector Ωi :=
(ωi1, . . . , ωi N )� can be viewed as a point in SN . Accord-
ingly, we define the parameter manifold

P := SN × . . . × SN (m = |V| times) (4.3)

as feasible set for learning the weights, which has the form
of an assignment manifold and thus also has a Riemannian
structure (P, g), given by the Fisher-Rao metric. We use the
identification

P = {Ω ∈ R
m×N : Ω1N = 1m and Ωik > 0

for all i ∈ [m], k ∈ [N ]}. (4.4)

Points Ω ∈ P now represent the global choice of weights
with Ωi representing the weights ωik associated with the
neighborhoodNi in (3.5). The constant tangent space ofP is
denoted by TP and the corresponding orthogonal projection
by

ΠP : Rm×N → TP ,

M �→ ΠP [M] = (ΠN [M1], . . . ,ΠN [Mm])�.
(4.5)

Next, we give a global expression for the differential
dS(W )whichwill simplify the following formulas and calcu-
lations. For this,we define theaveragingmatrix AΩ ∈ R

m×m

with weights Ω ∈ P by

(AΩ)ik := δk∈Ni Ωik =
{

Ωik, for k ∈ Ni

0, else,
(4.6)
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where δk∈Ni is the Kronecker delta with value 1 if k ∈ Ni

and 0 otherwise. We observe that the averaging matrix AΩ

linearly depends on the weight parameters.
Thus, AΩ parametrizes averages depending on the cor-

responding weights Ω with respect to the underlying graph
structure, given by the neighborhoods (3.3). For a matrix
M ∈ R

m×n , the averages of the row vectors with weights Ω

are then just given by the matrix multiplication AΩM , with
the i th row vector given by

(AΩM)i =
∑

k∈Ni

ωikMk . for all i ∈ V. (4.7)

For later use, we record the following formula for the adjoint
of AΩ as a linear map with respect to Ω .

Lemma 1 If the averaging matrix is viewed as a linear map
A : Rm×N → R

m×m, Ω �→ AΩ , then the adjoint map
A� : Rm×m → R

m×N , B �→ A�
B is given by

(
A�
B )i j = Bi j for i ∈ V, j ∈ Ni . (4.8)

Proof For arbitrary B ∈ R
m×m and Ω ∈ R

m×N , we obtain
〈AΩ, B〉 = ∑

i, j∈V δ j∈Ni Ωik Bik = 〈Ω, A�
B 〉 due to (4.6).


�
Using AΩ withΩ ∈ P , it follows from (3.30) that dS(W )

can be expressed as

dS(W )[V ] = RS(W )

[
AΩ

(
V

W

)]
, (4.9)

for all V ∈ TW , W ∈ W . As a result, the linear assignment
flow (3.28) on the vector space TW can be parametrized as
follows.

Lemma 2 Using the parametrization V := nV , the linear
assignment flow (3.28) takes the form

W (t) = exp1W (V (t)), (4.10a)

V̇ (t) = Π [S(W0)] + RS(W0)[AΩV (t)], (4.10b)

V (0) = 0. (4.10c)

Proof At p = 1Sn , the linear map (3.12) takes the form

R1Sn
= Diag(1Sn ) − 1Sn1Sn

� = 1

n

(
I − 1Sn1

�)

= 1

n
Πn,

where I ∈ R
n×n denotes the identity matrix. Because of

W0 = 1W , RW0 = 1
nΠ follows. Therefore, V = 1

n V =
R1WV which directly yields

W = Exp1W (V ) = Exp1W (R1W [V ])

= exp1W (V ).

Using (4.9) together with V
W0

= nV = V , the linear assign-
ment flow (3.28) takes the form

V̇ (t) = RW0

[
S(W0) + RS(W0)

[
AΩ

(
V (t)

W0

)]]

= 1

n
Π

[
S(W0) + RS(W0)[AΩV (t)]].

As a consequence ofΠRS(W0) = RS(W0) by (3.12), the right-
hand side of (4.10) follows after multiplying the equation by

n and using nV̇ = V̇ . 
�
Remark 7 To simplify notation, we will write V for V below.
Equation (4.10) highlights the importance to fix S(W0) in
order to obtain a model that is linear in both the state vector
V and the parameters Ω .

4.2 Modified Linear Assignment Flow

We now return to our objective to estimate the weight param-
eters Ω ∈ P controlling the linear assignment flow on
the fixed time interval [0, T ], in the supervised scenario
(4.1). In this formulation, the data represented by the likeli-
hood matrix (3.24) only influence the linear assignment flow
(3.27), or equivalently (4.10), through the constant similar-
ity matrix S(W0) that comprises averaged data information
depending on the initial choice of the weights Ω0. However,
since the initial weights are in general not adapted to any
specific image structure, this can lead to a loss of desired
structural information through S(W0) at the outset, that can-
not be recovered afterward.

To avoid this problem, we slightly modify the linear
assignment flow in (4.10) to obtain an explicit data term that
does not depend on the choice of the initial weights. This
is done through replacing the constant term S(W0) by the
lifted distances L(W0), which results in the modified linear
assignment flow

W (t) = expW0

(
V (t)

)
(4.11a)

V̇ (t) = Π [L(W0)] + RS(W0)[AΩV (t)]
=: F(V (t),Ω), (4.11b)

V (0) = 0. (4.11c)

Remark 8 We point out that, strictly speaking, the similarity
matrix S(W0) is involved in twoways, in the constant term of
(4.10) and in the expression RS(W0) of the differentialdS(W0)

(cf. (4.9)). However, the effect of the latter with respect to the
initial weights is negligible, and the former appearance only
causes the above-mentioned loss of initial data information.
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We note again that (4.11) is linear with respect to both the
tangent vector V and the parameters Ω only if S(W0) is kept
constant.

Proposition 1 Thedifferential of themap F : TW×P → TW
on the right-hand side of (4.11) with respect to the first and
second argument are given by

dV F(V ,Ω) : TW → TW ,

X �→ dV F(V ,Ω)[X ] = RS(W0)[AΩ X ],
(4.12a)

dΩF(V ,Ω) : TP → TW ,

Ψ �→ dΩF(V ,Ω)[Ψ ] = RS(W0)[AΨ V ].
(4.12b)

The corresponding adjoint mappingswith respect to the stan-
dard Euclidean structure of Rm×n are

dV F(V ,Ω)� : TW → TW ,

X �→ dV F(V ,Ω)�[X ] = A�
Ω RS(W0)[X ],

(4.13a)

dΩF(V ,Ω)� : TW → TP ,

X �→ dΩF(V ,Ω)�[X ] = ΠP
[
A�

(RS(W0)[X ])V�
]
,

(4.13b)

with the adjoint A�
(·) from Lemma 1.

Proof Let V , X ∈ TW and set γ (t) := V + t X ∈ T0 for all
t ∈ R. Then,

dV F(V ,Ω)[X ] = d

dt
F(γ (t),Ω)

∣∣
t=0

= RS(W0)[AΩγ̇ (0)] = RS(W0)[AΩ X ].

Similarly, for Ω ∈ P and Ψ ∈ TP , let η(t) := Ω + tΨ ∈ P
be a curve with t ∈ (−ε, ε) for sufficiently small ε > 0.
The linearity of the averaging operator AΩ with respect to
Ω gives

dΩF(V ,Ω)[X ] = d

dt
F(V , η(t))

∣∣
t=0

= d

dt
RS(W0)[Aη(t)V ]∣∣t=0 = RS(W0)AΨ [V ].

We now determine the adjoint differentials. Consider arbi-
trary X ,Y ∈ TW and note that the linear map RS(W0) is
symmetric, since every component map RSi (W0) is symmet-
ric by (3.11). Thus,

〈dV F(V ,Ω)[Y ], X〉 = 〈RS(W0) [AΩY ] , X〉
= 〈Y , A�

Ω RS(W0)[X ]〉

and therefore dV F(V ,Ω)�[X ] = A�
Ω RS(W0)[X ].

Now, let arbitrary Ψ ∈ TP and X ∈ TP be given. Then,

〈dΩF(V ,Ω)[Ψ ], X〉 = 〈RS(W0) [AΨ V ] , X〉
= 〈AΨ , (RS(W0)[X ])V�〉
= 〈Ψ , A�

(RS(W0)[X ])V�〉
= 〈Ψ , ΠP

[
A�

(RS(W0)[X ])V�
]〉,

which proves the expression for the corresponding adjoint.
�

4.3 Objective Function

LetW = exp1W (V ) ∈ W be an assignment induced by V ∈
TW . Accumulating the KL-divergence between the ground
truth W ∗

i and Wi for every node i ∈ V ,

KL(W ∗
i ,Wi ) =

∑

j∈[n]
W ∗

i j log

(
W ∗

i j

Wi j

)

= 〈W ∗
i , log(W ∗

i )〉 − 〈W ∗
i , log(Wi )〉,

(4.14)

results in a measure of the global deviation between W
induced by V and the ground truth W ∗

C(V ) :=
∑

i∈V
KL(W ∗

i , exp1Sn
(Vi ))

= 〈W ∗, log(W ∗)〉 − 〈W ∗, log
(
exp1W (V )

)〉. (4.15)

Remark 9 It is important to note that C does not explicitly
depend on the weights Ω ∈ P . In problem formulation
(4.1a), this dependency is only given implicitly through the
evaluation of C at V (T ,Ω), where V (t,Ω) is the object
depending on the parameter Ω as solution of the modified
linear assignment flow (4.11).

Proposition 2 The Euclidean gradient of objective (4.15) for
fixed W ∗ ∈ W is given by

∂C(V ) = exp1W (V ) − W ∗ for V ∈ TW . (4.16)

Proof Let V ∈ TW . Note that for every i ∈ V

〈W ∗
i , log

(
exp1Sn

(Vi )
)〉 = 〈W ∗

i , Vi − log(〈1, eVi 〉)1〉
= 〈W ∗

i , Vi 〉 + log(〈1, eVi 〉).

Hence, the KL-divergence between W ∗
i and the induced

assignment Wi = exp1Sn
(Vi ) takes the form
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KL
(
W ∗

i ,Wi
) = 〈W ∗

i , log(W ∗
i )〉 − 〈W ∗

i , Vi 〉
+ log(〈1, eVi 〉)

and results in the following expression for C from (4.15),

C(V ) = 〈W ∗, log(W ∗)〉 − 〈W ∗, V 〉 +
∑

i∈[m]
log(〈1, eVi 〉).

Take X ∈ R
m×n and set γ (t) := V + t X for t ∈ R. The

above formula for C then implies

〈∂C(V ), X〉 = d

dt
C(γ (t))

∣∣
t=0

= −〈W ∗, X〉 +
∑

i∈[m]

1

〈1, eVi 〉 〈e
Vi , Xi 〉

= 〈exp1W (V ) − W ∗, X〉.

Since X ∈ R
m×n was arbitrary, expression (4.16) follows. 
�

4.4 Numerical Optimization

With the above definitions of C and F , the optimization prob-
lem (4.1) for adapting the weights of the modified linear
assignment flow (4.11) takes the form

min
Ω∈P

∑

i∈V
KL(W ∗

i ,Wi (T ,Ω)) (4.17a)

s.t.

V̇ (t) = Π [L(W0)] + RS(W0)[AΩ [V (t)]], (4.17b)

V (0) = 0, (4.17c)

W (T ,Ω) = exp1W (V (T ,Ω)), (4.17d)

with t ∈ [0, T ]. Our strategy for parameter learning is to fol-
low the Riemannian gradient descent flow on the parameter
manifold induced by the potential

Φ : P → R,

Ω �→ Φ(Ω) :=
∑

i∈V
KL(W ∗

i ,Wi (T ,Ω)). (4.18)

Due to (3.22), this Riemannian gradient flow on P takes the
form

Ω̇(t) = − gradP Φ
(
Ω(t)

)

= −RΩ

[
∂Φ

(
Ω(t))

)]
, (4.19a)

Ω(0) = 1P , (4.19b)

where RΩ is given by (3.21b) on P and initial value (4.19b)
represents an unbiased initialization, i.e., uniform weights at
every patch Ni at i ∈ V .

We discretize (4.19) using the geometric explicit Euler
scheme (3.34) from Sect. 3.4 with constant step-size h′ > 0,
which results in Algorithm 1.

Algorithm 1: Discretized Riemannian flow (4.19).

Data: Initial weights Ω(0) = 1P , objective function
Φ(Ω) = C(

V (T ,Ω)
)

Result: Weight parameter estimates Ω∗
// geometric Euler integration

1 for k = 0, . . . , K do
2 compute ∂Φ(Ω(k)) ; // Algorithm 2

3 Ω(k+1) = expΩ(k)

( − h′RΩ(k)

[
∂Φ(Ω(k))

])
;

Algorithm 1 calls Algorithm 2 that we explain next.
As pointed out in Remark 9, the dependency of Φ(Ω) =
C(V (T ,Ω)) on Ω is only implicitly given through the solu-
tion V (t,Ω) of the modified linear assignment flow (4.11),
evaluated at time T . According to (2.2), the gradient of Φ

decomposes as

∂Φ(Ω) = dΩV (T ,Ω)�
[
∂C(V (T ,Ω))

]
, (4.20)

wheredΩV (T ,Ω)� is the sensitivity of the solutionV (T ,Ω)

with respect to Ω . Thus, the major task is to determine
the sensitivity of V (T ,Ω) in order to obtain the gradi-
ent ∂Φ(Ω), which in turn drives the Riemannian gradient
descent flowandadapts theweightsΩ . To this end,wechoose
the discretize-then-differentiate approach (2.22)—recall the
commutative diagram of Fig. 2 and relations summarized
as Remark 3—with the explicit Euler method and constant
step-size h > 0, which results in Algorithm 2.

Algorithm 2: Computation of the Euclidean gradient
∂Φ(Ω(k)) (4.20).

Data: Current weights Ω(k)

Result: Objective value Φ(Ω(k)) = C(V (N )(Ω(k))), adjoint
sensitivity ∂Φ(Ω(k))

// forward Euler integration
1 for j = 0, . . . , N − 1 do
2 V ( j+1) = V ( j) + hF

(
V ( j),Ω(k)

)
;

3 compute λ(N ) = ∂C(V (N )(Ω(k)));
4 set ∂Φ(Ω) = 0;
// backward Euler integration

5 for j = N − 1, . . . , 0 do
6 λ( j) = λ( j+1) + hdV F

(
V ( j),Ω(k)

)�
λ( j+1);

7 ∂Φ(Ω) += hdΩ F
(
V ( j−1),Ω(k)

)�
λ( j);

// summand of (4.20)
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5 Experiments

In this section, we demonstrate and evaluate our approach.
We start in Sect. 5.1 with a scenario of two labels and images
of binary letters.We show that an adaptive regularizer, which
is trained on letters with vertical and horizontal structures
only, effectively labels curvilinear letters. This result illus-
trates the adaptivity of regularization by using non-uniform
weights that are predicted for novel unseen image data.

In Sect. 5.2, we consider a scenario with three labels and
curvilinear line structure, that has to be detected and labeled
explicitly in noisy data. Just using uniform weights for reg-
ularization must fail. In addition to the noise, the actual
image structure is randomly generated as well and defines
a class of images. We demonstrate empirically that learning
the weights to adapt within local neighborhoods from exam-
ple data solves this problem.

In Sect. 5.3, we adopt a different viewpoint and focus
on pattern formation, rather than on pattern detection and
recovery. We demonstrate the modeling expressiveness of
the assignment flowwith respect to pattern formation. In fact,
even when using the linear assignment flow as in the present
paper, label information can beflexibly transported across the
image domain under certain conditions. The experiments just
indicate what can be done, in principle, in order to stimulate
future work. We return to this point in Sect. 6.

Regarding parameter learning, all experiments were con-
ducted using the Euler scheme of Sect. 2.4.1 for solving
the adjoint system. Section 2.4.2 provides a slightly more
advanced alternative.While the lattermethod integratesmore
accurately, the resulting overall costs depend on further fac-
tors whose evaluation is beyond the scope of this paper. For
an in-depth study of numerical schemes in connection with
geometric integration of the assignment flow, we refer to
[25].

5.1 Adaptive Regularization of Binary Letters

In this experiment, we consider binary images of letters. The
goal is to label a given letter image into foreground and
background regions. In Fig. 3, these labels are encoded by{
�,�} = {background, foreground}. First, we apply our
approach during a training phase in order to learn weight
adaptivity for letters consisting of vertical and horizontal
structures (Fig. 3a). Afterward, we evaluate the approach in
a test phase using letters consisting of curvilinear structures
(Fig. 3g).

5.1.1 Training Phase

Figure 3a shows the binary images of letters which we used
as training data. Hereby, a given binary image served as
input image and as ground truth as well. By using these data

and solving problem (4.17), we learn how to adapt the regu-
larization parameter of the modified linear assignment flow
(4.11).

Optimization For each binary letter image, we solved
problem (4.17) using Algorithms 1 and 2and the following
parameter values: |Ni | = 7×7 (size of local neighborhoods,
for every i), the Hamming distance (for the computation of
the distance matrix (3.23)), ρ = 0.5 (scaling parameter for
distance matrix, cf. (3.24)), h = 0.1 (constant step size for
computing the gradient withAlgorithm 2), and T = 6 (end of
time horizon). As for optimization on the parametermanifold
P through the Riemannian gradient flow (Algorithm 1), we
used an initial value of h′ = 0.005 together with backtrack-
ing for adapting the step size. We terminated the iteration
once the relative change

|Φ(Ω(k)) − Φ(Ω(k−1))|
h′|Φ(Ω(k))| (5.1)

of the objective functionΦ
(
Ω(k)

) = C
(
V (N )(Ω(k))

)
dropped

below 0.01 or the maximum number of 50 iterations was
reached.

Results The left column of Figure 3 shows the results
obtained during the training phase. Using uniform weights
fails completely to detect and label the letter structures (panel
b). In contrast, the adapted regularizer preserves the struc-
ture perfectly (panel c), i.e., the optimal weights steered the
linear assignment flow toward the given ground-truth label-
ing. Panel (d) visualizes the weight adaptivity at each pixel
in terms of the KL-divergence of the learned weight to the
uniform weight patch.

5.1.2 Test Phase

During the training phase, optimal weights were associated
with all training features through optimization, based on
ground truth and a corresponding objective function. In the
test phase with novel data and features, appropriate weights
have to be predicted because ground truth no longer is avail-
able. This was done by extracting a coreset [17] from the
output generated by Algorithm 1 during the training phase
and constructing a map from novel features to weights, as
described next.

Coreset Let Ω∗ denote the set of optimal weight patches
generated byAlgorithm 1. As features, we used 7×7 patches
extracted from the training images. Let P∗ denote all feature
vectors fi , i ∈ V (dimension 7× 7 = 49) that were given as
a point set in the Euclidean feature spaceF = R

49.We parti-
tioned P∗ into two classes: foreground and background. Each
class is represented by 156 prototypical patches extracted
from the binary images. To each of these patches, a prototyp-
ical weight patch was assigned, namely the geometric mean
of all optimal weight patches in Ω∗ belonging to that patch.
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(a)

(h)

(i)

(j)

(b)

(c)

(d)
(e) (f)

(g)

Fig. 3 Adaptive regularization of binary letters. left column: a
Training data. b Labeling with uniform regularization fails. c Perfect
adaptive reconstruction (sanity check). d illustrates weight adaptivity
at each pixel in terms of the KL-divergence of the learned weight to
the uniform weight patch. middle column: This column illustrates
10 pairs of image patches and corresponding weights for each class
separately. The image patches with the corresponding optimal weight
patches are illustrated by e for the foreground class and by f for the back-

ground class. We observe that the regularizer increases the influence
of neighbors on the geometric averaging which belong to the respec-
tive class. right column: g Novel test data to be labeled using the
regularizer trained on a.hUniform regularization fails iAdaptive recon-
struction predicts curvilinear structures of e using ‘knowledge’ based
on a where only vertical and horizontal structures occur. j illustrates
weights adaptivity at each pixel (cf. d)

The middle column of Fig. 3 illustrates 10 pairs of image
patches and corresponding weights for each class separately.
By comparing the image patches with the corresponding
optimal weight patches (cf. (e) foreground, (f) background),
we observe that the regularizer increases the influence of
neighbors on the geometric averaging which belong to the
respective class.

Mapping features to weights For a given novel test image,
we extracted 7 × 7 patches from the image, determined the
closest image patch of the coreset and assigned the corre-
sponding weight patch to pixel i . Note that we used the same
size 7 × 7 for the image patches and for the neighborhood
size of geometric averaging.

Inference (labeling novel data) In the test phase, we used
the modified linear assignment flow and all parameter val-
ues in the same way, as was done during training. The only
difference is that predicted weight patches were used for reg-
ularization, as described above.

Results The right column of Figure 3 shows the results
obtained during the test phase. Panel (g) depicts the novel

(unseen) binary images. The next two panels show the label-
ing results using uniform weights (h) and using adaptive
weights (i). Panel (j) illustrates the weight adaptivity by
showing the difference of predicted to uniform weights.

5.2 Adaptive Regularization of Curvilinear Line
Structures

We consider a collection of images containing line structures
induced by random Voronoi diagrams (Fig. 4a). The goal is
pixel accurate labeling of any given image with three labels
representing: thin line structure, homogeneous region and
texture. In the figures below, these labels are encoded by the
three colors { , , } = {line, homogeneous, texture}. As
usual in supervised machine learning, our approach is first
applied during a training phase in order to learn weight adap-
tivity fromground truth labelings and subsequently evaluated
in a test phase using novel unseen data.
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(a) (b) (c)

Fig. 4 Training data and local label assignments. The training data
consist of 20 pairs of randomly generated images: a shows a randomly
generated input image fromwhich features are extracted, as described in
the text, and b the corresponding ground truth. The ground truth images

encode the labels with colors { , , ,} = {line, homogeneous, tex-
ture}. Even though the global image structure can be easily assessed
by the human eye, assigning correct labels pixelwise by an algorithm

requires context-sensitive decisions, as the close-up view illustrates.
c illustrates the quality of the distances (5.2) between extracted fea-
ture vectors. The panel shows the labeling obtained by local rounding,
i.e., by assigning to each pixel the label minimizing the corresponding
distance. Comparing the close-up views of panel b, c shows that label
assignments to individual pixels are noisy and incomplete (Color figure
online)

5.2.1 Training Phase

Weused 20 randomly generated images togetherwith ground
truth as training data: Fig. 4a shows one of these images and
Fig. 4b the corresponding ground truth. By following the
same procedure as in Sect. 5.1.1, we use these data in order
to adapt the regularization parameter of the modified linear
assignment flow (4.11) by solving problem (4.1), with the
specific form given by (4.17).

Feature Vectors The basis of our feature vectors is the out-
puts of simple 7×7 first- and second-order derivative filters,
which are tuned to orientations at 0, 15, . . . , 180 degrees.
(We took absolute values of filter outputs to eliminate the
180 ∼ 360 degree symmetry.) We reduced the dimension
of the resulting feature vectors from 24 to 12 by taking the
maximum of the first-order and second-order filter outputs,
for each orientation. To incorporate more spatial informa-
tion, we extracted 3 × 3 patches from this 12-dimensional
feature vector field. Thus, our feature vectors fi , i ∈ V had
dimension 3 × 3 × 12 = 108 and were given as a point set
in the Euclidean feature space F = R

108.
Label Extraction Using ground truth information, we

divided all feature vectors extracted from the training
data into three classes: thin line structure, homogeneous
region and texture. We computed 200 prototypical fea-
ture vectors l jc ∈ F , j ∈ [200], in each class c ∈
{line, homogeneous, texture} by k-means clustering. Thus,
each label (line, homogeneous, texture) was represented by
200 feature vectors in F .

Distance Matrix Even though in the original formulation
(3.2) labels are represented by a single feature vector, mul-

tiple representatives can be taken into account as well by
modifying the distance matrix (3.23) accordingly. With the
identification

c ∈ {line, homogeneous, texture} = {1, 2, 3},

we defined the entries of the distance matrix Dic, for every
i ∈ V , as the distance between fi and the best fitting repre-
sentative l jc for class c, i.e.,

Dic := min
j∈[200] ‖ fi − l jc‖2. (5.2)

The quality of this distance information is illustrated in
Fig. 4c that shows the labeling obtained by local rounding,
i.e., by assigning to each pixel i the label c = minc̃ Dic̃.
Although the result looks similar to the ground truth (cf.
Fig. 4b), it is actually quite noisy when looking to single pix-
els in the close-up view of Fig. 4c.

Optimization For each input image of the training set,
we solved problem (4.1) using Algorithms 1 and 2 and the
following parameter values: |Ni | = 9×9 (size of local neigh-
borhoods, for every i), ρ = 1 (scaling parameter for distance
matrix, cf. (3.24)), h = 0.5 (constant step-size for comput-
ing the gradient with Algorithm 2), and T = 6 (end of time
horizon). As for optimization on the parameter manifold P
through theRiemanniangradient flow(Algorithm1),weused
an initial value of h′ = 0.0125 together with backtracking
for adapting the step-size. We terminated the iteration once
the relative change (5.1) of the objective function dropped
below 0.001 or the maximum number of 100 iterations was
reached.

123



Journal of Mathematical Imaging and Vision (2021) 63:186–215 203

(a) (b) (c) (d)

Fig. 5 Training phase: labeling results. This figure shows results of
the training phase. Panel a shows the given input scene and panel b
the corresponding locally rounded distance information. The labeling
with uniform regularization (panel c) returns smoothed over regions
and completely fails to preserve the line structures. The adaptive regu-

larizer preserves the line structure perfectly (panel d), i.e., the optimal
weights are able to steer the linear assignment flow successfully toward

the given ground-truth labeling. ({ , , } = {line, homogeneous,
texture}) (Color figure online)

Results Figure 5 shows two results obtained during the
training phase. They illustrate non-adaptive regularization
using uniformweights, which results in blurred partitions and
fails completely to detect and label the line structures (panel
c). On the other hand, the adapted regularizer preserves and
restores the structure perfectly (panel d), i.e., the optimal
weights steered the linear assignment flow toward the given
ground-truth labeling.

Figure 6 shows a close-up view of a 10 × 10 pixel region
together with the corresponding 10 × 10 optimal weight
patches, extracted fromΩ∗. The top row depicts (a) the train-
ing data, (b) the corresponding ground truth, (c) the local
label assignments, and (d) the labeling obtained when using
the learned weights Ω∗. Plot (e) shows the corresponding
optimal weight patches Ω∗

i = (ωi1, . . . , ωiN )� associated
with every pixel i in the 10 × 10 pixel region, where small
and large weights are indicated by dark and bright gray val-
ues, respectively. These weight patches illustrate the result
of the learning process for adapting the weights. Close to the
line structure, the regularizer increases the influence (with
larger weights) of neighbors whose distance information
matches the prescribed ground truth label. Away from the
line structure, the regularizer has learned to suppress (with
small weights) neighbors that belong to a line structure.

5.2.2 Test Phase

As already explained in Sect. 5.1.2, we have to predict appro-
priate weights for novel data and features. We proceed as
done before by extracting a coreset from the output gen-
erated by Algorithm 1 and constructing a map from novel
features to weights.

Coreset Let Ω∗ denote the set of optimal weight patches
generated by Algorithm 1, and let P∗ denote the set of all
15×15 patches of local label assignments based on the corre-
sponding training features and distance (5.2). We partitioned
P∗ into three classes: thin line structures, homogeneous
regions and texture, and extracted for each class separately
225 prototypical patches by k-means clustering. To each of
these patches and the corresponding cluster, a prototypical
weight patch was assigned, namely the weighted geometric
mean of all optimal weight patches in Ω∗ belonging to that
cluster. As weights for the averaging, we used the Euclidean
distance between the respective patches of local label assign-
ments and the corresponding cluster centroid.

Figure 7 depicts 10 pairs of patches of prototypical label
assignments and weights, for each of the three classes: line,
homogenous and texture. Comparing these weight patches
with the optimal patches depicted in Fig. 6, we observe that
the former are regularized (smoothed) by geometric averag-
ing and, in this sense, summarize and represent all optimal
weights computed during the training phase.
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(a) (b) (c) (d)

(e)

Fig. 6 Training phase: optimal weight patches. Top row: a Close-up
view of training data (10 × 10 pixel region). b The corresponding
ground truth section. c Local label assignments. d Correct labeling
using adapted optimal weights. Bottom row: e The corresponding
optimal weight patches (10 × 10 grid), one patch for each pixel. Close

to the line structure, the regularizer increases the influence of neighbors
on the geometric averaging of assignments whose distances match the
prescribed ground truth labels. Away from the line structure, the regu-
larizer has learned to suppress with small weights neighbors belonging
to a line structure

Mapping features to weights For each novel test image,
we extracted features using the same procedure as done in
the training phase and computed at each pixel i the patch of
local label assignments. For the latter patch, the closest patch
of local label assignments of the coreset was determined, and
the corresponding weight patch was assigned to pixel i .

Note that the patch size 15×15 of local label assignments
was chosen larger as the patch size 9× 9 of the weights that
was used both during training and for testing. The former
larger neighborhood defines the local ‘feature context’ that
is used to predict weights for novel data.

Inference (labeling novel data) In the test phase, we used
the modified linear assignment flow and all parameter val-
ues in the same way, as was done during training. The only
difference is that predicted weight patches were used for reg-
ularization, as described above.

Results Figure 8 shows a result of the test phase. Since
all data are randomly generated, this result is representative
for the entire image class. The panels (a) and (g) show the
input data, whereas ground truth (b) is only shown for visual
comparison. Panel (c) shows the labeling obtained using uni-
form weights and (d) illustrates the difference of (c) to the
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(a)

(b)

(c)

Fig. 7 Coreset visualization. This plot shows 3 × 10 prototypical
patches of local label assignments and the correspondingweight patches
of the coreset, for each of the three classes. a 10 prototypical pairs of
the class line. Weight patches ‘know’ to which neighbors large weights
have to be assigned, such that the local line structure is labeled correctly.
b Weight patches of the homogeneous label class are almost uniform,
which is plausible, because the noisy assignments can be filtered most
effectively. c The weight patches of the texture label are comparable to
the homogeneous ones and almost uniform, for the same reason. (Color
code { , , } = {line, homogeneous, texture}) (Color figure online)

ground truth (b). Panel (e) shows the labeling obtained using
adaptive weights, and (f) the corresponding difference of (e)
to the ground truth (b). The labeling result clearly demon-
strated the impact of weight adaptivity. This aspect is further
illustrated in panel (h).

Figure 9 shows predicted weight patches for novel test
data in the same format as Fig. 6 depicts optimal weight
patches computed during training. The similarity of the
behavior of predicted and optimal weights for pixels close
and away from local line structure demonstrates that the
approach generalizes well to novel data. Since these data are
randomly generated, this performance is achieved for any
image data in this class.

5.3 Pattern Formation by Label Transport

In this section, we illustrate the model expressiveness of the
assignment flow. Specifically, we choose an input image and
a target labeling which patterns are quite different. The task
is to estimate weights in order to steer the assignment flow to
the target labeling. We show that our learning approach can
determine the weights that ‘connect’ these patterns by the
assignment flow. This shows that the weights which deter-
mine the regularization properties of the assignment flow
actually encode information for pattern formation. Finally,

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8 Test phase: labeling results. a Randomly generated novel input
data, b the corresponding ground truth. c Labeling using uniform
weights fails to detect and label line structures. d illustrates the dif-
ference of c to the ground truth (b). e Adaptive regularizer based on
predicted weights yields a result that largely agrees with ground truth. f
shows the differenceof e to the ground truth (b).g shows the correspond-
ing locally rounded distance information extracted from the image data
(a). Panel h illustrates weights adaptivity at each pixel in terms of the
distance of the predicted weight patch to the uniform weight
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(b)(a) (c) (d)

(e)

Fig. 9 Test phase: predicted weight patches. Top row: a Close-up
view of novel data (10 × 10 pixel window). b Corresponding ground
truth section (just for visual comparison, not used in the experiment). c
Local label assignment. d Labeling result using adaptive regularization
with predicted weights. Bottom: e Corresponding predicted weight

patches (10× 10 grid), one patch for each pixel of the test data (a). The
predicted weight patches behave similar to the optimal weight patches
depicted in Fig. 6 that were computed during the training phase (for
different data). This shows that our approach generalizes to novel data

we briefly point out and illustrate in Sect. 5.3.3 limitations of
the current version of our approach.

For the patterns below, we used X = {�,�} =
{background, foreground} as labels and the Hamming dis-
tance for the computation of the distance matrix (3.23).

5.3.1 Pattern Completion

The top row of Fig. 10 shows the input image and the target
labeling. The second row illustrates the evolution of the lin-
ear assignment flow using optimal weight parameters. These
optimal parameters were obtained by the Riemannian gradi-

ent flow on the parameter manifold in order to solve problem
(4.17), which effectively steers the assignment flow to the
target labeling.

Having obtained the optimal weights Ω∗ after conver-
gence, we inserted them into the original nonlinear assign-
ment flow. The evolution of corresponding label assignments
is shown by the third row of Fig. 10. The fact that the label
assignment at the final time T is close to the target labeling
which the linear assignment flow reaches exactly confirms
the remarkably close approximation of the nonlinear flow by
the linear assignment flow, as already demonstrated in [25]
in a completely different way.
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Fig. 10 Pattern completion. This figure illustrates the model expres-
siveness of the assignment flow. top row: Input image and target
labeling. The task was to estimate weights in order to steer the assign-
ment flow to the target labeling. The rightmost panel illustrates, for
each pixel, the distance of uniform weights from the optimal estimated
weight patch.middle row:Label assignments of the linear assignment
flow using optimal weights obtained by solving (4.1). The Riemannian

gradient flow on the parameter manifold effectively steers the flow to
the target labeling. bottom row: Label assignments of the nonlinear
assignment flow using the optimal weights that were estimated using
the linear assignment flow. Closeness of both labeling patterns at the
final point of time T = 5 demonstrates that the linear assignment flow
provides a good approximation of the full nonlinear flow

The rightmost panel in the top row of Fig. 10 shows, for
each pixel, the deviation of the optimal weight patch that
forms uniform weights. While it is obvious that the ‘source
labeling’ of the input data receives large weights, the spa-
tial arrangement of weights at all other locations is hard to
predict beforehand by humans. This is why learning them is
necessary.

5.3.2 Transporting and Enlarging Label Assignments

We repeated the experiment of the previous section using the
academic scenario depicted in Fig. 11. A major difference is
that locations of the input image do not form a subset of the
locations of the target labeling. As a consequence, the corre-
sponding ‘mass’ of assignments has to be both transported
and enlarged.

The results shown in Fig. 11 closely resemble those of
Fig. 10, such that the corresponding comments apply like-
wise. We just point out again the following: Looking at the
optimal weight patches in terms of their deviation from uni-
form weights, as depicted in the rightmost panel in the top
row of Fig. 11, it is both interesting and not too difficult
to understand—after convergence and informally by visual
inspection—how these weights encode this particular ‘label
transport.’ However, predicting these weights and certify-
ing their optimality beforehand seems to be an infeasible

task. For example, it is hard to predict that the creation of
intermediate locations where assignment mass temporarily
accumulates (clearly visible in Fig. 11) effectively optimizes
the constrained functional (4.1). Learning these weights, on
the other hand, just requires to apply our approach.

5.3.3 Parameter Learning Versus Optimal Control

Figure 12 illustrates limitations of our parameter learning
approach. In this experiment, we simply exceeded the time
horizon in order to inspect labelings induced by the linear
assignment flow after the point of time T , that was used for
determining optimal weights in the training phase. Starting
with T , Fig. 12 shows these labelings for both experiments
corresponding to Figs. 10 and 11.

Unlike the fern pattern (top row) where the initial label
locations formed a subset of the target locations, the ‘moving
mass pattern’ (bottom row) is unsteady in the following quite
natural sense: The linear assignment flow simply continues
transporting mass beyond time T . As a result, assignments
to the white label are transported to locations of the black
target pattern. Hence, the target pattern is first created up to
time T and destroyed afterward.

This behavior is not really a limitation, but a conse-
quence of merely learning constant weight parameters. Due
to the formulation of the optimization problem (4.1), opti-
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Fig. 11 Transporting and Enlarging Label Assignments. See Fig. 10
for the setup. top row: Label locations of the input data do not form
a subset of the target locations. Thus, ‘mass’ of label assignments has
to be both transported and enlarged. Rightmost panel: Distance of the
optimal weight patch from uniform weights, for every pixel. middle
row: Applying our approach to (4.1) effectively solves the problem.
bottom row: Inserting the optimal weights that are computed using

the linear assignment flow into the nonlinear assignment flow gives a
similar result and underlines the good approximation property of the
linear assignment flow. It is interesting to observe that computing the
Riemannian gradient flow on the parameter manifold entails ‘interme-
diate locations’ where assignment mass accumulates temporarily. This
underlines the necessity of learning, since it seems hard to predict such
an optimal regularization strategy beforehand

mal weights not only encode the ‘knowledge’ how to steer
the assignment flow in order to solve the problem, but also the
time period after which the task has to be completed. Fixing
this issue requires a higher-level of adaptivity: Weight func-
tions depending on time and the current state of assignments
would have to be estimated, that may be adjusted online
through feedback in order to control the assignment flow
in a more flexible way.

6 Conclusion

We introduced a parameter learning approach for image
labeling based on the assignment flow. During the training
phase, weights for geometric averaging of label assignments
are estimated from ground truth labelings, in order to steer
the flow to prescribed labelings. Using the linearized assign-
ment flow, we showed that, by using a class of symplectic
partitioned Runge–Kutta methods, this task can be accom-
plished by numerically integrating the adjoint system in a
consistent way. Consistent means that discretization and dif-
ferentiation for the training problem commute. An additional

convenient property of our approach is that the parameter
manifold has mathematically the structure of an assignment
manifold, such that Riemannian gradient descent can be used
for effectively solving the training problem.

The output of the training phase is a database contain-
ing features extracted from training data, together with the
respective optimal weights. In order to complete the param-
eter learning task, a mapping has to be specified that predicts
optimal weights for novel unseen data. We solved this task
simply by nearest-neighbor prediction after partitioning the
database using k-means clustering and geometric averaging
of the weights, separately for each cluster. We evaluated
this approach for a binary label scenario consisting of let-
ters and a 3-label scenario involving line structures where
just using uniform weights inevitably fails in both cases. We
additionally conducted experiments that highlight the model
expressiveness of the assignment flow and also limitations
caused by merely learning constant parameters.

Our main insights include the following. Regarding
numerical optimization for parameter learning in connection
with image labeling, our approach is more satisfying than
working with discrete graphical models, where parameter
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Fig. 12 Parameter learning vs. optimal control. The plots show label
assignments by computing the assignment flow beyond the final point
of time T used during training, for the experiments corresponding to
Figs. 10 and 11. Unlike the pattern completion experiment (top row)
where few locations of initial data formed a subset of the target pat-
tern, the target pattern (bottom row, at time T ) of the moving-mass
experiment is unsteady in the following sense: At time T , the flow con-

tinues to transport mass which eventually erases the target pattern with
assignments of the white background label. The reason is that constant
parameters are only learned that not only encode the ‘knowledge’ how
to steer the flow to the target pattern but also the time period [0, T ]
for accomplishing this task. In order to remedy this limitation, weight
functions depending on the assignments (state of the assignment flow)
would have to be estimated by applying techniques of optimal control

learning requires to evaluate the partition function, which is
a much more involved task when working with cyclic grid
graphs. The latter problem of computational statistics shows
up in our scenario in similar form as the problem to design
the prediction map from features to weight parameters. A
key difference of these two scenarios is that by restricting
the scope to statistical predictions at a local scale, i.e., only
within small windows, the prediction task becomes man-
ageable, since regarding numerical optimization, no further
approximations are involved at all.

Regarding future work, we mention two directions. The
natural way for broadening the scope of the prediction map
and the class of images that the assignment flow can repre-
sent is the composition of two or several assignment flows in
a hierarchical fashion. This puts our work closer to current
mainstream research on deep networks, whose parametriza-
tions and internal representations are not fully understood,
however. We hope that using the assignment flow can help
to understand hierarchical architectures better.

The second line of research concerns the learning of
weight functions, rather than constant parameters, as moti-
vated in Sect. 5.3.3, since this would also enhance model
expressiveness and adaptivity considerably. A key problem
then is to clarify the role of these functions and the choice of
an appropriate time scale, as part of an hierarchical compo-
sition of assignment flows.

Acknowledgements OpenAccess funding provided by Projekt DEAL.
Part of this research was performed while R. Hühnerbein was visit-
ing the Institute for Pure and Applied Mathematics (IPAM) at UCLA,
which is supported by the National Science Foundation (Grant No.
DMS-1440415). Financial support by the German Science Foundation
(DFG), Grant GRK 1653, is gratefully acknowledged. This work has

also been stimulated by the Heidelberg Excellence Cluster STRUC-
TURES, funded by the DFG under Germany’s Excellence Strategy
EXC-2181/1 - 390900948.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Proofs of Section 2

Proof of Theorem 6

A proof can be found, e.g., in [4]. However, in order to make
this paper self-contained, we include a proof here.

Proof Setting up the Lagrangian

L(x, p, λ) = C(x(T )) −
∫ T

0

〈
λ, F(ẋ, x, p, t)

〉
dt (A.1)
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withmultiplier λ(t) and F(ẋ, x, p, t) := ẋ− f (x, p, t) ≡ 0,
we get with Φ(p) = C(x(T )) from (2.1)

∂Φ = ∂pL = dpx(T )�∂C
(
x(T )

) −
∫ T

0

(
dẋ Fdp ẋ

+ dx Fdpx + dpF
)�

λ dt,

(A.2)

where integration applies component-wise. By using dẋ F =
I , where I denotes the identity matrix, we partially integrate
the first term under the integral,

∫ T

0
dp ẋ

�λ dt = dpx
�λ

∣∣∣∣

T

t=0
−

∫ T

0
dpx

�λ̇ dt . (A.3)

We further obtain with dpF = −dp f and dx F = −dx f

∂Φ = dpx(T )�∂C(x(T )) − dpx
�λ

∣∣
∣∣

T

t=0

+
∫ T

0
dpx

�λ̇ dt (A.4a)

+
∫ T

0

(
dx f dpx + dp f

)�
λ dt

= dpx(T )�∂C(x(T )) − dpx(T )�λ(T )

+dpx(0)
�λ(0) (A.4b)

+
∫ T

0
dpx

�λ̇ + dpx
�dx f �λ + dp f

�λ dt .

Weconsider systemswhere the initial value x0 is independent
of the parameter p, i.e., dpx(0) = 0. Additionally factoring
out the unknown Jacobian dpx , we obtain

= dpx(T )�
(
∂C(x(T )) − λ(T )

)

+
∫ T

0
dpx

�(
λ̇ + dx f

�λ
)

+ dp f
�λ dt .

(A.4c)

Now, by choosing λ(t) such that conditions (2.18b) are ful-
filled, i.e.,

λ̇(t) = −dx f
�λ(t), λ(T ) = ∂xC(x(T )),

we finally obtain

∂Φ =
∫ T

0
dp f

�λ(t) dt . (A.5)


�

Proof of Theorem 7

For the proof of this theorem,we follow the suggested outline
of [19]: State the Lagrangian of the nonlinear problem (2.21)

and apply the following lemma, which is a slightly different
version of Lemma 3.5 in [19].

Lemma 3 Suppose that the mapping φ : Rn p×d ′ → R
d ′

is
such that the Jacobian matrix dγ φ is invertible at a point
(p0, γ0) ∈ R

n p × R
d ′
, that is in the neighborhood of p0,

the equation φ(p, γ ) = 0 defines γ as a function of p. For
some given function C : Rn p×d ′ → R consider the induced
function of the form Φ : Rn p → R, defined by Φ(p) :=
C(p, γ (p)). We introduce the Lagrangian

L(p, γ, λ) = C(p, γ ) + 〈φ(p, γ ), λ〉. (A.6)

Then, the Euclidean gradient of Φ with respect to p at p0 is
given by

∂Φ(p0) = ∂pL(p0, γ0, λ0), (A.7)

where the vectors γ0 = γ (p0) ∈ R
d ′

and λ0 ∈ R
d ′

are
uniquely determined by

0 = ∂λL(p0, γ0, λ0) = φ(p0, γ0), (A.8a)

0 = ∂γL(p0, γ0, λ0)

⇐⇒ ∂γ C(p0, γ0) = −dγ φ(p0, γ0)
�λ0. (A.8b)

Proof Since we evaluate all occurring functions and their
derivatives at the same points p0, γ0 and λ0, we drop them
as arguments in the following, to simplify notation.

(i) Equation (A.8a) directly follows by differentiating L
with respect to λ at (p0, γ0, λ0).

(ii) Equation (A.8b) is immediately obtained by differenti-
ating L with respect to γ at (p0, γ0, λ0). Since dγ φ

is invertible at (p0, γ0), the resulting linear system
uniquely determines the vector λ0.

(iii) Next, we show that this λ0 also satisfies the first equa-
tion (A.7). By differentiating φ(p, γ ) = 0 with respect
to p at (p0, γ0), we obtain

dγ φdpγ0 + dpφ = 0
dγ φ is invertible⇐⇒ dpγ0 = −(dγ φ)−1dpφ. (A.9)

We will make use of this identity for dpγ0 in the fol-
lowing. Differentiating Φ with respect to p at p0 and
by the chain rule, we obtain

∂Φ = ∂pC + dpγ
�
0 ∂γ C (A.10a)

(A.8b)= ∂pC − dpγ
�
0 dγ φ�λ0 (A.10b)

(A.9)= ∂pC + (
(dγ φ)−1dpφ

)�
dγ φ�λ0 (A.10c)

= ∂pC + dpφ
�λ0=∂L, (A.10d)
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which shows (A.7). 
�

Proof of Theorem 7 We begin by stating the Lagrangian of
problem (2.21)

L(x, p, λ) = C
(
xN

) − λ�
0 (x0 − x(0))

−
N−1∑

n=0

λ�
n+1

[
xn+1 − xn − hn

s∑

i=1

bi kn,i

]

−
N−1∑

n=0

hn

s∑

i=1

biΛ
�
n,i

[
kn,i − f (Xn,i , p, tn + ci hn)

]
.

(A.11)

In order to apply Lemma 3, we explain which role the vari-
ables γ, λ, φ play in this situation:

1. Intermediate stages: The vector γ represents all inter-
mediate stages related to the evaluation of the function
Φ(p) = C(xN (p)), i.e., all intermediate values xi and
stages ki of the Runge–Kutta method. These variables are
stacked and arranged as follows:

=

⎡

⎢⎢⎢⎢
⎢
⎣

x0
γ0
γ1
...

γN−1

⎤

⎥⎥⎥⎥
⎥
⎦

∈ R
d ′

, γn =
[

kn
xn+1

]
∈ R

(s+1)nx ,

and kn =
⎡

⎢
⎣

kn,1
...

kn,s

⎤

⎥
⎦ ∈ R

snx .

(A.12)

2. Lagrange multiplier The vector λ contains all Lagrange
multipliers in (A.11) belonging to the constraints (2.21b)–
(2.21d). The multipliers are stacked and arranged as
follows:

λ =

⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

−λ0
−Λ0

...

−λN−1

−ΛN−1

−λN

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

∈ R
d ′

, Λn =
⎡

⎢
⎣

hnb1Λn,1
...

hnbsΛn,s

⎤

⎥
⎦ ∈ R

snx .

(A.13)

3. Intermediate mappings Analogously, the vector φ con-
tains all intermediate mappings φn of the computation of
Φ(p) = C(xN (p)) with n = 1, . . . , N − 1. In our situa-
tion, φ is the concatenation of the forward Runge–Kutta
evaluation, which we express using the Kronecker prod-

uct as

φ =

⎡

⎢
⎢⎢⎢⎢
⎣

x0 − x(0)
Ψ1

Ψ2
...

ΨN−1

⎤

⎥
⎥⎥⎥⎥
⎦

∈ R
d ′

,

Ψn =
[

kn − Fn(Xn, p)
xn+1 − xn − hn(b� ⊗ Inx )kn

]

=
[
Ψn,1

Ψn,2

]
∈ R

(s+1)nx ,

(A.14)

where Ψn,1 ∈ R
snx and Ψn,2 ∈ R

nx , as well as

Fn(Xn, p) =
⎡

⎢
⎣

f (Xn,1, p, tn + c1hn)
...

f (Xn,s, p, tn + cshn)

⎤

⎥
⎦ ,

Xn = 1s ⊗ xn + hn(A ⊗ Inx )kn =
⎡

⎢
⎣

Xn,1
...

Xn,s

⎤

⎥
⎦ .

(A.15)

We proceed by computing the Jacobian dγ φ. Note that the
intermediate variables γn (A.12) are only contained in the
intermediate mappings Ψn (A.14), which results in a sparse
block structure of the overall Jacobian dγ φ.

1. Small block matrices Each small block matrix represents
the derivative of the nth iteration step Ψn and is given by

d(xn ,kn ,xn+1)Ψn =
[
dxnΨn,1 dknΨn,1 dxn+1Ψn,1

dxnΨn,2 dknΨn,2 dxn+1Ψn,2

]

=
[

Dn An

−Inx B�
n Inx

]
,

(A.16)

with

An = Isnx − hndx Fn(Xn, p)(A ⊗ Inx ), (A.17a)

B�
n = −hnb

� ⊗ Inx , (A.17b)

Dn = −dx Fn(Xn, p)(1s ⊗ Inx ), (A.17c)

where A and b are the Runge–Kutta coefficients given by
the above tableau of Fig. 1.

2. Sparse block structure The overall Jacobian dγ φ consists
of N−1 blocks (one for each iteration) of the form (A.16)
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and is given by

dγ φ =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

Inx
D1 A1

−Inx B�
1 Inx

D2 A2

−Inx B�
2 Inx

. . .
. . .

. . .

DN−1 AN−1

−Inx B�
N−1 Inx

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

.

(A.18)

3. Invertibility of dγ φ: A matrix M is invertible if det M 
=
0. Since the matrix dγ φ is lower block diagonal, its deter-
minant is given by

det dγ φ = det A1 · . . . · det AN−1 (A.19)

Thus, we only need to show that det An 
= 0 for all n =
1, . . . , N − 1. Equation (A.17a) reads in a more compact
form

An = (Isnx − hnM), with

M := dx Fn(Xn, p)(A ⊗ Inx ).
(A.20)

We show det An 
= 0 by using the equivalent statement
ker(An) = {0}. Now, let x ∈ R

snx \{0}, then

‖x‖ ≤ ‖x − hnMx‖ + ‖hnMx‖
≤ ‖Anx‖ + ‖hnM‖‖x‖. (A.21)

By using the row-sum norm ‖ · ‖∞, we have

‖hnM‖∞
(A.20)= hn‖dx Fn(Xn, p)(A ⊗ Inx )‖∞
≤hn‖dx Fn(Xn, p)‖∞‖(A ⊗ Inx )‖∞

<hnL max
i=1,...,s

s∑

j=1

|ai j | (2.11)
< 1, (A.22)

where L denotes the Lipschitz constant of f and the step-
sizehn satisfies the assumption (2.11). Substituting (A.22)
into (A.21) gives

‖x‖ < ‖Anx‖ + ‖x‖ ⇐⇒ 0 < ‖Anx‖
⇐⇒ x /∈ ker(An).

(A.23)

Since, the kernel of An is trivial, An is invertible and
consequently the overall Jacobian dγ φ as well.

Now, we are in a position to apply Lemma 3. More precisely,
(A.8b) tells us that the vector λ is uniquely determined by the

linear system dγ φ�λ = −∂γ C. In our situation, this system
is given by

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

Inx D�
1 −Inx

A�
1 B1

Inx D�
2 −Inx

A�
2 B2

. . .

Inx
. . .

. . . D�
N−1 −Inx

A�
N−1 BN−1

Inx

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢
⎣

−λ0
−Λ0

−λ1
−Λ1

...

−λN−1

−ΛN−1

−λN

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥
⎦

= −

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

0
0
0
0
...

0
0

∂xC(xN )

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

. (A.24)

We determine the exact identity of λ by backward substitu-
tion:

1. From the last row of (A.24), we immediately obtain

λN = ∂xC(xN ). (A.25)

2. Next,weprove equation (2.23a). For eachn = 0, . . . , N−
1, we obtain

0 = [
Inx D�

n −Inx
]
⎡

⎣
λn
Λn

λn+1

⎤

⎦ = λn + D�
n Λn − λn+1

= λn − (dx Fn(Xn, p)(1s ⊗ Inx ))
�

⎡

⎢
⎣

hnb1Λn,1
...

hnbsΛn,s

⎤

⎥
⎦

− λn+1

= λn − (1�
s ⊗ Inx )dx Fn(Xn, p)

�

⎡

⎢
⎣

hnb1Λn,1
...

hnbsΛn,s

⎤

⎥
⎦

− λn+1

= λn − hn

s∑

i=1

bidx f (Xn,i , p, tn + ci hn)
�Λn,i

− λn+1.

λn+1 = λn + hn

s∑

i=1

bi
n,i , (A.26)
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with 
n,i = −dx f (Xn,i , p, tn + ci hn)�Λn,i .

3. Equation (2.23c) follows by

0 = [
0 A�

n Bn
]
⎡

⎣
λn
Λn

λn+1

⎤

⎦

= A�
n Λn + Bnλn+1

= (
Isnx − hndx Fn(Xn, p)(A ⊗ Inx )

)�
Λn

− hn(b ⊗ Inx )λn+1

=
(
Isnx − hn(A

� ⊗ Inx )dx Fn(Xn, p)
�)

Λn

− hn(b ⊗ Inx )λn+1.

In the following, we consider the i th entry of the previous
equation, i.e., hnbiΛn,i of Λn with i = 1, . . . , s.

0 = hnbiΛn,i − h2n

s∑

j=1

a ji b j∂x f (Xn, j , p, tn + c j hn)
�Λn, j

− hnbiλn+1

Λn,i = λn+1 + hn

s∑

j=1

a ji b j

bi
dx f (Xn, j , p, tn + c j hn)

�Λn, j

(A.26)= λn + hn

s∑

i=1

bi
n,i − hn

s∑

j=1

a ji b j

bi

n, j

= λn + hn

s∑

j=1

(
b j − a ji b j

bi

)

n, j ,

with 
n, j = −dx f (Xn, j , p, tn + c j hn)�Λn, j .
Finally, we show the formula of the gradient (2.22), which
is given by (A.7)

∂Φ = ∂pC + dpφ
�λ0

∂pC=0= dpφ
�λ0. (A.27)

The Jacobian dpφ� consists of the following building
blocks: For the nth iteration step Ψn , the local Jacobian
with respect to parameter p reads

dpΨn =
[
dpΨn,1

dpΨn,2

]
=

[
D̄n

0

]
,

D̄n = −dpFn(Xn, p)(1s ⊗ In p ).

(A.28)

By concatenating N − 1 of these blocks (one for each
iteration n = 1, . . . , N−1) of (A.28), the overall Jacobian
is given by

dpφ
� = [

0 D̄�
0 0 D̄�

1 0 . . . 0 D̄�
N−1 0

]
. (A.29)

Now, formula (2.22) is explicitly given by

∂Φ = dpφ
�λ0

= [
0 D̄�

0 0 . . . 0 D̄�
N−1 0

]

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

−λ0
−Λ0

−λ1
...

−λN−1

−ΛN−1

−λN

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

= −
N−1∑

n=0

D̄�
n Λn

=
N−1∑

n=0

(dpFn(Xn, p)(1s ⊗ In p ))
�Λn

=
N−1∑

n=0

((1s ⊗ In p ))dpFn(Xn, p)
�Λn

(A.13)=
N−1∑

n=0

hn

s∑

i=1

bidp f (Xn,i , p, tn + ci hn)
�Λn,i .


�
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