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Abstract. We consider the problem of minimizing the Kullback-Leibler
divergence between two unnormalised positive measures, where the first
measure lies in a finitely generated convex cone. We identify SMART (si-
multaneous multiplicative algebraic reconstruction technique) as a Rie-
mannian gradient descent on the parameter manifold of the Poisson dis-
tribution. By comparing SMART to recent acceleration techniques from
convex optimization that rely on Bregman geometry and first-order in-
formation, we demonstrate that it solves this problem very efficiently.
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1 Introduction

This paper explores state-of-the-art first-order optimization methods for solving

min
x∈Rn

+

f(x), f(x) = KL(Ax, b), A ∈ Rm×n
+ , b ∈ Rm

++ (1)

in order to recover a discretized nonnegative function x from linear nonnegative
measurements Ax ≈ b by minimizing the Kullback-Leibler (KL) divergence, in-
stead e.g., the usual least-squares norm, see e.g., [11] and references therein. We
exploit the underlying Bregman geometry in a twofold way. First, convex opti-
mization methods based on Bregman distances offer the possibility of matching
the Bregman distance to the structure of the problem, leading to simple multi-
plicative gradient-like iterative schemes and enabling a reduced cost of the com-
plexity per iteration. Secondly, by turning the interior of the feasible set into a
Riemannian manifold, the geometry of the space allows smooth unconstrained
optimization. We examine both aspects in a principled manner for problem (1)
and consider discrete tomography as application scenario.
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Related work. A prototypical multiplicative iterative algorithm for (1) is
SMART (simultaneous multiplicative algebraic reconstruction technique) [7]

xk+1 = xke−τk∇f(xk), x0 ∈ Rn
++ (SMART) (2a)

xk+1
j = xkj

m∏
i=1

( bi
(Axk)i

)τkAij

, k = 0, 1, . . . j = 1, . . . , n. (2b)

In [20] SMART was identified as the classical mirror descent algorithm (MDA)
[18] for fixed steplength τk for the particular objective (1), that converges at a
(faster) O(1/k) rate (as opposed to O(1/

√
k) for general MDA [5]) due to relative

L-smoothness (see below). In addition, a computationally efficient acceleration
scheme based on [22] was suggested, however, without a theoretical underpin-
ning of a O(1/k2) rate. MDA, and thus SMART too, is a special instance of
the Bregman proximal gradient (BPG) method [21]. Recent results concerning
optimal complexity of Bregman first-order methods [15, 14, 12] including BPG,
motivate us to explore the a-posteriori certification of accelerated rates for (1).
In [17] the convergence of SMART was analyzed in the context of primal-dual
methods. Hence, it is natural to ask how (1) can be solved by state-of-the-art
(accelerated) primal dual splitting methods that employ generalized proximal
operators defined in terms of a Bregman distance [9, 8]. For a recent overview of
Bregman divergences and proximity operators, see [13].

Contribution and organization. Section 2 introduces essential concepts
related to Bregman divergences. The acceleration of SMART is discussed from
the viewpoint of BPG in section 3. The Riemannian geometry of SMART is
introduced in Section 4. In Section 5, we show in large scale experiments that
SMART is on par with the state-of-the-art Bregman first order methods, and
the O(1/k2) rate of its accelerated version cannot be numerically certified.

Basic notation. We denote the set of nonnegative real vectors by Rn
+ and

the set of positive ones by Rn
++. Let ⟨·, ·⟩ denote the standard inner product

on Rn, ∇h the gradient of a differentiable function h : Rn → R and h∗ the
Fenchel conjugate h∗(p) = supx∈Rn {⟨p, x⟩ − h(x)}. Given a sufficiently well-
behaved convex function ϕ, we consider the so-called Bregman distance

Dϕ(x, y) = ϕ(x)− ϕ(y)− ⟨∇ϕ(y), x− y⟩ (3)

between x and y. We frequently denote componentwise multiplication of vectors
by uv = (u1v1, . . . , unvn)

⊤ and, for strictly positive vectors v ∈ Rn
++, compo-

nentwise division by u
v . Likewise, the functions ex, log x apply componentwise

to a vector x. For a smooth Riemannian manifold (M, g) with metric g, TxM
denotes the tangent space at x ∈ M and dxh : TxM → R the differential of
a smooth function h : M → R. The Riemannian gradient gradh(x) ∈ TxM of
h is uniquely defined by dxh[ξ] = gx (gradh(x), ξ) , ∀ξ ∈ TxM. The (squared)
Riemannian norm is denoted by ∥v∥2x = gx (v, v) , ∀v ∈ TxM.
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2 Preliminaries

Throughout this paper, we assume A ∈ Rm×n
+ and b ∈ Rm

++. We consider the KL
divergence as the Bregman divergence

KL(x, y) := Dφ(x, y) = ⟨x, log x− log y⟩ − ⟨1, x− y⟩, (4)

defined on Rn
+ × Rn

++, which plays a distinguished role among all divergence
functions [2, Section 3.4] and is induced by the Bregman kernel

φ(x) = ⟨x, log x⟩ − ⟨1, x⟩, x ∈ Rn
+. (5)

The specific function φ in (5) is of Legendre type [4, Def. 2.8] which implies
that both gradients ∇φ and ∇φ∗ are one-to-one and inverses of each other. In
particular, φ induces a dual structure induced by the Legendre transform

u := ∇φ(x) = log x, x = ∇φ∗(u) = eu, φ∗(u) = ⟨1, eu⟩. (6)

and a corresponding dual divergence function due to (3) reads

Dφ∗(v, u) = φ∗(v)− φ∗(u)− ⟨∇φ∗(u), v − u⟩ = Dφ(x, y)
∣∣
x=eu, y=ev

. (7)

We now briefly discuss the attainment of minima in (1), that are related to
the unique Bregman projection onto the cone KA := {Ax : x ≥ 0}, generated by
the columns of A, that is a closed and convex set.

Theorem 1 ([4, Thm. 3.12]). Suppose ϕ is closed proper convex and dif-
ferentiable on int(domϕ), C is closed convex with C ∩ int(domϕ) ̸= ∅, and
b ∈ int(domϕ). If ϕ is Legendre, then the Bregman projection y of b is unique
and contained in int(domϕ),

argmin
y∈C∩domϕ

Dϕ(y, b) = {y}, y ∈ int(domϕ). (8)

As KA is nonempty, closed and convex, φ in (5) is Legendre with domφ = Rm
+

and KA∩Rm
++ ̸= ∅, in view of A ∈ Rm×n

+ . Hence, the assumptions of the theorem
above are satisfied. Hence y exists and is unique and all x ∈ Rn

+ with y = Ax
are minimizers of (1). One can prove a similar result as in (8) for

argmin
x∈C∩domϕ

{
Dϕ(x, x

0) + ⟨c, x⟩
}
= {z}, z ∈ int(domϕ), (9)

with c ∈ Rn arbitrary and ∥c∥ ≤ ∞.

Lemma 1. Let f and φ be given by (1) and (5), respectively. Then Df (x, y) =
Dφ(Ax,Ay).
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Proof. From (5) and (3) it follows

Df (x, y) = f(x)− f(y)− ⟨∇f(y), x− y⟩
= Dφ(Ax, b)−Dφ(Ay, b)−

〈
A⊤( log(Ay)− log b

)
, x− y

〉
= φ(Ax)− φ(b)− ⟨∇φ(b), Ax− b⟩ −

(
φ(Ay)− φ(b)− ⟨∇φ(b), Ay − b⟩

)
− ⟨log(Ay)− log b, A(x− y)⟩

= φ(Ax)− φ(Ay)− ⟨∇φ(b), A(x− y)⟩ − ⟨log(Ay)− log b, A(x− y)⟩
∇φ(b)=log b

= φ(Ax)− φ(Ay)− ⟨log(Ay), A(x− y)⟩
= Dφ(Ax,Ay). ⊓⊔

(10)

3 SMART and Convex Acceleration

As mentioned, the SMART iteration (2) was studied in [20] in the context of
mirror descent (aka Bregman proximal gradient), as investigated by Beck and
Teboulle [5]. Specifically, using the Bregman divergence (3) as distance function,
the update scheme with stepsize τk > 0 reads

xk+1 = argmin
x∈Rn

+

f(xk) + ⟨∇f(xk), x⟩+ 1

τk
Dϕ(x, x

k), x0 ∈ Rn
++, (11)

which is well defined according to (9). For Dφ given by (5), one has

∇Dφ(x, x
k) = ∇φ(x)−∇φ(xk) (6)

= log x− log xk, (12)

so that evaluating the optimality condition with respect to (11) yields

0 = ∇f(xk) + 1

τk

(
log xk+1 − log xk

)
(13a)

⇔ xk+1 = xke−τkA
⊤ log Axk

b , x0 ∈ Rn
++, (13b)

which is the SMART update (2). Below we summarize the main convergence
results based on [7, Thm. 2] and [20, Thm. 2].

Theorem 2. Let S be the solution set of (1) and L = ∥A∥1. For (xk)k∈N gen-
erated by (2) with starting point x0 ∈ Rn

++ and τk = τ ≤ 1/L we have

(a) The sequence (xk)k∈N converges to a unique point in S, that is

x = argmin
x∈S

Dφ(x, x
0). (14)

(b) For every k

f(xk)− f(x) ≤ LDφ(x, x
0)

k
. (15)
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The following lemma, adapted from [20, Prop. 2], allows to establish the basic
convergence rate O(1/k) of SMART without assuming that ∇f is L-Lipschitz.

Lemma 2. Suppose A ∈ Rm×n
+ and consider φ in (5). Then

∀x, y ∈ Rn
+, Dφ(Ax,Ay) ≤ ∥A∥1Dφ(x, y). (16)

Acceleration in Bregman First-Order Convex Optimization. In [12] the
O(1/k) rate is shown to be optimal for a broad class of Bregman proximal
gradient (BPG) algorithms under general assumptions on the objective function
f and the Bregman kernel ϕ. In particular, it is not required that ∇f is L-
Lipschitz. Rather, f has merely to be L-smooth relative to ϕ, i.e.

Df (x, y) ≤ LDϕ(x, y), ∀x, y ∈ dom f ⊂ domϕ. (17)

Accelerated Bregman proximal gradient (ABPG) algorithms can only be ob-
tained under additional assumptions. The authors in [15] consider an assump-
tion which yields a O(1/kγ) rate with γ ∈ [1, 2]. In particular, they consider the
triangle-scaling property with uniform triangle-scaling exponent (TSE) γ

Dϕ

(
(1−θ)x+θz, (1−θ)x+θz̃

)
≤ θγDϕ(z, z̃), ∀θ ∈ [0, 1], ∀x, z, z̃ ∈ rint domϕ.

(18)
The focus is on jointly convex Bregman divergences Dϕ since then (18) holds

with γ = 1. Note that KL is jointly convex. Further, the intrinsic TSE of Dϕ is
defined by

γin = lim sup
θ↘0

Dϕ

(
(1− θ)x+ θz, (1− θ)x+ θz̃

)
θγ

<∞, ∀x, z, z̃ ∈ rint domϕ.

(19)
A broad class of Bregman divergences has γin = 2 which is the value the largest
uniform TSE cannot exceed. The analysis in [15] rests upon the triangle-scaling
gain G(x, z, z̃) defined by the relaxed triangle-scaling inequality

Dϕ

(
(1− θ)x+ θz, (1− θ)x+ θz̃

)
≤ G(x, z, z̃)θγDϕ(z, z̃), ∀θ ∈ [0, 1]. (20)

G(x, z, z̃) is bounded based on the relative scaling of the Hessian of ϕ at different
points. In particular, adaptive ABPG algorithms are proposed based on (20) for
problems of the form

min
x∈C

F (x), F (x) = f(x) + Ψ(x), (21)

with f being L-smooth relative to ϕ, C closed, and C, Ψ convex and simple, in
the sense that the key step of the ABPG method

zk+1 = argminx∈C

{
f(yk) + ⟨∇f(yk, x− yk⟩+ θγ−1

k LDϕ(x, zk) + Ψ(x)
}
, (22)

can be solved efficiently. The convergence analysis of ABPG uses basic relations
derived by [10] and [22] in order to relate two subsequent updates.
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The ABPG-e method with exponent adaption starts with a large value γk > 2
and reduces it at each step by some fixed δ, until an inequality (the local triangle-
scaling property, see below (24) for its specialization to our scenario) as stopping
criterion is satisfied. The last value γk determines the convergence rate and serves
as empirical certificate.

The ABPG-g method with gain adaption adapts the gain Gk = G(xk, zk, z̃k)
in an inner loop until a local triangle-scaling inequality is satisfied. In Section
4.1, the authors discuss obstacles for proving a O(k−2) rate, which requires to
bound the geometric mean G := (Gγ

0G1 · · ·Gk)
1

k+γ of gains at each step, with-
out additional assumptions. They argue that, in practical situations, one always
works with a particular reference function ϕ that may have structural proper-
ties yielding fast convergence. Exploiting such a structure for φ (5) is subject to
further research.

SMART and Acceleration. Combining Lem. 1 and Lem. 2, we conclude that
f in (1) is L-smooth relative to φ (5) with L = ∥A∥1. The ABPG iteration (22)
leads for γ = 1 and Ψ ≡ 0 to the F(ast)-SMART iteration [20],

yk = (1− θk)x
k + θkz

k (23a)

zk+1 = zk exp

(
−A⊤ log

(
Ayk

b

)
/L

)
(23b)

xk+1 = (1− θk)x
k + θkz

k+1, (23c)

where x0 = z0 ∈ int(domφ) and θk ∈ (0, 1] satisfies 1−θk+1

θ2
k+1

≤ 1
θ2
k
. As the uniform

TSE γ equals 1 for our choice φ in (5) only a O(1/k) rate can be guaranteed
according to [15, Thm. 1]. Convergence of the sequence (xk)k∈N generated by
FSMART, as it is guaranteed for SMART, remains an open issue. As discussed
above ABPG-e uses a local triangle-scaling property that, in view of Lem. 1,
takes the form

Dφ(Ax
k+1, Ayk+1) < θγk

k LDφ(z
k+1, zk), (24)

when specialized to our scenario. Similarly, ABPG-g includes Gk in the r.h.s.
above. Hence, satisfying such a condition brings extra cost for each iteration,
similar to a line search.

4 SMART: A Geometric Perspective

Riemannian Geometry of the Positive Orthant. In this section, we repre-
sent the positive orthant Rn

++ as a Riemannian manifold. To this end, we turn
the open interval

P := (0,+∞), Pn := P × · · · × P = Rn
++ (25)

into a manifold (P, g) with metric g and define (Pn, g) as the corresponding
product manifold. In order to specify (P, g), we apply basic information geometry
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[3]. Let points λ ∈ P parametrize the Poisson distribution p(z;λ) = λze−λ

z! with
rate parameter λ > 0 of a random variable Z ∈ N0. Then the metric tensor of
the Fisher-Rao metric is a scalar function of λ given by

G(λ) = 4
∑
z∈N0

( d
dλ

√
p(z;λ)

)2
=
e−λ

λ2

∑
z∈N0

λz(z − λ)2

z!
=
e−λ

λ2
eλλ =

1

λ
. (26)

In view of (25), this extends to the metric g on TPn in terms of the diagonal
matrix

Gn(x) = Diag
( 1

x1
, . . . ,

1

xn

)
= Diag

(1
x

)
(27)

as metric tensor. We naturally identify TxPn
∼= Rn, ∀x ∈ Pn and denote this

metric interchangeably by

gx(v, v
′) = ⟨v, v′⟩x = ⟨v,Gn(x)v

′⟩, ∀v, v′ ∈ TxPn. (28)

We point out that this geometry differs from the standard geometry of the pos-
itive orthant which underlies interior point methods [19].

Retraction. Retractions [1, Def. 4.1.1] are basic ingredients of first-order op-
timization algorithms on Riemannian manifolds. The main motivation is to re-
place the exponential map with respect to the metric (Levi Civita) connection
by an approximation that can be efficiently evaluated or even computed in closed
form. Below, we compute the exponential map with respect to the e-connection
of information geometry [3] and show subsequently that it is a retraction.

Proposition 1. The exponential maps on P resp. Pn with respect to the e-
connection are given by

exp: P × TP → P, expλ(tv) = λet
v
λ , t > 0, (29a)

exp: Pn × TPn → Pn, expx(tv) =
(
expxj

(tvj)
)
j∈[n]

. (29b)

Proof. By definition of the product manifold, it suffices to show (29a). A key
concept of information geometry is to replace the metric connection by a pair of
connections that are dual to each other with respect to the Riemannian metric g
[3, Section 3.1]. In particular, under suitable assumptions, the parameter space
of a probability distribution becomes a Riemannian manifold that is dually flat,
i.e. two distinguished coordinate systems (the so-called m- and e-coordinates)
exist with affine geodesics. We consider the case (P, g).

First, we rewrite the density of the Poisson distribution as distribution of the
exponential family [6]

p(z; θ) = h(z) exp
(
zθ − ψ(θ)

)
, θ = θ(λ) = log λ (30)

with exponential parameter θ, base measure h(z) = 1
z! and log-partition func-

tion ψ(θ) = eθ that is convex and of Legendre type. The aforementioned two
coordinates are λ and θ with affine geodesics

t 7→ λv(t) = λ+ tv ∈ P, t 7→ θu(t) = θ + tu ∈ R. (31)
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Note that unlike λ, v, the coordinate θ and the tangent u are unconstrained.
Using (30), the e-geodesic reads

λ
(
θu(t)

)
= eθu(t) = eθetu ∈ P. (32)

We wish to express this curve in terms of λ and v using θ = θ(λ) by (30) and
the relation between the tangents u and v given by the differential

u = u(λ, v) =
d

dt
θ
(
λv(t)

)∣∣
t=0

=
d

dt
θ(λ+ tv)

∣∣
t=0

=
d

dt
log(λ+ tv)

∣∣∣
t=0

=
v

λ
. (33)

Substituting into (32) yields (29a)

expλ(tv) := eθ(λ)etu(λ,v) = λet
v
λ . ⊓⊔ (34)

Remark 1 (g is a Hessian metric). The dual nature of the exponential parametriza-
tion (30) is also highlighted by recovering the metric tensor (26) as Hessian metric
from the potential φ(λ) that is conjugate to the log-partition function ψ(θ) = eθ,
φ(λ) = ψ∗(λ) = λ log λ − λ, to obtain φ′′(λ) = G(λ) = 1

λ . The dual coordinate
chart and potential yield the inverse metric tensor ψ′′(θ) = eθ = G(λ)−1|λ=λ(θ).

Retractions provide a proper class of surrogate mappings for replacing the canon-
ical exponential map corresponding to the metric connection.

Proposition 2 (exp is a retraction). The mapping exp: TP → P is a retrac-
tion in the sense of [1, Def. 4.1.1.].

Proof. We check the two criteria that characterize retractions. First, by (29a)
we have expλ(0) = λ for all λ ∈ P. Second, the so-called local rigidity con-
dition d expλ(0) = 1 = idTλP , ∀λ ∈ P, holds as well, in view of the relation
d expλ(u)v = e

u
λ v obtained from (29a). ⊓⊔

SMART as Riemannian Gradient Descent. The Riemannian gradient with
respect to the metric g from (28), generally defined by [16, p. 89] here specifically
reads

grad f(x) := Gn
−1(x)∇f(x) (27)

= x∇f(x), x ∈ Pn. (35)

The retraction in Prop. 1 allows us to compute updates on the manifold based
on numerical operations in the tangent space. Due to the simple structure of the
constraints, this can be done in parallel for each coordinate. Furthermore, as
a consequence of the choice (28) for g, the corresponding Riemannian gradient
(35) exactly matches the exponent in the expression for (29b). Thus, applying
expx to the Riemannian gradient simplifies to

expx
(
− τ grad f(x)

)
= xe−τ

grad f(x)
x = xe−τ∇f(x). (36)

This results in the following representation of the SMART iteration.

Proposition 3. Let (Pn, g) be endowed with the Riemannian metric (28). Then
the SMART iteration (2) equals

xk+1 = expxk

(
− τk grad f(x

k)
)
. (37)
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The choice of τk can now be adapted to the current iterate by line search and
we still obtain a global convergence result.

Theorem 3. [1, Thm. 4.3.1] Let (xk)k∈N be a sequence generated by the itera-
tion (37) with step-size τk = βmα and scalars α > 0, β, σ ∈ (0, 1), where m is
the smallest nonnegative integer such that

f(xk)− f
(
expxk

(
− τk grad f(x

k)
))

≥ στk∥ grad f(xk)∥2xk . (38)

Then every cluster point x̂ is a critical point of f , i.e. grad f(x̂) = 0.

The above statement assumes existence of a critical point. In view of (35) it is
characterized by x̂ > 0 and ∇f(x̂) = 0. Clearly, such a critical point satisfies
the optimality conditions 0 ≤ x̂ ⊥ ∇f(x̂) ≥ 0 of (1). Hence, convergence of a
subsequence of the iterates (xk)k∈N to a solution on the boundary, i.e., when
x̂i = 0, is not covered by Thm. 3. In this paper, we are interested in assessing
numerically the convergence speed of the iterates (xk)k∈N in the manifold Pn

(25). An analysis of the behavior of these sequences close to the boundary of Pn

will be reported in follow-up work.

5 Experiments

We compare SMART to the state-of-the-art accelerated Bregman proximal gra-
dient methods in [15], which we adapt as described in Section 3, and to its
geometric version employing Armijo line search and the retraction in (29). The
latter version of SMART is denoted as Riemannian gradient (RG). In addition,
we include a state-of-the-art primal dual Bregman method [9] in our comparison.
For results and discussions we refer to Fig. 2, 3 and 4.

Problem and data setup. We consider large scale tomographic reconstruction
as problem class, where we reconstruct the three phantoms shown in Fig. 1.
We generated tomographic projection matrices A using the ASTRA-toolbox5,
with parallel beam geometry and equidistant angles in the range [0, π]. Each
entry in A is nonnegative as it corresponds to the length of the intersection
of a ray with a pixel. The undersampling rate was chosen to be 20%. None
of the images in Fig. 1 is the unique nonnegative solution to Ax = b. Hence,
different algorithms might converge to different nonnegative solutions. For the
noisy setting we applied Poisson noise to b with a signal-to-noise ratio of SNR
= 20 db.

Implementation details. We implemented six different algorithms for solving
(1) iteratively. In order to avoid numerical issues, we clip each component xi
to max{xi, ε} with ε = 10−10 before applying the logarithm. The maximum
number of iterations was set to n = 1000, which also serves as a termination
criterion. We always used the initialization x0 = 1. For each algorithm the same
set of parameters was used across all experiment instances. The algorithms and
corresponding parameter choices are listed below:
5 https://www.astra-toolbox.com
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Shepp-Logan Walnut Batenburg

Fig. 1. The phantoms (1024× 1024) used for the numerical evaluation.
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Fig. 2. Comparison of decreasing objective function values per iteration be-
tween SMART, FSMART, ABPG-e, ABPG-g, PD (Chambolle-Pock) and RG (Rie-
mannian gradient descent). The i-th column shows the i-th image in Fig. 1, in noise-
less (top row) and noisy scenarios (bottom row). Overall, RG (i.e. SMART with line
search) aggressively minimizes the objective and in general outperforms the accelerated
variants.
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Fig. 3. Comparison of decreasing objective function values as function of
costly operations between SMART, FSMART, ABPG-e, ABPG-g, PD (Chambolle-
Pock) and RG (Riemannian gradient descent). The i-th column shows the i-th image
in Fig. 1, in noiseless (top row) and noisy scenarios (bottom row). Checking the local
triangle-scaling property incurs computational overhead for ABPG-e and ABPG-g.
RG, the fastest method in terms of iterations, is the most expensive in terms of matrix
vector operations due to the line search.
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Fig. 4. A-posteriori certificates are obtained from ABPG-e by observing γk-values
over iterations. These values are shown left for all problem instances. We observe that
γk drops to 1 in all instances. We explored the drop-down-point for each instance
and observed that it occurs when ABPG-e approaches the solution. Similar conclu-
sions can be drawn from inspecting Gk in ABPG-g, which we omit here. Average of
matrix vector operations are shown right for each algorithm over all iterates and
tomography instances. By definition SMART, FSMART and PD always employ just
two matrix vector operations per iteration. ABPG-e and ABPG-g require more such
operations as they employ the local triangle scaling property, see (24), to guarantee
sufficient decrease of the objective. Similarly, RG employs line search (38).
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SMART solely performs the multiplicative update specified in (2) with its step-
size fixed to τk = 1

L , where again f is L-smooth relative to φ.
FSMART is based on the iteration suggested in [20], where initially θ0 = 1

is chosen, which is then subsequently updated via θk+1 =

√
θ4
k+4θ2

k−θ2
k

2 , as
suggested in [22].

ABPG-e as described in [15, Algorithm 2] was applied to (1) with parameters
γmin = 1, γ0 = 5 and δ = 0.05. The choices for γ0 and δ deviate slightly
from the recommendation in [15], but were chosen to facilitate fastest possi-
ble convergence on the selected problem instances. To ensure comparability
restarting mechanisms and stopping criteria based on the divergence of iter-
ates were foregone. Updates for θ were conducted via Newton’s method.

ABPG-g specified in [15, Algorithm 3] to (1) is used with parameters: ρ = 1.2,
γ = 2 and Gmin = 10−3 . Restarting, stopping criteria and updating θ was
handled analogously to ABPG-e.

RG is a SMART iteration with Armijo line search for choosing the step size
τk via the retraction in (29) to iterate according to (37). The line search
parameters are σ = 0.5, β = 0.8, α = 5.0.

PD is the Chambolle-Pock primal dual algorithm [9, Algorithm 1] for solv-
ing convex composite structured optimization problems of the form f(x) =
g(x) + h(Ax). For h(y) := KL(y, b) with y = Ax and g ≡ 0 we obtain

xk+1 = xke−τA⊤yk

(primal-step) (39)

yk+1 = log

(
ey

k

+ σA(2xk+1 − xk)

1 + σb

)
, (dual-step) (40)

whereby we compute the primal step using the generalized proximal w.r.t.
the KL divergence, defined in (4), and the dual step w.r.t. its dual divergence
(7). The selected step size parameters were τ = 1

2L and σ = 2
L .

6 Conclusion

We explored recent acceleration techniques derived in the context of Bregman
proximal methods (BPG) for SMART as well as the numerical a-posteriori certi-
fication of acceleration for a large scale problem. Even though the O(1/k2) rate
could not be certified in this way, the heuristically accelerated version FSMART
turned out to be remarkably efficient. In addition, we characterized SMART as
a Riemannian gradient descent scheme on the parameter manifold induced by
the Fisher-Rao geometry which opens up possibilities for connecting the local
triangle scaling property — employed by accelerated BPG for certifying conver-
gence rates — with line search methods based on suitable retractions.
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