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Algebraic reconstruction techniques (ARTs), on both their successive and simultaneous formulations, have
been developed since the early 1970s as efficient ‘row-action methods’for solving the image-reconstruction
problem in computerized tomography. In this respect, two important development directions were con-
cerned with, first, their extension to the inconsistent case of the reconstruction problem and, second, their
combination with constraining strategies, imposed by the particularities of the reconstructed image. In
the first part of this paper, we introduce extending and constraining procedures for a general iterative
method of an ART type and we propose a set of sufficient assumptions that ensure the convergence of
the corresponding algorithms. As an application of this approach, we prove that Cimmino’s simultaneous
reflection method satisfies this set of assumptions, and we derive extended and constrained versions for it.
Numerical experiments with all these versions are presented on a head phantom widely used in the image
reconstruction literature. We also consider hard thresholding constraining used in sparse approximation
problems and apply it successfully to a 3D particle image-reconstruction problem.

Keywords: algebraic reconstruction techniques; inconsistent least-squares problems; constraining strate-
gies; Cimmino algorithm; Cimmino extended algorithm; hard thresholding operator
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1. Introduction

Many classes of ‘real-world problems’ give rise, after appropriate discretizations, to big, sparse
and ill-conditioned linear systems of equations of the form Ax = b, where the m× n matrix
A contains information concerning the problem, whereas b ∈ Rm represents measured ‘effects’
produced by the unknown ‘cause’ x ∈ Rn. But, due to inevitable measurement errors, the ‘effect’
b may go out of the ‘range of action’ of the problem information matrix A, such that the above
system of equations becomes inconsistent and must be reformulated in the least-squares sense:
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2 A. Nicola et al.

find x ∈ Rn such that

‖ Ax − b ‖= min{‖ Az − b ‖, z ∈ Rn}, (1)

where ‖ · ‖ is the Euclidean norm in Rn.

Remark 1 Concerning the matrix involved in Equation (1), in the remainder of this paper, we
suppose that it has non-zero rows Ai and columns Aj, that is,

Ai %= 0, i = 1, . . . , m, Aj %= 0, j = 1, . . . , n. (2)

These assumptions are not essential restrictions of the generality of problem (1) because if A has
null rows and/or columns, it can be easily proved that they can be eliminated without affecting
its set of classical solutions (denoted by S(A; b) in the consistent case) or least-squares solutions
(denoted by LSS(A; b) in the inconsistent case).

A very important example of such problems (tackled by the numerical experiments in the last
section of this paper) is the image reconstruction from projections in computerized tomography.
Its algebraic mathematical model, although essentially based on an integral equation formulation,
gives rise after the ‘rays× pixels’discretization procedure (for details, see [6,15]) to least-squares
problems of the form (1). For the numerical solution of these problems, a class of algebraic
reconstruction techniques (ARTs) were developed in the last 40 years (see [6] and references
therein). These methods are iterative ‘row-action’ algorithms (i.e. they use rows or blocks of rows
of the system matrix A in each iteration, without changing the values of its entries or its structure;
see [6]) and are ‘classified’ according to the way in which the rows/blocks of rows are ‘visited’
in each iteration:

(i) successive ART, having as the standard method the Kaczmarz algorithm [18] and
(ii) simultaneous ART, having as the standard method Cimmino’s algorithm [9].

According to these standard algorithms, in this paper, we consider ART-like methods of the
following general form.

Algorithm 1 General ART (GenART)
Initialization: x0 ∈ Rn.
Iterative step:

xk+1 = Txk + Rb, (3)

where T and R are n× n, respectively, n× m, real matrices.

Remark 2 We introduce the following assumption on the matrices T and R: they have an explicit
expression in terms of the rows of A and components present on the right-hand side of Equation
(1), that is, if we change A and b to Ā and b̄, in a way similar to that used in Equation (3), we
can define an iterative process of the form xk+1 = T̄xk + R̄b̄. Examples in this sense are given by
the projection algorithms appearing in image reconstruction from projections: Kaczmarz, Cim-
mino, Landweber, Diagonal Weighting (DW), Simultaneous Algebraic Reconstruction Technique
(SART), etc. (see e.g. [5–7,12,15,17,19,20,30] and references therein).

Almost all these projection algorithms generate sequences convergent to a solution of problem
(1) in the consistent case, whereas in the inconsistent one, the sequence (xk)k≥0 still converges,
but the limit is not an element of LSS(A; b) any more. In this respect , their extensions have been
designed for the inconsistent case of Equation (1), which are based on relaxation parameters,
column relaxations or supplementary steps introduced in the iteration (see [3,10,21,23,25,29]
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and references therein). Moreover, for problems related to image reconstruction in computerized
tomography, their specific iteration step like Equation (3) was combined with a constraining
strategy, usually acting on the components of the successive approximations xk = (xk

1, . . . , xk
n)

T

[19,23,26].
In this paper, we analyse from these points of view the general ART algorithm (3). The paper

is organized as follows. In Section 2, we present the essential assumptions on the matrices T and
R from Equation (3), which ensure the possibility to both extend it to inconsistent problems and
combine it with a class of constraining strategies. Moreover, we prove that these assumptions
are sufficient for obtaining convergence results for the extended and constrained versions of the
general ART method. As an application of these main results of the paper, in Section 3, we prove
that Cimmino’s reflection algorithm [9] satisfies all the above assumptions and we derive its
extended and constrained versions. Even though Cimmino’s method was created many years ago,
it can now be regarded as a special case of the Landweber method, such that the constrained
Cimmino algorithm can be retrieved as a particular ‘projected Landweber method’ [1] or as a
‘gradient projection’ algorithm [14]. The fact that it was used in this section as an application for
the considerations given in Section 2 is only a historical point of view.

The extension procedure proposed in Equations (36)–(38) differs from the older ‘multi-step’
methods [3,29] or methods that use the associated augmented system (which is always consistent)
in the inconsistent case for Equation (1). As motivation, we consider the following two aspects:
first, the modification on the right-hand side in Equation (37) is included in the iteration of the
extended algorithm and thus in the global convergence of the algorithm (so accumulation of errors
does not appear due to approximate solutions in the different steps of the ‘multi-step’ methods)
and, second, the fact that by acting on the initial problem, the extended method (36)–(38) is
influenced by its condition number and not by the squared one, as in the case of an augmented
system or a normal equation (see [2] and the numerical experiments in [21]). Moreover, we
would like to point out that the extending and constraining approach developed under assump-
tions (36)–(38) is quite general and can be applied to other algorithms too (e.g. DW or SART
algorithm [17]), for which it will be possible to prove these assumptions. Moreover, once these
assumptions are verified, we get three new algorithms: extended, constrained and constrained
extended.

The last section of the paper is devoted to experiments with all these versions on a phantom
widely used in the literature. Moreover, we consider different constraining strategies, including
hard thresholding, and compare these in the context of particle image reconstruction.

2. The general extending and constraining procedures

First, we introduce some notation. The spectrum and spectral radius of a square matrix are denoted
by σ (B) and ρ(B), respectively. By AT, N (A) and R(A), we denote the transpose, null space
and range of A. PS(x) is the orthogonal (Euclidean) projection onto a vector subspace S of Rn.
〈·, ·〉 denotes the Euclidean scalar product in Rn, and S(A; b) and LSS(A; b) stand for the set of
classical or least-squares solutions of Equation (1), respectively. By xLS, we denote the (unique)
solution with minimal Euclidean norm (in both cases). In the general case for Equation (1), the
following properties are known:

b = PR(A)(b) + PN (AT)(b), (4)

LSS(A; b) = {PN (A)(z) + xLS, z ∈ Rn}, x ∈ LSS(A; b) ⇔ Ax = PR(A)(b), (5)

S(A; b) = {PN (A)(z) + xLS, z ∈ Rn} and x ∈ S(A; b) ⇔ Ax = b. (6)
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4 A. Nicola et al.

Moreover, xLS is the unique element of LSS(A; b) (or S(A; b)) which belongs to the subspace
R(AT). The spectral norm of A is defined by

‖ A ‖= sup
x %=0

‖ Ax ‖
‖ x ‖ = sup

‖x‖=1
‖ Ax ‖. (7)

Now, we introduce the following basic assumptions on the above-considered matrices T and R:

I− T = RA, (8)

if x ∈ N (A), then Tx = x ∈ N (A), (9)

if x ∈ R(AT), then Tx ∈ R(AT), (10)

∀y ∈ Rm, Ry ∈ R(AT), (11)

if T̃ = TPR(AT), then ‖ T̃ ‖< 1. (12)

Proposition 2.1 If Equations (8)–(12) hold, then the following are true:

(i) I− T̃ is invertible and the n× m matrix G defined by

G = (I− T̃)−1R (13)

satisfies

AGA = A and GPR(A)(b) = xLS. (14)

(ii) The matrix T has the properties

‖ Tx ‖=‖ x ‖ if and only if x ∈ N (A) (15)

and

‖ T ‖≤ 1. (16)

(iii) For the approximations xk , k ≥ 0, generated with algorithm (3), we have

PN (A)(xk) = PN (A)(x0), ∀k ≥ 0. (17)

Proof (i) From Equation (12) [2], it results that the matrix I− T̃ is invertible and

(I− T̃)−1 =
∑

i≥0

T̃i. (18)

From the definition of T̃ in Equations (12) and (9) [30], we get

T = PN (A) + T̃, T̃PN (A) = PN (A)T̃ = 0. (19)

Then, from Equations (8), (13), (19) and (18), we successively obtain

AGA = A(I− T̃)−1RA = A(I− T̃)−1(I− T)

= A(I− T̃)−1((I− T̃)− PN (A)) = A− A(I− T̃)−1PN (A) = A,

that is, the first equality in Equation (14). Then, because PR(A)(b) ∈ R(A), we get from the
first equality in Equation (14) AGPR(A)(b) = PR(A)(b), which means that x∗ = GPR(A)(b) ∈
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LSS(A; b) [2]. But from Equations (11) and (18) and the definition of T̃, it results that x∗ ∈ R(AT),
that is, x∗ = xLS, thus by the unicity of xLS, which proves the second equality in Equation (14).

(ii) The ‘if’ part results directly from Equation (9). For the ‘only if’ one, let x ∈ Rn be such that
‖ Tx ‖=‖ x ‖ holds. Then, if x = x′ + x′′ = PN (A)(x) + PR(AT)(x), and x′′ %= 0, from Equations
(9) and (10), we get Tx′ ∈ N (A) and Tx′′ ∈ R(AT). Thus, by also using Equation (12), we
successively obtain

‖ Tx ‖2=‖ Tx′ ‖2 + ‖ Tx′′ ‖2 ≤‖ x′ ‖2 + ‖ T̃ ‖2 ‖ x′′ ‖2

<‖ x′ ‖2 + ‖ x′′ ‖2=‖ x ‖2, (20)

which contradicts our initial assumption about the vector x. It follows that x′′ = 0, that is, x ∈
N (A). The inequality (16) results from Equation (20) for an arbitrary x ∈ R (in which case the
last inequality is not any more strict).

(iii) We use the mathematical induction. Let us suppose that k ≥ 0 is such that Equation (17)
holds. For k + 1, we have, by also using Equations (3) and (19)

xk+1 = Txk + Rb = PN (A)(xk) + T̃xk + Rb.

But from Equations (10) and (11), we obtain that T̃xk + Rb ∈ R(AT), that is, PN (A)(xk+1) =
PN (A)(xk) = PN (A)(x0), which completes the proof. !

The convergence properties of the algorithm GenART (3) are given in the following result.

Theorem 2.2 Let us suppose that the matrices T and R satisfy assumptions (8)–(12). Then, for
any x0 ∈ Rn, the sequence (xk)k≥0 generated with algorithm (3) converges and

lim
k→∞

xk = PN (A)(x0) + Gb. (21)

If problem (1) is consistent, then

Gb = xLS and lim
k→∞

xk = PN (A)(x0) + xLS ∈ S(A; b). (22)

Proof Let ek = xk − (PN (A)(x0) + Gb) be the error vector at iteration k (see Equation (21)).
Using Equations (3), (13), (17) and (20), we successively obtain

ek = xk − (PN (A)(x0) + Gb) = xk − [PN (A)(x0) + [(I− T̃) + T̃](I− T̃)−1Rb]
= T̃xk−1 − T̃(I− T̃)−1Rb = T̃(xk−1 − PN (A)(x0)−Gb) = T̃ek−1,

and by a recursive argument,
ek = T̃ke0, ∀k ≥ 0. (23)

But according to Equation (12), we get that limk→∞ ek = 0, from which we get Equation (21).
The second part of the theorem (22) results from Proposition 2.1(i). !

Theorem 2.3 Let x∗ be the limit point in Equation (21). Then, we have the a priori estimate

‖xk − x∗‖ ≤ κk

1− κ
‖x0 − x1‖ (24)

and the a posteriori estimate

‖xk+1 − x∗‖ ≤ κ

1− κ
‖xk+1 − xk‖, (25)

where κ = ‖T̃‖. In particular, the convergence rate of sequence (xk)k≥0 is linear.
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6 A. Nicola et al.

Proof Let (xk)k≥0 be the sequence generated by GenART for an arbitrary initial approximation
x0 ∈ Rn and suppose that the matrices T and R satisfy assumptions (8)–(12). Then, using Equation
(17), we can rewrite Equation (3) as

xk+1 = T̃xk + PN (A)(x0) + Rb =: F(xk), (26)

since we can decompose T according to Equation (19). The mapping F : Rn −→ Rn is a con-
traction with the Lipschitz constant κ := ‖T̃‖. Banach’s fixed-point theorem asserts, additionally
to the convergence of sequence (xk)k≥0 to a fixed point of F, the estimates in Equations (24) and
(25). !

Remark 3 We claim that the above set of sufficient assumptions (8)–(12) is also necessary to
obtain the results in Proposition 2.1 and Theorem 2.2, but we do not have a rigorous proof of this
statement yet.

According to Remark 2 given in Section 1, let U and S be the m× m, respectively, m× n,
matrices, similar to T and R from Equation (3), respectively, but for the (always consistent)
system

ATy = 0. (27)

Example 2.4 For the classical Kaczmarz successive projection method, the n× n matrix T is
given by

T(x) = (f1 ◦ · · · ◦ fm)(x), fi(x) = Pi(x) + bi

‖ Ai ‖2
Ai,

Pi(x) = x − 〈x, Ai〉
‖ Ai ‖2

Ai, x ∈ Rn, i = 1, . . . , m, (28)

and R is the n× m matrix of which the ith column is (1/‖ Ai ‖2)P1 · · · Pi−1 (where P0 is, by
definition, the identity). In this case, the above matrices U and S are obtained by just applying
the above construction for system (27), that is, by replacing m with n and the rows of A with its
columns and setting b = 0, namely

U(y) = (φ1 ◦ · · · ◦ φn)(y), φi(y) = y − 〈x, Aj〉
‖ Aj ‖2

Aj, y ∈ Rm, j = 1, . . . , n, (29)

and S is the m× n matrix of which the jth column is (1/‖ Aj ‖2)φ1 · · · φj−1 (where φ0 is, by
definition, the identity).

Then, the corresponding algorithm of the form (3) with U and S will be written as

yk+1 = Uyk + S · 0 = Uyk , ∀k ≥ 0, (30)

with y0 ∈ Rm being the initial approximation. Our general assumptions (8)–(12) and Proposi-
tion 2.1 will assign the following properties to the matrix U:

U(N (AT)) ⊂ N (AT), U(R(A)) ⊂ R(A), (31)

if Ũ = UPR(A), then U = PN (AT) ⊕ Ũ and PN (AT)Ũ = ŨPN (AT) = 0, (32)

Uk = PN (AT) ⊕ Ũk , ‖ Ũ ‖< 1 and PN (AT)(yk) = PN (AT)(y0), ∀k ≥ 0. (33)

Moreover, according to Theorem 2.2, the following convergence result will hold for algorithm (30).
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International Journal of Computer Mathematics 7

Theorem 2.5 For any y0 ∈ Rm, the sequence (yk)k≥0 generated with algorithm (30) converges
and

lim
k→∞

yk = PN (AT)(y0). (34)

Proof Let

εk = yk − PN (AT)(y0) (35)

be the error vector at iteration k (see Equation (34)). Using Equations (30), (32), (33) and (35),
we successively obtain

εk = Uyk−1 − PN (AT)(y0) = Ũyk−1 + PN (AT)(yk−1)− PN (AT)(y0) = Ũyk−1

= Ũ(yk−1 − PN (AT)(y0)) = Ũek−1.

But from Equation (33), we get limk→∞ εk = 0, from which Equation (34) holds and completes
the proof. !

If y0 = b, from Equation (34), we would get limk→∞ yk = PN (AT)(b), thus limk→∞(b− yk) =
PR(A)(b). This simple observation allows us to consider the following extension of the general
algorithm GenART.

Algorithm 2 Extended General ART (EGenART)
Initialization: x0 ∈ Rn, y0 = b.
Iterative step:

yk+1 = Uyk , (36)

bk+1 = b− yk+1, (37)

xk+1 = Txk + Rbk+1. (38)

Theorem 2.6 Let us suppose that the matrices T and R satisfy Equations (8)–(12) and U is
as described earlier. Then, for any x0 ∈ Rn, the sequence (xk)k≥0 generated with algorithms
(36)–(38) converges and

lim
k→∞

xk = PN (A)(x0) + xLS ∈ LSS(A; b). (39)

Proof Let ek = xk − (PN (A)(x0) + xLS) be the error vector at iteration k ≥ 1 (see Equation (39)).
Using Equations (13), (14), (17), (19), (37) and (38), we successively obtain

ek = xk − (PN (A)(x0) + xLS)

= Txk−1 + Rbk − [PN (A)(x0) + [(I− T̃) + T̃](I− T̃)−1RPR(A)(b)]
= PN (A)(xk−1) + T̃xk−1 + Rbk − PN (A)(x0)− RPR(A)(b)− T̃GPR(A)(b)

= T̃xk−1 + Rbk − RPR(A)(b)− T̃GPR(A)(b)

= T̃(xk−1 − PN (A)(x0)− xLS) + R(b− yk − PR(A)(b)). (40)

Because y0 = b, from Equations (4) and (30), we get

yk = Uyk−1 = Ũyk−1 + PN (AT)(b), ∀k ≥ 1. (41)
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8 A. Nicola et al.

From Equations (4) and (41), we obtain

R(b− yk − PR(A)(b)) = −RŨyk−1,

which gives us, according to Equation (40),

ek = T̃ek−1 − RŨyk−1, ∀k ≥ 1. (42)

A recursive argument gives us from Equation (42)

ek = T̃ke0 −
k∑

i=1

T̃i−1RŨyk−i, ∀k ≥ 1. (43)

Now, from Equations (32) and (36), we get Ũy0 = Ũb, Ũy1 = ŨUy0 = Ũ(Ũ + PN (AT))y0 = Ũ2b
and, in general, by mathematical induction,

Ũyj = Ũj+1b, ∀j ≥ 0. (44)

Now, using Equation (44) and taking Euclidean and spectral norms in Equation (43), we obtain

‖ ek ‖ ≤‖ T̃ ‖k e0 +
(

k∑

i=1

‖ T̃ ‖i−1‖ Ũ ‖k−i+1

)

‖ b ‖‖ R ‖

≤ δk ‖ e0 ‖ +
(

k∑

i=1

δi−1δk−(i−1)

)

‖ b ‖‖ R ‖= δk ‖ e0 ‖ +kδk ‖ b ‖‖ R ‖, ∀k ≥ 0,

(45)

where δ is defined by (see Equations (12) and (33))

δ = max{‖ T̃ ‖, ‖ Ũ ‖} ∈ [0, 1). (46)

According to Equations (45) and (46), we obtain limk→∞ ek = 0, from which Equation (39)
holds and completes the proof. !

Remark 4 A different extension procedure has been proposed in [11]. It uses similar ideas in the
convergence proof, but under different initial assumptions.

Remark 5 By using Equations (4), (13), (39) and the second equality in Equation (14), we obtain
that the limit (21) of the sequence (xk)k≥0 generated by Equation (3) can be written as

lim
k→∞

xk = PN (A)(x0) + (I− T̃)−1R(PR(A)(b) + PN (AT)(b))

= PN (A)(x0) + xLS + ', with ' = (I− T̃)−1RPN (AT)(b) = GPN (AT)(b). (47)

Koltracht and Lancaster [19] considered a constraining function, C : Rn −→ Rn, with a closed
image Im(C) ⊂ Rn and the properties

‖ Cx − Cy ‖≤‖ x − y ‖, (48)

if ‖ Cx − Cy ‖=‖ x − y ‖, then Cx − Cy = x − y, (49)

if y ∈ Im(C), then y = Cy. (50)
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Example 2.7 ‘Box-constraining’ function

(Cx)i =






xi, xi ∈ [αi, βi],
αi, xi < αi,
βi, xi > βi,

(51)

that is, C is the orthogonal projection onto the closed convex set V = [α1, β1]× · · ·× [αn, βn] ⊂
Rn, for which it is well known that Equations (48)–(50) hold [16] and its image is closed (Im(C) =
V ).

Example 2.8 A more general constraining function is the hard thresholding operator reported
in [4], which has the following general form (α ≥ 0):

Hα(y) = (hα(y1), . . . , hα(yn)), y = (y1, . . . , yn) ∈ Rn (52)

with

hα(yi) =
{

0, |yi| < α

yi, yi ∈ (−∞,−α] ∪ [α,∞)
, i = 1, . . . , n. (53)

From the definitions (52) and (53), it results that Im(Hα) ⊂ Rn is closed and hα(hα(xi)) =
hα(xi), ∀xi ∈ R, ∀i = 1, . . . , n. Thus, Hα(Hα(x)) = Hα(x), ∀x ∈ Rn, that is, assumption (50).
Unfortunately, the function Hα does not satisfy Equations (48) and (49).

Algorithm 3 Constrained General ART (CGenART)
Initialization: x0 ∈ Rn.
Iterative step:

xk+1 = C[Txk + Rb]. (54)

Theorem 2.9 Let us suppose that the matrices T and R satisfy Equations (8)–(12), the
constraining function C satisfies Equations (48)–(50) and the set V∗, defined by

V∗ = {y ∈ Im(C), y −' ∈ LSS(A; b)}, (55)

is non-empty. Then, for any x0 ∈ Im(C), the sequence (xk)k≥0 generated by the algorithm
CGenART converges and its limit belongs to the set V∗.

Proof We follow the ideas of the proof given in [19], but for the general matrices T and R from
Equation (3), satisfying assumptions (8)–(12). For this, first, we show that if h ∈ Im(C) and

g = C[Th + Rb], (56)

then for any y ∈ V∗,
‖ g− y ‖≤‖ h− y ‖ (57)

and either

‖ g− y ‖<‖ h− y ‖ (58)

or

g = h ∈ V∗. (59)

In this respect, for an arbitrary fixed y ∈ V∗, according to Equations (5) and (55), let z =
PN (A)(z) + xLS = y −' ∈ LSS(A; b), and ξ = xLS + ' (i.e. the limit from Equation (47) for
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10 A. Nicola et al.

x0 = 0). Because z − xLS ∈ N (A), from Equation (9), we obtain T(z − xLS) = z − xLS. Thus, by
also using Equations (14), (18) and (44), we get ξ = xLS + ' = G(PR(A)(b) + PN (AT)(b)) = Gb.
Thus, by also using Equations (11), (13) and (19), we successively obtain

(I− T)y = (I− T)(z + ') = (I− T)(z + ξ − xLS) = (I− T)ξ

= (I− T)Gb = [+(I− T̃)− PN (A)](I− T̃)−1Rb

= Rb− PN (A)(I− T̃)−1Rb = Rb, (60)

where in the last equality, we use the fact that PN (A)(I− T̃)−1Rb = 0, which holds from (I−
T̃)−1Rb ∈ R(AT) (see Equations (11), (12) and (18)). Now, Equations (56) and (60) give us

g− y = C[T(h− y) + y]− Cy, (61)

and thus from Equations (16), (48) and (50), we obtain

‖ g− y ‖=‖ C[T(h− y) + y]− Cy ‖≤‖ T(h− y) ‖≤‖ h− y ‖, (62)

that is, Equation (57). If equality holds in Equation (57), from Equation (62), we obtain ‖ T(h−
y) ‖=‖ h− y ‖, which according to Equations (9) and (15) gives us

h− y ∈ N (A), i.e. T(h− y) = h− y. (63)

From Equations (49), (60), (61), (62) and (63), we conclude that g = h. Now, from the first relation
in Equation (63), we get

h−' = (y −') + (h− y) = PN (A)(y −') + xLS + (h− y) ∈ N (A) + xLS = LSS(A; b),

that is, h ∈ V∗ (see Equation (55)). In order to prove the convergence of the sequence (xk)k≥0,
we first observe that by applying Equations (56)–(57) with g = xk+1, h = xk , for any y ∈ V∗, we
obtain

‖ xk+1 − y ‖≤‖ xk − y ‖≤ · · · ≤‖ x0 − y ‖, ∀k ≥ 0, (64)

that is, the sequence (xk)k≥0 is bounded. Then, there exists a convergent subsequence (xks)s≥0

such that

lim
s→∞

xks = u ∈ Rn. (65)

We prove that

u ∈ V∗. (66)

If v, zs ∈ Rn are defined by

v = C(Tu + Rb), zs = Txks + Rb, (67)

then from Equations (65)–(67) and the continuity of C (see Equation (48)), we get

lim
s→∞

zs = Tu + Rb, lim
s→∞

C(zs) = C(Tu + Rb) = v. (68)

Because the set Im(C) is closed, xks ∈ Im(C), ∀s ≥ 0 (see Equations (54) and (67)), we obtain
u ∈ Im(C), v ∈ Im(C), and according to Equations (58) and (59), only the following two cases
are possible.
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International Journal of Computer Mathematics 11

Case 1.

u = v ∈ V∗, (69)

which completes our proof for Equation (66).
Case 2.

‖ v − y ‖<‖ u− y ‖, ∀y ∈ V∗. (70)

If Equation (70) holds and ε is such that 0 < ε < 1
2 (‖ u− y ‖ − ‖ v − y ‖), we would get

‖ v − y ‖ +ε <‖ u− y ‖ −ε. (71)

From Equations (65) and (68), we obtain

lim
s→∞

‖ xks+1 − y ‖=‖ v − y ‖, lim
s→∞

‖ xks − y ‖=‖ u− y ‖, (72)

and thus for ε > 0 defined earlier, there exist indices s1 ≥ 1 such that

|‖ xks1 +1 − y ‖ − ‖ v − y ‖ | < ε, (73)

and s2 > s1 + 1 such that
|‖ xks2 − y ‖ − ‖ u− y ‖ | < ε. (74)

From the construction of s1 and s2, we get

ks2 > ks1+1 > ks1 + 1, (75)

thus from Equations (71), (73) and (74), we obtain

‖ xks1+1 − y ‖<‖ v − y ‖ +ε <‖ u− y ‖ −ε <‖ xks2 − y ‖ . (76)

But at the same time, Equations (64) and (75) gives us

‖ xks2 − y ‖≤‖ xks1+1 − y ‖,

which contradicts Equation (76). It results that Equation (70) does not happen, thus only Equation
(69) can occur.

Now, if (xk′s)s≥0 is an arbitrary convergent subsequence, that is,

lim
s→∞

xk′s = w, (77)

from the previous considerations, we get w ∈ V∗. We prove that w = u. Indeed, if this does not
hold and ε0 is such that

0 < ε0 <‖ u− w ‖ −ε0, (78)

we get (we denote by B[x, r], B(x, r), the closed, respectively, open, ball in Rn with respect to the
Euclidean norm)

B[u, ε0] ∩ B[w, ε0] = ∅. (79)

Let then s ≥ 1, xks , xk′s have the properties

ks > k′s, xks ∈ B[u, ε0], xk′s ∈ B[w, ε0]. (80)

Then, from Equations (78)–(80), we obtain

‖ xks − w ‖>‖ u− w ‖ −ε0 > ε0 >‖ xk′s − w ‖,

which contradicts Equation (64) and completes the proof. !
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12 A. Nicola et al.

Remark 6 If problem (1) is consistent, then

' = 0 and V∗ = S(A; b) ∩ Im(C), (81)

that is, the algorithm CGenART generates a ‘constrained’ solution of Equation (1).

Remark 7 We have to consider that all assumptions (48)–(50) are necessary in the proof of
Theorem 2.9.

Algorithm 4 Constrained Extended General ART (CEGenART)
Initialization: x0 ∈ Im(C), y0 = b.
Iterative step:

yk+1 = U(yk), (82)

bk+1 = b− yk+1, (83)

xk+1 = C[Txk + Rbk+1], (84)

with U, T and R from Equations (3), (30) and C as in Equations (48)–(50). We suppose that at
least one least-squares solution exists in Im(C), that is, the set V defined below is non-empty:

V = LSS(A; b) ∩ Im(C) %= ∅. (85)

For proving the convergence of the sequence (xk)k≥0 generated by the algorithm CEGenART, we
follow the ideas of the proof reported in [26], but for the general matrices T and R from Equation
(3), satisfying assumptions (8)–(12). In this respect, we first prove the following properties.

Proposition 2.10 Let us suppose that the matrices T and R satisfy Equations (8)–(12), the
constraining function C satisfies Equations (48) and (50) and the set V satisfies Equation (85).
Then, the following are true.

(i) The sequence (yk)k≥0 generated in step (82) of the algorithm CEGenArt satisfies

yk+1 = PN (AT)(b) + Ũk+1PR(A)(b). (86)

(ii) For any y ∈ V , we have

(I− T)y = (I− T)xLS = RPR(A)(b), (87)

and the sequence (xk)k≥0 generated in step (84) of CEGenArt satisfies

‖ xk+1 − y ‖≤‖ T(xk − y)− RŨk+1PR(A)(b) ‖ . (88)

(iii) There exists a subsequence (xks)s≥0 of (xk)k≥0 such that

lim
s→∞

xks = u ∈ V . (89)

Proof (i) From Equations (32), (33) and the first equation, we obtain the relations

yk+1 = PN (AT)(b) + Ũk+1(b) and Ũk(b) = Ũk(PR(A)(b)), (90)

from which Equation (86) directly holds.
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International Journal of Computer Mathematics 13

(ii) Because y ∈ V , we get, in particular, that y ∈ LSS(A; b), and so we can write it as y =
PN (A)(y) + xLS. Then, from Equations (9), (13) and (14), we get (I− T)y = (I− T)xLS = (I−
T)GPR(A)(b), from which Equation (87) holds with arguments similar to those for Equation (60).

For proving inequality (88), we first observe that for an arbitrary fixed y ∈ V from Equations
(4), (50), (83), (84), (86) and (87), we obtain

xk+1 − y = C[Txk + Rbk+1]− y

= C[Txk + (I− T)y − RŨk+1(PR(A)(b))]− Cy, (91)

from which Equation (88) holds by taking norms and using Equation (48).
(iii) From Equations (16), (88) and the second inequality in (33), we obtain

‖ xk+1 − y ‖≤‖ xk − y ‖ +cδk+1, ∀k ≥ 0, (92)

with c =‖ R ‖ · ‖ PR(A)(b) ‖, δ =‖ Ũ ‖∈ [0, 1). By a recursive application of inequality (92),
we obtain

‖ xk+1 − y ‖≤‖ x0 − y ‖ +cδ
1− δk+1

1− δ
<‖ x0 − y ‖ + cδ

1− δ
, ∀k ≥ 0,

which tells us that the sequence (xk)k≥0 is bounded. Thus, a subsequence (xks)ks≥0 of it exists such
that lims→∞ xks = u. Moreover, u ∈ Im(C) because xks ∈ Im(C), ∀s ≥ 0, and the set Im(C) is
closed. For proving that u ∈ V , it suffices to show that u ∈ LSS(A; b) (see Equation (85)). For
this, we follow exactly the proof of Lemma 4 reported in [26], by replacing the matrix Q with T
from Equation (84). !

Theorem 2.11 In the hypothesis of Proposition 2.10, the sequence (xk)k≥0 generated with the
algorithm CEGenART (82)–(84) converges to an element of V .

Proof As in the proof of Lemma 5 reported in [26], we show that any convergent subsequence
(xk̄s)s≥0 of (xk)k≥0 has as limit the element u from Equation (89). !

Remark 8 The assumption that the set V from Equation (85) is non-empty is directly connected
to the (level of) perturbation of b in Equation (1), which makes it inconsistent. It implies that we
still have least-squares solutions in Im(C).

A projection method that fits with the above considerations is the Kaczmarz successive projec-
tion algorithm reported in [18]. The properties (8)–(12) were proved in [30]. But independently
on the general approach presented in this section, a theorem of the form Theorem 2.2 was proved
in [30], the extension of the form (36)–(38) was first proposed in [24], a constrained version of
the Kaczmarz method was reported in [19] and a constrained version of the Kaczmarz extended
method was reported in [26]. In Section 3, we obtain all these versions for Cimmino’s algorithm
by simply proving that it satisfies assumptions (8)–(12) and then by applying the above general
constructions and results.
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14 A. Nicola et al.

3. Application – Cimmino’s reflection algorithm

Cimmino [9] considered a consistent problem of the form (1), where A is an m× n real matrix
and b ∈ Rm. A solution point will lie in the intersection of the m hyperplanes described by

Hi := {x | AT
i x = bi}, i = 1, . . . , m. (93)

Given a current approximation xk , the next one xk+1 is constructed as

xk+1 =
m∑

i=1

ωi

ω
yk,i, (94)

where yk,i are the reflections of xk with respect to the hyperplane (93), defined by

yk,i = xk + 2
bi − AT

i xk

‖Ai‖2
Ai and ωi > 0, ω =

m∑

i=1

ωi. (95)

From Equations (94) and (95), we derive for T and R in Equation (3) the following expressions:

T =
m∑

i=1

ωi

ω
Si, Si := I − 2

AiAT
i

‖Ai‖2
, R =

m∑

i=1

ωi

ω

bi

‖Ai‖2
Ai. (96)

Then, Cimmino’s algorithm (94) can be written as follows.

Algorithm 5 Cimmino (Cmm)
Initialization: ωi > 0, i = 1, . . . , m; x0 ∈ Rn.
Iterative step:

xk+1 = Txk + Rb. (97)

Proposition 3.1 If
rank(A) ≥ 2, (98)

then the matrices T and R from Equation (96) satisfy assumptions (8)–(12).

Proof The statements in Equations (8)–(11) follow directly from Equation (96) and the fact that
R(AT) = span{A1, . . . , Am}. For Equation (12), we first observe that the orthogonal reflectors Si

from Equation (96) are also isometric transformations, thus

‖Six‖ = ‖x‖, ∀x ∈ Rn and ‖Si‖ = 1, ∀i = 1, . . . , m. (99)

Then, for an arbitrary x ∈ Rn, from Equations (95) and (99), we get

‖Tx‖ =
∥∥∥∥∥

m∑

i=1

ωi

ω
Six

∥∥∥∥∥ ≤
m∑

i=1

ωi

ω
‖Six‖=‖x‖, (100)

which together with Equations (9) give us ‖T‖ = 1, thus

‖T̃‖ ≤ 1. (101)

Let us now suppose that we have equality in Equation (101) and let x ∈ R(AT), x %= 0, be such
that (see also Equation (100))

‖T̃(x)‖ = ‖T(x)‖ =
∥∥∥∥∥

m∑

i=1

ωi

ω
Six

∥∥∥∥∥ =
m∑

i=1

ωi

ω
‖Six‖ =‖ x ‖ . (102)

By the non-singularity of Si, we have Six %= 0 for all i = 1, . . . , m. Since the Euclidean norm
is strictly convex, ωi > 0 and

∑m
i=1 ωi/ω = 1, the equality from Equation (102) only holds if
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International Journal of Computer Mathematics 15

S1x = · · · = Smx. Let us suppose that S1x = Six for all i = 2, . . . , m. This is equivalent to

AT
1 x

‖A1‖2
A1 −

AT
i x

‖Ai‖2
Ai = 0, i = 2, . . . , m.

Since we have assumption (98) on A, the above equalities imply that AT
i x = 0, ∀i = 1, . . . , m,

that is, x ∈ N (A), thus x = 0, which contradicts the initial assumption on it. Thus, Equation (12)
holds and the proof is complete. !

According to the results given in Section 2, we can now design the extended Cimmino algorithm
following the general formulations (36)–(38). According to Equations (27) and (96), the matrix
U from Equation (30) will be given by

U =
n∑

i=1

αj

α
Fj, with Fj = I − 2

AjAjT

‖Aj‖2
, and α =

n∑

j=1

αj, (103)

and αj > 0 arbitrary weights.

Algorithm 6 Extended Cimmino (ECmm)
Initialization: ωi > 0, i = 1, . . . , m; αj > 0, j = 1, . . . , n, x0 ∈ Rn, y0 = b.
Iterative step:

yk+1 = Uyk , (104)

bk+1 = b− yk+1, (105)

xk+1 = Txk + Rbk+1. (106)

The corresponding constrained versions, CCmm and CECmm, are directly derived from Equa-
tions (97) and (104)–(106) following the general formulations (54) and (82)–(84), respectively.

4. Numerical experiments

In this paper, a general extending and constraining procedure for linear iterative methods has
been considered. Cimmino’s method [6,9] is such a linear iterative method, known to have a poor
numerical performance. We chose to apply our general extending and constraining procedures on
this algorithm, rather than on the more efficient ones [7], in order to underline the importance of
extending and constraining.

To this end, we considered a widely used test problem as in [8,28]. The following numerical
examples concentrate on the effect of the proposed general extending and constraining strategies
on Cimmino’s method. In [28], Cimmino’s method was also considered, but it was compared with
the DW algorithm. Moreover, the numbers of iterations differed (60 in [28], with respect to 500
or 2000 in the current work).

In our first set of experiments, we used the head phantom reported in [8] (63× 63 pixel resolu-
tion with the scanning matrix with 1376 rays – that is, m, the number of rows in A). A consistent
and an inconsistent right-hand-side b were used in our reconstruction experiments, together with
the following measures for the approximation errors [15]:

• xex = head phantom; n = 632 = 3969
• xex = (xex

1 , . . . , xex
n )T; xk = (xk

1, . . . , xk
n)

T; x̄ex = ∑n
i=1 xex

i /n; x̄k = ∑n
i=1 xk

i /n

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ita

et
sb

ib
lio

th
ek

] a
t 0

6:
16

 0
6 

D
ec

em
be

r 2
01

1 



16 A. Nicola et al.

• Distance =
√∑n

i=1(x
ex
i − xk

i )
2/

∑n
i=1(x

ex
i − x̄ex)2

• Relative error =
∑n

i=1 |xex
i − xk

i |/
∑n

i=1 xex
i

• Standard deviation = (1/
√

n)
√∑n

i=1(x
k
i − x̄k)2

• Residual error = ‖ Axk − b ‖ in the consistent case of Equation (1) and ‖ AT(Axk − b) ‖ in the
inconsistent one.

In the tests, we used the box-constraining function C from Equation (51) with αi = 0, βi = 1,
∀i = 1, . . . , m, and unitary weights ωi and αj in Equations (95) and (103), that is, ωi = 1, ∀i =
1, . . . , m; αj = 1, ∀j = 1, . . . , n.

Test 1: Consistent case, classical algorithms, x0 = 0.
For the consistent problems associated with the head phantom, we applied the algorithm Cim-

mino (97) together with its constrained version (according to Equations (54) and (97)) with the
initial approximation x0 = 0 and 500 iterations. The results shown in Figures 1 and 2 indicate
that in this case the constraining strategy used somehow improves the quality of the reconstructed
image (Figure 1). According to the fact that the graphics shown in Figure 2 are almost identical,
an explanation would be related to the small changes (in the positive sense) in the components
of the approximations xk , such that, also by starting with x0 = 0, in 500 iterations, Cimmino’s
algorithm together with its constrained version acts almost identical.

Test 2: Consistent case, classical algorithms, x0
i = (−1)i, i = 1, . . . , n.

We performed tests similar to Test 1, but with the initial approximation x0
i = (−1)i, i = 1, . . . , n.

Figure 3 shows that the constraining strategy used much improved the quality of the reconstructed
image in this case. This aspect can also be seen in the graphics shown in Figure 4.

Remark 9 In real reconstruction problems, we never use an initial approximation as in Test 2.
The idea in these experiments was to show that the constraining strategy can be a very powerful
tool in improving the quality of the reconstruction. The real solution for Test 1 would be an
adaptive constraining strategy. Work is in progress on this subject.

Test 3: Inconsistent case, combined algorithms.
For the inconsistent problems associated with both phantoms, we applied the algorithm Cim-

mino (97) together with the extended Cimmino algorithms (104)–(106), 500 iterations and x0 = 0.
The results shown in Figures 5 and 6 indicate better results for the classical version (97). Although
strange, this behaviour can be explained by the fact that the better theoretical properties of the
extended Cimmino algorithms (104)–(106), as derived in Theorem 2.6, have an ‘asymptotic’
nature. More clearly, this means that they become ‘visible’ after a consistently large number of
iterations have been achieved (see in this sense, similar experiments presented in Figures 7 and

Figure 1. Consistent case, x0 = 0, 500 iterations; left, exact; middle, Cmm; right, CCmm.
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International Journal of Computer Mathematics 17

Figure 2. Consistent case, x0 = 0, 500 iterations; errors.

Figure 3. Consistent case, x0
i = (−1)i, i = 1, . . . , n, 500 iterations; left, exact; middle, Cmm; right, CCmm.

8, for which 2000 iterations were used). A solution of this problem would be to improve the
‘right-hand-side correction part’ (104). Some steps have been already taken in this direction [27].

In our second set of experiments, we considered the problem of 3D particle image reconstruc-
tion, which is the main step of a new technique for imaging turbulent fluids, called TomoPIV [13].
This technique is based on the instantaneous reconstruction of particle volume functions from few
and simultaneous projections (2D images) of the tracer particles within the fluid. TomoPIV adopts
a simple discretized model for an image-reconstruction problem, which assumes that the image
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18 A. Nicola et al.

Figure 4. Consistent case, x0
i = (−1)i, i = 1, . . . , n, 500 iterations; errors.

Figure 5. Inconsistent case, x0 = 0, 500 iterations; left, exact; middle, Cmm; right, ECmm.

consists of an array of unknowns (voxels) and sets up algebraic equations for the unknowns in
terms of the measured projection data. The latter are the pixel entries in the recorded 2D images.
TomoPIV employs undersampling due to the cost and complexity of the measurement apparatus,
resulting in an underdetermined system of equations and thus in an ill-posed image-reconstruction
problem. However, this reconstruction problem can be modelled as finding the sparsest solution
of an underdetermined linear system of equations, that is,

min ‖x‖0 such that Ax = b, (107)
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Figure 6. Inconsistent case, x0 = 0, 500 iterations; errors.

Figure 7. Inconsistent case, x0 = 0, 2000 iterations; left, exact; middle, Cmm; right, ECmm.

since the original particle distribution can be well approximated with only a very small number
of active voxels relative to the number of possible particle positions in a 3D domain; see, for
example, [22] for details. If the original particle distribution is sparse enough and the coefficient
matrix satisfies certain properties, then the indicator vector (corresponding to the active voxels)
is also the unique non-negative vector which satisfies the measurements Ax = b and coincides
with the solution of Equation (107).
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20 A. Nicola et al.

Figure 8. Inconsistent case, x0 = 0, 2000 iterations; errors.

Here, we concentrate on a simple geometry for sampling the original particle distribution within
a 64× 64× 64 3D domain from three orthogonal directions (Figure 9). The sampling matrix A
will correspond to a perturbed adjacency matrix of a bipartite graph [22] where the left nodes
correspond to the 643 voxels within the volume and the right nodes to the 3 · 642 pixels within
the three sampled 2D images (Figure 9(right)).

If the number of non-zero elements in the original indicator vector x∗, that is, ‖x∗‖0 := |{i|x∗i %=
0}|, is small enough, more precisely

q := ‖x∗‖0 ≤
3 · 642

4 log(64/3)
≈ 1003,

then x∗ is (most probably) the unique non-negative solution of the linear system Ax = b.Although
the hard thresholding constraining function does not satisfy all assumptions (48)–(50) (Exam-
ple 2.8), we used it in combination with Cimmino’s algorithm because Cimmino’s algorithm
combined with this constraining strategy is closely related to the hard thresholded Landweber
iteration reported in [4], where this method is shown to converge to a local optimum of Equation
(107). Due to this attribute, the method was only applied in [4] as a preprocessing step for the
solution refinement obtained by other sparse approximation algorithms. However, for a carefully
chosen threshold α, the method will converge to the solution of Equation (107), provided that
this sparsest solution is unique. But choosing the proper α is an art by itself. We decided to use
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Figure 9. The original 3D particle volume function (e.g. 602 particles) that has to be reconstructed from three 2D images
(642 pixel each). The indicator vector corresponding to the original particle distribution is also the unique non-negative
solution which satisfies the measurements.

α = 0.1 but only after the first 0.5 q iterations. A combination of two constraining operators is
also legitimate and turns out to be more effective in reducing the error within the same number of
iterations (Figure 10). In fact, hard thresholding combined with box constraining has an acceler-
ation effect reflected in a reduced number of iterations (Figure 11). Hence, a proper constraining
strategy is an indispensable tool not only for regularization purposes (box constraining) but also
for achieving computational efficiency. This issue will be addressed in future work.

Figure 10. Reconstruction experiment for 10, 20, . . . , 600 particles (sparsity) within the 643 cube for Cimmino’s
algorithm with box constraining (left), Cimmino’s algorithm with hard thresholding (middle) and Cimmino’s algorithm
combined with both constraining strategies (right). The averaged number of iterations (100 trials) increases proportionally
to the particle sparsity. Thresholding turns out to be more effective in attaining the stopping rule: relative error less than
10−2 or more than 10,000 iterations.
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Figure 11. Reconstruction experiment for 602 particles in a 64× 64× 64 cube from three orthogonal projections. In
1000 iterations of Cimmino’s algorithm with box constraining (51), the reconstruction (top left) contains 1246 particles
exceeding a threshold 0.5. By combining box constraining with the hard thresholding operator from Equations (52) and
(53), the reconstruction improves.After 1000 iterations, the reconstruction (top left) contains 827 particles – containing the
original ones. The reconstruction after convergence is exact, that is, identical to the original shown in Figure 9 within the
tolerance – box constraining: 18,029 iterations and box constraining combined with hard thresholding: 30,787 iterations
(bottom).
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