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Abstract. The most elementary knowledge available in connection with
image motion computation can be informally expressed as “structures
do not jump”. We present a novel PDE-based representation of image
motion exploiting this knowledge. Our distributed-parameter approach
takes into account spatial context, unlike Kalman filters applied to point
features separately. It performs spatio-temporal regularization in a re-
cursive online fashion, unlike previous variational approaches evaluating
entire spatio-temporal image volumes in a batch processing mode. De-
viations from the expected velocity distribution generate vector fields
that may serve as attentional mechanism for a superordinate processing
stage. We briefly speculate about relations of our approach to perceptual
phenomena like motion aftereffects.

1 Introduction

1.1 Overview

The most elementary knowledge available in connection with image motion com-
putation can be informally expressed as “structures do not jump”. The physics
underlying any motion phenomena embodies some inertia leading to smooth
velocities. Maybe starting with the work of Heel [11,12], this knowledge has
been exploited in countless applications of computer vision during the last two
decades, mainly in terms of the Kalman filter, and more recently through it’s
modern extensions [9].

A key property of the Kalman filter is that it applies to lumped systems, where
the system dynamics is summarized by a set of variables which are a function of
time alone. As a consequence, when applied to raw pixel intensities for image mo-
tion computation, for example, or to depth estimates for surface reconstruction,
this leads to the well-known recursive update equations for computing corre-
sponding estimates at each pixel location, without any spatial context, however.
To achieve the latter, parametric models, e.g. of surface patches in the scene,
have to be assumed, which not only requires far more specific knowledge about



the scene, but also necessitates transferring the Kalman formalism into a cor-
responding parameter space, typically through nonlinear equations relating the
directly observable visual measurements to the parameters as new system vari-
ables.

Our present work is an attempt to reconsider early work on dynamic motion
vision [11], directly at the raw pixel level, in order to attain the following goal:

(i) We want to take into account spatial context, leading to a distributed parame-
ter approach with states governed by a partial differential equations (PDEs),
rather than ordinary differential equations as for lumped systems.

(ii) The approach should exploit the aforementioned elementary knowledge in
connection with motion computation. That is, moving structures should ex-
hibit some inertia in it’s most rudimentary form: velocities are not expected
to change. The computational structure should be recursive, enabling online
motion computation.

Our ansatz is based on modelling a fictive compressible fluid, using the Burgers
equation [6], in combination with a convex regularization approach to image
motion computation [17,19]. We show that the resulting model exhibits, in a
distributed-parameter fashion, properties analogous to a dynamic filter for the
most elementary polynomial kinematical model of a point feature (cf. [1]): in
the absence of image measurements, and if spatial context does not indicate
otherwise, velocities do not change.

The approach also admits a control-theoretic interpretation: if image mea-
surements indicate changes of the current velocity distribution, fictive forces
modify the system state accordingly. The presence of such forces may serve as
an attentional mechanism notifying a higher-level processing stage about unex-
pected motion events. Finally, it is tempting to point out a potential relevance
of our approach for related models of visual perception [16]. However, as we are
not experts in this field, we confine ourselves to few speculative remarks.

1.2 Further Related Work

Concerning property (i) stated above, it is well known that non-local variational
approaches, particularly those exploiting spatio-temporal context [20], lead to ro-
bust estimates of coherent motion patterns. On the other hand, such approaches
are static in that an entire spatio-temporal image volume has to be processed at
once in batch mode. In contrast, our approach is dynamic and leads to recursive
computations in online mode, while still performing temporal regularization.

A prominent example for other work exploiting models from fluid mechanics
is the work of Christensen on image registration [7] which subsequently instigated
a lot of related research (cf. [2] and references therein). The authors also use
the momentum equation as prior knowledge. However, while we merely use the
material derivative of the velocity (in order to mimic inertia), they consider the
opposite special case of very low Reynolds numbers and drop the inertial terms.
Furthermore, as we consider relatively small displacements between video frames,
we do not distinguish between velocity and displacements.



Other related work concerns the vorticity transport formulation of the in-
compressible Navier-Stokes equation used for image inpainting [3]. There are two
conceptual differences to our approach: First, the inpainting approach transports
a function of the gray value field while we transport the velocity field itself. Sec-
ond, we utilize a compressible model of fluids, because incompressibility almost
never holds for 2D-deformations induced by relative motions to a 3D scene.

An interesting control-approach to image motion estimation has been pro-
posed in [4]. The basic idea is to estimate both an optical flow field u and a
rectified image function g satisfying (2) below exactly. Solving for the adjoint
equation, however, requires to move backwards in time and does not enable
online computation.

Finally, we point out that while our approach performs spatio-temporal fil-
tering and may be regarded as a rudimentary version of a distributed-parameter
Kalman filter, it falls short of an exact corresponding mathematical extension
(cf., e.g. [5]). The advantage, however, is a deterministic and easy-to-parallelize
recursive computational architecture.

2 Approach

2.1 The 2D Burgers Equation

Let u = (u1,u2), u = u(z,t), x = (x1(t),r2(t)), denote a two-dimensional
vector field. We consider a hyperbolic system of conservation laws in terms of
the inviscid Burgers equation

%u:%—i—(u-V)u:O, u(z,0) = ug (1)
This equation has been studied and successfully applied for many decades in
aero- and fluid dynamics [6,21,15,10,13] as a simplified model for turbulence,
boundary layer behavior, shock wave formation and mass transport. It appears
as convection term in the fundamental equations of fluid mechanics, the Navier-
Stokes equations.

As a physical interpretation, v in (1) may be regarded as a vector of con-
served (fictive) quantities or states, with corresponding density functions w1, uo
as components. The material derivative % in (1) yields the acceleration of mov-
ing particles. Consequently, equation (1) says that velocities of moving particles
do not change. The nonlinear term (u - V)u is the inertia term of the transport
process described by (1). See figure 1 for an illustration. In practice, we nu-
merically solve (1) for the (short) time-interval [0, T] between two video frames
(section 3).

2.2 Variational Model

Let g(x1,x2,t) denote the gray value of an image sequence recorded at location
x = (z1,72)" within some rectangular image domain {2 and time ¢ € [0, 7).



Fig. 1. Transportation of a vector field by equation (1) at times ¢t = 0,5,10. Gray
values visualize vector magnitudes. Fictive particles move along a shock front in the
lower right direction. In the absence of any further external information, a region of
rarefaction arises due to mass conservation, acting like a short-time memory.

We adopt the common basic assumption underlying most approaches to motion
estimation that g is conserved over time:

Dt =(u-V)g+0g=0 (2)

Here, V denotes the spatial gradient, and 0; the partial derivative wrt. time. In
order to regularize (2), we adopt the variational approach of Nagel [17]:

1 2
= / {((u -V)g + atg) + a? (VulTD(Vg)Vul + VUQTD(VQ)VUQ) }da: (3)
2 Je
where
__ 1 1 T 2
D(VY) = 1o o (Vo (Vo) + X)), Rsaa>0 (1)

Under weak assumptions, functional (3) is strictly convex and has a unique min-
imizing vector field u [18]. The regularizing term, introduced by Nagel, extends
the basic approach of Horn and Schunck [14] to an anisotropic image-driven dif-
fusion process (cf. [17,19]) which prevents the smoothing of motion boundaries
at gray value edges.

We emphasize that the approach (3) takes only into account spatial con-
text and determines a vector field for a fized point in time ¢ € [0,7]. While
it has been shown in [20] that a spatio-temporal extension of this class of ap-
proaches, using spatio-temporal gradients and a corresponding domain of in-
tegration fo[O,T] ...dzdt, improves both robustness and accuracy of motion
estimation, it leads to a batch processing mode where all variables of the entire
spatio-temporal volume have to be determined as solution of quite a large linear
system of equations.

Our present work is an attempt to change this static viewpoint of image
motion processing to a dynamic one. To this end, we solve equation (1) for the



time interval [0, T] between a subsequent pair of image frames, where ug denotes
our current motion estimate. As a result, we obtain a transported vector field
ur = u(z,T) which can be regarded as a predicted vector field, based on the
constant velocity assumption as discussed in section 2.1.

Furthermore, we complement the spatial variational approach (3) with a
corresponding penalty term for the purpose of temporal regularization:

J(u) = —/Q{((u-V)g+atg)2+a2(vuID(vg)w1+Vu;D(vg)W2)
+ 3[u = ur* }dz (5)

By minimizing this functional, we combine the predicted state in terms of the
vector field up with current measurements, given by (2), and spatial regulariza-
tion. The resulting global minimizer @ defines the initial data ug in (1) for the
subsequent image pair and time interval.

2.3 Further Interpretation

An important property of our ansatz (1) and (5) is that temporal context is
taken into account without too much additional computational costs. Rather,
the solutions to (1) and (5) can be recursively computed in an online process-
ing mode. Of course, regarding temporal regularization, we do not claim strict
mathematical equivalence to the approach [20].

Problem (5) is solved in a standard way (see [18] for details). The unique
global minimizer @ of the quadratic functional (3) is determined by the varia-
tional equation

a(u,v) =b(v), Yo (6)

where the bilinear form a(-,-) and the linear form b(-) comprise all quadratic
and linear terms in wu of the functional (3), respectively. A physical interpreta-
tion regards (6) as stationary (deformation) state of the “elastic” image domain
2, defined as equilibrium between the internal deformation energy a(u,u) and
external forces b(u), according to the principal of virtual work. Adopting this
viewpoint, the additional penalty term in (5) adds an additional internal energy
term [Jul| 12(o) regularizing the degenerate data term, and an additional external
force term (ur,u)r2(o) related to the temporal prediction.

Another viewpoint on (1) and (5) is visual perception. Our approach allows
to match computed motions against expectations without making specific as-
sumptions about the underlying scene (geometry, rigid/non-rigid, etc.). As a
consequence, significant deviations from expected motions may be used to focus
the attention of a superordinate processing stage. In section 4, we will inspect
this aspect in terms of the vector fields

fa) = (u—ur)(x) . (7)



3 Implementation Details

We summarize in this section details of our implementation.

3.1 Discretisation of the Burgers Equation

The numerical evaluation of the nonlinear equation (1) is the most involved part
of our approach. We use a second-order conservative finite differencing scheme.
Fluxes are numerically computed by solving the full multidimensional equations
at pixel edges. The correct behavior at discontinuities is obtained by using solu-
tions of the appropriate Riemann problem and by applying van Leer limiters to
some of the second-order terms. For more details, we refer to [8].

3.2 Variational Approach

We use piecewise linear finite elements to discretize the variational equation
(6) related to the variational approach (5), and compute the global minimizer
7 by solving the resulting linear system of equations. We confine ourselves to
specifying the variational equation more explicitly:

a((U/l,U/Q)T, (vl,vg)T) =b((vi,v2)"), Vor,va (8)

where

a(T@,v) = /Q { (Z;)T VgVg" <Z;)

+ a? (VulTD(Vg)Vvl + VuJD(Vg)va) + ﬁQUT’U}dx (9)

b(v) = / { — 0,9Vg v+ (2 u;v}daj (10)
fo)

3.3 Coarse-to-Fine Approach and Iterative Registration

The accuracy of motion estimation critically depends on the magnitude of image
motion. It is well known that, depending on the spatial image frequency, very
large motions even may cause aliasing along the time frequency axis. As a rem-
edy, we first compute a coarse velocity field by using only low spatial frequency
components and then “undo” the motion, thus roughly stabilizing the position of
the image over time. Next, the higher frequency subbands are used the estimate
motion on the warped sequence. Combining the resulting correction term with
the previously computed estimate gives a refined velocity estimate.



4 Numerical Experiments

In this section, we examine and illustrate various properties of our approach. All
experiments were conducted using a computer-generated scene as ground-truth,
where a brick is moving with 7 pixels/frame in front of a wall. We marked the
true motion of the brick with a large arrow in the figures below.

We addressed the following aspects:

— Uniform motion conforming to the expected motion, that is no acceleration.

— Unexpected motion events like abrupt starting or stopping movements, or
changing motion directions.

— Motion computation with temporarily missing image data in connection
(un)expected motion events.

— Temporal regularization.

We discuss these aspects in the following sections.

4.1 Inertia and Motion

Figure 2 illustrates the effect of (1) on motion computation. This effect may
be conceived as that of a fictive material, furnished with some inertia, which is
trying to follow the apparent motion in an image sequence.

The upper-right panel depicts the frame directly after an abrupt change of
the object’s moving direction. Due to inertia, the moving particles tend to keep
their current motion. After a couple of frames (lower-left panel), a new moving
front has been established which drags the remaining field in the novel direction.

Note that we do not regard this temporal period of “confusion” as a draw-
back. Rather, in most cases where observed motions conform to the expectation,
the inertia enables the fictive fluid to exert a temporal filtering effect, as exper-
imentally demonstrated below. Furthermore, the message “nothing interesting
happens” can be signaled to a superordinate processing stage. On the other hand,
in situations as depicted in figure 2, the discrepancy between observed and ex-
pected motion may be used to generate a message so as to focus the attention
of superordinate visual processing. The next experiment further illustrates this
aspect.

4.2 Focus of Attention and Motion Compression

Figure 3 shows two instantaneous situations for a starting and stopping object,
respectively. The vector fields depicted are not the optical flows but the vector
fields f defined in (7) which quantify deviations from the system’s expectation.
For example, in the left panel, the vector field points into the reverse direction,
due to the “negative acceleration” of the object.

Figure 4 shows a section through f as a function of time (frame number). Two
vertical dashed lines indicate where the object stopped and started, respectively.
For each event, the curve shows a strong signal peak with very short time delay.



In principle, this peak could be used to focus the attention of a superordinate
processing stage.

Figure 5 illustrates this aspect for a real image sequence. The turning points
of the waving hand lead to periodic peaks of the vector field f. In between,
motion can be predicted well, rendering any communication to external modules
unnecessary.

4.3 A Computational Model of Motion Aftereffects?

Another interesting observation is that the curve shown in figure 4 decays with
a much lower rate. In a rudimentary way, this is reminiscent of perceptual phe-
nomena like motion aftereffects [16]. After adaption of the visual apparatus to
some ongoing stimulus, a “negative” fading visual impression arises when the
stimulus disappears. Of course, we are well aware that such an interpretation is
highly speculative.

4.4 Missing Image Measurements

Let us consider the behavior of the approach when an entire period of an image
sequence is masked out. This scenario is relevant in connection with occlusions
or technical limitations in the recording process that lead to data loss.

Figure 6 shows the sequence with a uniformly moving brick where 3 frames
have been masked out. Because the motion exactly coincides with the expecta-
tion, motion prediction is exact as well, and short-time losses of image data is
immaterial.

Things are different when the object changes its direction of movement in
the absence of image data. The upper-right panel of figure 7 shows how the
algorithm assumes a uniform movement of the object. When image data are again
available (lower-left panel), the velocity direction is updated. Notice, however,
that there are still (erroneous) velocity estimates below the object showing that
the algorithm is still “searching” the moving object in this direction as originally
expected.

4.5 Temporal Regularization

Figure 8 compares the L?-error of the flow estimated with our approach and the
motion estimate obtained as minimizer of purely spatial variational approach
(3) (i.e. omitting the influence of (1) in (5)) over 20 frames of the sequence.
Object motion was uniform. The consistently lower error shows that the ability
of motion prediction is used in (5) to exert temporal regularization.



Fig.2. A moving object which abruptly changes the moving direction, as indicated
by the large arrows. The figure illustrates the influence of the inertia of a fictive fluid
which is trying to track the apparent image motion. See text for further discussion
(parameters: « = 0.01, 8 = 0.005).

5 Summary and Conclusion

We presented a distributed-parameter approach to dynamic image motion. The
approach combines variational motion estimation with motion prediction through
a transport process. According to the underlying constant-velocity assumption,
the formulation may be regarded as an elementary distributed-parameter ver-
sion of a low-order polynomial filter commonly used for the kinematics of point
features. For motions conforming to the assumption, a temporal regularization
effect, computed in a recursive manner, was demonstrated. We also included a
brief speculative discussion of our model in view of motion aftereffects.



Fig. 3. Left: Vector field f when the object stops. Right: Vector field f when the
object starts moving. See text for further discussion (parameters: o = 0.01, 8 = 0.001).

40

Fig. 4. A section through f (y-axis) over 37 frames (x-axis) corresponding to the image
sequence shown in fig. 3. Vertical lines mark the frames where the object started and
stopped, respectively. Signal peaks could be used to focuses attention of a superor-
dinate processing level. The fading characteristic is reminiscent of motion aftereffects
(parameters: a = 0.01, 8 = 0.001).

Our further work will address predictions of non-uniform motions and how
the approach can be applied in the presence of motion boundaries and occlusions.



Fig. 5. Top: A waving hand and its the estimated optical flow (right). Bottom: At
a turning point, the estimated velocity field is zero (left) while the deviation from the
expected motion is maximal, causing a “negative” vector field f (right). See text for
further discussion (parameters: o = 0.005, 3 = 0.001).
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