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a b s t r a c t

Multicuts enable to conveniently represent discrete graphical models for unsupervised and supervised image

segmentation, in the case of local energy functions that exhibit symmetries. The basic Potts model and natural

extensions thereof to higher-order models provide a prominent class of such objectives, that cover a broad

range of segmentation problems relevant to image analysis and computer vision. We exhibit a way to sys-

tematically take into account such higher-order terms for computational inference. Furthermore, we present

results of a comprehensive and competitive numerical evaluation of a variety of dedicated cutting-plane algo-

rithms. Our approach enables the globally optimal evaluation of a significant subset of these models, without

compromising runtime. Polynomially solvable relaxations are studied as well, along with advanced rounding

schemes for post-processing.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Overview, motivation

The segmentation problem, also known as partitioning, cluster-

ing, or grouping, is a fundamental problem of image analysis. Appli-

cations include unsupervised image partitioning [1,2], task-specific

image partitioning [3], semantic image segmentation [4,5], and

modularity clustering in network analysis [6].

Common problem representations are based on a graph G =
(V, E), where nodes V relate to raw data on an image grid or extracted

feature vectors, and edges E define a neighborhood structure of the

nodes. A segmentation of a graph can be represented either by

(i) assigning to each node v ∈ V a label, or by

(ii) a multicut given by a subset of cut edges E′ ⊆ E, resulting in a

partition of the set of nodes V.

The segmentation problem is then to find a segmentation (node

labeling or multicut) with minimal costs.
∗ Corresponding author at:Heidelberg Collaboratory for Image Processing, Heidel-

berg University, Germany
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One commonly distinguishes supervised and unsupervised seg-

entation. In the former case, the number of classes represented

y labels is known, together with a function measuring how likely

eatures associated with nodes belong to each class. In the latter

nsupervised case, such information is absent. This introduces am-

iguities of the representation (i) since permuting the labels re-

ults in the same segmentation. Representation (ii) does not ex-

ibit such symmetries and is therefore particularly appealing in the

nsupervised case.

Accordingly, this paper focuses on the segmentation problem as

multicut problem, on the polyhedral representation of valid multi-

uts resulting in partitions of a given image [7–9], and on a compu-

ational approach to take into account the corresponding constraints

fficiently.

Specifically, we consider objective functions for the segmentation

roblem of the form J(x) =∑ f ϕ f (xne( f )) – see Section 2 for details

where all higher-order terms, i.e. terms depending on more than

ne variable, are invariant to label permutations. For second-order

odels this is equivalent to Potts models that may involve nega-

ive couplings between adjacent nodes. While cutting-plane based

ethods [10] have shown best performance on second-order Potts

odels with arbitrary couplings [11], we show that terms with order

igher than two can be handled by additional auxiliary variables and

ew additional constraints that do not interfere with the constraints

efining valid multicuts. Consequently, cutting-plane methods

http://dx.doi.org/10.1016/j.cviu.2015.11.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2015.11.005&domain=pdf
mailto:kappes@math.uni-heidelberg.de
mailto:joerg.kappes@gmail.com
http://dx.doi.org/10.1016/j.cviu.2015.11.005


J.H. Kappes et al. / Computer Vision and Image Understanding 143 (2016) 104–119 105

Fig. 1. (Best viewed in color) The presented framework covers (a) unsupervised and

(c) supervised segmentation problems. In the former case, the number of components

(clusters) of the partition is unknown. In the latter example, the image is partitioned

(labelled) by assigning pixels to 12 predefined colors classes, taking spatial context into

account. (b) By including higher-order terms into the graphical model (bottom), seg-

ments can be enforced to include each other so as to respect topological prior knowl-

edge. (d) Illustration of another example of a broad range of applications covered by

the framework: graph partitioning by modularity clustering.
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an be uniformly used for all models as we demonstrate by compre-

ensive numerical evaluations.

In this connection, the present paper provides a systematic

omparison of different separation strategies for computer vision ap-

lications. In particular, we find that (i) odd-wheel inequalities do

ot tighten the relaxation as expected, in view of results for highly

onnected non-computer vision models [12], (ii) integer linear pro-

ramming subroutines work overall best, but (iii) novel extensions

or separation procedures as suggested in this paper are indispens-

ble for efficient usage.

Taking these aspects into account improves runtime by at least a

actor of 2.

We also consider the supervised segmentation problem, i.e. find-

ng an optimal multicut with at most k labels, which is known as the

ultiway cut problem. Compared to the standard (I)LP representation

f such problems our approach is considerably more memory effi-

ient and able to provide globally optimal solutions for many com-

uter vision problems in reasonable runtime [5,11,13]. Fig. 1 provides

n overview and illustrations of the models studied in this paper.

.2. Related work

In the unsupervised case, the multicut polytope has recently be-

ome a focal point of research in computer vision. Major aspects of

urrent work include closedness constraints for image segmentation

2,14], contour completion [15], ensemble segmentation [15,16], and

he convex hull of feasible multicuts from the optimization point of

iew [3,10,17].

Regarding the latter viewpoint, some authors considered primal

inear program (LP) relaxations solved by cutting-plane methods

1,3]. Yarkony et al. [17] suggested a Lagrangian relaxation for pla-

ar graphs based on a problem decomposition into binary planar
ax-cut problems. Others [2,10,15,16] resorted to integer linear

rograms (ILPs) as inner-loop solver within the cutting-plane for-

ulation. While this has exponential runtime in the worst case,

t may be expected to work fast in many applications. However, a

omparison of these methods and variants was missing so far.

In the supervised case, representation (i) above prevails for the

mage segmentation problem [18]. Accordingly, the marginal polytope

as become a focal point of research with respect to relaxations and

pproximate inference for image labeling [19–21].

Alternatively, greedy move-making algorithms like α-expansion

22] or FastPD [23] have become established methods that are widely

pplied. Recently, FastPD has been generalized by [24] such that it can

andle higher-order models.

Methods that solve the multiway cut problem [8] have been consid-

red somewhat misleadingly as computationally intractable for com-

uter vision problems [25]. While in general this problem is known

o be NP-hard [26], for few special cases, e.g., for planar graphs, exact

olynomial-time algorithms are known [27,28].

A connection of a special relaxation of the second-order multiway

ut problem to variational approaches using anisotropic variants of

otal variation, and to the linear programming relaxation over the lo-

al polytope, has been pointed out by Osokin et al. [29] and Nieuwen-

uis et al. [30]. We generalize this connection for positive and nega-

ive coupling strength in Theorem 7.1.

Recently, Kappes et al. [10] presented a cutting-plane approach to

olve the multiway cut problem for various problem instances from

omputer vision. Globally optimal results for benchmark datasets

ere reported [5,13] that compare well also in terms of runtime to

tate-of-the-art methods for approximate inference. However, a de-

ailed evaluation of different separating procedures, its generaliza-

ion to the higher-order case as well as an analysis of the polyhedral

elaxations were lacking.

From the modeling point of view, models with higher-order in-

eractions between variables have become a focus of research in the

ast years. Due to their enhanced expressiveness, compared to com-

only used pairwise models, more complex statistics and interac-

ions between variables can be included into models, see [31] for a

ore detailed discussion. The main limitation of such higher-order

odels was and often still is the lack of efficient inference methods,

specially compared to the fast methods available for second-order

odels.

In order to deal with the intrinsic complexity of higher-order

erms, specialized solvers have been suggested that make use of in-

ernal structures of this functions, that can be utilized for faster infer-

nce. This includes reduction techniques for higher-order problems

ith two variables [32,33] which have been used to generalize fusion

ove [34] for higher-order models. For the class of (robust) Pn Potts

unctions closed form reductions for the expansion and swap moves

re known, that can be found under certain conditions in polynomial

ime by a min-st-cut [35,36]. Similar techniques are used in the case

f functions that depend on the diversity of the set of labels that its

rguments (variables) take, see [37] for further details. Furthermore,

raph-cut based approaches has been proposed for co-occurrence

tatistics [38] and label costs [39]. For message passing methods ef-

cient update rules have been proposed for higher-order Fields-of-

xperts model [40], linear constraint potentials [41] and cardinality-

ased potentials [42]. For linear programming relaxations sparsity of

he higher-order function has be used to reduce the number of dual

ariables [43,44].

In the present work we introduce a new class of higher-order

unctions that can be handled efficiently, namely label permutation

nvariant functions. These functions can be included in a much more

fficient manner after a embedding of the original label space into a

ower dimensional one. It is worth mentioning that the sparsity is in-

ependent on the number of labels. The class of label permutation in-

ariant functions can be seen as a generalization of the Potts function
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and the reduction suggested by Kim et al. [1] as a special case, as we

show in Section 4.4. The relation of label permutation invariant func-

tions and Pn Potts functions will be discussed in detail in Section 4.5.

Our label permutation invariant functions can also be used to

model topology prior. As an example we show in Section 6.3.2 an

prior that enforce that segments have to be included by not more

than one other segment, see also Fig. 1(b). Delong et al. [45] suggest

to solve this problem by introducing geometric interactions on the

label space. While this allows a simple reduction to the second-order

case, the inclusion is conditioned on the labels and not on the topol-

ogy of the partition, e.g. the prior of Delong et al. [45] can not restrict

the label space to any sequence of including rings, because this is a

pure topological prior without label dependencies, see Section 6.3.2

for details.

1.3. Contribution

1. We present a general framework for multicut problems, which in-

cludes Potts models as a special case. For the first time, we sys-

tematically compare different types of cutting-plane methods for

the multicut problem in connection with computer vision appli-

cations.

2. Our framework also includes higher-order problems based on a

new class of so-called label permutation invariant (LPI) functions.

This class comprises all functions that are invariant to label per-

mutations and thus provides a natural generalization of Potts

functions.

3. We present several separation procedures and algorithmic vari-

ants that lead to significant speedups. These methods are then

able to solve the problems to optimality or to provide an approxi-

mative solution in guaranteed polynomial time with bounded in-

tegrality gap.

4. We prove that these relaxed problems are equivalent to linear pro-

grams that use standard relaxations of the marginal polytope for

general second-order Potts models.

5. Comprehensive numerical evaluations demonstrate the basic

properties of our approach and enable us to rank the different

variants.

1.4. Organization

We start in Section 2 with the problem formulation followed by

introducing multicuts and corresponding problem transformations in

Section 3. In Section 4 we extend the framework to higher-order mod-

els and show how corresponding higher-order terms can be taken

into account in a memory-efficient way by exploiting symmetries.

We detail separation procedures for finding violated constraints in

Section 5 and show how they can be implemented efficiently. Round-

ing mechanisms are discussed in Section 5.3. We conclude the frame-

work with our cutting-plane method presented in Section 5.4 and

generalize the connection to linear programs over the local polytope

in Section 5.5.

Finally, we provide numerical evaluations for a large number of

different models in Section 6, including second- and higher-order

models in the supervised and unsupervised case, followed by con-

cluding remarks in Section 7.

2. Problem formulation

2.1. Basic definitions

We consider discrete energy minimization problems given in

terms of a factor graph G = (V,F , E ), that is a bipartite graph with

a set of variable nodes V, a set of factors F , and a corresponding rela-

tion E ⊆ V × F associating variables to factors, cf. [46].
Variable xv assigned to node v ∈ V takes values in a discrete label-

pace Xv. We use the shorthands XA =⊗v∈A Xv and xA = (xv)v∈A for

⊆ V, in particular X = XV and x = xV . In cases where all Xv are equal

e denote this label set by L.

Each factor f ∈ F has an associated function ϕ f : Xne( f ) → R,

here

e( f ) := {v ∈ V | (v, f ) ∈ E} (1)

enotes the neighborhood of the factor f, i.e., xne(f) are the variables

omprising f. We define the order of a factor by the cardinality |ne(f)|,

.g., pairwise factors have order 2, and the order of a model by the

aximal order among all factors. We denote the set of all factors of

rder N � r ≥ 1 by Fr . The energy function of the discrete labeling

roblem is then given by

(x) =
∑
f∈F

ϕ f (xne( f )), (2)

here values of the variables x are also called labelings. We consider

he problem to find a labeling with minimal energy, i.e.,

ˆ ∈ arg minx∈X J(x), (3)

or specific classes of energy functions.

By using factor graph models we take the structural property

f energy functions explicitly into account. Additionally, we also

onsider properties of the functions ϕf. Specifically, we assume

hat any function with order greater than one is invariant to label

ermutations.

efinition 2.1 (Label permutation invariant functions). A function

: LN → R is called invariant to label permutations if ∀x, x′ ∈ LN with

i = x j ⇔ x′
i
= x′

j
the equality ϕ(x) = ϕ(x′) holds.

Many problems of interest are covered by models involving func-

ions of this class.

Below, we will use for any predicate τ the corresponding indicator

unction

(τ ) =
{

1, if τ is true,

0, otherwise.
(4)

.2. Supervised case

In the supervised case we deal with energy functions (2),

in
x∈X

∑
f∈F1

ϕ f (xne( f )) +
∑
r≥2

∑
f∈Fr

ϕ f (xne( f )), (P1)

here ϕf( · ) is permutation invariant for all factors f ∈ Fr, r ≥ 2.

econd-order models of this kind are known as Potts models, with

r = ∅ for r > 2 and

f (xne( f )) = β f I(xne( f )1
�= xne( f )2

), ∀ f ∈ F2,

here β f ∈ R is the coupling constant of factor f, and ne( f )i, i = 1, 2,

enotes the ith neighbor of f. Note, that we do not restrict the mod-

ls to β f ≥ 0. We focus on related higher-order models separately in

ection 4.

.3. Unsupervised case

Contrary to the supervised problem (P1), in the unsupervised case

he set of first-order factors is empty and the number of labels equals

he number of variables:

min
∈{1,...,|V |}|V |

∑
r≥2

∑
f∈Fr

ϕ f (xne( f )). (P2)

In the second-order case, (P2) is known as the pairwise correla-

ion clustering problem, where a set of nodes V has to be partitioned
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(a) Graph (K3)

y12

y13

y23

(b) Multicut polytope for K3

Fig. 2. (a) Illustration of the fully connected graph with three nodes K3. (b) Illustration

of the multicut polytope MC(K3), which has five vertices. Vertices of the polytope cor-

respond to valid partitions and all other points of the polytope correspond to convex

combinations of valid partitions. For large graphs the multicut polytope becomes huge

and the describing system of inequalities intractable [7].
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Fig. 3. Construction of G = (V, E, w) for a 4 × 4-grid for (a) the supervised case with

L = {1, 2, 3} and (b) the unsupervised case. Red edges are part of the multicut, i.e., they

separate shores. Blue edges join nodes of the same shore of the partition.
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nto clusters such that the sum of the costs of node-pairs in different

lusters is minimized.

min
∈{1,...,|V |}|V |

∑
f∈F2

β f I(xne( f )1
�= xne( f )2

). β f ∈ R (P2′)

s shown in [10] for the second-order case, solving problem (P2)

ith solvers commonly used for problem (P1), e.g., TRWS [21], does

ot work, since the large state-space and label permutation invariant

unctions cause large sets of optimal solutions. We study in this paper

fficient methods for solving both (P1) and (P2) in the general case.

. Multicuts

.1. Basic definitions

For an undirected graph G = (V, E), E⊆V × V, let {S1, . . . , Sk} be a

artition of V, i.e.,
⋃k

i=1 Si = V, Si ∩ S j = ∅, and Si �= ∅. We call the edge

et

(S1, . . . , Sk) :=
{

uv ∈ E | ∃i �= j : u ∈ Si and v ∈ S j

}
(5)

multicut and the sets Si the shores of the multicut. To obtain a poly-

edral representation of multicuts, we define incidence vectors χ (E′)
{0, 1}|E| for each subset E′⊆E:

e(E′) :=
{

1, if e ∈ E′,
0, if e ∈ E \ E′. (6)

he multicut polytope MC(G) then is given by the convex hull

C(G) := conv {χ(δ(S1, . . . , Sk)) |
δ(S1, . . . , Sk) is a multicut of G}. (7)

ig. 2 shows an example. For further details on the geometry of this

nd related polytopes, we refer to [7].

The multicut problem is to find a multicut in a weighted undirected

raph G = (V, E, w), w ∈ R
|E|, for which the sum of the weights of

dges cut is minimal. Since all vertices (extreme points) of the mul-

icut polytope correspond to multicuts, this amounts to solving the

inear program

min
∈MC(G)

∑
e∈E

we ye. (P3)

n order to apply linear programming techniques, we have to repre-

ent MC(G) as intersection of half-spaces given by a system of affine

nequalities. Since the multicut problem is NP-hard [47], we cannot

xpect to find a system of polynomial size. To overcome this limita-

ion, we make use of the fact that most of these affine inequalities are

ot required for a given objective and use only a subset of those. The

terative construction of this subset is described in Section 5.

Before discussing how problem (P3) can be solved efficiently, we

how how the problems (P1) and (P2) can be transformed into prob-

em (P3).
.2. Multicuts for second-order models

To reformulate problem (P2) in the second-order case into a multi-

ut problem we make use of the correspondence between a partition

nd a multicut. A given factor graph G defines an undirected weighted

raph G = (V, E, w) with V = V, E = {(ne( f )1, ne( f )2) | f ∈ F2}, and

e =∑ f∈F2,ne( f )=e β f for all e ∈ E. Accordingly, the cost of a multicut

s the sum of all β f over factors f connecting different shores, which

quals the costs of (P2) – see [8] for a formal proof and Fig. 3(b) for an

llustration.

Concerning problem (P1) for the second-order case we assume

ithout loss of generality that Xv = L = {1, . . . , |L|} for all v ∈ V .

ny labeling x ∈ X defines a partition of V . To write a second-

rder problem (P1) as a multicut problem (P3), we introduce ad-

itional terminal nodes T = {tl | l ∈ L} =
{

t1, . . . , t|L|
}

and define the

ndirected graph G = (V, E) by V = V ∪ T, E = {(ne( f )1, ne( f )2) |
f ∈ F2} ∪ {(t, v) | t ∈ T, v ∈ V} ∪ {(ti, t j) | 1 ≤ i < j ≤ |L|}, cf. Fig. 3(a).

hus each internal node v ∈ V is connected to all terminal nodes t ∈ T

y terminal-edges (t, v).

The terminal nodes represent the |L| labels l ∈ L, and label l is as-

igned to variable xv if the terminal-edge tlv is not part of the multi-

ut, i.e., tl and v are in the same shore. Since a single label only should

e assigned to each variable, |L| − 1 terminal-edges incident to each

nternal node v have to be part of the multicut. This is enforced by |V|
dditional constraints given by (26) below where we take a closer

ook to classes of valid constraints. Edges between terminal nodes

ave weight 0 but are enforced to belong to different shores by ad-

itional constraints (27), which results in the so-called multiway cut

olytope.

It remains to define the weights of terminal edges. Let 11� be the

atrix of all ones and I be the identity matrix, both of size |L| × |L|

nd

v(l) =
∑

f∈ne(v)∩F1

ϕ f (l), l ∈ L. (8)

hen the weights wtlv, l ∈ L, v ∈ V, are given by

wt1v
...

wt|L|v

⎞
⎠ = 1

|L| − 1
(11� − I)

⎛
⎝ gv(1)

...
gv(|L|)

⎞
⎠. (9)

s before we set we =∑ f∈F2,ne( f )=e β f for internal edges e.

. Multicuts for higher-order label permutation invariant models

We turn to higher-order models. First, we specify a class of higher-

rder functions which are invariant to label permutations, and show,

fter detailing a reduction approach, how such functions can be in-

orporated into a multicut framework. In its most general form, cf.

ections 4.1 and 4.3, the space complexity of representing these func-

ions in an LP grows with the Bell number. Consequently, factors of

n order more than ten are no longer tractable in this general form,
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Table 1

Comparison of reductions for HO-Potts: Table above shows the resources

required by different methods to reduce a higher-order Potts factor of order

(N) with L labels per variable. The naive method would just add a higher-order

factor. The general reduction for LPI functions does not depend on the number

of labels, but grows with the Bell number of the order (B(N)) and is therefore

limited. The specialized reduction HO-Potts, grows linear with the order and

is independent on the number of labels. Alternatively, Pn-Potts are applicable

for this type of functions. However, this reduction depends on the number of

labels (L).

Reduction method Variables Factors size Constraints

Higher-order function 0 LN 0∗

LPI function B(N) B(N) B(N) · (N + 2) + 1

HO-Potts function 1 1 N + 2

Pn-Potts function L N · L + L 0∗
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cf. Table 1. However, for important subclasses of label permutation

invariant functions efficient LP-representations exist. We will exem-

plary consider one such subclass of functions that can be handled

even when the function comprises an order larger than several hun-

dreds in Section 4.4 and show an application with factors of order 651

in Section 6.2.3.

4.1. Label Permutation Invariant (LPI) functions

An important class of functions are label permutation invariant

(LPI) functions, whose values only depend on the partitioning of the

variables rather than on the labeling, as specified by Definition 2.1.

They generalize Potts functions1 (10) in a natural way.

f (x1, x2) =
{
α0 if x1 = x2

α1 else
(10)

In other words, they can be evaluated by just knowing for all variable-

pairs if their labels are identical or not. The specific label of a single

variable does not matter. Any function that is evaluated on (I(xi =
x j))i, j∈A instead of xA itself, as e.g. the Potts function, is a label permu-

tation invariant function. A further property is that the complexity of

evaluating and storing of label permutation invariant functions does

not grow with the number of labels.

Each possible partition of N variables is uniquely represented by

a binary vector over all N(N − 1)/2 variable-pairs. But not each bi-

nary vector χ ∈ {0, 1}N(N−1)/2 corresponds to a partition, cf. Fig. 2.

The number of possible partitions is much smaller and given by the

Bell numbers B(N) [48]. This observation raises the issue of an effi-

cient representation of these functions, independent of the number

of labels.

Let us denote for i = 1, . . . , B(N) by χN
i

∈ {0, 1}N(N−1)/2 the indica-

tor vector of the i-th partition of N variables. Furthermore, we define a

mapping τN : LN → {0, 1}N(N−1)/2 from a variable-labeling to the par-

tition indicator by

τ N(x)(i j) :=
{

1 if xi �= x j

0 if xi = x j
∀ 0 < i < j < N. (11)

With this we can represent any label permutation invariant func-

tion over N = |A| variables parameterized by β ∈ R
B(N), where β i is

the cost for the ith partition of the sub-graph over the node-set A,

ϕLPI(xA|β) = βi if τ |A|(x) = χ |A|
i

. (12)

As example let us consider the node-set A = {1, 2, 3}. There are 8 = 23

different binary labelings of the edges between these nodes. Only

5 = B(3) of them form a valid partition and will therefore appear.
1 The additional assumption that α0 or α1 = 0 can be ensured by a constant added

to the function

b

t

n

e enumerate these valid partitions and assign to each a weight de-

oted by β i. For a given node-labeling xA we then can calculate its

inary edge-labeling τ |A|(x), which corresponds one-to-one to a par-

ition, and return the cost β i of this partition. Note that this function

as only five parameters and does not dependent on the size of the

abel-space.

.2. Reduction theorem

In order to incorporate label permutation invariant functions into

ur multicut framework, we introduce the following reduction the-

rem. The basic idea of this theorem is known in the field of integer

onlinear optimization, dating back to the work of Glover et al. [49],

ut seemed to be unknown in other fields of research as e.g. computer

ision.

heorem 4.1 (Reduction theorem). Any pseudo-Boolean function g :

0, 1}M → R given by g(z) =∏i∈B+ zi ·∏i∈B− (1 − zi), with |B+ ∪ B−| =
and B+ ∩ B− = ∅, can be transformed into

(a) a single Boolean auxiliary variable s ∈ {0, 1} and two linear in-

equalities

min
z∈{0,1}M , s∈{0,1}

s (13a)

s.t.Ms ≤
∑
i∈B+

zi +
∑
i∈B−

(1 − zi) (13b)

s ≥ 1 − M +
∑
i∈B+

zi +
∑
i∈B−

(1 − zi) (13c)

or

(b) a single auxiliary variable s ∈ [0, 1] and M + 1 inequalities

min
z∈{0,1}M , s∈[0,1]

s (14a)

s.t.s ≤ zi ∀i ∈ B+ (14b)

s ≤ (1 − zi) ∀i ∈ B− (14c)

s ≥ 1 − M +
∑
i∈B+

zi +
∑
i∈B−

(1 − zi). (14d)

roof. The function g(z) takes the value 1 if and only if ∀i ∈ B+ : zi =
and ∀i ∈ B− : zi = 0, and otherwise g(z) = 0. It remains to show that

he systems of inequalities together with s ∈ {0, 1} or s ∈ [0, 1] restrict

he feasible set such that s = g(z).

Let k denote the number of vanishing terms of g(z)

=
∣∣{i ∈ B+ | zi = 0} ∪ {i ∈ B− | zi = 1}∣∣

hen:

(a) Inequalities (13b) and (13c) imply

s ≤ 1 − k

M
, s ≥ 1 − k

s∈{0,1}⇒ s = 1 if k = 0,

s = 0 if k > 0.
(15)

(b) Inequalities (14b)–(14d) yield

(14b) − (14c) ⇒ s ≤ 0
s∈[0,1]⇒ s = 0 if k > 0, (16)

(14d) ⇒ s ≥ 1
s∈[0,1]⇒ s = 1 if k = 0. (17)

�

A crucial observation is that case (b) of the reduction theorem im-

lies integrality of s if all zi ∈ {0, 1}, whereas in case (a) this has to

e enforced separately by s ∈ {0, 1}. Consequently, case (b) leads to

ighter relaxations by only enforcing s ∈ [0, 1].

While reduction (b) thus seems to be preferable, due to a lower

umber of constraints, reduction (a) can be nevertheless appealing
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(a) LPI Function

000

(b) HO Potts Function

Fig. 4. Higher-order label permutation invariant functions are dealt with by problem

reduction and additional binary auxiliary variables (Section 4). Corresponding con-

straints (black lines) enable to represent exactly the original higher-order problem.

Panel (a) shows an example of a generalized Potts function of order three. Panel (b)

shows an example of a Potts function of order three.
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or some (I)LP-solver techniques, e.g., dual simplex. The reason is that

ometimes a single constraint (13b) is a less tight but a sufficient re-

axation compared to several small constraints (14b) and (14c)2. In

ur experiments, we therefore use all M + 2 constraints (13b),(13c)

nd (14b), (14c) (note that (13c) equals (14d)), and let the solver

hoose the active constraint set.

.3. Reduction for label permutation invariant functions

In order to apply Theorem 4.1 to a label permutation invariant

unction (12) of order N = |A| we rewrite it as a pseudo-Boolean func-

ion

LPI(xA|β) =
B(N)∑
i=1

βi ·
N(N−1)

2∏
j=1

l
(
[χN

i ] j, [τ N(x)] j

)
︸ ︷︷ ︸

gi(τN(x))

(18)

ith

(b1, b2) =
{

1 − b2, if b1 = 0,
b2, if b1 = 1.

(19)

We apply the reduction theorem to each of the B(N) binary func-

ions gi(z), z = τN(x). Consequently, a function ϕLPI(xA|β) of order N

equires B(N) auxiliary variables. These auxiliary variables are con-

ected to the node-variables via the Boolean expressions l( ·, ·) in (19)

nd correspond to the edge-variables y used in the multicut repre-

entation (P3). By this, we also get rid of difficulties caused by ambi-

uities of the node-label representation of a partition.

If an expression l( ·, ·) has no corresponding edge e in G, we add

his edge to G with weight zero.

Summing up, to include an label permutation invariant factor of

rder N into our multicut framework, we require at most N(N − 1)/2

dge variables, B(N) auxiliary variables, and B(N) · (N(N − 1)/2 + 2)

inear inequalities. These numbers are upper bounds, of course. In

any cases more compact representations are obtained.

We observed in numerous experiments that additionally enforc-

ng that all auxiliary variables corresponding to a higher-order term

um up to 1 significantly speeds up optimization. This entails to com-

lement a single equality constraint for each higher-order term.

Fig. 4(a) illustrates an example of a factor of order three. The re-

uction requires B(3) = 5 auxiliary variables corresponding to possi-

le partitions and, correspondingly, they are denoted by 000, ..., 111

n the figure. Constraints generated by the reduction theorem relate

hese auxiliary variables to the original higher-order problem. A sin-

le additional edge shown dotted in Fig. 4(a), has to be added to the

raph G in this example.
2 Consider the case B+ = {1, 2}, z1 = 0.1 and z1 = 0.3. Eqs. (13b) and (14b) give s ≤
and s ≤ 0.1, respectively.
.4. Higher-order Potts functions

A subclass of label permutation invariant functions that can be

andled more efficiently, are functions taking the value α0 if all vari-

bles xA with A⊆V have the same label (are in the same shore) and

1 otherwise. We call such functions higher-order (HO) Potts functions

ince they constitute the simplest generalization of (second-order)

otts functions to the higher-order case. Such functions are general

nough to model the costs of a hyper-graph partitioning, which was

sed in [1,50]. The cost for a hyper-edge is included in the overall cost

unction if the hyper-edge connects at least two shores:

HOP(xA|α) =
{
α0, if ∀i, j ∈ A : xi = x j ,
α1, else.

(20)

We can reformulate such functions in a pseudo-Boolean form:

HOP(xA|α) = α1 + (α0 − α1)
∏
e∈EA

(1 − ye) (21)

here EA is a subset of the edges of G that spans A. If GA = (A, E ∩
(A × A)) is disconnected we have to add some edges with weight 0.

e point out our empirical observation that using a spanning graph

hat includes all edges of GA, instead of an arbitrary spanning-tree,

eads to shorter runtimes.

As before, we apply the reduction theorem to add a higher-order

otts function as part of a model at hand. This only requires a single

uxiliary variable. Fig. 4(b) provides a sketch for a function of order

hree.

Table 1 shows the number auxiliary variables, size of auxiliary

actors and number of additional constraints needed by the differ-

nt reductions to add a HO-Potts Function with L labels and order

. Including a higher-order Potts function as a factor-table requires

o additional variables but a factor with LN entries. L · N constraints

re only required when it is reformulated into an LP. When we use

he generic reduction for LPI functions we make no use of all sym-

etries and need B(N) auxiliary variables and factors, together with

(N) · (N + 2) + 1 constraints. While no additional constraints are

eeded for including this into an LP, the Bell number B(N) makes this

ntractable for larger N’s. When using HO-Potts functions we need

nly one single auxiliary variable together with N + 2 constraints.

his is much smaller than all other alternatives and does not depend

n the number of labels.

.5. Pn Potts functions

Another generalization of Potts functions for higher-order called
N Potts (22) has been suggested by Kohli et al. [35].

f (xA) =
{
γk if xi = k ∀i ∈ A
γ̄ otherwise

, γk ≤ γ̄ , ∀k (22)

he assumption that γk ≤ γ̄ ∀k ensures sub-modular auxiliary prob-

ems [35]. From a modeling point of view this is not necessary.

If all γ k are equal and |A| = 2, then (22) is equivalent to Potts func-

ion (10). When we enforce γk ≤ γ̄ ∀k it is equivalent to Potts func-

ion with positive coupling, denoted as Potts+ in Fig. 5.

If γ k vary with k the function is no longer invariant to label per-

utation. However, Pn-Potts functions are not powerful enough to

odel all label permutation invariant functions. For example Pn-Potts

unctions assign to (1, 1, 1, 2, 3) and (1, 1, 1, 2, 2) always the same en-

rgy, but those are different partitions into 3 and 2 clusters, respec-

ively. The same hold for robust Pn-Potts functions (23) [35]

f (xA) = min

{
min

k

{
γk +

∑
i∈A

γ̄ − γk

Q
I(xi �= k)

}
, γ̄

}
,

with γk ≤ γ̄ ∀k and Q <
|A|

(23)

2
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HO-Potts (20)

Potts+ (10), 0 ≤ 1

Potts- (10), 0 ≥ 1

PN-Potts (22) LPI (12)

Fig. 5. Classes of higher-order functions: With in the class of higher-order functions

PN-Potts and LPI functions are two major subclasses. The original definition of PN Potts

functions (22) include only the none-shaded region. If we remove the constrains on

γ̄ we get a more general class. The intersection of PN Potts and LPI functions are HO-

Potts functions, cf. Section 4.4, which includes Potts functions with positive (Potts+)

and negative (Potts-) coupling strength as special case.
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which cover a large subclass functions but still only a small subset of

LPI functions.

Fig. 5 illustrate the relation between PN Potts and LPI functions.

Even if we would not enforce that γk ≤ γ̄ ∀k then PN-Potts would not

include all LPI functions. The intersection between PN-Potts and label

LPI-functions are HO-Potts functions (12). A reduction of a HO-Potts

functions as Pn-Potts function needs L auxiliary variables, L factors of

size N and L of size 1. Constraints are only required when it is refor-

mulated into an LP. Especially for large L this is much more expensive

than the reduction introduced in Section 4.4. As for Potts functions

the framework suggested in [35] does only cover cases where γk ≤ γ̄ .

5. Cutting-plane approach and separation procedures

5.1. Approach

Determining a multicut with minimal costs is NP-hard in general

[47]. However, if given data induce some structure then it is plausible

to expect such problems to be easier solvable in practice, than prob-

lems without any structure.

We use a cutting-plane approach to iteratively tighten an outer

relaxation of the form

arg miny∈Y

∑
e∈E

we ye. (24)

Here, Y ⊇ MC(G) is superset of the multicut polytope MC(G) (cf. (P3))

or {0, 1}|E| ⊃ Y ⊇ MC(G) ∩ {0, 1}|E| in the integer case. In each step

we solve a problem relaxation in terms of a linear or integer linear

program, detect violated constraints from a pre-specified finite list

(cf. Section 5.2) and augment the constraint system accordingly. This

separation procedure is repeated until no more violated constraints

are found.

After each iteration we obtain a lower bound as the solution of the

(I)LP and an upper bound by mapping the obtained solution to the set

of feasible points (rounding, cf. Section 5.3).

5.2. Relaxation, constraints

5.2.1. Initial constraints

We start with a polytope that enforces any edge-variable ye to be

lower and upper bounded by 0 and 1, respectively,

ye ∈ [0, 1], ∀e ∈ E (25)
n presence of terminal nodes, we additionally enforce for each non-

erminal node v ∈ V \ T that exactly one incident edge is not cut, i.e.,

t∈T
ytv = |T | − 1, if T �= ∅, ∀v ∈ V \ T. (26)

urthermore, we add the compulsory constraints

tt ′ = 1, ∀t, t ′ ∈ T, t �= t ′, (27)

orcing different terminal nodes to belong to different shores.

.2.2. Integer constraints

A more restrictive alternative to (25) are the integer constraints

e ∈ {0, 1}, ∀e ∈ E. (28)

ote that not every vector y ∈ {0, 1}|E| belongs to the multicut poly-

ope. Hence, even enforcing Boolean variable values may lead to in-

onsistent edge-labelings, cf. Fig. 6, which will be discussed in more

etail in the following subsection. In general, using constraints (28)

enders inference problems more difficult. On the other hand, find-

ng violated constraints can be much simpler for Boolean-valued vari-

bles than for less tight non-Boolean relaxations. This may well com-

ensate the additional costs for solving an ILP instead of an LP3.

.2.3. Cycle constraints

The problem of inconsistent edge-labelings has been considered

n the literature, either motivated by closing contours [2,15] or as

ightening the multicut polytope relaxation via cycle constraints

1,9,10,12]. In both cases inconsistent cycles are detected. If integer

onstraints are enforced an inconsistent cycle is a cycle that contains

xactly a single cut edge, which obviously violates transitivity. This

an be generalized to the relaxed non-Boolean case ye ∈ [0, 1] [9].

A system of cycle inequalities that necessarily has to be satisfied by

onsistent labelings, is given by

e∈P
ye ≥ yuv ∀uv ∈ E, P ∈ Path (u, v) ⊆ E. (29)

t is well known [9] that if and only if the cycle {uv} ∪ P is chord-

ess, then the constraint is facet-defining for the underlying polytope

r, speaking less technically, “effective” for enforcing labeling consis-

ency.

While for fully connected graphs, (29) can be represented by a

olynomial number of triangle constraints [6,9,51], the separation

rocedure reduces to a sequence of shortest path problems in the

eneral case [9]. Given y, the naive approach searches for each edge

v ∈ E the shortest path from u to v in the weighted graph Gy =
(V, E, y). If this path is shorter than yuv, then it represents the most

iolated constraint of the form (29) for uv. Using a basic implementa-

ion of Dijkstra (as we do) the cost for one search is O(|V|2). The cost

an be reduced to O(|E| + |V | log |V |) by using Fibonacci heaps.

To reduce the number of shortest path searches we exploit the

ollowing three ideas:
Note, sometimes solving the ILP is even faster than the LP.
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Fig. 7. (Best viewed in color) Comparison of the proposed extensions (marked by the

postfixes B, I, and F) on the runtime. For the relaxed case (MC-C∗) (first four bars)

we observe that bounding clearly improves runtimes for image-based data, this is not

true for third-order image segmentation and modularity clustering. Using only facet-

defining constraints decreases the runtime for all four datasets, most significantly for

modularity clustering. If we enforce integrality (MC-I-C∗) during the cutting-plane pro-

cedure (last four bars), the use of specialized search methods (CI) reduces the runtime

significantly.
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Efficient bounds on the shortest path (B): Instead of search-

ng for each edge uv ∈ E the shortest path from u to v in a positive

eighted graph G = (V, E, y), we can calculate a lower bound on the

ath length for all uv ∈ E in O(|E| + |V |). To this end, we determine

he connected components in the graph G′ = (V, {e ∈ E | ye < γ }). If

wo nodes u, v ∈ V are not in the same connected component, the

hortest path from u to v is greater than or equal to γ . Choosing γ = 1

ields a preprocessing procedure that enables to omit many short-

st path searches. Furthermore, if the edge between two nodes has

eight 0, this is obviously the shortest path since all edge-weights ye

re non-negative.

Shortest path in binary weighted graph (I): If the edge weights

re either 0 or 1, then simple breadth-first search can be applied in-

tead of the Dijkstra algorithm. The computational effort can be fur-

her reduced, as before but without additional costs, by restricting the

earch to the graph G0 = (V, {e ∈ E | ye = 0}). Since any path includ-

ng an edge with weight 1 cannot be shorter than the edge between

he two nodes which is 0 or 1.

Finding chordless shortest paths/facet-defining constraints (F):

path between the two nodes forming an edge is called chordless if

he cycle consisting of the path and the edge has no chord. Shortest

ath search can be easily extended so as to determine the shortest

hordless paths: Every node except for the end-node is not updated

y the Dijkstra algorithm if the path from this node to the starting

ode is chordal. This increases the costs by a factor bounded by |V|.

n view of cycle constraints, the corresponding constraints are facet-

efining.

Our experiments, discussed by Fig. 7 and in Section 6, spot that

oint application of bounding procedures, facet-defining constraints

chordless paths) and dedicated search methods for binary weighted

raphs, leads to better runtimes in nearly all cases.

.2.4. Terminal cycle constraints

In the supervised case we can further reduce the costs for shortest

ath searches based on the following lemma.

emma 5.1. In the presence of terminals there exists no cycle C with

ore than three nodes that is chordless and contains a terminal node.

roof. Let C be a cycle with more than three nodes that contains a

erminal node t, and select an edge uv in C with u, v �= t . The tu, tv ∈ E

y definition, hence the cycle is chordal. �

As a result of Lemma 5.1, we ignore all cycle constraint of a length

reater than 3 that includes a terminal node. All facet-defining cycle

onstraints that include a terminal node are then given by

tu + ytv ≥ yuv, ∀uv ∈ E, t ∈ T, (30)
tu + yuv ≥ ytv, ∀uv ∈ E, t ∈ T, (31)

tv + yuv ≥ ytu, ∀uv ∈ E, t ∈ T, (32)

ogether with (27). As a consequence we only have to search for gen-

ral cycle constraints on the graph without terminal nodes, that has

T| · |V| fewer edges!

.2.5. Multi terminal constraints

Calinescu et al. [52] suggested another class of non-facet-defining

inear inequalities for the supervised case that further tightens the

uter polytope relaxation:

uv ≥
∑

t∈S
(ytu − ytv), ∀uv ∈ E, S ⊆ T. (33)

ntuitively, these constraints enforce each non-terminal edge to be

t least as “much cut” as all its terminal edge-pairs indicate. Since

t∈T (ytu − ytv) = 0, we only consider differences in the direction

→ v. An alternative representation of (33) exploiting symmetry is

uv ≥
∑

t∈T

1

2
|ytu − ytv|. (34)

In order to see why multi terminal constraints are useful, let us

onsider a tiny toy example of a model with two variables and four

abels. Overall, the multiway cut polytope has eight terminal edges

t, 1)t ∈ T, (t, 2)t ∈ T and a single edge (1, 2) between the two nodes. We

nspect few values of y and check if (33) is implied by (30)–(32) or not.

(yt,1)t∈T (yt,2)t∈T (29)–(31) (32)

(1, 1, 1, 0) (1, 1, 0, 1) ⇒ 1 ≤ y12 ≤ 1 1 ≤ y12

(1, 1, 1
2
, 1

2
) (1, 1, 1

2
, 1

2
) ⇒ 0 ≤ y12 ≤ 1 0 ≤ y12

( 1
2
, 1

2
, 1, 1) (1, 1, 1

2
, 1

2
) ⇒ 1

2
≤ y12 ≤ 3

2
1 ≤ y12

(1, 2
10

, 3
10

, 5
10

) (1, 1
10

, 2
10

, 7
10

) ⇒ 2
10

≤ y12 ≤ 3
10

2
10

≤ y12

In the third example (row) above, multi terminal constraints

ighten the relaxation. It can be shown that these constraints may

ighten the relaxation only if at least four terminal nodes are present.

.2.6. Odd-wheel constraints

While cycle constraints are only sufficient to obtain optimal so-

utions if integer constraints are enforced, we may tighten the relax-

tion in the case ye ∈ [0, 1] by adding more complex constraints.

One such a class of constraints for which the separation proce-

ure can be carried out efficiently, are odd-wheel constraints. A wheel

= (VW , EW ) is a graph with a selected center node c ∈ VW. All other

odes are connected with the center, and the remaining edges build a

ycle containing all nodes in VW�{c}. An odd-wheel is a wheel with an

dd number of non-center nodes. The odd-wheel constraints are given

y

∑
∈EW ,u,v �=c

wuv −
∑

v∈VW \{c}
wcv ≤

⌊ ||VW | − 1|
2

⌋
(35)

or all odd-wheels W = (VW , EW ).

Deza et al. [53] proved that odd-wheel constraints are facet-

efining for ||VW | − 1| ≥ 3. As described in detail by Deza and Laurent

54] and Nowozin [55], the search for violated odd-wheel constraints

an be reduced to a polynomial number of shortest path searches, if

he current solution does not violate any cycle constraints.

In our experiments, we found that with increasing sparsity, odd-

heel constraints tighten the relaxation less. This is intuitively plau-

ible since in densely connected graphs significantly more odd-

heels exist that could be violated. Since the overall gain was not

etter than with the previously proposed methods, we did not spend

ime to search for heuristics to speed up computation, as we did for

he cycle inequalities.
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(b) Derandomized rounding

Fig. 8. Illustration of the two rounding schemes for the multiway cut problem for

the vector (ytv)t∈T . Nearest label rounding (a) assigns each point in the simplex to the

nearest vertex. Fig. (b) shows exemplarily one iteration of derandomized rounding for

ρ = 0.75.

Fig. 9. (Best viewed in color) Illustration of the rounding results (nearest label,

pseudo-derandomized and derandomized) after solving the LP relaxation with ter-

minal, multi-terminal, and cycle inequalities for the instances inpainting and clown-

fish from [5]. Derandomized and pseudo-derandomized rounding gives similar results.

Simple rounding to the nearest label can give inferior results (top row). But for real

applications differences of the labelings are marginal (last row).
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5.3. Rounding fractional solutions

Relaxations of the integer-valued multicut problem yield solu-

tions that may be fractional and therefore infeasible. The objective

value then is a lower bound of the optimal value. The procedure to

map an infeasible solution to the feasible set is called rounding. Fur-

thermore, for the resulting multicut, a corresponding node-labeling

has to be determined.

5.3.1. Supervised case

In the presence of terminal nodes, we assign to each node-variable

the label of the terminal node to which it is connected by means of

ytv = 0 in the integer-valued case. This idea extends to the general

case by assigning to node v the label l with the lowest edge-value

ytlv, i.e., the nearest corner in the corresponding simplex, cf. Fig. 8:

xv = arg mint∈T ytv ∀v ∈ V \ T. (36)

This heuristic nearest label rounding method has two drawbacks, how-

ever. Firstly, it does not provide any performance guarantee. Secondly,

nearby nodes that favor two or more labels nearly equally might be

randomly assigned to different labels due to numerical inaccuracy.

This is particularly problematic in case of positive coupling strengths

where homogeneously labeled regions are preferred.

Contrary to this local procedure, Calinescu et al. [52] suggested a

randomized rounding procedure that provides optimality bounds for

Potts models with positive coupling strengths. Given a threshold ρ
∈ [0, 1], they iterate over all labels in a fixed order and assign label

l to node v if ytlv ≤ ρ and no label was assigned to v before. In case

no label was assigned to node v in the end, then the last label with

respect to the ordering of the labels is assigned to v. This rounding

procedure is sketched by Fig. 8(b).

A randomized rounding procedure would apply this for all ρ ∈
[0, 1] and select the labeling with the lowest energy. Since [0, 1] is

uncountable, Călinescu et al. suggested a derandomized version. This

is based on the observation that we only have to consider |V�T| · |T|

different threshold parameters, namely the values of the terminal

edge variables ytv. Since this set can still be quite large, we also

consider a heuristic approximation that we call pseudo-derandomized

rounding, using a small number of equidistant thresholds, in practice:

0, 0.01, 0.02, . . . , 0.99, 1.

Concerning tightness of the relaxation, Calinescu et al. [52]

pointed out that the integrality ratio of the relaxed LP for the second-

order multiway cut problem with positive coupling strengths, ex-

ploiting cycle, terminal and multi-terminal constraints, is 3
2 − 1

k
.

This is superior to the α-expansion algorithm [22] and the work of

Dahlhaus et al. [27], which guarantees only a ratio of 2 − 2
k

. It is not

known if these results can be extended for higher-order label permu-

tation invariant functions.

Empirically, we observe for these types of models that derandom-

ized rounding and pseudo-derandomized rounding usually lead to

results that are slightly better than when using nearest label round-

ing. While pseudo-derandomization does empirically not give results

worse than original derandomization, it is much faster, but does not
ome along with theoretical guarantees. Fig. 9 shows results for two

nstances taken from [5]. While for the synthetic instances rounding

atters, for real world examples the differences are negligible.

.3.2. Unsupervised case

In absence of terminal nodes, we compute in the integer-valued

ase the connected components of G0 = (V, {e ∈ E | ye = 0}), enu-

erate them by #CCG0
, and assign to each node-variable as label the

umber of its connected component

v = #CCG0
(v), ∀v ∈ V. (37)

t is easy to see that the labeling-costs J(x) (2) are greater than or equal

o the multicut costs 〈w, y〉 and equal if y is a valid multicut.

If y is not integral we first have to map y to a vertex of the multicut

olytope. To this end, we determine the connected components of

≤κ = (V, {e ∈ E | ye ≤ κ}) and define the feasible projection ŷ by

ˆuv =
{

0, if #CCG≤κ
(u) = #CCG≤κ

(v),
1, else.

(38)

he labeling then is given by

v = #CCG≤κ
(v), ∀v ∈ V. (39)

ince the connected component procedure tends to remove dangling

dges, it seems to be reasonable to select κ smaller than 0.5. This was

mpirically confirmed by our experiments. Fig. 10 shows the relative

rror of the rounded solutions after enforcing cycle constraints for

ifferent problem-classes with various values of κ .
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Fig. 10. Illustration of the impact of the choice of κ on the distance of the energy of the

integer solution obtained by rounding to the optimal value. For modularity clustering

(mod-clust) and third-order image segmentation (image-seg3) we scaled the bars by a

factor of 0.1. The results show that one should choose κ < 0.5. Empirically the optimal

value lies in [0.2, 0.3] but also 0 (more precisely 10−8) gives nearly similar results.

Fig. 11. (Best viewed in color) Example for second- and third-order image segmen-

tation. When the second order model is solved by KL or TRWS (using 4 labels was

sufficient) the partitions tend to be over-segmented as compared to the optimal solu-

tion obtained by MC-ICC. The 3rd-order model returned segmentations different from

those obtained using the second-order model, having higher quality in many but not

all regions. This gain of performance could be improved by learning the higher-order

model parameters.
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Fig. 12. (Best viewed in color) Two instances of the hierarchical correlation-clustering

problem. The first image is easier and ICM gave competitive results relative to multi-

cut methods. This is no longer true for more complicated images like the second one

where ICM clearly is inferior. MC-CFB and MC-CFB-OW make use of slightly different

rounding procedures that result in finer segmentations. MC-CIF computes the segmen-

tation with the optimal energy, which differs slightly from those of MCR but improves

the VI, cf. Table 7. This small improvement is remarkable, since the models are trained

for MCR. So the models are biased towards this method and hence it is not surprising

that it performs well.

Algorithm 1 Multicut-Algorithm.

1: Given: G = factor graph model,

S = proper list of separation procedure sets.

2: Construct G = (V, E, w) from G.

3: Initialize the constraint set C as described in Section 5.2.1.

4: for i = 1, . . . , |S| do

5: repeat

6: Solve ŷ ∈ arg miny∈C〈w, y〉,

7: C̄ = violated constraints found by separation procedures Si

for ŷ,

8: C = C ∪ C̄,

9: until C̄ is empty.

10: end for

11: Compute a labeling x ∈ X based on ŷ (also known as rounding, cf.

Section 5.3).
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It is worth to mention that the multicut problem is APX-hard

56,57] and that a rounding procedure with a worst case integrality

ap of the linear program of �(log (|V|)) exists. While it seems that

he corresponding proof can be extended to higher-order multicuts,

n integrality gap guarantee of log (|V|) is not enough in real appli-

ations. This is why we did not further investigate this issue in the

resent work.

.4. Multicut cutting-plane algorithm

Algorithm 1 provides a compact description of our complete mul-

icut approach, summarizing the present section. In addition to the

pecification of the objective function in terms of a factor graph

odel G, we expect a proper4 list of separation procedure sets S as

nput parameters. For example, S1 could represent simple cycle con-

traints separation, S2 integrality constraints, and S3 cycle constraints

eparation specialized to integer solutions.

As specified by Algorithm 1, we construct the weighted undi-

ected graph G, introduce auxiliary variables for higher-order factors
4 A list of separation procedures is called proper if the separation procedures that are

ncluded once are also included when proceeding further down the list. For proper lists

he obtained relaxation is well-defined. All lists used in our experiments are proper.

T

(

as detailed in previous sections), and initialize the constraint set C
y a simple outer relaxation of the feasible set.

For each separation procedure set in the list S, we apply all sepa-

ation procedures in Si to find violated constraints and add these to C
ntil no more are found. Then we proceed with the next set Si+1.

The (integer) linear program in line 6 is solved by CPLEX 12.2,

standard off-the-shelf LP-solver. Finally, we compute an optimal

ode-labeling x ∈ X from the multicut solution y.

The implementation of Algorithm 1 turned out to be involved, due

o several subtle pitfalls necessitating some care. We therefore made

ur code publicly available5. Furthermore, when solving the (I)LP one

hould not expect that the solution is feasible. Sometimes we observe

egative values of ye and therefore project solutions always to [0, 1]|E|.

lso Boolean constraints were sometimes slightly violated. Most im-

ortantly, due to numerical reasons, constraints should only be added

f they are significantly violated, i.e., the constraint a ≤ b is only added

f a ≤ b − ε does not hold. Ignoring this may not only lead to infinite

oops for some instances, but may also significantly increase runtime.

he parameter ε should be chosen depending on the precisions of the

I)LP solver. We use ε = 10−8.
5 https://github.com/opengm/opengm.

Section 5.2.1.
Section 5.3
https://github.com/opengm/opengm
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Table 2

Abbreviations for the separation procedures.

I Integer constraints

C Cycle inequalities separation

CF Facet-defining cycle inequalities separation

CI Cycle inequalities separation for ILP

CIF Facet-defining cycle inequalities separation for ILP

OW Odd-wheel inequalities separation

T Terminal inequalities separation

MT Multi terminal inequalities separation

TI Terminal inequalities separation for ILP
∗B Bounding for the shortest path search was used

Table 3

Overview of the datasets used for evaluation.

Name #instances #nodes Order Type Results References

synth-potts 10 322 2 US Table 4 –

synth-inclusion 10 322 4 S Fig. 13, Table 10 –

image-seg 100 156–3764 2 US Fig. 11, Table 5 [2,5]

image-seg3 100 156–3764 3 US Fig. 11, Table 6 [2,5]

corr-clust 715 122–651 34−651 US Fig. 12, Table 7 [1,5]

mod-clust 6 34–115 2 US Table 8 [6,11]

color-seg 3 424720 3 S Table 9 [5,68]

Table 4

Synthetic Potts models with 10 labels on a 32 × 32 grid.

Algorithm Runtime (second) Value Bound Best Ver. opt

ICM 0.03 −95.87 −∞ 0/10 0/10

LF-1 0.01 −95.79 −∞ 0/10 0/10

LP 2.92 −152.89 −189.09 0/10 0/10

MPLP 5.24 −159.60 −189.16 0/10 0/10

TRWS 0.93 −168.87 −189.15 0/10 0/10

MC-T-MT 1.59 −152.72 −189.09 0/10 0/10

MPLP-C 36.78 −183.90 −184.14 8/10 3/10

MC-T-MT-CFB 2.06 −179.00 −184.47 0/10 0/10

ILP 421.24 −184.14 −184.14 10/10 10/10

MC-T-MT-CFB-I-TI 4.30 −184.14 −184.14 10/10 10/10
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5.5. Relation between relaxations of the multiway cut and marginal

polytope

A major line of research considers relaxations of the marginal

polytope to approximately solve problem P1. For the local polytope

relaxation [19] of second-order models it is known that the local mul-

tiway cut relaxation (42) is equivalent if either the labeling is binary

[58] or the coupling w is positive [29].

We generalize this results for real valued couplings. This gives a

interesting connection between local polytope and multiway cut re-

laxation and allows us to rank our relaxations. As the proof is very

technical, we add the corresponding Theorem 7.1 and its proof in the

appendix.

6. Experiments

6.1. Set-up, implementation details

We implemented the separation procedures and reduction meth-

ods described above using C++ and the OpenGM2-library [59] for the

factor graph representation, and CPLEX for solving ILPs and LPs in the

inner loop of the iteration.

Our multicut approach encompasses a variety of algorithms which

differ in the used inequalities, in the separation procedures, and in

the order these procedures are applied. The abbreviations for single

separation procedures are listed as Table 2.

For example, MC-CFB-I-CIF indicates:

• application of the multicut algorithm (MC) based on
• searching for violated facet-defining cycle inequalities (CF) using

bounding (B),
• enforcing integer constraints (I), and finally
• searching for facet-defining cycle inequalities violated by the cur-

rent Boolean solution (CIF), based on Breadth-First-Search instead

of the Dijkstra algorithm (cf. Section 5.2.3).

We report for each dataset results averaged over all its instances:

1. the mean6 runtime: runtime,

2. the mean6 value (energy) of the integer solution after rounding:

value,

3. the mean6 lower bound, given by the solution of the relaxed prob-

lem: bound,

4. how often the method found an integer solution with an objective

value not larger than 10−6 compared to the overall best method

for this instance: best7, and

5. how often the method provided a gap between the objective value

of the integer solution and the lower bound, that was smaller than
6 Averaged over all instances of this dataset.
7 Note, that 0 means that the method has never found the best solution among all

methods or has never verified optimal solution. Of course, this does not mean that

solutions provided by this method are poor. Performing slightly worse than optimal

already returns the value 0.

s

b

m

o

r

t

10−6: ver. opt7, which we interpret as globally optimal for our in-

stances.

6. if available we also evaluate on an application specific loss, e.g.

Variation of Information (VI) [60], Rand Index (RI) [61], and Pixel

Accuracy (PA).

In the unsupervised case, we compared the proposed methods

ith our implementation of the Kernighan–Lin (KL) algorithm [62]

or the second-order case, as well as with iterative conditional mode

ICM) [63] and Lazy Flipper (LF) [64]. For planar graphs, an optimal

egmentation with only four labels exists, and methods for the su-

ervised case can be applied.

In the supervised case, we compared with TRWS [21], Max Product

inear Programming with no (MPLP) [65] and with cycle-inequalities

PLP-C [66,67], α-expansion [22] and FastPD [23] – using in each

ase code provided by the respective authors of these papers. Further-

ore, we compared to commercial LP- and ILP-solvers in the nodal

omain, LBP, TRBP, and α-fusion, as provided by OpenGM2 The con-

idered datasets are sumarized in Table 3and are discussed next.

.2. Unsupervised segmentation problems

.2.1. Synthetic experiments

For numerical evaluation we generate 10 synthetic Potts instances

synth-potts). The models have a underlying grid structured (4 neigh-

ors) with 32 × 32 variables with 10 labels each. Unary terms are

niformly sample from [0, 1] and the coupling of the pairwise Potts

erms are uniformly sampled from [−1, 1]. Results averaged over all

nstances are shown in Table 4. MC-T-MT and LP solve both the lo-

al polytope relaxation. TRWS and MPLP stops too early or get stuck

n local fixed points, which can be seen by the worse bound. When

e add cycle constraints, MPLP-C performs slightly better in terms

f the lower bound but of cost of significant higher runtime. While

he differences in the averaged value are mainly caused by more in-

olved rounding used by MPLP-C, the better bound might be caused

y a tighter relaxation. Contrary to our approach MPLP-C also con-

iders violated odd-cycle-constraints on binary partitions of the la-

el spaces, which additionally tightens the polytope for models with

ore than 2 labels. However, when we add integer constraints after

ur cut phases the optimum is found for 9 of 10 cases and for the

emaining one some additional integer terminal constraints guaran-

ee to find the global optimal solution. MC-T-MT-CFB-I-TI is 100 times
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Table 5

Second-order probabilistic image segmentation [2,5].

Algorithm Runtime

(second)

Value Bound Best Ver. opt VI RI

KL 4.96 4608.57 −∞ 0.0% 0.0% 2.6431 0.6401

ICM 6.03 4705.07 −∞ 0.0% 0.0% 2.8580 0.5954

LF1 2.35 4705.01 −∞ 0.0% 0.0% 2.8583 0.5953

LF2-L4 0.13 4627.38 −∞ 0.0% 0.0% 2.9020 0.5821

LF3-L4 3.16 4581.83 −∞ 0.0% 0.0% 2.9102 0.5873

LF4-L4 176.47 4555.73 −∞ 0.0% 0.0% 2.9164 0.5926

TRWS-L4 0.84 4889.23 4096.53 0.0% 0.0% 3.2164 0.6628

MC-C 14.02 4447.47 4442.34 35.0% 35.0% 2.5490 0.7822

MC-CB 4.71 4447.47 4442.34 35.0% 35.0% 2.5490 0.7822

MC-CF 11.35 4447.47 4442.34 35.0% 35.0% 2.5490 0.7822

MC-CFB 5.16 4447.47 4442.34 35.0% 35.0% 2.5490 0.7822

MC-C-OW 14.08 4447.41 4442.34 35.0% 35.0% 2.5489 0.7822

MC-CB-OW 4.81 4447.41 4442.34 35.0% 35.0% 2.5489 0.7822

MC-CF-OW 11.45 4447.41 4442.34 35.0% 35.0% 2.5490 0.7822

MC-CFB-OW 5.19 4447.41 4442.34 35.0% 35.0% 2.5490 0.7822

MC-I-CI 2.78 4442.64 4442.64 100.0% 100.0% 2.5367 0.7821

MC-I-CIF 2.20 4442.64 4442.64 100.0% 100.0% 2.5363 0.7821

MC-C-I-CI 15.00 4442.64 4442.64 100.0% 100.0% 2.5365 0.7821

MC-CFB-I-CIF 5.69 4442.64 4442.64 100.0% 100.0% 2.5365 0.7821

Table 6

Third-order probabilistic image segmentation [2,11].

Algorithm Runtime

(second)

Value Bound Best Ver. opt VI RI

ICM 10.79 6030.49 −∞ 0.0% 0.0% 2.7089 0.5031

LF 4.17 6030.29 −∞ 0.0% 0.0% 2.7095 0.5033

MC-C 43.82 6657.32 5465.15 0.0% 0.0% 3.9927 0.7755

MC-CB 42.86 6657.32 5465.15 0.0% 0.0% 3.9927 0.7755

MC-CF 26.68 6658.28 5465.15 0.0% 0.0% 3.9935 0.7755

MC-CFB 25.00 6658.28 5465.15 0.0% 0.0% 3.9935 0.7755

MC-C-OW 43.71 6657.12 5465.29 0.0% 0.0% 3.9928 0.7754

MC-CB-OW 43.38 6657.12 5465.29 0.0% 0.0% 3.9928 0.7754

MC-CF-OW 27.62 6658.08 5465.29 0.0% 0.0% 3.9936 0.7754

MC-CFB-OW 25.55 6658.08 5465.29 0.0% 0.0% 3.9936 0.7754

MC-I-C 689.79 5627.52 5627.52 100.0% 100.0% 2.6586 0.7727

MC-I-CFB 469.87 5627.52 5627.52 100.0% 100.0% 2.6586 0.7727

MC-I-CI 119.64 5627.52 5627.52 100.0% 100.0% 2.6586 0.7727

MC-I-CIF 72.81 5627.52 5627.52 100.0% 100.0% 2.6586 0.7727

MC-C-I-CI 125.33 5627.52 5627.52 100.0% 100.0% 2.6586 0.7727

MC-CFB-I-CIF 82.00 5627.52 5627.52 100.0% 100.0% 2.6586 0.7727

Table 7

Higher-order hierarchical image segmentation [1,5].

Algorithm Runtime

(second)

Value Bound Best Ver. opt VI RI

ICM 1.90 −585.60 −∞ 0.0% 0.0% 2.6245 0.5154

LF 1.00 −585.60 −∞ 0.0% 0.0% 2.6245 0.5154

MC-C 0.23 −625.97 −628.89 19.9% 13.7% 2.0684 0.8371

MC-CB 0.12 −625.97 −628.89 19.9% 13.7% 2.0684 0.8371

MC-CF 0.20 −625.97 −628.89 19.9% 13.7% 2.0684 0.8371

MC-CFB 0.11 −625.97 −628.89 19.9% 13.7% 2.0684 0.8371

MC-C-OW 0.24 −625.98 −628.89 20.1% 14.0% 2.0681 0.8371

MC-CB-OW 0.14 −625.98 −628.89 20.1% 14.0% 2.0681 0.8371

MC-CF-OW 0.21 −625.98 −628.89 20.1% 14.0% 2.0681 0.8371

MC-CFB-OW 0.13 −625.98 −628.89 20.1% 14.0% 2.0681 0.8371

MCR [1] 0.38 −624.35 −629.03 16.4% 10.2% 2.0500 0.8357

MC-CI 1.14 −628.16 −628.16 100.0% 100.0% 2.0406 0.8350

MC-CIF 1.04 −628.16 −628.16 100.0% 100.0% 2.0406 0.8350

MC-C-CI 0.85 −628.16 −628.16 100.0% 100.0% 2.0406 0.8350

MC-CFB-CIF 0.62 −628.16 −628.16 100.0% 100.0% 2.0406 0.8350
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aster than the ILP and 10 times faster than MPLP-C. Latter even is not

ble to find optimal solutions in all cases.

.2.2. Probabilistic image segmentation

The probabilistic image segmentation framework was suggested

y Andres et al. [2] and belongs to the class of unsupervised image
egmentation problems. These problem instances involve 156 − 3764

uperpixels. For all pairs of adjacent superpixels, the likelihood that

heir common part of the superpixel boundary is part of the seg-

entation, is learned offline by a random forest. This results in a

otts model with positive and negative coupling constraints. While

he connection to Potts models is not mentioned in [2], they use a

imilar optimization scheme as in the present work. They introduced

higher-order model as well as a second-order one. They have been

ade publicly available in [11] and [5], respectively.

Second-order case. As shown in Table 5, for this dataset (image-

eg), we profit from using ILP subproblems. This reduces the mean

untime to less than 3 s and is therefore empirically faster than LP-

ased cutting-plane methods and the heuristic KL-algorithm. ICM

nd LF perform worse than KL. With increasing search space LF out-

erforms KL. For a search-depth greater than 1 we make use of the

act that the instances are planar and an optimal solution with four

abels exists. The same trick is used to make TRWS applicable. Ad-

itionally, we fix the first variable and initialize messages randomly.

ven this does not help to prevent TRWS from running into poor local

x-points. In both cases the label reduction is marked by the postfix

4.

Concerning the multicut approach, odd-wheel constraints only

arginally improve the results. LP-based cutting-plane methods find

he optimal solution for 35 of 100 instances and are slower than ILP-

ased methods, too.

Higher-order case. The third-order models (image-seg3) from [2]

re hard to solve with relaxations, hence rounding becomes more im-

ortant, cf. Fig. 10. The additional third-order factors favor smooth

oundary continuation. Since this sometimes conflicts with local

oundary probabilities, the problem becomes more involved.

As shown in Table 6, local search methods give better results than

elaxed solutions after rounding. Our exact multicut scheme was able

o solve all instances to optimality. Notably, one instance was signif-

cantly harder than all others and took more than half of the overall

untime for MC-I-C and MC-I-CFB.

Overall, a few instances are significantly harder than others.

Compared to the second-order model the Variation of Information

VI) [60] and Rand Index (RI) [61] are worse. The reason might be a to

trong regularization with the boundary continuation which results

n segmentation that does not fit with the BSD-ground-truth well.

.2.3. Higher-order hierarchical image segmentation

The hierarchical image segmentation framework was suggested

y Kim et al. [1] and also belongs to the class of unsupervised im-

ge segmentation problems. Contrary to the work of Andres et al.

2], they learn their model-parameters by a structured support vec-

or machine (S-SVM). Furthermore, higher-order Potts terms force se-

ected regions to belong to the same cluster. The 715 instances of this

ataset (corr-clust), published as part of [5], contain factors of order

p to a few hundred and 122–651 variables.

The results are summarized as Table 7. Surprisingly, our LP-based

ethods perform better than the original algorithm used in [1], even

hough the algorithms are identical. Maybe this was caused by the

ifferent LP solver they used, or by some floating-point problems in-

ide their separation procedure. The use of odd-wheel constraints

arginally improves the results. Best results are obtained by using in-

eger cutting-planes after having solved the LP. The use of the bound-

ng as part of the post-processing reduces runtime by a factor of 2.

he differences to only using facet-defining constraints are negligi-

le.

.2.4. Modularity clustering

We also considered a clustering problem from outside the field

f computer vision, which contrary to the previous models consid-

red so far, involves a fully connected graph. Modularity clustering

6] means the problem of clustering an undirected unweighted graph
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Table 8

Modularity clustering [6,11].

Algorithm Runtime (second) Value Bound Best Ver. opt

KL 0.01 −0.5251 −∞ 2/4 0/4

ICM 0.12 0.0000 −∞ 0/4 0/4

LF 0.05 0.0000 −∞ 0/4 0/4

MC-C 47.99 −0.5204 −0.5294 1/4 1/4

MC-CB 48.33 −0.5204 −0.5294 1/4 1/4

MC-CF 1.02 −0.5204 −0.5294 1/4 1/4

MC-CFB 0.91 −0.5204 −0.5294 1/4 1/4

MC-C-OW 72.05 −0.5282 −0.5282 4/4 4/4

MC-CB-OW 72.42 −0.5282 −0.5282 4/4 4/4

MC-CF-OW 12.26 −0.5282 −0.5282 4/4 4/4

MC-CFB-OW 11.60 −0.5282 −0.5282 4/4 4/4

MC-I-C 152.20 −0.5282 −0.5282 4/4 4/4

MC-I-CI 14.57 −0.5282 −0.5282 4/4 4/4

MC-I-CIF 6.31 −0.5282 −0.5282 4/4 4/4

MC-I-CFDB 6.56 −0.5282 −0.5282 4/4 4/4

MC-C-I-CI 58.24 −0.5282 −0.5282 4/4 4/4

MC-CFB-I-CIF 1.31 −0.5282 −0.5282 4/4 4/4

Table 9

Supervised image segmentation [5,68].

Algorithm Runtime (second) Value Bound Best Ver. opt

FastPD 0.45 308 472 275.0 −∞ 2/3 0/3

FastPD∗ 1.62 308 472 274.7 −∞ 2/3 0/3

α-Exp 6.42 308 472 275.6 −∞ 2/3 0/3

α-Exp∗ 1.72 308 472 274.3 −∞ 3/3 0/3

MC-T-MT 115.14 308 472 274.3 308 472 274.3 3/3 3/3

MC∗-T-MT 1.76 308 472 274.3 308 472 274.3 3/3 3/3

LP † † † † †

LP∗ 2.17 308 472 274.3 308 472 274.3 3/3 3/3

TRWS 150.47 308 472 310.6 308 472 270.4 2/3 1/3

TRWS∗ 3.90 308 472 274.3 308 472 274.3 2/3 2/3

MC-T-MT-I-T 149.43 308 472 274.3 308 472 274.3 3/3 3/3

MC∗-T-MT-I-T 1.86 308 472 274.3 308 472 274.3 3/3 3/3

ILP † † † † †

ILP∗ 1.91 308 472 274.3 308 472 274.3 3/3 3/3

Table 10

Supervised image segmentation with inclusion priors.

Algorithm Runtime (second) Value Bound Best Ver. opt PA

ogm-ICM 0.03 1556.20 −∞ 0/10 0/10 0.6206

ogm-LF-1 0.04 1556.20 −∞ 0/10 0/10 0.6206

LBP-LF-2 12.20 1400.62 −∞ 8/10 0/10 0.9495

α-Fusion 0.07 1587.13 −∞ 0/10 0/10 0.6771

ogm-LBP 12.28 1800.67 −∞ 3/10 0/10 0.9495

ogm-TRBP 13.93 2000.67 −∞ 2/10 0/10 0.9491

MC-T-MT 18.55 1739.29 1399.49 1/10 0/10 0.3001

LP 25.04 3900.59 1400.33 1/10 1/10 0.9484

MPLP 10.08 4000.44 1400.30 1/10 1/10 0.9479

MPLP-C 4741.42 4000.41 1400.35 1/10 1/10 0.9471

ILP 7.33 1400.57 1400.57 10/10 10/10 0.9496

MC-T-MT-I-T 66.58 1400.57 1400.57 10/10 10/10 0.9496
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into ”meaningful” subsets, which amounts to optimization problems

related to fully connected Potts model. For our experiments, we used

the datasets8 dolphins, football, karate, and lesmis (mod-clust), with 62,

115, 34, and 77 data-points, respectively.

As shown in Table 8, for modularity clustering, the use of facet-

defining inequalities as well as odd-wheel constraints significantly

improves the results. We attribute this to the high connectivity of the

graph. In such dense graphs more likely violated odd-wheel inequal-

ities exist. Likewise, more non-facet-defining cycle inequalities exist

as well, and adding those only blows up the system of inequalities.

As observed by Nowozin and Jegelka [12], odd-wheel inequalities

usually tighten sufficiently the polytope. Furthermore, we observed

for this dataset, as in [12], numerical problems if the allowed feasibil-

ity and optimality tolerances were set to large. However, the exper-

iments showed that our proposed integer cycle inequalities perform

better than odd-wheel separation, especially if we start from the LP-

relaxation with cycle inequalities, cf. Table 8.

6.3. Supervised segmentation problems

6.3.1. Supervised image segmentation

An elementary approach to supervised image segmentation, or

image labeling, is to apply locally a statistical classifier, trained offline

beforehand, to raw image data or to locally extracted image features.

This is complemented by a non-local prior term, the most common

form of which favors short boundaries of the segments partitioning

the image domain. Such terms can be approximated by pairwise Potts

terms [69] and lead to an energy function of the form∑
f∈F1

− log(pne( f )(xne( f )|I)) +
∑
f∈F2

β I(xne( f )1
�= xne( f )2

). (40)

As recently shown by Kappes et al. [13], such models can be evalu-

ated globally optimal and very fast by first determining partial opti-

mality, leading to a reduced inference problem in terms of remaining

unlabelled connected image components, followed by solving each of

these smaller problems independently.

We use “∗” to mark when these preprocessing steps were applied

and “†” to mark whenever the memory requirement exceeded 12 GB.

As dataset (color-seg) we used the color segmentation instances of

Alahari et al. [68]. The results are summarized as Table 9.

While standard (I)LP solvers often suffer from their large mem-

ory requirements, the multicut approach outperformed all other

approaches. Since for all instances the local polytope relaxation
8 http://www-personal.umich.edu/∼mejn/netdata/.

w

[

“

eturned optimal integer solutions, MC-T-MT could solve them in

olynomial time. When we resorted to the model reduction ∗, the

ubproblems became small for these problem instances, and (I)LP

olvers could be conveniently applied. Our multicut approach then

as only marginally faster. Despite global optimality, however, the

untime was comparable to algorithms for approximate inference

hat do not guarantee global optimality.

.3.2. Higher-order supervised image segmentation with inclusion prior

We studied image segmentation with junction regularization as

roblem instances that benefit from the application of higher-order

eneralized Potts functions.

Rather than merely penalizing the boundary length of segments,

his approach aims at improving segmentation results by additionally

enalizing points where the boundaries of three or more segments

eet:

I(x1, x2, x3, x4) =
{
λ, if |{x1, x2, x3, x4}| > 2,
0, else.

(41)

he overall cost for labeling then is given by∑
f∈F1

ϕ1
f (xne( f )) +

∑
f∈F2

ϕ2
f (xne( f )) +

∑
f∈F4

ϕI(xne( f )),

here ϕ1 denotes the L1-norm of the difference between intensity of

pixel and a pixel-label, ϕ2 the same second-order terms as in the

airwise case, and F4 the set of all factors over four pixels that build

cycle in the image grid.

Setting λ to 0 yields standard second-order model with bound-

ry length regularization, whereas setting λ → ∞ yields a model

hat enforces segments to be surrounded by one single segment,

ithout fixing the topology of the inclusion as done by Delong et al.

45]. Contrary to [45] our model “learns” the geometric interaction

contain” [45] locally online and allows furthermore to use different

http://www-personal.umich.edu/~mejn/netdata/
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Fig. 13. Example instance for the inclusion problem. While MC-T-MT and α-Fusion

both found solutions that respect the inclusion prior, they do not fit the data term well.

MPLP found a good solution but does not respect the inclusion in the right upper cor-

ner. MC-ICC found the optimal solution of the problem which visually fulfils inclusion

and gave good results in view of the noise level.
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nd unknown “containing rules” in different regions instead a single

lobal one.

Fig. 1(b) illustrates this property of the model. The standard

econd-order approach, cf. Fig. 1(b), middle, produces many small

rtefacts inside “U” and “C” and opens the surrounding segment right

f “C”. Invoking the fourth-order regularizer, cf. Fig. 1(b), bottom,

liminates many of these artefacts and results in a significantly better

egmentation.

The results of an empirical evaluation for 10 synthetic 32 × 32 im-

ges (synth-inclusion) are summarized as Table 10. Fig. 13 show exem-

lary segmentation results. Additionally, we give the relative number

f correct labeled pixels as pixel accuracy (PA). Even a labeling with

igh energy can have a high PA, as happens for MPLP. This is caused

y some variables, with wrong labels that causes a high energy but

ount marginal for the PA.

Approximate inference methods performed quite good, but

mong those only LBP-LF2 (Lazy Flipper initialed with the solution

f LBP) was able to provide nearly optimal results. While the multi-

ut approach is on par when relaxations were considered, it became

uite slow compared to a ILP applied to labeling in the nodal domain,

hen a globally optimal solution was enforced.

We believe there are two major reasons: First, the relaxation

prefers” less integral solutions due to the higher-order terms and

herefore becomes harder to solve for LP-based methods. Second, we

bserve that CPLEX solves the ILP mainly by branching and probing

n order to avoid solving LPs. This is also the reason why ILP is faster

han LP.

While an in-depth study of such aspects is beyond the scope of

he present paper, our findings indicate ways to further improve the

ulticut approach in such advanced settings.

. Conclusion

We presented an approach based on multicuts to solve a broad

ange of supervised and unsupervised segmentation problems to op-

imality in reasonable runtime. We showed, in particular, how to ex-

end the approach higher-order models based on a class of label in-

ariant functions that generalize Potts functions in a natural way.

uch models enable to model higher-order interactions and topolog-

cal priors concisely by taking its symmetries into account.

We devised several dedicated separation procedures and demon-

trated a corresponding significant impact on runtime. A systematic
omparison of different cutting-plane procedures for computer

ision applications enabled us to improve runtimes for all models

ompared to the state of the art. A discussion of polynomially

olvable relaxations of the unsupervised segmentation prob-

ems complemented our study, together with advanced rounding

chemes.
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ppendix

heorem 7.1. For second-order Potts models with arbitrary coupling

onstraints w ∈ R
N the optima of the LP over the local multiway cut re-

axation in (42)

min
∈[0,1]N

〈w, y〉 (42)

s.t.
∑

t∈T
ytv = |T | − 1, i f T �= ∅, ∀v ∈ V \ T c. f . (26)

ytt ′ = 1, ∀t, t ′ ∈ T, t �= t ′ c. f . (27)

ytu + ytv ≥ yuv, ∀uv ∈ E, t ∈ T c. f . (30)

ytu + yuv ≥ ytv, ∀uv ∈ E, t ∈ T c. f . (31)

ytv + yuv ≥ ytu, ∀uv ∈ E, t ∈ T c. f . (32)

yuv ≥
∑

t∈S
(ytu − ytv), ∀uv ∈ E, S ⊆ T c. f . (33)

s equivalent to the optima of LP over the local polytope relaxation (43)

min
∈[0,1]N

〈θ,μ〉. (43)

s.t.
∑
xi∈Xi

μi;xi
= 1 ∀i ∈ V

∑
xi∈Xi

μi j;xix j
= μ j;x j

∀ f ∈ F2, {i, j} = ne ( f )

∑
x j∈Xj

μi j;xix j
= μi;xi

∀ f ∈ F2, {i, j} = ne ( f ).

roof. By construction of the multiway cut problem we have

u;i = 1 − yti,u ∀u ∈ V, i ∈ Xu, (44)

here ti ∈ T denotes the terminal node belonging to label i ∈ Xu.

Instead of optimizing over μu; i for all u ∈ V and xu ∈ Xu we show

hat for any fixed μu;i ∀u ∈ V, i ∈ Xu problem (42) and (43) have the

ame minima. For fixed unary variables the problem splits in several

mall terms, which can be treated independently. What is left to show

s that for any

uv =
{

wuv if u �= v
0 if u = v

here wuv ∈ R the following equality holds:

min
μuv

〈θuv,μuv〉 (45)

s.t.
∑

i

μuv;i j = μv, j ∀ j ∈ Xv,

∑
j

μuv;i j = μu,i ∀i ∈ Xu, μuv;i j ≥ 0

min
yuv∈[0,1]

w · yuv (46)

s.t. (26), (27), (30) − (32), (33)

http://dx.doi.org/10.13039/501100001659
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Case 1 (wuv ≥ 0):

This has been shown by Osokin et al. [29].

Case 2 (wuv < 0):

The variable yuv is only upper bounded by [0, 1] and (29). Fur-

thermore y can be substituted by μ with (44). Hence the the optimal

value of (46) yuv is

(46)
(30)= wuv · min

{
1, min

i
{(yu,ti

+ yv,ti
)}} (47)

(44)= wuv · min
{

1, min
i

{2 − (μu,i + μv,i)}
}

(48)

�

Inequality (i): (45) ≥ (46)

For this proof we will use the following observation:

Lemma 7.1. Let us consider problem (45). If μu,i + μv,i > 1 then

μuv,ii ≥ μu,i + μv,i − 1.

Proof. Let μu,i + μv,i > 1 and w.l.o.g. μu,i > μv,i. Then we have μu, i

> 0.5 and μu,i > 1 − μv,i. Latter causes that we have to put some mass

of μu, i on the main diagonal of Q since we can assign to the non-

diagonal elements only 1 − μv,i. At least the difference μu,i − (1 −
μv,i) has to be put on the main diagonal entry μuv,ii. �

Using Lemma 7.1 we obtain the inequality:

(45) = wuv ·
(

1 −
∑

i

μuv,ii

)
s.t. (45) (49)

Lemma7.1≥ wuv ·
(

1 −
∑

i

max{0,μu,i + μv,i − 1}
)

(50)

= wuv ·
(

1 − max
i

max{0,μu,i + μv,i − 1}
)

(51)

= wuv ·
(

1 + min
i

min{0,−(μu,i + μv,i) + 1}
)

(52)

= wuv ·
(

min
i

min{1, 2 − (μu,i + μv,i)}
)

(53)

= (46) (54)

Inequality (ii): (45) ≤ (46)

We will use the following observations next:

Let i∗ = arg maxi(μu,i + μv,i)

(a) If maxi(μu,i + μv,i) < 1, then ∀i : (μu,i + μv,i) < 1.

(b) If maxi(μu,i + μv,i) > 1, then ∀i �= i∗ : (μu,i + μv,i) < 1.

Lemma 7.2. Problem (45) with the additional constraints

μuv,ii = max{0,μu,i + μv,i − 1} ∀i ∈ Xv (55)

has still a feasible solution.

Proof. We split the proof in to cases:

Case 1: maxi(μu,i + μv,i) > 1

Let i∗ = arg maxi μu,i + μv,i, then

μuv;i j =

⎧⎪⎨
⎪⎩

maxi μu,i + μv,i − 1 if i = i∗ and j = i∗

μu;i if i �= i∗ and j = i∗

μv; j if i = i∗ and j �= i∗

0 else

is a feasible solution.

Case 2: maxi μu,i + μv,i <= 1

Let us start with any feasible solution μ0 of (45) and define a se-

quence of transitions μn → μn+1, which will end in a μm that fulfill

the additionally constraints (∀i : μuv;ii = 0), too.

Initial point (μo: As shown in [29] a feasible point μ0
uv,ii

of (45)

with μ0
uv,ii

= min{μu;i,μv; j} exists.
Transition (μn → μn+1): For any tuple (a, b, a′, b′) and δ ≤
in{mun

uv;ab
, mun

uv;a′b′ } the transition

n+1
uv;i j

=

⎧⎨
⎩

μn
uv;i j

− δ if i = a ∧ j = b or i = a′ ∧ j = b′
μn

uv;i j
+ δ if i = a ∧ j = b′ or i = a′ ∧ j = b

μn
uv;i j

else

tays in the feasible set, because all values remain non-negative and

ow- and column-sums does not change.

Sequence of transitions: When μn has a non-zero diagonal el-

ment μn
uv;ii then there exist a pair (i′, j′) with i �= i′, j �= j′ and

n
uv;i′ j′ > 0, because∑

(a,b),a=iorb= j

μn
uv;ab = μn

uv;ii + (μu,i − μn
uv;ii) + (μv, j − μn

uv;ii) (56)

= μu,i + μv, j − μn
uv;ii ≥ 1 − μn

uv;ii (57)

fter the transition on (i, j, i′, j′) with maximal δ, either μn+1
uv;ii = 0 or

n+1
uv;i′i′ = 0. So, each non-zero diagonal element μn

uv;ii, can be made

ero by a finite number of transitions. We will end up with a point
m that fulfill (45) and have zero diagonal element μn

uv;ii. �

Using Lemma 7.2 we obtain the inequality:

(45) = wuv ·
(

1 −
∑

i

μuv,ii

)
s.t.(45) (58)

Lemma2≤ wuv ·
(

1 − max

{
0, max

i
(μu,i + μv,i − 1)

}
(59)

= wuv · min

{
1, min

i
{2 − (μu,i + μv,i)}

}
(60)

= (46) (61)

Inequality (i) and inequality (ii) together imply that (45) = (46)
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