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IPA & HCI, University of Heidelberg, Germany
{neufeld,becker,schnoerr}@math.uni-heidelberg.de

{johannes.berger,frank.lenzen}@iwr.uni-heidelberg.de

Abstract. We propose a variational approach for estimating egomotion and struc-
ture of a static scene from a pair of images recorded by a single moving camera.
In our approach the scene structure is described by a set of 3D planar surfaces,
which are linked to a SLIC superpixel decomposition of the image domain. The
continuously parametrized planes are determined along with the extrinsic camera
parameters by jointly minimizing a non-convex smooth objective function, that
comprises a data term based on the pre-calculated optical flow between the input
images and suitable priors on the scene variables. Our experiments demonstrate
that our approach estimates egomotion and scene structure with a high quality,
that reaches the accuracy of state-of-the-art stereo methods, but relies on a single
sensor that is more cost-efficient for autonomous systems.

1 Introduction

1.1 Overview

For the scenario of a camera moving through a static scene, e.g. in an automotive en-
vironment, we present an approach for jointly estimating the scene structure and the
camera egomotion. In a preprocessing step the optical flow between these two frames
together with a confidence map is estimated, and serves as input data. Moreover, for
one of the frames, a partition of the image domain into superpixels is determined. The
main part (and main contribution) of our method consists of a variational approach with
a non-convex smooth objective function, which includes suitable chosen priors on the
scene depth and plane parameters to guarantee a consistent scene representation with
only a sparse set of depth discontinuities. By minimizing this objective function we ob-
tain an estimate of the egomotion in terms of rotation and translation together with a
description of the scene by one 3D plane per superpixel. Fig. 1 depicts a typical scene
reconstruction. From the plane parameters both scene depth and surface normals can be
determined directly.

We stress that, due to the monocular nature of the considered problem with a less
favorable motion parallax, the task is more difficult than stereo setups studied in this
context. However, industry favors more cost- and energy-efficient sensor solutions.
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Fig. 1: Best viewed in color. (a) first frame of an image pair from the KITTI stereo
benchmark; (b) depth map derived from the piecewise planar scene structures computed
by our monocular approach jointly with the camera motion; (c) shaded visualization of
the piecewise planar structure.

1.2 Related work

Scene reconstruction in the automotive context poses an important foundation for higher-
level reasoning e.g. in advanced driver assistant systems. For vision based outdoor scene
reconstruction stereo based systems currently dominate, as this well-posed problem set-
ting with a known calibrated stereo camera setup leads to highly accurate results. This
is substantiated by the enormous popularity of the KITTI benchmark [7].

In the recent years monocular scene reconstruction approaches became increasingly
popular although they have to additionally determine the unknown relative camera po-
sition between two frames. This has been proved to be feasible also in real-time both
for indoor [13,9,12,15,16] and the even more challenging task of outdoor setups, where
a world map is aggregated over an entire image sequence (Simultaneous Localization
And Mapping, SLAM) [5,22]. Despite the higher computational effort compared to
stereo setups, monocular camera systems feature reduced calibration effort which is
interesting from the industrial point of view. Results presented e.g. in [3] demonstrate
that depth accuracy comparable to stereo methods can be achieved even in an automo-
tive context. Similar to the methods above we consider the case of a monocular camera
setup, however, do not accumulate information over an image sequence but only resort
to two consecutive image frames to estimate scene and egomotion. In [25,24] epipolar
geometry is pre-computed and flow is restricted to fixed epipolar lines. We implement a
joint estimation approach of egomotion and scene description, as is also done in [13,3].

A few algorithms rely on independent matches for scene reconstruction [18], but
most algorithms incorporate a prior on the regularity of the depth map to cope with
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ambiguities and distortions in the data. Piecewise constant depth maps seem to be a
reasonable assumption in connection with modeling shallow objects and occlusions
present in indoor scenes. For street scenes however, slanted planes such as the street
or house fronts dominate, and providing an accurate reconstruction is important for
subsequent reasoning steps. Stereo methods [20,21,24,23] implementing this prior rank
at top positions in the according KITTI benchmark. While the above methods work
with a (partially) discretized parameter space, we consider continuous variables, which
results in a differentiable objective function, for which established and soundly studied
numerical method are available. The objective function enables us to perform a joint
optimization in all variables.

Since our approach utilizes a scene description by piecewise planar surfaces, it
closely relates to estimating multiple homographies explaining the optical flow in-
duced by the motion of a camera relative to planar surfaces. The seminal works [14,26]
showed that the set of homographies of any number of views is embedded in a four
dimensional subspace which also carries a manifold structure [6]. Recent approaches
[4,17] are based on inter-homography constraints and do not require camera calibra-
tion. In contrast, our method assumes the intrinsic camera parameters to be known.
This requirement comes with the advantage, that the planes can be estimated physically
correctly (up to a global scale).

The approach presented in this work builds upon an accurate estimation of the op-
tical flow for which we can resort to existing and publicly available methods that have
proven to be accurate in the considered scenario. We choose to the top ranked monocu-
lar optical flow method [19] in the KITTI benchmark with source code available.

2 Approach Overview

Preliminaries, Notation. Throughout this paper, we consider scenarios where a 3D
scene is recorded by a projective camera from two different perspectives. We denote 3D
points by X ∈ R3. W.l.o.g. we assume the first camera position to be (0, 0, 0)> with
viewing direction (0, 0, 1)> and refer to the image recorded from this position by I1.
We denote the projection of a point X onto the first image plane by x = π(X) ∈ Ω
with image domain Ω ⊂ R2. Assuming the intrinsic camera parameter to be known we
can w.l.o.g. utilize normalized image coordinates, i.e. π(X) := X−13

(
X1

X2

)
.

For the second recording, the camera is rotated with rotation matrix R ∈ SO(3) and
translated by vector t ∈ S2. We refer to (R, t) as the extrinsic camera parameters. The
translation is constrained to unit norm, since scene scale cannot be determined from
monocular images. The projection of a point X onto the second image plane then is
given as x′ := π(R>(X − t)) and the acquired image is denoted by I2.

We aim at representing the reconstructed scene by a number of space planes which
we parametrize by v ∈ R3, such that any space point X ∈ R3 lying on the plane fulfills
〈v,X〉 = 1. Assuming that the scene can be (locally) represented by plane parameters v,
the apparent motion induced by the camera movement is described by

x′ = π (H(R, t, v) ( x1 )) , (1)

with the homography H(R, t, v) := R>(I − tv>) (cf. e.g. [10, Chap. 13]).
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Finally, we estimate planes on a pre-computed connected partition {Ωi}i (superpix-
els) of the first image using the SLIC (Simple Linear Iterative Clustering) method [2].
We further define the common boundary of superpixel i and j by ∂ij := Ωi ∩Ωj . The
set of all neighboring superpixel pairs is denoted by NΩ := {(i, j)|i, j ∈ {1, . . . , n},
∂ij 6= ∅}. We assume that all space points X ∈ R3 projected to superpixel i ∈
{1, . . . , n}, i.e. π(X) ∈ Ωi, lie on a plane parametrized by vi ∈ R3, see Fig. 2 for
an illustration. Using (1) we gain a low-parametric model for the optical flow

u(x;R, t, v) := x′ − x = π(H(R, t, v) ( x1 ))− x. (2)

Then, for an observed optical flow û : Ω 7→ R2 which approximately transports
I1 to I2 we formulate the inverse problem of determining the piecewise planar scene
description v := (v1, . . . , vn) ∈ R3n and camera motion (R, t), which explains û, as
finding a solution to the problem

min
R∈SO(3),t∈S2,v∈R3n

E(R, t, v). (3)

The energy function E(R, t, v) furthermore incorporates priors on the scene structure
and is detailed in Sect. 3.

Ωi

Ωj

Ω

x

∂ijxic

x
j
c

O

Fig. 2: Best viewed in color. Projective camera and discretization. Two rectangular su-
perpixels Ωi, Ωj in the image domain Ω and two space planes parametrized by vi, vj

and restricted to the cone defined by the camera origin O and the superpixel coverage.
Regularity of depth is evaluated at all positions x ∈ ∂ij (blue dots) along common su-
perpixel boundaries – see Sect. 3.2. The non-negativity prior on depth is evaluated on
superpixel centers xic, x

j
c (red dots) – see Sect. 3.4.

3 Variational Approach

Our energy function E(R, t, v) decomposes into

E(R, t, v) = Eu(R, t, v) + λzEz(v) + λvEv(v) + λpEp(v), (4)
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where Eu is the data fidelity term, Ez and Ev are priors on the depth and the plane
parameters, respectively and Ep is a term penalizing negative depth values. We detail
all four terms in Sects. 3.1–3.4. The terms are coupled via the positive weighting pa-
rameters λz , λv and λp. Our choice for these parameters is provided in the experimental
section, cf. Sect. 4. Our numerical approach to minimize (4) is presented in Sect. 3.5.

3.1 Data Fidelity

The fidelity term Eu(R, t, v) in our optimization problem is the deviation of an ob-
served optical flow û(x) from our model (2) and is defined as

Eu(R, t, v) :=

n∑
i=1

∑
x∈Ωi

wû(x)‖u(x;R, t, vi)− û(x)‖22 . (5)

Here, wû(x) ≥ 0 denotes a spatially varying weighting of the data term which is pro-
vided by a confidence measure of the optical flow algorithm as detailed next.

Optical Flow Estimation. The optical flow û between images I1 and I2 as required by
the data term (5) is computed in a pre-processing step using the algorithm Data-Flow
being the highest ranked publicly available monocular implementation (cf. [19]) in the
KITTI optical flow challenge.

We complement the output obtained from Data-Flow with a confidence mapwû(x),
which avoids the influence of flow vectors which are considered incorrect. To this end
we also estimate the backward flow between I2 and I1, providing an estimate û−1(x) of
the inverse mapping of û(x). Only points that are consistently mapped forth and back
are considered correct and we define the confidence map as

wû(x) := exp
(
− 1

2‖x− (û−1 ◦ û)(x)‖22/σ2
û

)
(6)

with value σû > 0. Experimentally, we found the value σû = 1
2
√
2

to be suitable.

3.2 Smoothness Prior on Depth

In order to enforce that planes of neighboring superpixels form a seamlessly connected
surface in most parts of the image, we introduce the priorEz(v) as follows. We consider
points on the common boundary x∂ ∈ ∂ij of superpixel i and j and penalize deviations
of their inverse depth z−1(x∂ , v) = x>∂ v according to the two plane models vi and vj ,
see Fig. 2 for an illustration.

In order to encourage sharp depth edges we make use of the generalized Charbon-
nier functional

ρC(x) := (x2 + ε)α − εα. (7)

We choose ε = 10−10 and α = 1/4 throughout the work, so that ρ2C(x) smoothly
approximates |x|. Then the energy function for one boundary ∂ij reads as

Eijz (v) :=
∑
x∈∂ij

ρ2C(x
>vi − x>vj). (8)
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Note that we opted to compare inverse depth z−1(x, v) due to a superior numerical per-
formance and reconstruction. Then the global smoothness term consists of a weighted
sum of Eijz over all neighboring superpixels (i, j) ∈ NΩ :

Ez(v) :=
∑

(i,j)∈NΩ

wijΩE
ij
z (v) . (9)

The weights wijΩ ≥ 0 are computed based on appearance differences , i.e.

wijΩ := exp
(
− 1

2 (mi −mj)
2/σ2

Ω

)
, (10)

where mi and mj are the mean gray values of frame I1 in superpixel Ωi and Ωj ,
respectively. For parameter σΩ , we use a fixed value of 0.2.

3.3 Smoothness Prior on Plane Parameters

In addition to seamless surfaces on superpixel boundaries, we aim at plane parameters
which up to a small set of discontinuities are constant over the image domain. This
property encourages large connected planar structures.

For the plane smoothness prior we employ again the Charbonnier function ρC
(see (7), here applied component-wise), and the boundary weights wijΩ from (10):

Ev(v) =
∑

(i,j)∈NΩ

wijΩ‖ρC(v
i − vj)‖22 . (11)

3.4 Positive Depth Prior

As a further constraint, we require all observed space points to be in front of the camera.
Thus, we introduce an additional prior Ep. We apply a soft hinge function

ρ+(x) :=


1− 2x x ≤ 0

(1− x)2 0 < x ≤ 1

0 1 < x

, (12)

to the inverse depth given by z−1(xic, v
i) =

〈(
xic
1

)
, vi
〉

, evaluated at superpixel cen-

ters xic ∈ Ωi, see Fig. 2. Summing over all superpixels, this leads to

Ep(v) =

n∑
i=1

ρ2+(z
−1(xic, v

i)) . (13)

3.5 Optimization

The considered optimization task (3) comprises a non-convex smooth energy func-
tion (4) and manifold constraints R ∈ SO(3) and t ∈ S2. In order to find a local
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minimum of E(R, t, v), we choose the Levenberg-Marquardt method [11], which has
been adapted to Riemannian manifolds in [1].

The proposed energy functionE(R, t, v) can be decomposed into a sum ofm squared
functions fj(R, t, v), where m = 2|Ω|+

∑
(i,j)∈NΩ |∂ij |+ 3|NΩ |+ n, i.e.

E(R, t, v) =

m∑
j=1

(fj(R, t, v))
2 = ‖f(R, t, v)‖22 , (14)

with f(R, t, v) := (f1(R, t, v), . . . , fm(R, t, v))> ∈ Rm.
We combine the variables into a joint vector Y := (R, t, v) and locally re-parame-

trize Y near (Rk, tk, vk) by parameters η := (ω, δt, δv)> ∈ R3+3+3n as

Y (η) := (Rk Exp([ω]×), ΠS2(tk + δt), v
k + δv). (15)

Here, Exp(·) is the matrix exponential function applied to the skew-symmetric ma-

trix [ω]× :=
( 0 −ω3 ω2

ω3 0 −ω1
−ω2 ω1 0

)
, which can be efficiently evaluated using the Rodrigues’

rotation formula, c.f. [10]. Furthermore, ΠS2(t) := t/‖t‖2 denotes the orthogonal pro-
jection of t to S2. Using first order Taylor expansion we obtain an approximation of
f(Y (η)) in Y = (Rk, tk, vk),

f̃k(η) := fk(0) +
(
J fk(η)

∣∣
η=0

)
η , (16)

with Jacobian J fk of fk. The Jacobian is obtained for the rotation and translation
by differentiating the function compositions ∂

∂ω (f ◦ Exp)(ω) and ∂
∂t (f ◦ ΠS2)(t), re-

spectively. Substituting this approximation in (14) yields a model of the actual energy
function Ẽk(η). However, we augment this objective function by a step regularization
term in order to cope with strongly non-linear terms:

min
η
Ẽk(η) + µk‖η‖22. (17)

The resulting objective is quadratic in η and thus can be solved efficiently. The update
rule for the damping parameter µk is described in [1]. A limit of 80 iterations was used
as stopping criterion which was sufficient for most of the considered data. We again
stress the fact that the minimization of E(R, t, v) is performed jointly w.r.t. R, t, v.

4 Experiments

Evaluation Methodology. In the following we evaluate the quality of scene descrip-
tion and egomotion estimate separately, see paragraphs Plane Parameter Evaluation
and Camera Motion Evaluation below. The KITTI benchmark database [7] provides a
suitable image data source as it is annotated with accurate depth and egomotion esti-
mates. As reference surface normal information is not available in these data sets and
no monocular approach with publicly available code can be compared to, we resort to
a state-of-the-art stereo method [24], which is highly ranked as SPS-St in the KITTI
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stereo benchmark. It provides scene depth as well as a surface normals and can be as-
sumed to be very accurate due to the well-posed stereo setup.

The KITTI odometry benchmark contains reference camera poses for a small num-
ber of sequences. Based on this reference data, we compare the odometry results of our
approach to those of the freely available monocular approach VISO2-M [8].

Parameter Choice. In order to reduce errors caused by optical flow vectors pointing
outside the image area, we apply our method to an image pair in inverse temporal
order. The camera motion is thus initialized by a trivial backward motion R = I ,
t = (0, 0,−1)> and flat scene v = (0, 0, 0.001)> everywhere. Furthermore, we chose
λz = 0.05, λv = 0.001 and λp = 0.1 – see (4) – throughout the experiments.

Plane Parameter Evaluation. In contrast to stereo methods, the accuracy of depth es-
timates of monocular methods varies depending on the projected position in the image
plane and camera motion. We adopt the error measure proposed in [3] between esti-
mated depth z(x) and reference depth zref(x) which respects this varying sensitivity,

e(x) := F
|z(x)− zref(x)|
σg(zref(x), x)

(18)

with F denoting the camera’s focal length in pixels.

ceiling

floor

rightleft rear

(a) (b) (c) (d) (e)

Fig. 3: Best viewed in color. (a) Approximate visually equidistant color scheme for plane
normal visualization used throughout the work. (b) Exemplarily frame of a simple syn-
thetic sequence and (c) ground truth normals, and normals as reconstructed by (d) SPS-
St and (e) our method.

Estimating the global scale inherently unknown in a monocular setting allows a
quantitative comparison to metric reference data. To this end we approximate the scale
as the median of the depth ratios z(x)/zref(x) on the most reliable 10% according to
sensibility prediction similar as done in [3].

Table 1 lists summarizing statistics of errors e(x) computed over all pixels with ref-
erence depth zref (calculated from disparities) for 194 frames. A qualitative comparison
against the stereo method SPS-St is given in Fig. 4.

Plane normal parameters are qualitatively compared to those obtained from [24] in
Fig. 4 and Fig. 5. For a quantitative comparison, we use 240 frame pairs (each with
1280×720 pixels) from four simple ray-traced scenes but with known ground truth
normals, see Fig. 3 for an example. Results for our method and SPS-St are presented in
Table 2. We use the same parameters as on the KITTI dataset with both methods. We
observe that despite the less favorable monocular setup the error of the plane normals
estimated by the proposed method is smaller than the errors from SPS-St.
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0 m 60 m

(a) Depth color map (clipped)

-10 m +10 m

(b) Depth difference color map (clipped)

(c) Sequence 9 (d) Sequence 19

(e) Sequence 23 (f) Sequence 24

Fig. 4: Best viewed in color. Depth and plane normal comparison between our monoc-
ular and a reference stereo method [24]. From top to bottom, and left to right, each
subfigure shows (top row) the reference frame and depth difference, (middle row) refer-
ence and estimated depth and (bottom row) reference and estimated normals. The depth
values and depth differences are encoded as depicted in (a) and (b), respectively. The
encoding of plane normals is illustrated in Fig. 3. Both depth and normal reconstruc-
tions mostly agree, but there is a loss in reconstruction detail near the epipole (near
image center), see e.g. (d), which is an inherent problem of all monocular setups. Note
that especially the ground surface is reconstructed well in most cases.

Fig. 5: Best viewed in color. Detailed views of scene reconstruction by (center) SPS-
St and (right) our monocular method, showing depth and plane normals for both. Top
row: our method uses less connected planes to explain the object. Lower row: the stereo
method reconstructs the tree trunk overly wide but with sharp borders while our solution
is more detailed but has smoother edges.
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noc occ
mean e [px] p2px [%] p3px [%] mean e [px] p2px [%] p3px [%]

our method 4.09 12.9 8.63 4.88 13.6 9.17
SPS-St 3.15 12.6 7.46 9.12 13.8 8.57

Table 1: Depth accuracy of our monocular method and stereo reference method SPS-St,
evaluated on the KITTI stereo benchmark training data, distinguishing between areas
without (noc) and with occluded areas (occ) as specified in the benchmark. Mean of
depth error measurement e(x) (see (18)) and percentage of pixels with error e > 2 px
and e > 3 px, respectively. Our approach shows similar performance as SPS-St despite
the less beneficial parallax and unknown camera position.

mean [deg.] p1deg. [%] p2deg. [%] p5deg. [%] p10deg. [%]

our method 11.5 58.4 45.5 31.1 22.7
SPS-St 14.8 79.4 66.6 46.4 33.4

Table 2: Plane normal errors for four synthetic sequences with known normals, see
Fig. 3. The normal angle error w.r.t. ground truth is evaluated over 240 scene recon-
structions. Note that we do not use a normalization scheme as in eq. (18). Our method
outperforms the stereo method despite the less favourable monocular setup.

Egomotion Evaluation. We evaluate the egomotion accuracy of the proposed method
as well as a reference method [8] on the first 100 frames of the first 11 KITTI odometry
sequences which all provide ground truth camera poses. We determine the angle error
of the camera rotation and – due to the ambiguity in global scale – also between the
translation vectors. Our method has an average rotational error of 0.057◦ and translation
error of 3.86◦, and performs better than the reference method VISO2-M [8] with errors
0.18◦ and 6.0◦, respectively.

5 Conclusion and Further Work

We presented a variational method for estimating relative camera positions and planar
scene structure from two views of a static scene. An objective function over egomotion
and scene planes defined on superpixels was formulated and minimized continuously.
We demonstrated that our monocular approach provides a scene reconstruction with
reasonable accuracy in depth and plane normals compared to an approach in the less
challenging stereo setup. Egomotion estimates also show a slightly better performance
than a state-of-the-art odometry method. Future directions are extension to multiple
frames, explicitly handling depth discontinuities and simultaneous estimation of flow
and scene parameters.
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pared to State-of-the-art Superpixel Methods. IEEE Trans Pattern Anal Mach Intell 34 (11),
2274 – 2282 (2012) 4
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11. Moré, J.J.: The Levenberg-Marquardt algorithm: Implementation and Theory. In: Numerical
analysis, pp. 105–116. Springer (1978) 7

12. Newcombe, R.A., Davison, A.J.: Live dense reconstruction with a single moving camera. In:
CVPR (2010) 2

13. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: Dense Tracking and Mapping in
Real-Time. In: ICCV. pp. 2320–2327 (2011) 2

14. Shashua, A., Avidan, S.: The Rank 4 Constraint in Multiple (≥ 3) View Geometry. In: ECCV
(1996) 3

15. Stühmer, J., Gumhold, S., Cremers, D.: Parallel Generalized Thresholding Scheme for Live
Dense Geometry from a Handheld Camera. In: CVGPU (2010) 2

16. Stühmer, J., Gumhold, S., Cremers, D.: Real-time dense geometry from a handheld camera.
In: Pattern Recognition (Proc. DAGM) (2010) 2

17. Szpak, Z.L., Chojnacki, W., Eriksson, A., van den Hengel, A.: Sampson Distance Based Joint
Estimation of Multiple Homographies with Uncalibrated Cameras. Comput Vis Image Und
125, 200–213 (2014) 3

18. Tola, E., Strecha, C., Fua, P.: Efficient large-scale multi-view stereo for ultra high-resolution
image sets. Machine Vision and Applications 23(5), 903–920 (Sep 2012) 2

19. Vogel, C., Roth, S., Schindler, K.: An Evaluation of Data Costs for Optical Flow. In: German
Conference on Pattern Recognition (GCPR) (2013) 3, 5

20. Vogel, C., Roth, S., Schindler, K.: View-Consistent 3D Scene Flow Estimation over Multiple
Frames. In: ECCV (2014) 3

21. Vogel, C., Schindler, K., Roth, S.: Piecewise Rigid Scene Flow. In: ICCV (2013) 3
22. Wendel, A., Maurer, M., Graber, G., Pock, T., Bischof, H.: Dense Reconstruction On-the-fly.

In: CVPR (2012) 2
23. Yamaguchi, K., Hazan, T., McAllester, D., Urtasun, R.: Continuous Markov Random Fields

for Robust Stereo Estimation. In: ECCV (2012) 3



12 A. Neufeld, J. Berger, F. Becker, F. Lenzen and C. Schnörr
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