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Abstract

We introduce a linearly weighted variant of the total

variation for vector fields in order to formulate regulariz-

ers for multi-class labeling problems with non-trivial inter-

class distances. We characterize the possible distances,

show that Euclidean distances can be exactly represented,

and review some methods to approximate non-Euclidean

distances in order to define novel total variation based reg-

ularizers. We show that the convex relaxed problem can

be efficiently optimized to a prescribed accuracy with op-

timality certificates using Nesterov’s method, and evaluate

and compare our approach on several synthetical and real-

world examples.

1. Introduction

1.1. Overview and Motivation

The multi-class image labeling problem consists in find-

ing, for each pixel x in the image domain Ω ⊆ R
d, a label

ℓ(x) ∈ {1, . . . , l} which assigns one of l class labels to x so

that the labeling function ℓ adheres to some data fidelity as

well as spatial coherency constraints.

We consider a partial linearization of this combinatorial

problem: Identify label i with the i-th unit vector ei ∈ R
l,

set E := {e1, . . . , el}, and find

inf
u:Ω→E

f(u) , f(u) :=

∫

Ω

〈u(x), s(x)〉 dx

︸ ︷︷ ︸

data term

+ J(u) .
︸ ︷︷ ︸

regularizer

(1)

The data term assigns to each label u(x) = ei a local cost

si(x), while the regularizer J enforces the desired spatial

coherency. In terms of Markov Random Fields, the data and

regularization terms can be thought of as unary and pairwise

potentials, respectively. To tackle the combinatorial nature

Figure 1. Application of our convex optimization approach to color

segmentation. Top row: Original image and segmentation into

12 regions using standard Potts distance. Bottom row: Seg-

mentations using non-uniform distances to selectively suppress

background (left) or foreground (right) structures while allowing

for fine details in the other regions. Our framework applies not

only to color vectors, but to arbitrary local features and data terms.

of (1), the problem is relaxed,

inf
u∈C

∫

Ω

〈u(x), s(x)〉dx + J(u) , (2)

where C := {u : Ω→ R
l|ui(x) > 0,

∑l
i=1 ui(x) = 1} is a

convex set which constrains each u(x) to the unit simplex.

As the data term was linearized, the local costs s may be

arbitrarily complex, possibly derived from a probabilistic

model, without affecting the overall problem class. In par-

ticular, any convex regularizer J yields a continuous convex

problem, which can be globally optimized. It is thus inter-

esting to examine the expressiveness of convex regularizers.

In this paper, we study a class of convex total variation (TV)

based regularizers,

J(u) =

∫

Ω

‖D(Au)‖F dx , (3)



where ‖D(·)‖F is the Frobenius norm of the Jacobian (in a

distributional sense), and A ∈ R
k×l is a weights matrix that

will be used to vary the regularization cost according to a

distance d(i, j) between the labels of the adjoining regions.

The motivation comes from the fact that the classical to-

tal variation regularizer advocates discrete solutions, and

thus produces a unique labeling. In the classical two-class

formulation, the total variation penalizes adjacent, differ-

ently labeled regions according to the area of the interface.

Our formulation carries over this property to the multi-class

case in a precise sense, and allows for more general, non-

uniform distances. In particular, Euclidean distances can be

represented exactly.

With a suitable discretization, the problem corresponds

to a bilinear saddle point problem, which we propose to

solve using a method suggested by Nesterov. The method

does not require to set any parameters other than the desired

optimality, and provides ε-optimal solutions in O(1/ε).

1.2. Related Work

The continuous two-class case – optimization on the set

of characteristic functions – is known as continuous cut

[19]. Chan et al. [6] showed that this problem can be solved

on a relaxed, convex set without losing global optimality.

For anisotropic discretization, the binary case can be for-

mulated as a minimum-cut problem on a grid graph, which

allows to solve the problem exactly and efficiently for a

large class of metrics using graph cuts [12, 3]. This for-

mulation and its anisotropic multi-class generalization can

be viewed as pairwise binary respective multilabel Markov

Random Fields (MRFs). Prominent methods to handle the

multi-class case rely on finding a local minimum by solving

a sequence of binary graph cuts [4] (see [13] for a recent

generalization), while we solve one convex problem to a

global optimum.

Our results can be seen as a continuous analogon to [9],

where it was shown that convex pairwise energies of a spe-

cial form can be exactly formulated as a cut on a multi-

layered graph. An early analysis can be found in [11],

where the authors also derive suboptimality bounds of a lin-

ear programming relaxation for metric distances. All these

methods rely on the graph representation with pairwise po-

tentials, while our approach has its roots in the continu-

ous setting. While this complicates optimization due to the

higher order potentials, it avoids the metrication error of the

discrete methods and permits fast parallel optimization.

In the continuous setting, closely related to our approach

is [5]. The authors use a linearization as in [9], and give

a thorough analysis of the continuous model where d is of

the form σ(|i − j|) for nondecreasing, positive, concave σ.

They propose a convexification based on the convex enve-

lope, which gives almost discrete solutions in many cases.

However their optimization method requires the selection

of a step size, does not necessarily converge and requires

expensive iterative projections in each iteration. Also, due

to the implicit representation of their regularizer, evaluating

the objective becomes a problem. In contrast, our method

has guaranteed convergence and requires only simple and

exactly computable projections.

Our approach is a generalization of [14] and [23], where

the same linearization is used with the regularizer restricted

to the Potts distance, and with less strong convergence re-

sults. An analysis of Nesterov’s method in the context of

ℓ1-norm and TV minimization can be found in [21].

1.3. Contribution

The main contribution will be twofold:

• We formulate requirements on the regularizer J and

show their implications on the choice of the distance

d. We study the continuous formulation of the regu-

larizer (3), and show that Euclidean distances can be

represented exactly in a well-defined way (section 2,

Prop. 2). We also review some methods for the ap-

proximation of non-Euclidean distances (section 2.4).

• We study the discretization of (2) in a very general

saddle point formulation, and show that any specific

instance can be optimized by a method suggested by

Nesterov. The method is virtually parameter-free and

provides explicit a priori and a posteriori optimality

bounds (section 3).

In contrast to existing graph-based methods, we provide

a continuous and isotropic formulation for a restricted set

of distances d, while in comparison with existing con-

tinuous approaches, we provide a generalization for non-

uniform distances and completely characterize the conver-

gence properties of our optimization method.

Finally, we illustrate and compare our method with the

primal-dual technique from [5] and demonstrate its applica-

bility on real-world problems (section 4).

1.4. Notation

The image domain Ω ⊆ R
d is a bounded, open, con-

nected subset with piecewise smooth boundary ∂Ω. Su-

perscripts vi denote a collection of vectors, while sub-

scripts vk denote vector components. We denote by ∆l :=
{x ∈ R

l|x > 0, e⊤x = 1} the unit simplex in R
l, where

e := (1, . . . , 1) ∈ R
l. In is the identity matrix in R

n and

‖ · ‖ the usual (Euclidean) 2-norm. Br(x) denotes the ball

of radius r in x, and χS(x) the characteristic function of S.

2. Convex Functionals for Metric Labeling

We begin by formalizing the requirements on the regu-

larizer as sketched in the introduction. Let us assume we



are given a general distance mapping d : {1, . . . , l}2 → R.

We do not assume any metric properties (i.e. symmetry or

triangle inequality) for now. For u ∈ C, we postulate that

the regularizer should satisfy

(P1) J is convex and positively homogeneous on the relaxed

set C as defined after (2).

(P2) J(u) = 0 for any constant u, i.e. there is no penalty

for constant labelings.

(P3) For any partition (S, Sc) of Ω into two sets with finite

perimeter Per(S) <∞, and any i, j ∈ {1, . . . , l},

J(eiχS + ejχSc

)
= d(i, j) Per(S) . (4)

That is, a change from label i to label j gets penalized

proportional to d(i, j) as well as the perimeter of the

interface.

Requirements (P3) and (P2) formalize the principle that the

multilabeling problem should reduce to the continuous cut

in the two-class case, while the convexity from (P1) to-

gether with the linear data term renders global optimization

tractable. Positive homogeneity is included as it allows J to

be represented as a support function (i.e its convex conju-

gate is an indicator function), which will be exploited by our

optimization method. Together, these requirements pose a

natural restriction on d:

Proposition 1 If (J, d) satisfy (P1) – (P3), it follows that d
satisfies, for all i, j, k ∈ {1, . . . , l},

1. d(i, i) = 0,

2. d(i, j) = d(j, i) > 0,

3. d(i, k) 6 d(i, j) + d(j, k).

Thus, if d(i, j) 6= 0 for all i 6= j, d must be a metric.

Proof see Appendix. �

Consequently, for non-metric d, we generally cannot ex-

pect to find such a regularizer, independent of the repre-

sentation. Even for metric d, existence of such a J is not

clear. However it turns out that for the special case of d be-

ing an Euclidean distance, such a regularizer always exists.

In the following sections, we will derive this regularizer us-

ing a total variation based approach and demonstrate how

approximation methods for non-Euclidean distances can be

used to still obtain an overall convex functional.

2.1. A Novel Family of TV-Based Regularizers

The classical definition for the total variation of a scalar-

valued function u ∈ L1(Ω) is

TVc(u) := σdivDc
(u) := sup

v∈Dc

∫

Ω

u div v dx , (5)

where Dc := {v = (v1, . . . , vd) ∈ (C1
c )d|‖v(x)‖2 6

1∀x ∈ Ω}, C1
c ⊆ L1 is the space of continuously differ-

entiable functions with compact support in Ω, and σ is the

support function from convex analysis [17]. This formu-

lation can be extended to vector-valued u ∈ (L1(Ω))l by

setting

Dv := {v ∈
(
C1

c

)l×d |‖v(x)‖F 6 1∀x ∈ Ω}(6)

TVv(u) := σDivDv
(u) = sup

v∈Dv

∫

Ω

〈u,Div v〉 dx (7)

with Div v := (div v1, . . . ,div vl).

Denote by BV(Ω, Rl) the functions u ∈ L1(Ω, Rl) with

TVv(u) < ∞, and by Per(S) := TVc(χS) the perimeter

of S. If u has a weak derivative Du (i.e. the Jacobian if u is

continuously differentiable), we get the more instructive

TVv(u) =

∫

Ω

‖Du‖F dx , (8)

where ‖ · ‖F is the Frobenius norm on R
l×d. This “clas-

sical” definition has also been used in color denoising and

is sometimes referred to as MTV [18, 7]. We propose to

extend this definition for our purpose by choosing an em-

bedding matrix A ∈ R
k×l, and defining

TVA(u) := TVv(Au) . (9)

For sufficiently smooth u, TVA conforms to (3). The rest of

this paper will focus on properties and applications of (9).

2.2. Properties of the Regularizer

TVA is clearly isotropic, and convex as the composition

of a convex functional and a linear operator. To further clar-

ify the definition, let us again assume u has a weak deriva-

tive Du. Then we may rewrite (9) to

TVA(u) =

∫

Ω

√

‖D1u‖2A + . . . + ‖Ddu‖2A ,

where ‖v‖A := (v⊤A⊤Av)1/2. The key observation is the

following, which allows to reduce TVA to the classical total

variation on a one-dimensional subspace of C:

Proposition 2 Let a ∈ R
l, 0 6= b ∈ R

l and u ∈ BV(Ω, R),
i.e. TVc(u) <∞. Then

TVv(a + ub) = ‖b‖TVc(u) . (10)

Proof see Appendix. �

Corollary 1 Let a, b ∈ R
l and S ⊆ Ω with Per(S) < ∞.

Then

TVv(aχS +bχSc) = ‖b−a‖TVc(χS) = ‖b−a‖Per(S) .



That is, interfaces of perimeter (i.e. length or area) Per(S)
between two constant regions of u contribute Per(S)‖b−a‖
to the overall regularization term. In particular, for A =
(a1 · · · al) ∈ R

k×l, we have

TVA(eiχS + ejχSc) = ‖ai − aj‖Per(S) . (11)

As a byproduct, TVA reduces nicely to the usual total vari-

ation for the two-class case:

Corollary 2 Let u′ ∈ BV(Ω, R) and A := (1/
√

2)I2.

Then

TVA

(

(u′, 1− u′)
⊤

)

= TVc(u
′) . (12)

We can thus convert any instance of the classical binary

“continuous cut” approach [6] with data s′ ∈ L1(Ω),

min
u′:Ω→[0,1]

〈u′, s′〉+ λ TVc(u) (13)

to the multi-class approach (and vice versa) by the special

choice of A := λ(1/
√

2)I2, u = e1u′ + e2(1− u′) and as-

suring s1−s2 = s′, e.g. s = e1s′. This will be considerably

generalized in the following section.

2.3. Exact Representation of Euclidean Distances

We will first look at Euclidean distances d, i.e. there is a

k ∈ N and x1, . . . , xl ∈ R
k with d(i, j) = ‖xi−xj‖. Then

we have the following result:

Proposition 3 Let d be an Euclidean distance. Then there

exist k ∈ N and A ∈ R
k×l s.t. J(u) := TVA(u) satisfies

(P1)–(P3).

Proof Comparing (11) to (4), we see that we may just use

the embedding matrix A = (x1 · · ·xl). �

The class of Euclidean distances comprises some impor-

tant special cases:

• The uniform, discrete or Potts distance as also con-

sidered in [14, 23] and as a special case in [11, 13],

d(i, j) = 0 iff i = j and d(i, j) = 1 in any other case,

when A = (1/2)I .

• The linear (label) distance, d(i, j) = c|i−j|, with A =
(c, 2c, . . . , lc). This regularizer is suitable to problems

where the labels can be naturally ordered, e.g. depth

from stereo or grayscale image denoising.

• More generally, if label i corresponds to a prototypical

vector xi in k-dimensional feature space, and the Eu-

clidean norm is an appropriate metric on the features, it

is natural to set d(i, j) = ‖xi−xj‖, which is Euclidean

by construction. This corresponds to a regularization

in feature space, rather than in “label space”.

Non-metric or non-Euclidean d, such as the truncated label

distance, d(i, j) = min{2, |i − j|}, cannot be represented

exactly by TVA. Yet, tight approximations preserving con-

vexity of the overall problem exist, as shown next.

Figure 2. Euclidean embeddings for several distances into R
3.

Left: Potts distance. Center: Linear distance. Right: Non-

Euclidean truncated label distance. For the latter an optimal ap-

proximate embedding was computed as outlined in section 2.4

with ‖X‖M := maxi,j |Xij |.

2.4. Approximation for General Distances

Now let d be a general metric with squared matrix rep-

resentation D ∈ R
l×l, Dij = d(i, j)2. Then it is known [2,

Chap. 12] that d is Euclidean iff for C := I − 1
l ee

⊤, the

matrix T := − 1
2CDC is positive semidefinite. In this case,

A can be found by factorizing T = A⊤A. If T is not pos-

itive semidefinite, dropping the nonnegative eigenvalues in

T yields an Euclidean approximation. This method known

as classical scaling [2] does not necessarily give good ab-

solute error bounds.

For non-metric, nonnegative d, we can formulate the

problem of finding the “closest” Euclidean distance matrix

E as minimization of a matrix norm ‖E − D‖M over all

E ∈ El, the set of l × l Euclidean distance matrices. Fortu-

nately, there is a linear bijection B : Pl−1 → El between El
and the space of positive semidefinite (l− 1)× (l− 1) ma-

trices Pl−1 [8, 10]. This allows us to rewrite our problem

as a semidefinite program [22, p.534–541],

infS∈Pn−1
‖B(S)−D‖M . (14)

The resulting problem can be solved using available numer-
ical solvers. Then E = B(S) ∈ El, and A can be extracted
by factorizing − 1

2CEC. Since E and D are explicitly
known, we can compute an a posteriori bound on the maxi-
mum distance error, εE := maxi,j |Eij−Dij |. Fig. 2 shows
a visualization of some embeddings of for a four-class prob-
lem. As an illustration, for the non-Euclidean truncated la-
bel distance, the original respective approximated distance
matrices were






0 1 2 2
1 0 1 2
2 1 0 1
2 2 1 0







and







0 1.15 1.92 2.08
1.15 0 1.15 1.92
1.92 1.15 0 1.15
2.08 1.92 1.15 0







with an absolute error bound of εE = 0.145.

Based on the embedding matrices computed in this way,

the variational problem (2), (3) enables us to approximate

the labeling problem by convex optimization for a consid-

erably larger class of distances between labels.

3. Discrete Problem and Optimization

We now return to solving the discretization of (2) with

the regularizer J = TVA. We will show that the discretized



problem can be stated in the general form of a bilinear sad-

dle point problem,

minu∈C maxv∈D g (u, v) , (15)

g(u, v) := 〈u, s〉+ 〈Lu, v〉 − 〈b, v〉 .

In a slight abuse of notation, we will use u, s ∈ R
n also

for the discretized variables. We have a linear operator L ∈
R

m×n, a vector b ∈ R
m for some m,n ∈ N, and bounded

closed convex sets C ⊆ R
n,D ⊆ R

m. This formulation

preserves the structure of the continuous problem, as can be

seen by substituting (7), (9) into (2). The primal and dual

objectives are

f(u) := max
v∈D

g (u, v) and fd(v) := min
u∈C

g(u, v) , (16)

respectively. As C and D are bounded, it follows from [17,

Cor. 37.6.2] that a saddle point (u∗, v∗) of g exists. With

[17, Lemma 36.2], this implies strong duality, i.e.

max
v∈D

fd(v) = fd(v
∗) = g(u∗, v∗) = f(u∗) = min

u∈C
f(u) .

If fd and f can be explicitly computed, any v ∈ D gives an

optimality bound on the primal objective,

0 6 f(u)− f(u∗) 6 f(u)− fd(v) . (17)

In our case, C,D exhibit a product structure, which allows

to compute f and fd as well as their orthogonal projections

ΠC and ΠD efficiently, a fact that will prove important in the

algorithmic part. We first show that the segmentation prob-

lem (2) belongs to this class under a suitable discretization,

and then provide an algorithm for optimizing (15).

3.1. Discretization of the TV-based Regularizer

We discretize Ω by a regular grid, Ω = {1, . . . , n1} ×
· · · × {1, . . . , nd} ⊆ R

d , d ∈ N, consisting of n :=
|Ω| pixels, and u by its (vectorial) values at the pixels in

Ω, i.e. u ∈ R
n×l. The multidimensional image space

X := R
n×l is equipped with the Euclidean inner product

〈·, ·〉 over the vectorized elements. We naturally identify

v = (v1, . . . , vl) ∈ R
n×l with ((v1)⊤ · · · (vl)⊤)⊤ ∈ R

nl.

Let grad := (grad⊤
1 , . . . , grad⊤

d )⊤ be the d-dimensional

forward difference gradient operator for Neumann bound-

ary conditions. Accordingly, div := −grad⊤ is the back-

ward difference divergence operator for Dirichlet boundary

conditions. These operators extend to R
n×l via Grad :=

(Il⊗ grad), Div := (Il⊗div), where Il is the l× l identity

matrix. In analogy to (6), we define the convex sets

C := {u ∈ R
n×l|ui,· ∈ ∆l, i = 1, . . . , n} , (18)

Dloc :=
{
p = (p1, . . ., pl)∈R

d×l|‖p‖F 61
}

,

D :=
∏

x∈Ω

Dloc⊆R
n×d×l . (19)

The discrete total variation on vector-valued data is then

TVv(u) := σDivD(u) = σD(Gradu) =
∑

x∈Ω

‖Gxu‖2 ,

(20)

where Gx is an (ld)×n matrix composed of rows of (Grad)
s.t. Gxu gives the gradients of all ui in x stacked one above

the other. By modifying Dloc, we could easily replace the

Euclidean norm by e.g. the 1-norm. For A as in (9), define

TVA(u) := TVv((A⊗ In)u) = σD(Lu) (21)

with L := (Grad)(A⊗ In) .

We finally arrive at the form (15) with C, D, and L de-

fined as above, m = nk and b = 0. Projections on C
and D are highly separable and thus can be computed eas-

ily (cf. [15]). The same holds for the primal and dual ob-

jectives f and fd: the former using (20), the latter is just

a sum of vector minimum functions. Note that in contrast

to the continuous framework, we may easily substitute non-

homogeneous, spatially varying or even nonlocal regulariz-

ers by choosing L appropriately.

3.2. Nesterov optimization

To optimize (15), we follow the work of Nesterov

[16]. The algorithm has a theoretical complexity bound

of O(1/ε) for finding an ε-optimal solution, and has been

shown to give accurate results for denoising [1] and general

ℓ1-norm based problems [21]. The complete algorithm for

our saddle point formulation is shown in Alg. 1. The only

expensive operations are the projections ΠC and ΠD, which

are efficiently computable as shown above. The algorithm

converges in the objective in any case and provides an ex-

plicit optimality certificate:

Algorithm 1 Convex Multi-Class Labeling

1: Input: c1 ∈ C, c2 ∈ D and r1, r2 ∈ R s.t. C ⊆ Br1
(c1)

and D ⊆ Br2
(c2); x(0) ∈ C; R ∋ C > ‖L‖, N ∈ N.

2: Output: u(N) ∈ C, v(N) ∈ D.

3: Let µ← 2‖L‖
N+1

r1

r2

.

4: Set G(−1) = 0, v(−1) = 0.

5: for k = 0, . . . , N do

6: V ← ΠD

(

c2 + 1
µ

(
Lx(k) − b

))

.

7: v(k) ← v(k−1) + 2 (k+1)
(N+1)(N+2)V .

8: G← s + L⊤V .

9: G(k) ← G(k−1) + k+1
2 G.

10: u(k) ← ΠC

(

x(k) − µ
‖L‖2 G

)

.

11: z(k) ← ΠC

(

c1 − µ
‖L‖2 G(k)

)

.

12: x(k+1) ← 2
k+3z(k) +

(

1− 2
k+3

)

u(k).

13: end for



Figure 3. Four-class color segmentation using our method with varying distance. Left to right: Groundtruth; groundtruth with Gaussian

noise (σ = 1) and clamped to [0, 1] (PSNR = 5.81 dB); purely local labeling without regularizer; proposed method with Potts, fg-bg, and

linear distance. The fg-bg distance was chosen to clearly segment the three foreground classes (colors) from the background class (white),

but allow for a large variance between foreground classes. The linear distance, which implies an ordering of the labels, corresponds to a

degenerate embedding and results in a strongly suboptimal discrete solution.

Proposition 4 For a solution u∗ of (15), it holds that

u(N) ∈ C, v(N) ∈ D, i.e. u(N) and v(N) are primal resp.

dual feasible, and

f(u(N))−f(u∗) 6 f(u(N))−fd(v
(N)) 6

2r1r2C

(N + 1)
. (22)

Proof Apply [16, Thm. 3] with f̂(u) = 〈u, s〉, A = L,

φ̂(v) = 〈b, v〉, d1(u) := 1
2‖u− c1‖2, d2(v) := 1

2‖v− c2‖2,

D1 = 1
2r2

1 , D2 = 1
2r2

2 , σ1 = σ2 = 1, M = 0. �

Corollary 3 For given ε > 0, applying Alg. 1 with

N =
⌈
2r1r2Cε−1 − 1

⌉
(23)

yields an ε-optimal solution to (15).

For our discretization (21), we may choose c1 = 1
l e,

r1 =
√

n(l − 1)/l, c2 = 0, r2 =
√

n, and C =
√

2d‖A‖ >

‖Grad ‖‖A‖ > ‖L‖. We arrive at a parameter-free al-

gorithm with a total complexity of O(ε−1n
√

d‖A‖) itera-

tions to find u(N) with a suboptimality of at most ε, i.e.

f(u(N)) − f(u∗) 6 ε. Note that this allows us to solve

any problem of the saddle point form (15), which allows for

many generalizations such as spatially varying distances,

different (e.g. anisotropic) formulations of the total varia-

tion, or alternate linearization schemes, as long as the pro-

jections ΠC and ΠD can be computed.

3.3. Optimality

After solving the relaxed problem, a binary solution, i.e.

a hard labeling, needs to be recovered. For the continu-

ous two-class case, [6] showed that an exact solution can

be obtained by thresholding at almost any threshold. How-

ever, their results do not immediately transfer to the discrete

multi-class case. In particular, the crucial coarea formula

holds for ℓ1-, but not ℓ2-discretizations of the TV.

There seems to be no obvious “best” choice for the bi-

narization scheme. As taking the index of first maximal

component does not work well for degenerate (i.e. rank de-

ficient) A, we chose the final class label for pixel xi as the

Distance Potts fg-bg linear

f(u(N)) 15898.3 14942.0 13797.28

f(ū(N)) 16006.1 15047.50 16860.82

fd(v(N)) 15879.3 14919.15 13783.44

rel. gap relaxed 0.0012 0.0015 0.0010

rel. gap discrete 0.0080 0.0086 0.2233

Table 1. Numerical results for the experiments shown in Fig. 3.

After N = 500 iterations, the relaxed problem was solved to a

relative accuracy of ∼ 0.12%. For the Potts and fg-bg distance, the

binarization does not increase the suboptimality substantially. In

contrast, the approach does not perform well for the linear distance

despite the good quality of the relaxed solution, indicating that the

relaxation is less suitable for this type of distance.

smallest index j minimizing ‖ej − u(xi)‖A, which worked

well in all considered cases. While we are not aware of an a

priori bound on the error introduced by binarization in this

case, (17) and (22) provide an a posteriori optimality bound:

As the binary approximate solution ū(N) is primal feasible,

f(ū(N))− f(u∗) 6 f(ū(N))− fd(v
(N)) . (24)

Computation of both f and fd is efficient for the discretiza-

tion as outlined above.

4. Experimental Results

Fig. 3 visualizes the effect of varying d on the segmenta-

tion. The foreground-background (fg-bg) distance was cho-

sen to clearly segment the three foreground classes from the

white background, while allowing for a high variance be-

tween foreground classes. We found that for highly degen-

erate embeddings A, as is the case for the linear distance,

our approach tends to generate non-binary solutions. This

results in a large energy increase during binarization (Ta-

ble 4); however the returned lower bound allows us to detect

these cases. In all experiments, we clamped the pixel values

to [0, 1], which results in a significant amount of salt-and-

pepper – despite originally Gaussian – noise. In all segmen-

tation experiments, the data term is a simple ℓ1- distance to

the prototypical color vectors for each class.



Figure 5. Stereo disparity estimation with non-Euclidean distance using the data term from [20]. Each pixel is assigned one of 16 disparity

labels. Left: Input image. Second from left: Ground truth. Second from right: Potts distance (5.75% incorrectly labeled). Right: Trun-

cated linear distance (3.98% incorrectly labeled). The latter is non-Euclidean and approximated using the method outlined in section 2.4.

This result shows that an accurate non-binary image labeling can be obtained by solving a single convex optimization problem.

Figure 4. Region filling capabilities of the proposed method. Left:

Input image (PSNR = 3.67 dB) with blanked-out (data term set

to zero) square. Second from left: Result of the alpha-beta swap

benchmark code from [20]. Second from right and right: Result

of our algorithm with Potts distance before and after binarization.

While the continuous energy does not promote a true binary solu-

tion in this case, after binarization the result conforms to the con-

tinuous framework. The alpha-beta swap minimizes an anisotropic

energy, which leads to blocky artifacts.

In Fig. 4, we compare the region-filling properties of

our method to a standard four-neighborhood approach opti-

mized using alpha-beta-swap. The algorithm converges to a

clearly non-binary result; however after binarization we get

the correct minimal partition as expected from the continu-

ous formulation. Direct numerical comparison to the graph

cut methods is difficult, as the latter rely on binary poten-

tials, while our discretization uses ternary potentials.

Fig. 5 demonstrates the applicability of our method for

optimization of non-Euclidean distances: The truncated lin-

ear distance improves stereo disparity estimation, as it al-

lows for small depth variations within objects and does not

excessively penalize depth changes at object borders.

To characterize the performance of our optimization

method, we compared it to the Arrow-Hurwicz method

from [5] with alternating primal and dual proximal steps,

applied to our relaxation. The latter method requires to set

a step size, which leads to divergence if set too large. We

found the upper bound to be dependent on the embedding

A. On the Tsukuba data set (Fig. 5), both methods are close,

but the convergence speed of the Arrow-Hurwicz method

depends on the manually chosen step size (Fig. 6). We also

found that our method generally outperforms the theoretical

suboptimality bound (22) by a factor of 5− 10.

Since our approach allows to vary the regularization de-

pending on the actual labels, we may introduce classes

10 20 50 100 200 500 1000

5.0´105

2.0´105

3.0´105

7.0´105

Nesterov

Τ=0.04

Τ=0.03

Τ=0.02

Τ=0.005

Τ=0.001

Figure 6. Objective vs. number of iterations N using the Arrow-

Hurwicz method from [5] (dashed) with various choices for the

step size τ and our method (solid) on the problem in Fig. 5. The

proposed parameter-free Nesterov method shows competitive per-

formance, and outperforms the Arrow-Hurwicz method if the step

size is not hand-tuned to the specific dataset.

which differ only by the regularization term. In Fig. 7, the

grayscale image was segmented into dark and light back-

ground, as well as two foreground classes for text over dark

and text over light background with identical data term.

By choosing a suitable (originally non-Euclidean) d, this

allows to simultaneously separate foreground from back-

ground and perform a background reconstruction, which is

not possible using the standard Potts distance.

5. Conclusion and Future Work

Based on a total variation for vector fields, we showed

how to formulate a class of convex spatial regularizers in the

continuous multi-labeling framework. The regularizers may

depend on arbitrary distances between labels, which are ap-

proximated if necessary. Solving the discrete optimization

problem using Nesterov’s method showed to be competitive

in speed without requiring any parameter tuning.

The promising results should motivate to investigate

what other kinds of regularizers are possible. The optimiza-

tion framework allows for many other – possibly higher-

order, nonlocal, or spatially varying – regularizers and dif-

ferent relaxations by replacing the constraint sets C and D,

with the only requirement that projections on these sets can

be computed.



Figure 7. Simultaneous segmentation and background reconstruction by solving a single convex optimization problem within our frame-

work. Left: Noisy image (PSNR = 20.82 dB). Center: Reconstructed background. Right: Extracted foreground. The image was

segmented into four classes, and a (non-Euclidean) d was chosen so as to differentiate text over dark and light background.

6. Appendix

Proof of Proposition 1. 1. follows from (P2) and (P3)

by choosing i = j and S with Per(S) > 0. Symmetry in 2.

is obtained from (P3) by replacing S with Sc, as Per(S) =
Per(Sc). For 3., fix any S with c := Per(S) > 0, then

cd(i, k) = cJ
(
eiχS + ekχSc

)
6 cJ

(
eiχS + ejχSc

)
+

J
(
ekχSc + ejχS

)
= c (d (i, j) + d(j, k)) due to (P1).

d(i, j) > 0 follows from 1.-3.

Proof of Proposition 2. Rearranging the terms and ap-

plying Gauss’ theorem to remove the constant part yields

TVv(a + ub) = sup
v∈Dv

∫

Ω

u div (〈b, v1〉, . . . , 〈b, vd〉)⊤ dx .

Now for any v ∈ Dv there exists v′ ∈ Dc s.t. ∀i ∈
{1, . . . , d} : 〈b, vi〉 = ‖b‖v′

i and vice versa: For v ∈ Dv, set

v′
i(x) := ‖b‖−1〈b, vi(x)〉, then ‖v′(x)‖22 6

∑

i ‖vi(x)‖2 6

1. For v′ ∈ Dc set vi(x) := ‖b‖−1bv′
i(x), then ‖v(x)‖F =

‖v′(x)‖2 6 1. Thus we may substitute 〈b, vi〉 = ‖b‖v′
i, and

TVv(a + ub) = sup
v′∈Dc

∫

Ω

u‖b‖div v′ dx = ‖b‖TVc(u) .
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