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SIMULTANEOUS HIGHER-ORDER OPTICAL FLOW ESTIMATION

AND DECOMPOSITION∗

JING YUAN† , CHRISTOPH SCHNÖRR† , AND GABRIELE STEIDL‡

Abstract. We study the estimation and decomposition of optical flows from highly nonrigid
motions. To this end, recent methods from image decomposition into structural and textural parts are
combined with variational optical flow estimation. The approaches we suggest amount to minimizing
discrete convex functionals using second-order cone programming. Higher-order regularization is
necessary in order to accurately recover important flow structure like vortices, and to incorporate
key physical properties such as vanishing divergence. For proper discretization, we apply the finite
mimetic difference method, which preserves the identities fulfilled by the continuous differential
operators. Numerical examples demonstrate the feasibility of the complex approaches.
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1. Introduction. The representation, estimation, and analysis of nonrigid mo-
tion is relevant to many scenarios in computer vision, medical imaging, remote sensing,
and experimental fluid dynamics. Especially in fluid dynamics, sophisticated mea-
surement techniques including pulsed laser light sheets and modern CCD cameras, as
well as dedicated hardware, enable the recording of high-resolution image sequences
that reveal the evolution of spatio-temporal structures of unsteady flows [25]. In this
connection, an important research problem is to develop variational approaches that
render flow estimation from image sequences into a well-posed and numerically stable
problem while preserving small-scale flow structures that are important for empirical
investigations of turbulent phenomena.

To this end, we investigate a novel class of variational flow estimation schemes
by combining higher-order flow regularization with recent techniques developed for
nonsmooth image decomposition–see below for a more detailed exposition. As a result,
we obtain variational approaches that not only allow for estimating fluid flow from
image sequences but simultaneously yield a decomposition of the flow into coherent
spatio-temporal flow patterns and small-scale structures.

In the following, we briefly describe the respective basic ideas in a continuous
setting. In the remainder of the paper, we will derive and investigate discrete ap-
proaches using the so-called mimetic finite difference method developed by Hyman
and Shashkov [17], which preserves the integral identities fulfilled by the correspond-
ing continuous integral operators.

Image decomposition. In image denoising one is typically interested in removing
noise without destroying important structures such as edges. This goal cannot be
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achieved with linear filters, e.g., by minimizing

(1.1) J(f) := ‖g − f‖2
L2(Ω) + λ

∫

Ω

|∇f |2 dxdy

for a given noisy image g(x, y) in Ω ⊂ R2. The regularizer incorporates the quadratic
function Φ(s) = s2 with s = |∇f |. Via the Euler–Lagrange equation this variational
approach can be related to a linear diffusion equation. As a consequence, the solution
f smooths g in a completely homogeneous way and therefore blurs semantically im-
portant signal structures. To overcome this drawback a variety of nonlinear methods
have been proposed. One of the frequently applied approaches replaces the function
in the regularization term by Φ(s) = s and thus penalizes larger deviations of |∇f |
not as hard as the quadratic function:

(1.2) J(f) :=
1

2
‖g − f‖2

L2(Ω) + λ

∫

Ω

|∇f | dxdy.

This functional was first considered by Rudin, Osher, and Fatemi [26]. For f having
partial derivatives in L1 the regularizer coincides with the TV seminorm of f ,

‖f‖TV :=

∫

|∇f | dxdy.

In contrast to the linear approach (1.1) we will refer to this method as the TV ap-
proach. Based on the dual TV norm, the so-called G norm, this denoising model was
enlarged for the decomposition of given images g into a structural (cartoon) part fs

and a textural part f t as

J(fs, f t) = ‖g − (fs + f t)‖2
L2(Ω) + λ

∫

Ω

|∇fs| dxdy,(1.3)

s.t. ‖f t‖G ≤ δ.

For a more sophisticated treatment of the TV and G norms, we refer to [11, 21].
Meanwhile there exist various numerical realizations of (1.3), e.g., [3, 24, 32, 34].
Although not considered in this paper, we note that there exist other models including
other than Gaussian white noise by using the L1 norm in the data fitting term [5, 23],
noise as a third decomposition component by applying Besov norms [4], or frame
and TV/frame approaches [10, 28] from harmonic analysis. Moreover, second-order
derivatives were incorporated into the regularizer to avoid, for example, staircasing
effects; see, e.g., [8, 29].

In this paper, we are interested in the decomposition of vector fields rather than
scalar images. Specifically, we want to deal with optical flow fields arising, e.g., in
experimental fluid dynamics.

Optical flow estimation. Instead of a single image let us consider an image se-
quence {g(x, y, t) : t ∈ [0, T ]} with a time parameter t. A common assumption is that
image intensities are preserved over time:

(1.4) g
(

x(t1), y(t1), t1
)

= g
(

x(t2), y(t2), t2
)

, t2 > t1.

Generalizations to other constraints exist but are not relevant for our present inves-
tigation. The linearized version of the gray value constancy assumption (1.4) yields
the optical flow constraint

(1.5) gxu1 + gyu2 + gt = ∇g · u+ gt = 0,
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where the optical flow field u = (u1, u2)
⊤ := (ẋ, ẏ)⊤ denotes the instantaneous veloc-

ities of image elements.
Obviously, (1.5) cannot be solved pointwise because at each location and time

point it consists of solving a single scalar equation for two scalar unknowns. To
overcome this so-called aperture problem additional requirements have to be imposed.
Instead of (1.5) we consider the least squares approximation

(1.6) F (u) := ‖∇g · u+ gt‖2
L2(Ω).

In 1981, Horn and Schunck [16] pioneered the field of regularization methods for
optical flow computation by suggesting minimization of the functional

(1.7) J(u) = F (u) + λ

∫

Ω

|∇u1|2 + |∇u2|2 dxdy.

We will refer to this widely used approach as the Horn–Schunck model. Obviously,
the Horn–Schunck model suffers from the same drawbacks as the linear image filtering
model (1.1). The solution creates blurry optic flow fields where the blur appears also
across important flow discontinuities. One way to overcome this limitation consists
again if using another function in the regularizer, e.g.,

(1.8) J(u) =
1

2
F (u) + λ

∫

Ω

(|∇u1|2 + |∇u2|2)
1
2 dxdy,

as counterpart to the TV model (1.2); cf. [2, 13, 15].
In this paper we focus on nonrigid motion analysis. In particular, we are inter-

ested in the representation of motion by components that capture different physical
aspects, e.g., solenoidal (divergence-free) flows. Referring again to experimental fluid
dynamics, for example, the extraction of coherent flow structures which are immersed
into additional motion components at different spatial scales [19] poses a challenge
for image sequence analysis. However, this goal cannot be achieved using first-order
derivatives in the regularizer. Rather, based on early work on second-order regulariz-
ers constraining the gradients of the flows’ divergence and curl [1, 9, 14, 30], instead
of (1.7) we deal with the functional

(1.9) J(u) = F (u) + λd

∫

Ω

|∇div u|2 dxdy + λc

∫

Ω

|∇curlu|2 dxdy + γ

∫

∂Ω

(∂nu)
2 ds,

where the boundary is incorporated for stability reasons; cf. [35, 37]. A key property
of this approach is that due to the second order of the flow derivatives involved,
the regularizing terms do not penalize the magnitude of the basic flow components
involving first-order derivatives, i.e., divergence and curl. To further motivate this
approach consider Figure 1.1, which shows the estimation of a solenoidal flow field by
first- and second-order approaches. The figure clearly demonstrates the superiority of
the div-curl model.

Finally, related to the TV model (1.8), we deal with

(1.10) J(u) =
1

2
F (u)+λd

∫

Ω

|∇div u| dxdy+λc

∫

Ω

|∇curlu| dxdy+
γ

2

∫

∂Ω

(∂nu)
2 ds,

involving regularizing terms that are of second order, as in (9), and that are ad-
ditionally suited to preserve jumps of the divergence and the curl of a flow field,
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Fig. 1.1. Estimation of a typical solenoidal flow field u. Top: Restored flow based on the
Horn–Schunck model (1.7). Bottom: Restored flow based on the second-order model (1.9). Vortex
structures are better recovered by the div-curl approach (bottom); cf. [35].

respectively, by utilizing the TV-norm. As in image decomposition we will extend
this estimation approach to the decomposition of motion vector fields into physically
relevant components at different scales by using a discrete equivalent of the G norm.
Moreover, we will study the feasibility of an extension to the simultaneous estimation
and decomposition of optical flows.

Organization of the paper. We start by introducing our discrete setting based on
the mimetic finite difference method in section 2. We define scalar and vector fields on
primal and dual grids together with appropriate norms. Then we introduce the first-
order operators, where we focus on their matrix representation using tensor product
notation. We show how integral identities such as the Gaussian integral identity and
the Helmholtz decomposition carry over to the discrete situation. Finally, we define
discrete TV and G norms with respect to the primal and dual grid. Based on these
definitions and results we consider the flow estimation task in section 3. Here we
are interested in the linear versus the TV approach. While the linear method was
already treated in [35], the higher-order TV approach is novel. In section 4, we deal
with flow decomposition by the TV-G norm model. To this end we have to introduce
a decomposition of the optical flow into components with constant divergence and
curl and variable components which can be further decomposed into a “structural”
part and a “textural” part. In fact, these parts comprise flow patterns at different
scales. In section 5, we combine the flow estimation and the decomposition model in
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order to solve both tasks simultaneously. In sections 3, 4, and 5 we especially focus
on the practically relevant case of solenoidal flows. Some parts of sections 4 and 5
were previously announced at a conference [36]. Section 6 provides the numerical
algorithms to solve the convex optimization problems posed in sections 3, 4, and 5.
We use second-order cone programming (SOCP) [12, 20]. Finally, we demonstrate
the feasibility of our approaches by numerical examples in section 7.

2. Discretization. For our discrete versions of the functionals we need a careful
discretization which preserves the identities satisfied by the continuous operators as,
e.g., div = −∇∗, curl∇ = 0, the Gaussian integral identity, and the Helmholtz
decomposition. For discretizing the relevant spaces and differential operators we apply
the mimetic finite difference method introduced by Hyman and Shashkov in [17]. This
method defines the corresponding discrete operators of ∇, div, and curl simultaneously
on two grids. These grids, which we call the primal and dual grid, are shifted with
respect to each other by half a pixel.

Primal and dual scalar/vector fields. Corresponding to the grids, we define the
following scalar fields and vector fields:
HP : space of scalar fields on vertices,
HS : space of vector fields defined normal to sides,
HV : space of scalar field on cells,
HE : space of vector fields defined tangential to sides.

ByHo
P , H

o
S , andHo

E we denote the corresponding spaces with zero boundary elements.
Finally, let HV +∂V and HE+∂E be the extended version of HV and HE , respectively,
to the boundary. If our primal grid consists of m × n vertices, then dimHP = mn,
dimHV = (m−1)(n−1), dimHS = m(n−1)+n(m−1), and dim HE = (m−1)(n−
2) + (n− 1)(m− 2). The fields are illustrated in Figure 2.1.
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Fig. 2.1. Primal and dual grid. Left: Spaces HP (dots) and HS (arrows). Right: Spaces HV

(dots), H∂V (squares), and HE (arrows) for m = 5 and n = 4.

While HP and HV are equipped with the usual ℓ2 inner product, the inner prod-
ucts on HS and HE are defined with respect to the cells. To this end, we consider
the elements of HS associated with the elements of HV by

u
V

i+ 1
2

,j+ 1
2

:=
1√
2

(ui,j+ 1
2
, ui+1,j+ 1

2
, ui+ 1

2
,j , ui+ 1

2
,j+1)

T

for i = 1, . . . ,m−1, j = 1, . . . , n−1. Then we define a dotproduct · : HS ×HS → HV
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by

u · v :=
(

(u · v)i+ 1
2
,j+ 1

2

)m−1,n−1

i,j=1
=

(〈

u
V

i+ 1
2

,j+ 1
2

, v
V

i+ 1
2

,j+ 1
2

〉)m−1,n−1

i,j=1

,

where 〈·, ·〉 denotes the usual inner product on ℓ2. Now the inner product on the
vector field HS is given by

〈u, v〉HS
:=

m−1
∑

i=1

n−1
∑

j=1

(u · v)i+ 1
2

,j+ 1
2

and the corresponding norm by

‖u‖2
HS

:=

∥

∥

∥

∥

(

‖u
V

i+1
2

,j+ 1
2

‖2

)m−1,n−1

i,j=1

∥

∥

∥

∥

2

2

=
1

2

m−1
∑

i=1

n−1
∑

j=1

(u2
i,j+ 1

2

+ u2
i+1,j+ 1

2

+ u2
i+ 1

2
,j + u2

i+ 1
2
,j+1).

Related to the ℓ1 norm we define

|u|HS
:=

∥

∥

∥

∥

(

‖u
V

i+1
2

,j+ 1
2

‖2

)m−1,n−1

i,j=1

∥

∥

∥

∥

1

=
1√
2

m−1
∑

i=1

n−1
∑

j=1

√

u2
i,j+ 1

2

+ u2
i+1,j+ 1

2

+ u2
i+ 1

2
,j

+ u2
i+ 1

2
,j+1

.

Similarly, we associate elements of u ∈ HE with elements of Ho
P by

u
Pi,j

:=
1√
2

(ui,j− 1
2
, ui,j+ 1

2
, ui− 1

2
,j , ui+ 1

2
,j)

T

for i = 2, . . . ,m− 1, j = 2, . . . , n− 1, and set

‖u‖2
HE

:=
∥

∥

(

‖u
Pi,j

‖2

)m−1,n−1

i,j=2

∥

∥

2

2
, |u|HE

:=
∥

∥

(

‖u
Pi,j

‖2

)m−1,n−1

i,j=2

∥

∥

1
.

Primal and dual operators. We use the following discrete versions of the first-order
operators ∇, div, and curl with respect to the primal and dual grid:

Grad : HP → HE+∂E , Grad⊥ : HP → HS

and

G : Ho
P → Ho

E , Div : HS → HV , G⊥ : Ho
P → Ho

S ,

G : HV → Ho
S , Div : Ho

E → Ho
P , Curl : Ho

S → Ho
P .

Reshaping the scalar/vector fields columnwise into vectors of appropriate lengths,
these operators act on the corresponding vector spaces as matrices which can be
described by using the first-order forward difference matrix

Dm :=















−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0

. . .
. . .

. . .

0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1















∈ R
m−1,m
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and the tensor product ⊗ of matrices. Then we have

Grad =

(

In ⊗Dm

Dn ⊗ Im

)

, Grad⊥ =

(

−Dn ⊗ Im

In ⊗Dm

)

,

which explains the notation ⊥. The operator G⊥ is just the restriction of Grad⊥ to
Ho

P . Although G is not the restriction of Grad to Ho
P , we will again use the notation

⊥. More precisely, we define

G =

(

In−2 ⊗Dm−2

Dn−2 ⊗ Im−2

)

, G
⊥ =

(

DT

n−1 ⊗ Im−2

−In−2 ⊗DT

m−1

)

,

Div =
(

In−1 ⊗Dm, Dn ⊗ Im−1

)

,

where In denotes the n× n identity matrix and the matrices are considered without
the zero rows/columns due to embedding. Then we have on the dual grid

(2.1) G = −(Div |Ho
S

)∗, Div = −G
∗, Curl = (G⊥)∗,

where the adjoint operator corresponds to the transposed matrices. Using properties
of the tensor product of matrices, we obtain that curl∇ = 0 reads as

(2.2) Curl G = 0, Div G
⊥ = −G

∗
Curl ∗ = 0.

We extend the operator G to HV +∂V by incorporating the boundary elements H∂V

into the forward differences. Since the distance of a boundary point to its neighboring
inner point is only 1

2 , we have to multiply the difference filter (−1, 1) at the boundary
by 2. The matrix of the resulting operator,

G1 : HV +∂V → HS ,

is given in the appendix. Finally, we define another extension of G in one of the
following ways:

- apply a linear extrapolation operator from HV to HV +∂V and then G1,
- apply G and then a constant extrapolation from Ho

S to HS .
Both procedures result in the same operator,

G2 : HV → HS ,

given in matrix form in the appendix.
Discrete integral identities. Next we are interested in a discrete version of the

Gaussian integral identity
∫

Ω div u dx =
∫

∂Ω n · u ds. To this end, we introduce the
boundary operator

B :=

(

In−1 ⊗Bm 0
0 Bn ⊗ Im−1

)

,

where 0 are zero matrices of appropriate sizes and

Bm :=

(

−1 0 . . . 0 0
0 0 . . . 0 1

)

∈ R
2,m.
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Then the mimetic Gaussian integral identity becomes

(2.3) 1T

dimHV
Div u = 1T

dim∂HV
Bu.

We will apply the following discrete version of the Helmholtz decomposition.
Proposition 2.1 (mimetic Helmholtz decomposition). Any u ∈ HS can be

decomposed into an irrotational part uirr and a soleniodal part usol by

(2.4) u = uirr + usol = G1ψ + G
⊥ϕ,

where ϕ ∈ Ho
P is uniquely determined and ψ ∈ HV +∂V is uniquely determined up

to an additive constant. Moreover, the decomposition is orthogonal in the sense that
〈G1ψ,G

⊥ϕ〉HS
= 0.

Proof. By (2.2) and since G1 considered as mapping onto Ho
S equals G, we see

that

Curl uirr = Curl G1 ψ = 0, Div usol = Div G
⊥ϕ = 0.

Therefore we have indeed an irrotational and a solenoidal part.
By definition of the matrices it is easy to check that dimR(G1) = dimHV +∂V −1 =

mn +m + n − 4, and dimR(G⊥) = dimHo
P = (m − 2)(n − 2) so that dimR(G1) +

dimR(G⊥) = dimHS . Here R denotes the range of the operator. By (2.1) and (2.2)
we obtain that

〈G1ψ,G
⊥ϕ〉HS

= 〈Curl G1ψ, ϕ〉Ho
P

= 0,

and consequently HS = R(G1) ⊕R(G⊥) with the orthogonal sum ⊕.
Since G⊥ has full rank, the potential ϕ is uniquely determined by usol. Since the

kernel of G1 is given by N (G1) = {c1dim HV +∂V
: c ∈ R} we have that ψ is uniquely

determined by uirr up to an element from the kernel. This completes the proof.
Conversely, assume for u ∈ HS that

ρ = Div u = △d ψ,

ω = Curl u = △c ϕ,

where

△d := Div G1, △c := Curl G
⊥

are given. Since △c : Ho
P → Ho

P is invertible, the potential ϕ is uniquely determined

by ω, while ψ (and u) are given only up to a laminar flow ulam with vanishing Div and
Curl . The laminar flow can be determined by boundary conditions where we have
to take the mimetic Gaussian integral identity (2.3) into account. More precisely, we
have the following proposition; cf. [36].

Proposition 2.2. The operator

H :=





Div

Curl
B



 ∈ R
dimHS+1,dimHS

provides a bijection between the spaces HS and

VS := {(ρ, ω, ν)T : 1T

dimHV
ρ = 1T

dimH∂V
ν}.



FLOW ESTIMATION AND DECOMPOSITION 2291

More precisely, if (ρ, ω, ν)T = Hu, then u = H†(ρ, ω, ν)T; i.e., the inverse mapping on
VS is given by the pseudoinverse H† := (HTH)−1HT of H.

In case of a solenoidal flow field from {u ∈ HS : Div u = 0}, we have by Proposi-
tion 2.1 that Div G1ψ = 0 and Curl G1ψ = 0. Hence G1ψ = ulam is a laminar flow
and

(2.5) u = ulam + usol = G1ψ + G
⊥ϕ, Hu = (0, 0, ν)T + (0, ω, 0)T.

Further we have the following proposition.
Proposition 2.3. Every soleniodal flow field u ∈ HS can be written as

(2.6) u = Grad⊥φ

for some φ ∈ HP .
Proof. By properties of the tensor product it is easy to check that Div Grad⊥ = 0

so that the right-hand side of (2.6) is indeed solenoidal.
By Proposition 2.2 we obtain that dim({u ∈ HS : Div u = 0}) = mn− 1. On the

other hand, we have dim(R(Grad⊥)) = dimHP − 1 = mn− 1.
Primal and dual TV/G norms. For our optical flow decomposition and estimation

we need discrete versions of the TV norm ‖f‖TV :=
∫

|∇f | dxdy and the G norm
‖f‖G := inff=divp ‖ |p| ‖L∞

, where |p| := (p2
1 + p2

2)
1/2 for a vector field p = (p1, p2),

p1, p2 ∈ L∞. For a more sophisticated treatment of these norms in the continuous
setting, see, e.g., [11, 21].

For ω ∈ Ho
P we set

‖ω‖TV := |Gω|Ho
E
.

This defines a seminorm on Ho
P . As usual we will skip the prefix “semi” in the

following. Let N := dimHo
P . According to the norm in Ho

E let S : Rdim Ho
E → R4N be

the matrix which assigns the four appropriate elements of Ho
E to each point of Ho

P ;
cf. the appendix. For w := (w1, w2, w3, w4)T ∈ R4N with wr := (wr

j )N
j=1, r = 1, . . . , 4,

we define the vector

(2.7) |w| :=
(

‖(wr
j )

4
r=1‖2

)N

j=1
.

Then the TV norm can be rewritten as

‖ω‖TV = ‖ |SGω| ‖1.

Now the G norm of ω is defined by

‖ω‖G := min
ω=G∗S∗w

‖ |w| ‖∞ = min
ω=Div S∗w

‖ |w| ‖∞.

Similarly, we can define the TV and the G norm on HV . For ρ ∈ HV let

‖ρ‖TV :=
∣

∣G2 ρ
∣

∣

HS
.

We focus on the second way of extending G to G2 and introduce the operator S :
Rdim Ho

S → R4N with N := dimHV , which constantly extrapolates from Ho
S to HS

and assigns the elements of HS to those of HV . For the matrix structure of S, see
the appendix. Then we obtain that

‖ρ‖TV = ‖ |SG ρ| ‖1
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and

(2.8) ‖ρ‖G := min
ρ=G ∗S ∗p

‖ |p| ‖∞ = min
ρ=Div S ∗p

‖ |p| ‖∞.

The G norm (G norm) can be considered as dual to the TV norm (TV norm) in
the following sense.

Proposition 2.4. For ω̃ ∈ R(G∗S∗) the following relation holds true:

(2.9) sup
‖ω‖TV 6=0

|〈ω̃, ω〉|
‖ω‖TV

= ‖ω̃‖G.

Proof. 1. Set

L := SG : R
N → R

4N , N := dimHo
E .

Then, using the notation (2.7), the relation (2.9) can be rewritten as

sup
‖ |Lω| ‖1 6=0

|〈ω̃, ω〉|
‖ |Lω| ‖1

= min
ω̃=LTv

‖ |v| ‖∞, ω̃ ∈ R(LT).

Let ν(ω̃) := sup‖ |Lω| ‖1 6=0
|〈ω̃,ω〉|
‖ |Lω| ‖1

. By applying the Schwarz inequality to the four

parts of the corresponding vectors in R4N , we obtain for all v ∈ R4N with LTv = ω̃
that

〈ω̃, ω〉 = 〈v, Lω〉 ≤ 〈|v|, |Lω|〉 ∀ω ∈ R
N ,

and then obviously

〈|v|, |Lω|〉 ≤ ‖ |Lω| ‖1‖ |v| ‖∞ ∀ω ∈ R
N .

Consequently, we have

ν(ω̃) ≤ min
ω̃=LTv

‖ |v| ‖∞.

To show the reverse direction we consider the subspace B := R(L) of R4N

equipped with the norm ‖ | · | ‖1. Let w̃ with LTw̃ = ω̃ be fixed. Then the map-
ping lw̃(Lω) := 〈w̃, Lω〉 is a linear functional on B which has exactly the norm ν(ω̃).
By the Hahn–Banach theorem this functional can be extended to a linear functional l
on (R4N , ‖ | · | ‖1) with ‖l‖ = ‖lw̃‖. Then there exists ṽ ∈ R4N such that l(v) = 〈ṽ, v〉
for all v ∈ R4N and

〈ṽ, Lω〉 = 〈w̃, Lω〉 ∀ω ∈ R
N .

Since this can be rewritten as

〈LTṽ, ω〉 = 〈LTw̃, ω〉 ∀ω ∈ R
N

the vector ṽ must fulfil LTṽ = LTw̃ = ω̃. Then

ν(ω̃) = ‖lw̃‖ = ‖l‖ = ‖ |ṽ| ‖∞,

where the last equality follows from the fact that ‖ | · | ‖1 and ‖ | · | ‖∞ are dual norms
on R4N . Thus, ν(ω̃) ≥ minω̃=LTv ‖ |v| ‖∞, and we obtain the assertion.
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3. Flow estimation. Assume now that we are given an image sequence {g(·, j) ∈
HV : j = 1, . . . , T}. For fixed j ∈ N, we set gt = gt(j) := g(·, j + 1) − g(·, j). Then
the data fitting functional (1.6) can be discretized by

F (u) = ‖G2g · u+ gt‖2
HV

with the dotproduct on HS and by applying the mimetic Helmholtz decomposition
(2.4) by

F (ψ, ϕ) = ‖G2g · G1ψ + G2g · G
⊥ϕ+ gt‖2

HV
.

This further decomposition can be useful from two points of view. First the vec-
tors ψ and ϕ have only approximately half the lengths of the vector u. Second this
approach allows for efficiently handling solenoidal flows, which are very common in
computational fluid dynamics.

To discretize the boundary integral
∫

∂Ω(∂nu)
2 ds in (1.9) and (1.10) we use the

operator

B
n :=

(

In−1 ⊗Bn
m 0

0 Bn
n ⊗ Im−1

)

with

Bn
m :=

(

−1 1 . . . 0 0
0 0 . . . −1 1

)

∈ R
2,m.

For the smoothing penalizer we distinguish between the linear and the TV approach.
Linear approach. The discrete version of the functional (1.9) becomes

(3.1) J(u) = F (u) + λd

∥

∥G2 Div u
∥

∥

2

HS
+ λc

∥

∥G Curl u
∥

∥

2

Ho
E

+ γ ‖Bnu ‖2
∂HS

.

The minimizer u of (3.1) can be obtained by solving the corresponding normal equa-
tion.

Using the Helmholtz decomposition together with u|∂HS
= (G1ψ)|∂HS

and (2.2),

problem (3.1) can be rewritten as

(3.2) J(ψ, ϕ) = F (ψ, ϕ) + λd

∥

∥G2 △d ψ
∥

∥

2

HS
+ λc ‖G△c ϕ‖2

Ho
E

+ γ
∥

∥B
nG1ψ

∥

∥

2

∂HS
.

Since ψ is determined only up to a constant, we add the additional condition

1T

dim HV +∂V
ψ = 0

to make the functional strictly convex. This problem can be solved by subspace
correction methods [31, 33]. More precisely, we iterate the following process: we
consider ϕ as given and find the solution ψ of (3.2) via the normal equation. Then
we fix this solution as ψ and compute ϕ.

In case of a solenoidal flow field u ∈ HS we can apply (2.5), and our variational
problem reduces to

J(ψ, ϕ) = F (ψ, ϕ) + λc ‖G△c ϕ‖2
Ho

E
+ γ

∥

∥B
nG1ψ

∥

∥

2

∂HS

s.t. G2 △d ψ = 0, 1T

dim HV +∂V
ψ = 0.

The linear case was more extensively treated by some of the authors in [35].
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TV approach. Functional (1.10) becomes

(3.3) J(u) =
1

2
F (u) + λd ‖Div u‖TV + λc

∥

∥Curl u
∥

∥

TV
+
γ

2
‖B

nu‖2
∂HS

,

and by applying the Helmholtz decomposition,

(3.4) J(ψ, ϕ) =
1

2
F (ψ, ϕ) + λd ‖△d ψ‖TV + λc ‖△c ϕ‖TV +

γ

2

∥

∥B
nG1ψ

∥

∥

2

∂HS
,

where 1T

dim HV +∂V
ψ = 0. In case of solenoidal flows the functional further reduces as

in the linear case.
To solve (3.3) we propose using SOCP; cf. section 6.
Alternatively, we can again apply a splitting algorithm in (3.4) which iteratively

fixes ϕ as previously computed and finds the minimizer ψ and conversely. Then any
of the subproblems with fixed ϕ or fixed ψ can be written in the form

(3.5)
1

2
‖Ax− b‖2

2 + λ‖ |Lx| ‖1,

where A : Rdim HV +∂V → Rdim HV , L : Rdim HV +∂V → R4dim HV in case of fixed ϕ and
A : Rdim Ho

P → Rdim HV , L : Rdim Ho
P → R4dim Ho

P in case of fixed ψ. The minimizer of
(3.5) can be found by applying dual optimization techniques as proposed by Chambolle
and coworkers [3, 7, 6].

4. Flow decomposition. In this section, we want to decompose a given flow
vector u ∈ HS in a meaningful way. To this end we have to compute some basic
decomposition of u first. We apply Proposition 2.2 and consider Hu = (ρ, ω, ν)T. Let

cρ :=
1T

dimHV
ρ

dimHV
, cω :=

1T

dimHo
P
ω

dimHo
P

be the discrete versions of |Ω|−1
∫

Ω div u dxdy and |Ω|−1
∫

Ω curlu dxdy and

(4.1) ρconst := cρ 1dimHV
, ωconst := cω 1dimHo

P
.

Then we can decompose (ρ, ω, ν)T ∈ VS as

(4.2) (ρ, ω, ν) = (ρconst, ωconst, ν) + (ρvar, ωvar, 0),

where 1T

dimHV
ρvar = 1T

dimHo
P
ωvar = 0. Obviously, both summands are in VS again, so

that

u = uconst + uvar

is the corresponding basic decomposition of u ∈ HS , where

uconst = H†((ρconst, ωconst, ν)
T, uvar = H†(ρvar, ωvar, 0)T.

We call vector uconst (resp., (ρconst, ωconst, ν)) the basic pattern of the nonrigid flow
and its boundary behavior, while uvar (resp., (ρvar, ωvar, 0)) is related to the variable
(oscillating) flow pattern.

We are interested in further decomposing the intrinsic flow variation uvar into a
structural part us and a texture part ut, i.e.,

uvar = us + ut.
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This can be done in two ways. The first approach uses Proposition 2.2. Given u ∈ HS ,
we compute (ρ, ω, ν)T = Hu and then ρvar = ρ−ρconst and ωvar = ω−ωconst by (4.1).
Next we decompose ρvar = ρs + ρt and ωvar = ωs + ωt by minimizing separately

J(ρs, ρt) =
1

2
‖ρvar − ρs − ρt‖2

2 + λd‖ρs‖TV + µd‖ρt‖G,

J(ωs, ωt) =
1

2
‖ωvar − ωs − ωt‖2

2 + λc‖ωs‖TV + µc‖ωt‖G.

The minimizers can be computed as proposed in [3]. By (2.8) we see that ρt ∈
R(G ∗) = R(Div|Ho

S

), and since 1T
Div|Ho

S

= 0 we have that (ρt, ωt, 0)T ∈ VS and

further by (4.2) that (ρs, ωs, 0)T ∈ VS . Thus we can finally compute us and ut by

us = H†(ρs, ωs, 0)T, ut = H†(ρt, ωt, 0)T.

In this paper, we prefer a second approach that computes the components of u
directly. This variational approach extends Meyer’s model for the decomposition of
scalar-valued functions to the simultaneous decomposition of vector fields into basic
and variable (structural and textural) flow patterns. Moreover, it also fits into our
flow estimation-decomposition model in the next section. For u ∈ HS we propose to
to find uconst ∈ HS and us, ut ∈ Ho

S by minimizing

J(uconst, u
s, ut) = λd ‖Div us‖TV + λc

∥

∥Curl us
∥

∥

TV
(4.3)

s.t. ‖Div ut‖G ≤ δd , ‖Curl ut‖G ≤ δc,

uconst + us + ut = u,

GDiv uconst = 0, GCurl uconst = 0,

1T

dimHo
P

Curl us = 0.

Concerning the last three constraints we note the following: to obtain the desired
decomposition we have to ensure that Div uconst and Curl uconst are constant vectors
c 1 and that 1T

dimHV
Div (us + ut) = 0, 1T

dimHo
P

Curl (us + ut) = 0. The first two
conditions are fulfilled by the fourth and fifth constraint. The third condition is
fulfilled by the mimetic Gaussian integral identity and since us, ut ∈ Ho

S . The last
condition follows by the last constraint and since Curl ut ∈ R(Div ) and 1T

Div = 0.
The solution of (4.3) can be found by SOCP, as shown in section 6.

5. Flow estimation and decomposition. In this section, we combine optical
flow estimation with structure-texture flow decomposition. Given image sequence
{g(·, j) ∈ HV : j = 1, . . . , T}, we want to compute the components uconst with
constant divergence and curl, the large scale patterns us ∈ Ho

S of divergence and curl
with bounded TV norms, and the small scale patterns ut ∈ Ho

S of divergence and curl
with bounded G norms. To this end, we introduce the fitting functional

F (uconst, u
s, ut) = ‖G2g · (uconst + us + ut) + gt‖2

2.

Then, with respect to the previous section, one can consider minimizing

J(uconst, u
s, ut) =

1

2
F (uconst, u

s, ut) + λd‖Div us‖TV + λc‖Curl us‖TV +
γ

2
‖B

nu‖2
∂HS

s.t. ‖Div ut‖G ≤ δd , ‖Curl ut‖G ≤ δc,

GDiv uconst = 0, GCurl uconst = 0,

1T

dimHo
P

Curl us = 0.
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Unfortunately, this approach is not well posed. For the image areas where ∇g = 0, the
data term disappears, and the local constraints on the G norms will lead to unbounded
solutions. Therefore, we propose to replace the G norm by the L2 norm, which leads
to

J(uconst, u
s, ut) =

1

2
F (uconst, u

s, ut) + λd‖Div us‖TV + λc‖Curl us‖TV

+ µd‖Div ut‖2
2 + µc‖Curl ut‖2

2 +
γ

2
‖B

nu‖2
∂HS

,(5.1)

s.t. GDiv uconst = 0, GCurl uconst = 0,

1T

dimHo
P
(Curl us + Curl ut) = 0.

We will see in our experiments that this approach works well, although the superi-
ority of the G norm over the L2 norm in capturing (scalar) oscillating patterns was
experimentally shown in [4].

Finally, we are interested in solenoidal flows u ∈ HS . Coupling the mimetic
Helmholtz decomposition and the basic decomposition, we obtain with the laminar
flow G1ψ and ϕ = ϕconst + ϕs + ϕt that

u = uconst + us + ut = (G1ψ + G
⊥ϕconst) + G

⊥ϕs + G
⊥ϕt.

By Proposition 2.3 and since Grad⊥|Ho
P

= G⊥ this can be rewritten as

u = Grad⊥(φconst + ϕs + ϕt), φ ∈ HP , ϕ
s, ϕt ∈ Ho

P .

Then the fitting term reads

F (φconst, ϕ
s, ϕt) = ‖G2g · Grad⊥(φconst + ϕs + ϕt) + gt‖2

2,

and (5.1) can be rewritten as

J(φconst, ϕ
s, ϕt) =

1

2
F (φconst, ϕ

s, ϕt) + λc‖△cϕ
s‖TV + µc‖△cϕ

t‖2
2(5.2)

+
γ

2
‖B

n
Grad⊥φconst‖2

∂HS

s.t. G Curl Grad⊥φconst = 0, 1T

dimHo
P
△c(ϕ

s + ϕt) = 0,

1T

dimHP
φconst = 0,

where the last constraint appears since φconst is determined only up to an additive
element from the kernel of Grad⊥, which consists of constant vector fields.

6. Algorithmic aspect—SOCP. Our computational approach to flow estima-
tion via (4.3) and to simultaneous flow estimation and decomposition via (5.2) is based
on SOCP [20]. This amounts to minimizing a linear objective function subject to the
constraints that several affine functions of the variables have to lie in a second-order
cone Ln+1 ⊂ Rn+1 defined by the convex set

Ln+1 =

{(

x
t

)

= (x1, . . . , xn, t)
⊤ : ‖x‖2 ≤ t

}

.

With this notation, the general form of an SOCP is given by

(6.1) inf
x∈Rn

f⊤x , s.t.

(

Aix+ bi
cTi x+ di

)

∈ Ln+1 , i = 1, . . . , r.
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Problem (6.1) is a convex program for which efficient large-scale solvers are available
[22]. In connection with TV-based image decomposition the application of SOCPs
was recently suggested in [12, 34].

We reformulate the variational approach (4.3) as the SOCP

J(uconst, u
s, ut) = λd1

T

dimHV
v + λc1

T

dimHo
P
w,

s.t. uconst + us + ut = u , GDiv uconst = 0 , GCurl uconst = 0,

1T

dimHo
P

Curl us = 0 , Div ut = Div pd , Curl ut = Div pc,




(GDiv us)
V

i+ 1
2

,j+ 1
2

v
V

i+ 1
2

,j+ 1
2



 ∈ L5 ,

(

(GCurl us)
Pi,j

w
Pi,j

)

∈ L5,

(

(pd)V
i+ 1

2
,j+ 1

2

δd

)

∈ L5 ,

(

(pc)Pi,j

δc

)

∈ L5.

In order to incorporate the quadratic terms of the variational approaches to optical
flow estimation, we use the following rotated version of the standard cone:

Rn+2 :=

{

(

x, xn+1, xn+2

)⊤ ∈ R
n+2 :

1

2
‖x‖2

2 ≤ xn+1xn+2, xn+1, xn+2 ≥ 0

}

.

Fixing xn+2 = 1/2, we have ‖x‖2
2 ≤ xn+1. Now we can rewrite (5.2) as follows:

J(φconst, ϕ
s, ϕt) = v + µct+ λc1

T

dimHo
P
w,

s.t. GCurl Grad⊥φconst = 0 , 1T

dimHP
φconst = 0,

1T

dimHo
P
△c(ϕ

s + ϕt) = 0,
(

(G△cϕ
s)

V
i+ 1

2
,j+ 1

2

w
Vi,j

)

∈ L5,





△cϕ
t

t
1/2



 ∈ RdimHP +2,





G2g · Grad⊥(φconst + ϕs + ϕt) + gt

v
1/2



 ∈ RdimHV +2.

7. Numerical examples. In this section we verify our approaches by numerical
examples. The programs were written in MATLAB and used the software package
SeDuMi for SOCP [27]. Unfortunately, we do not have an automatized choice of pa-
rameter values. Parameter values were chosen by hand following two general rules: (i)
choose the weights as small as possible in order to not smooth out turbulent motion,
(ii) for TV terms, smaller values than in the linear case (e.g., (21)) are appropriate,
because these regularizers return larger values than their linear counterparts (assum-
ing that image data are scaled to the range [0, 1]). Rule (ii) leads to parameter values
of the order ∝ e−4. Thanks to the mimetic discretization, this suffices for numerical
stability

Flow estimation. We start by comparing flow estimations obtained by the linear
approach (3.2) and the TV approach (3.4). We consider the artificial example in
Figure 7.1 with the groundtruth on top of Figure 7.2. Figure 7.2 (middle) was ob-
tained by solving the linear systems of equations resulting from (3.2) with parameters
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Fig. 7.1. Frame g (left) and its warping with the groundtruth flow (right) for flow estimation
by the linear approach and the TV approach.

Fig. 7.2. Top: The groundtruth flow u, its div and curl (left to right). Middle: Linear recon-
struction by (3.1), difference between u and its estimation, reconstructed div and curl (left to right).
Bottom: TV reconstruction by (3.3), difference between u and its estimation, reconstructed div and
curl (left to right).

λd = 0.06, λc = 0.048. As the boundary parameter we have used γ = 0.04. The result
shows the typical blurring effects at the edges. If we decrease the parameter values,
the rectangular shape of div and curl becomes easier to see, but the artifacts always
visible in Figure 7.2 (middle) increase too. The bottom of Figure 7.2 contains the
solution of (3.3) with the parameters λd = e−6, λc = e−6, and γ = e−5 by SOCP and
17 iterations. As expected for this example, the TV approach gives very good results
by preserving discontinuities of the flow derivatives (div, curl).



FLOW ESTIMATION AND DECOMPOSITION 2299

Flow decomposition. Figure 7.3 shows a turbulent flow field u as groundtruth
along with its divergence ρ and curl ω. Applying the variational method (4.3) with
λd = 0.2 , λc = 0.5, and δd = 0.05 , δc = 0.1, we obtain the decompositions depicted in
Figures 7.4 and 7.5. The structural and textural components recovered the interesting
motion patterns at different scales, which are not easily visible in the flow u itself.

Fig. 7.3. Groundtruth data to be decomposed: flow field u (left), its divergence field ρ (middle),
and its curl field ω (right).

Fig. 7.4. The components of the flow u from Figure 7.3: uconst (left), us (middle), and ut

(right). The vectors of us, ut are scaled up for better visibility. Note that despite |u| ≈ |uconst|, the
structural and texture parts us and ut are recovered well.

Fig. 7.5. Decomposition of u from Figure 7.3 with the approach (4.3). Top: ρconst, ρ
s, ρt (left to

right). Bottom: ωconst, ω
s, ωt (left to right). The structure and texture components reveal turbulent

flow patterns at different scales, which are not easily visible in the flow u itself.
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Fig. 7.6. Groundtruth data u (left) and its curl (right) to be estimated from a corresponding
artificially created image sequence. Here u is a superposition of a laminar flow and turbulent vortices.

Fig. 7.7. Estimated and decomposed flow corresponding to Figure 7.6 using the TV − L2

approach (5.2). Top: uconst, us, and ut (left to right). Bottom: ωconst, ωs, and ωt (left to right).

Fig. 7.8. Close-up view of a section of Figure 7.7. From left to right: ωs, ωt, ωs + ωt with the
corresponding flows as overlays.

Flow estimation and decomposition. In this section we will validate the flow
estimation-decomposition model (5.2). First we create a divergence-free groundtruth
flow field u by superimposing a dominant laminar flow with some turbulent vortex
structures; see Figure 7.6. Using this flow, an artificial image sequence {g} was cre-
ated.

Figures 7.7 and 7.8 show the decomposition-based optical flow estimates, where
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Fig. 7.9. Top-left: frame of a real image sequence depicting the mixture of fluorescein and
water [18]. Top-center: the turbulent solenoidal flow estimated by minimizing (5.2). Flow vectors
are color-coded for better visibility (color ≃ direction, magnitude ≃ brightness). Top-right: the curl
field comprising large-scale patterns immersed in turbulent oscillations. Middle, from left to right:
uconst, u

s, ut. Note that uconst contains the (nonvanishing) boundary values, and that us and ut

separate coherent motion patterns and turbulent fluctuations, respectively. Bottom, from left to
right: the curl fields ωconst, ωs, and ωt.

we have used λc = 6e−5 and µc = 3e−4. The boundary parameter was chosen slightly
smaller than λd. The uconst component nicely recovers the laminar flow, whereas the
structural and textural components reveal the turbulent curl field. Finally, Figure 7.8
gives a close-up view of a section of Figure 7.7.

A real-world example. Figure 7.9 (top-left) shows a sample image of the experi-
mental evaluation of the spreading of a low-diffusivity dye in a two-dimensional tur-
bulent flow, forced at a large scale. The passive scalar is a mixture of fluorescein and
water. The divergence of the corresponding flow vanishes. For more details about the
experimental setup, we refer to [18].

Figure 7.9 shows the components of the flow and curl field estimated in terms
of φconst, ϕ

s, ϕt by minimizing (5.2) (parameter values: λc = 1e−4, µc = 3e−4, γ =
5e−4). This result clearly demonstrates how the convex constrained optimization
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approach allows for estimating complex flows while simultaneously separating large-
scale coherent motion patterns from turbulent fluctuations.

Appendix. Additional matrix notation. The extensions G1, G2 of G =
−(Div |Ho

S

)∗ =
(

In−1 ⊗ Dm−1
Dn−1 ⊗ Im−1

)

are given as follows. Let

D1
m :=















−2 2 0 . . . 0 0 0
0 −1 1 . . . 0 0 0

. . .
. . .

. . .

0 0 0 . . . −1 1 0
0 0 0 . . . 0 −2 2















∈ R
m,m+1

and

D2
m :=























−1 1 0 . . . 0 0 0
−1 1 0 . . . 0 0 0

0 −1 1 . . . 0 0 0
. . .

. . .
. . .

0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1
0 0 0 . . . 0 −1 1























∈ R
m+1,m,

and let the diagonal matrices Z1 and Z2 be defined by

Z1 :=
(

0(n−1)m,m−1, I(n−1)(m+1), 0(n−1)m,m−1

)

,

Z2 :=







Im−1 0m−1,(n−1)(m+1) 0m−1,m−1

0(n−1)(m−1),m−1 In−1 ⊗ (0m−1,1, Im−1, 0m−1,1) 0(n−1)(m−1),m−1

0m−1,m−1 0m−1,(n−1)(m+1) Im−1






,

where 0m,n is the matrix consisting of m× n zeros. Then

G1 :=

(

(In−1 ⊗D1
m)Z1

(D1
n ⊗ Im−1)Z2

)

, G2 :=

(

In−1 ⊗D2
m−1

D2
n−1 ⊗ Im−1

)

.

The matrices S and S for the computation of the TV and G norm can be defined
using

Lm(a) :=

(

1√
2
a 01,m−1

1√
2
Im

)

, Rm(a) :=

(

1√
2
Im

01,m−1
1√
2
a

)

as

S :=









In−2 ⊗ Lm−3(0) 0
In−2 ⊗Rm−3(0) 0

0 Ln−3(0) ⊗ Im−2

0 Rn−3(0) ⊗ Im−2









,

S :=









In−1 ⊗ Lm−2(1) 0
In−1 ⊗Rm−2(1) 0

0 Ln−2(1) ⊗ Im−1

0 Rn−2(1) ⊗ Im−1









.
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variational fluid flow estimation, in Scale Space and PDE Methods in Computer Vision,
Lecture Notes in Comput. Sci. 3459, Springer, New York, pp. 267–278.
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