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Abstract

Spanning trees are an important primitive in many data analysis tasks, when a data
set needs to be summarized in terms of its “skeleton”, or when a tree-shaped graph over
all observations is required for downstream processing. Popular definitions of spanning
trees include the minimum spanning tree and the optimum distance spanning tree,
a.k.a. the minimum routing cost tree. When searching for the shortest spanning tree
but admitting additional branching points, even shorter spanning trees can be realized:
Steiner trees. Unfortunately, both minimum spanning and Steiner trees are not robust
with respect to noise in the observations; that is, small perturbations of the original
data set often lead to drastic changes in the associated spanning trees. In response, we
make two contributions when the data lies in a Euclidean space: on the theoretical
side, we introduce a new optimization problem, the “(branched) central spanning tree”,
which subsumes all previously mentioned definitions as special cases. On the practical
side, we show empirically that the (branched) central spanning tree is more robust to
noise in the data, and as such is better suited to summarize a data set in terms of its
skeleton. We also propose a heuristic to address the NP-hard optimization problem,
and illustrate its use on single cell RNA expression data from biology and 3D point
clouds of plants.

1 Introduction

Many data analysis tasks call for the summary of a data set in terms of a spanning tree,
or use tree representations for downstream processing. Examples include the inference of
trajectories in developmental biology [30, 10], generative modeling in chemistry [1], network
design [42] or skeletonization in image analysis [2, 39]. The problem is akin to, but more
complicated than, the estimation of principal curves because good recent methods such as [24]
cannot account for branched topologies. For a spanning tree representation to be meaningful,
it is of paramount importance that the tree structure be robust to minor perturbations of the
data, e.g. by measurement noise. In this work, we address the geometric stability of spanning
trees over points lying in an Euclidean space.

The minimum spanning tree (mST) is surely the most popular spanning tree, owing to its
conceptual simplicity and ease of computation. For a graph G = (V,E) with edge costs, the
mST is a tree that spans G while minimizing the total sum of edge costs. It prioritizes shorter
edges that connect closely located nodes enhancing data faithfulness. Unfortunately, its
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Figure 1: Euclidean Central Spanning Tree Family of Problems with and without
Steiner Points. The central spanning tree weighs the costs of the edges, given by node
distances, with the centrality of the edges, mij(1−mij). The influence of the centrality is
regulated by the parameter α ∈ [0, 1]. For lower α values the centrality becomes insignificant,
and the tree tends to contain short edges. For higher α values, the tree encourages central
edges of low cost, at the expense of peripheral edges of higher cost. We study central spanning
trees with and without additional Steiner points (shown in red). The widths of all edges are
proportional to their centrality. The central spanning tree problems includes well-known and
novel spanning tree problems, the latter highlighted in green.

greedy nature makes the mST susceptible to small data perturbations that may lead to drastic
changes in its structure, see Figure 4. An alternative, the minimum routing cost tree (MRCT),
minimizes the sum of pairwise shortest path distances [26]. Unlike the mST, solving the
MRCT is NP-hard [43]. Despite this, the MRCT exhibits a more stable geometric structure
compared to the mST, as it tends to be more ”star-shaped” (see Figure 4). Nevertheless, this
star-shaped tendency inclines towards connecting nodes that are spatially distant, introducing
a risk of information loss and compromised data fidelity. This effect becomes particularly
pronounced in high-dimensional spaces, potentially rendering the MRCT approach unusable
(see Figures 5i-5l)). Achieving a balance between data fidelity and geometric robustness is
crucial for an effective spanning tree.

Central spanning trees (CST) In this paper, we propose a novel parameterized family
of spanning trees that interpolate and generalize all the aforementioned ones. Unless otherwise
stated, we will assume a complete Euclidean graph, where the nodes are embedded in the
Euclidean space with coordinates XV = {x1, . . . , x|V |} ⊂ Rn and the edge costs are given by
the distances between the vertices, cij = ||xi − xj||. We define the CST as the spanning tree
of G that minimizes the objective

CST := argmin
T

∑
e∈ET

(
me(1−me)

)α
ce = argmin

T

∑
(i,j)∈ET

(
mij(1−mij)

)α||xi − xj||, (1)
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where me and (1 −me) are the normalized cardinalities of the components resulting from
the removal of the edge e from T . Thus, me(1−me) is the product of the number of nodes
on both sides of the edge divided by |V |2. Because this value is proportional to the “edge
betweeness centrality”1 of e in T [6], we call the problem the “central spanning tree” (CST)
problem. The exponent α is the interpolating parameter that modulates the effect of the
edge centrality. For α close to 0, the centrality becomes insignificant, so the tree tends to
contain lower cost edges overall. For α = 0 we retrieve the mST. On the other hand, as α
increases, the centrality becomes more relevant, leading the tree to favor topologies with
low centrality edges, thus promoting a higher branching effect. For α = 1, the resulting
expression is proportional to the MRCT. Here, each edge cost is multiplied by the number
of shortest paths it belongs to, leading the total sum to represent the sum of shortest path
distances (see Appendix D).

As will be seen in Section 3, the α parameter has an effect on the geometric stability of
the spanning tree, with higher α resulting in greater robustness. The robustness of spanning
trees has been explored in various contexts. For instance, researchers have investigated
the robustness of the mST cost under edge weight uncertainty [19, 35] and the robustness
against node or edge failure in networks [23]. Additionally, studies have delved into the
stability regions of mST, under which any change in vertex location does not alter the mST
[27, 28]. The central tree problem [5], related by name to ours, focuses on computing a tree
that minimizes the maximal distance to a set of given trees. To our knowledge, we are the
first to propose a spanning tree whose geometric structure is stable and resilient to data
perturbations such as noise.

Finally, we remark the connection between the the CST problem and the Minimum
Concave Cost Network Flow (MCCNF) problem [44, 12]. The MCCNF problem aims to
minimize the cost of distributing a certain commodity from source to sink nodes. Such a
problem models the cost of an edge as a concave function of the transportation flow. The
CST can be reinterpreted as MCCNF where a commodity with mass equal to |V | − 1/|V |,
concentrated into a single source node, must be transported to the rest of nodes. In our
case, the term me in (1) can be interpreted as the flow of such problem. Since the function
(me(1−me)

)α
ce is concave with respect to me for α ∈ [0, 1], we deduce that the CST is an

instance of the MCCNF. A more detailed discussion of the interpretation of the CST as a
MCCNF problem is offered in Appendix C.

Considering the CST from the perspective of an MCCNF problem, it becomes clear that
it falls into the NP-hard category. Indeed, the authors of [13] showed that single-source
MCCNF problems with strictly concave functions are NP-hard. Consequently, we conclude
that the CST problem is NP-hard for α ∈]0, 1] due to the strictly concave nature of the edge
cost function (me(1−me))

α ce.
2

Branched central spanning trees (BCST) Inspired by Lippmann et al. [22], we
also study the variant of the CST problem which allows for the introduction of additional
nodes, known in the literature as branching points or Steiner points (SPs). Formally, we

1The edge betweenness centrality measures an edge’s frequency in shortest paths between nodes, with
more traversed edges being deemed more central. In trees, it’s the product of nodes on opposite sides of the
edge.

2The same argument applies to the NP-hardness of the branched version of the CST problem, which is
explained next.
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distinguish between two types of nodes. On the one hand, we have the terminal nodes with
fixed coordinates given by XV . On the other hand, we allow for an extra set of points, B,
whose coordinates XB must be jointly optimized with the topology T . In this case, T is a
spanning tree defined over the nodes V ∪B. Accordingly, the objective of the CST problem
becomes

min
T,XB

∑
(i,j)∈ET

(
mij(1−mij)

)α||xi − xj||. (2)

In this generalization, which we refer to as the branched CST (BCST), the well-known Steiner
tree problem [15, 40] arises when α = 0. Figure 1 summarizes (B)CST and its limiting cases,
only some of which have been studied in the literature so far.

Contributions. 1) We present the novel (B)CST problem and provide empirical evidence
for its greater stability on toy and real-world data; 2) We propose an iterative heuristic to
estimate the optimum of the BCST problem.3 By exploiting the connection between the
branched and unbranched versions of the CST problem, we are able to use the heuristic
defined for the BCST to also approximate the Euclidean CST without Steiner points. We
benchmark this heuristic and show its competitiveness. 3) On the theoretical side, we prove
that for large α or large |V | and α > 1, (B)CST converges to a star-tree (hinting modeling
limitations when α > 1), and for α→ −∞, it tends towards a path graph. Additionally, we
show analytically that if the terminal points lie on a plane, then for α ∈ [0, 0.5] ∪ {1} the
Steiner points of the optimal solution can have up to degree 3, and we provide empirical
evidence that this holds also for α ∈ ]0.5, 1[.

Outline In Section 2, we explore the limiting cases of the (B)CST optimum as α
approaches ±∞, along with the scenario where the number of terminals tends to infinity for
α > 1. Section 3 demonstrates empirically the stability of the (B)CST as α increases. In
Section 4, we establish a relationship between feasible CST and BCST topologies. Section
5 analyzes the geometry of optimal BCST topologies, providing analytical expressions for
the branching angles at the Steiner points. Moreover, it discusses the feasibility of 4-degree
SPs when the BCST is restricted to the Euclidean plane. Section 6 presents a heuristic to
approximate the (B)CST optimal solution, while Section 7 benchmarks this heuristic on small
toy datasets. The conclusions of this work are given in section 8.

2 Limit Cases of the CST/BCST Problems Beyond the

Range α ∈ [0, 1]

The CST problem, as defined in (1), as well as its branched version are parameterized by
α. Throughout the manuscript our attention will be on the α-range of [0, 1], nonetheless
it is worth studying the problem beyond this range. We will show that when α → ∞ or
the number of terminals approaches infinity when α > 1, the (B)CST tends to a star graph
centered on the medoid of the graph, i.e. the node that minimizes the distance to the rest of
nodes. Consequently, the case with α > 1 becomes inadequate for modeling data structure,
as the tree becomes increasingly trivial with a growing number of terminals. Conversely, as
α→ −∞, the CST tends towards the path graph that minimizes the CST objective. These

3Code available at https://github.com/sciai-lab/CST
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scenarios prove inadequate for modeling data structure, thus we restrict our focus exclusively
to the α-range of [0, 1].

2.1 Limit Cases Where the Optimum (B)CST Transforms into a
Star-Tree

In this section, we delve into scenarios at the limits where the optimal solutions for both the
CST and BCST problems converge to a star-tree configuration. Specifically, we demonstrate
that this outcome occurs as α approaches infinity and as the number of terminals, denoted
by N , tends to infinity when α > 1. The later limit case is of special relevance, as it indicates
that when the parameter α exceeds 1, both CST and BCST exhibit inadequacy in extracting
meaningful structural information from the data. In this situation, an increasing number of
data points lead to the formation of a star-tree, which, lacks the capacity to convey pertinent
information about the underlying dataset.

Before studying the limit cases, we will analyze the optimum star-tree that minimizes
the CST and BCST costs. Note that in a star-tree, all edges are adjacent to a leaf node and,
therefore all have the same normalized centrality value, which is equal to (N − 1)/N2, where
N is the number of terminals. In this scenario, the centrality of the edges in the cost function
from Equation (1) can be factored out, simplifying the problem to the identification of the
star graph with the minimum cost. Indeed, if u denotes the center node of a star graph, then
its CST objective is equal to ∑

v ̸=u

N − 1

N2
cuv =

N − 1

N2

∑
v ̸=u

cuv.

Consequently, the optimal solution for the CST problem manifests as a star graph centered
at the node that minimizes the total distance to all other nodes, effectively the medoid. In
the context of the BCST problem, where Steiner Points can be introduced, the star graph is
centered at the geometric median. This is because the Steiner Points strategically position
themselves to minimize the distance to all nodes. The next result formalizes this statement.

Lemma 2.1. The tree-star that minimizes the CST cost is the star-shaped tree centered at
the medoid of the terminals, that is, centered at the terminal which minimizes the sum of
distances to all nodes. For the BCST case, the tree is centered at the geometric median of
all terminals.

As a consequence of this result, we infer that the limit cases wherein both CST and BCST
converge to a star-tree will yield stable trees. This stability arises from the consistent output
of star-trees, with their centers being the medoid and geometric median—both robust points
resilient to noise.

In order to study limit cases where the star-tree emerges as the optimal solution, we
establish first a sufficient condition for the CST optimal solution to take the form of a star
tree. This condition was first identified by Hu [14] in the context of the Minimum Routing
Cost Tree (MRCT), corresponding to the CST with α = 1. Hu showed that if a “stronger”
variant of the regular triangle inequality holds, then the optimum solution of the MRCT is a
star tree. The following theorem extends and generalizes this result for arbitrary values of α.

5



Theorem 2.1. Let N be the number of terminals and cij be the edge-costs of any pair of
points (Steiner or terminals) i, j. If there exists

t ≤ min
ℓ∈[2,N/2]

(
ℓ(N−ℓ)
N−1

)α
− 1

ℓ− 1

such that
ckv + tcuv ≥ cku (3)

for all triplets of nodes u, k, v, then there exists an optimum (B)CST evaluated at α which is
a star tree.

We defer the complete proof to Appendix E.1, though we sketch briefly the key idea. The
proof demonstrates that we can always iteratively increase the degree of certain node, by
connecting all neighbors of one of its neighbors to it. If the “stronger” variant of the triangle
inequality holds, then this process does not increase the cost. Eventually, a node will reach
maximum degree, indicating the formation of a star-tree structure.

Remark 2.1. Note that Theorem 2.1 states only a sufficient condition, which means that the
optimum can be a star tree even if the strong triangle inequality does not hold. Additionally,
it is worth to highlight that Theorem 2.1 also holds true for the CST problem even when the
nodes lack embedding in any specific space, allowing for edge costs with arbitrary values.

Let us define

h1(ℓ,N, α) :=

((
ℓ(N−ℓ)
N−1

)α
− 1
)

ℓ− 1
=

(
1 + (ℓ−1)(N−ℓ−1)

N−1

)α
− 1

ℓ− 1
. (4)

which characterizes the upper limit of the threshold t in Theorem 2.1. Equation (3) represents
a weighted version of the triangle inequality. Specifically, when t = 1, equation (3) recovers
the standard triangle inequality. Moreover, if h1(ℓ,N, α) ≥ 1, there exists a value t such that
h1(ℓ,N, α) ≥ t ≥ 1. This implies that the relation is weaker than the triangle inequality.
Therefore, if the triangle inequality holds, equation (3) will also hold. As a first consequence,
is evident that

lim
α→∞

h1(l, N, α) =∞, ∀N ≥ 3, ℓ ∈ [2, N/2].

This indicates that as α tends to infinity, the optimal tree tends to become a star-tree. The
intuition behind this is clear: as α increases, the CST/BCST aims to minimize the centrality
of the edges, since the edge costs become relatively insignificant in comparison. Among all
edges in a tree, those adjacent to a leaf have the least centrality. Thus, any star graph is a
tree that minimizes simultaneously the edge centrality of all its edges

One can also show that h1 is greater than 1 when α > 1 and N approaches infinity:

lim
N→∞

h1(l, N, α) ≥ 1, ∀α > 1, ℓ ∈ [2, N/2],

though we leave the technical proof for the Appendix E.2. Consequently, we obtain the
following corollary
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Figure 2: Threshold Function α∗(N) Guaranteeing Optimal (B)CST Star-Tree.
The threshold function α∗(N), tied to the number of terminals N , defines the minimum α
value ensuring the optimal solution for CST/BCST is a star-tree. For all α > α∗(N), the
optimum solution is a star-tree. The plot depicts the transition at which the optimum is
ensured to be a star-tree is around α ≈ 1. As N increases, α∗(N) approaches 1, implying
that in the limit as N tends to infinity, CST/BCST with α > 1 converges to a star-tree.

Corollary 2.1. As the parameter α approaches infinity, or N approaches infinity and α > 1
the CST/BCST optimal solution is a star-shaped tree.

Corollary 2.1 states that the optimum tree is a star-tree when α > 1 and N →∞. What’s
intriguing is that this limit is reached at relatively low values of α ≈ 1 for moderate values of
N . In Appendix E.3, we show that for N nodes, the threshold α∗(N) at which h1(ℓ,N, α) ≥ 1
for all ℓ ∈ [2, N/2] and α ≥ α∗(N) is given by

α∗(N) = max

 log(2)

log
(
1 + N−3

N−1

) , log(N/2)

log
(
1 + (N/2−1)2

N−1

)
 (5)

The function α∗(N) serves as a threshold, ensuring that the optimal solution adopts a star-tree
configuration. To illustrate this threshold, Figure 2 depicts the function α∗(N). Indeed, we
see that when N = 1000, α = 1.15 is enough to guarantee that the optimum is a star tree.
A toy example is presented in Figures 3, with N = 1000, showcasing an instance where the
optimum is indeed a star tree.

Remark 2.2. The star-shaped tendency becomes more prominent in higher dimensions.
Empirical observations indicate that relatively small values of α (α ≲ 1) tend to produce
an almost star-shaped tree, which compromises the preservation of data structure. This
behavior can be attributed to the curse of dimensionality, where the majority of point pairs
in a high-dimensional Euclidean space become nearly equidistant. Consequently, the strong
triangle inequality derived in Theorem 2.1 will hold for most triplets of points due to the
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approximate equality of cku ≈ ckv in equation (3). Figures 5i-5l) exemplify this effect on a
50-dimnsional dataset.

(a) BCST, α = 1.00 (b) CST, α = 1.00

(c) BCST, α = 1.05 (d) CST, α = 1.05

(e) BCST, α = 1.10 (f) CST, α = 1.10

(g) BCST, α = 1.15 (h) CST, α = 1.15

Figure 3: (B)CST Star-Tree Optimality with Respect to α ≳ 1 in Samples Uni-
formly Drawn from a Rectangle. As α increases, both CST and BCST exhibit a transition
towards a star graph. This effect may manifest relatively early. As anticipated in Figure 2,
for a sample set with 1000 points, the value α = 1.15 transforms both CST and BCST into a
star graph.

2.2 Limit Cases Where the Optimum (B)CST Transforms into a
Path-Tree

Negative values of α favour high central edges, as (me(1−me)))
α will be lower. Consequently,

for sufficiently negative values of α, the CST/BCST problem will prioritize minimizing the
number of leaves since the centrality of its adjacent edges attain the minimum centrality. The

8



tree that minimizes the number of leaves is a path. Therefore, when α→ −∞ the optimum
tree will be the Hamiltonian path that minimizes the CST/BCST objective function. A
Hamiltonian path is a path that visits each node exactly once.

Echoing Theorem 2.1 we show that if a variant of the triangle inequality holds, then the
optimum (B)CST will be a tree.

Theorem 2.2. Let N be the number of nodes and cij be the edge-costs of any pair of points
(Steiner or terminals) i, j. If there exists

t ≤ min
1≤s≤N−3

1≤ℓ≤min(s,(N−s)/2−1)

(ℓ(N − ℓ))α − ((ℓ+ s)(N − ℓ− s))α

(s(N − s))α

such that
ckv + tcuv ≥ cku

for all triangles in the graph, then there exists an optimum (B)CST evaluated at α which is
a Hamiltonian path.

In contrast to the proof presented in Theorem 2.1, we demonstrate that we can system-
atically decrease the degree of nodes by iteratively connecting the neighbors of a specific
node to one of its neighbors. This iterative reduction does not inflate the cost, provided the
triangle inequality variant holds. Ultimately, all nodes will have at most degree 2, meaning
that a path has been formed. We defer the complete proof to Appendix E.4.

Let

h2(ℓ, s,N, α) =
(ℓ(N − ℓ))α − ((ℓ+ s)(N − ℓ− s))α

(s(N − s))α
.

As a consequence of Theorem 2.2, if h2(ℓ, s) ≥ 1 for 1 ≤ s ≤ N − 3 and 1 ≤ ℓ ≤ min(s, (N −
s)/2− 1), then the satisfaction of the triangle inequality is a sufficient condition to ensure
that the optimal (B)CST topology is a path. We can easily check that as α approaches minus
infinity the following limit holds

lim
α→−∞

h2(ℓ, s,N, α) = lim
α→−∞

 ℓ(N − ℓ)
s(N − s)︸ ︷︷ ︸

≤1


α

−

((ℓ+ s)(N − ℓ− s))
(s(N − s))︸ ︷︷ ︸

>1


α

=

{
1, if ℓ = s

∞, if ℓ > s
,

(6)

where we have used the inequalities 1 ≤ s ≤ N − 3 and 1 ≤ ℓ ≤ min(s, (N − s)/2 − 1).
Consequently, as α approaches −∞, the optimum tree will tend to a path tree. Note however,
that if l = s, then h2(ℓ, ℓ,N, α) < 1. In this case, according to Theorem 2.2, the optimum
tree can only be a path for α negative enough, if the triangle inequality holds strictly for
all triplets of nodes. Nonetheless, in Corollary E.1, we show that when the points lie on a
geodesic space, then the requirement of the strict triangle inequality is not necessary for the
optimum to become a path as α approaches −∞.
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In the previous section, we demonstrated that for a given α > 1 we can find N large
enough, such that for any configuration of terminals the optimal solution of the CST/BCST
problem would be a star-tree. However, in this case, we cannot ensure that if α < 0, there
exists N large enough, where the optimum is a path. Indeed, given a fixed α ∈ R and setting
ℓ = N/4− 1 and s = N/2, we have that the limit of h2(N/4− 1, N/2, N, α) as N increases is
given by

lim
N→∞

h2

(
N

4
− 1,

N

2
, N, α

)
= lim

N→∞

(
(N
4
− 1)(3N

4
+ 1)

)α − ((N
4
+ 1)(3N

4
− 1)

)α(
N
2

)2α = 0 < 1.

Consequently, Theorem 2.2 will not guarantee that the optimum is a path as N increases,
unless all edge-costs are equal.

3 Stability of the CST Problem

In this section we argue in favour of the greater robustness of the CST problem to small
perturbations in data. We investigate first the robustness of the tree to noise in toy datasets.
Next, we showcase two potential applications of the (B)CST problem: single cell trajectory
inference and skeletonization of 3D point clouds of plants.

3.1 Toy Data

(a) Sensitivity vs. Tree cost

(b) mST (CST, α = 0) (c) Steiner tree (BCST, α = 0)

(d) CST, α = 0.80 (e) BCST, α = 0.80

Figure 4: (B)CST Robustness Analysis. (B)CST for α > 0 are more robust to noise and
adhere to large scale structure in the data better than the mST and Steiner tree. Left) When
increasing α, the sensitivity to random density fluctuations in the data decreases (good). At
the same time, the total length of the tree increases (bad). This tradeoff can be adjusted
with a single hyperparameter α. More details in Section 3.1. Right) CST and BCST of two
samples, red and blue, drawn from the same distribution. The tree backbone reflects the
global structure more accurately for α > 0 than for α = 0. Edge widths are proportional to
their centrality. All trees except for the mST were computed using the heuristic proposed in
Section 6.2. See Appendix A for more examples.
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We explore the robustness of the (B)CST problem against data perturbations by comparing
the (B)CST topologies as small noise is introduced. In a toy example, three sets of 1000 points,
uniformly sampled from a rectangle, are perturbed with Gaussian noise, yielding five perturbed
sets per original set. We then compute the CST and BCST for α ∈ {0, 0.1, . . . , 0.9, 1}, deeming
a tree robust if minor data perturbations lead to minor geometrical changes in the tree.
Formally, we consider a method δ-robust, if, for any sets of points P1 and P2 and their
respective trees T1 and T2,

dT (T1, T2) ≤ δdP (P1, P2),

where dT and dP measure tree and set distances, respectively. The set distance dP quantifies
the perturbations we aim to withstand, where lower dP values correspond to sets that are
similar based on specific criteria. In our example, we define dP as the average distance
between points and their perturbed counterparts. Since we apply the same noise to each
point, the average distance between points approximates the Gaussian noise’s standard
deviation, making it nearly constant. To quantify structural tree changes, we set dT equal to
the Frobenius norm of the shortest path distance matrices between the original and perturbed
(B)CST trees.

Figure 4a shows the average Frobenius norm between the original and corresponding
perturbed samples across various α values. It is evident that as α increases, there is a
noticeable decrease in the Frobenius norm. Since our dP is fairly constant, showcasing that
the Frobenius norm decreases implies a reduction in δ as α rises, i.e. the trees become more
robust. However, we also plot the average cost of the trees (sum of the individual edge
costs), which increases with α. Thus, the improvement in robustness comes at the expense of
adding longer edges. This pattern is expected because, as α increases, the (B)CST tends to
a medoid-centered star graph (see Section 2.1). This graph will have long edges but will also
exhibit robustness to noise due to the medoid’s inherent stability. According to our definition
of δ-robustness, the α→∞ (B)CST limiting case, which always outputs a star-graph, will
be deemed robust despite its undesirability for describing the data structure.

We associate the data structure with the graph node interconnectivity, wherein shorter
edges preserve it better. Thus, α serves as a parameter trading off stability vs. data fidelity.
Indeed, the mST and Steiner tree (α = 0) on the right side of Figure 4 are highly sensitive to
minor data changes due to their greedy nature, prioritizing shorter edges. Conversely, the
(B)CST solutions at α = 0.8 are more stable, faithfully representing the data’s overall layout,
albeit with longer edges.

3.2 Real-world data

The ability to summarize the structure of data without excessive sensitivity to random
jitter is important in many applications. In this section we briefly showcase some potential
applications where the (B)CST can be beneficial (see Appendix B for more details):

Trajectory inference of single cell data: The high dimensional single cell RNA-
sequencing data can be used to model the trajectories defined by the cell differentiation
process. We show results on mouse bone marrow data [29], here denoted as Paul dataset. To
study robustness we perturb the data by removing half of the samples and then compare how
the backbone of different spanning trees is affected by this perturbation. For visualization,
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the data is embedded in 2D using PAGA [41]. If a spanning tree aligns well with the 2D
embedding, this is an indication that the tree approximates the trajectory well. Figure
5 shows the embedded trees. The mST misses the highlighted bifurcation and it is more
sensitive to the noise. The CST and BCST are robust to the perturbation and align well
with the PAGA embedding, though the CST may not reconstruct well the finer details. The
addition of SPs enables the BCST to follow the trajectory more closely. The case α = 1
results in a star graph, possibly due to the curse of dimensionality (see Remark 2.2).

3D Plant skeletonization: The skeletonization of plants is relevant for comprehending
plant structure, with applications in subsequent tasks. The skeletons of a 3D point cloud of
the surface of a plant [33], obtained using the BCST for various α values, is shown in Figure
6. Intermediate α values are able to represent the plant’s structure more accurately than
extreme ones, producing qualitatively pleasing skeletons with fewer resources compared to
dedicated handcrafted pipelines, which may depend on supplementary attributes like plant
segmentation [25].

4 Correspondence Between the BCST and CST Topolo-

gies

Both the CST and the BCST problems have to be optimized over the set of feasible spanning
tree topologies. This optimization is combinatorial in nature and turns out to be NP-hard in
both cases. For the CST case, Cayley’s formula tells us that the number of feasible topologies
is equal to NN−2 [8], which grows super-exponentially with the number of nodes N . For the
BCST case, w.l.o.g., we can represent any feasible topology as a full tree topology, i.e. as a tree
with N − 2 Steiner points, each of degree 3, and with leaves corresponding to the N terminals.
This representation is justified by the fact that any other feasible topology with SPs of degree
higher than 3 can be represented by a full tree topology by collapsing two or more SPs, that
is, when two or more SPs have the same coordinates. Figure 7 illustrates how a single full
tree topology can realize different feasible topologies of the BCST problem. For N terminals,
the number of possible full topologies is equal to (2N − 5)!! = (2N − 5) · (2N − 7) · · · · 3 · 1
[32], which also scales super-exponentially, but at a lower rate than the number of topologies
of the CST. Consequently, an exhaustive search through all trees is not feasible.

The heuristic presented in Section 6 exploits the correspondence between the feasible
topologies of the BCST and the CST problems. Given a full tree topology TBCST, we say that
a topology TCST of the CST problem can be derived from TBCST if: 1) we can collapse the SPs
of TBCST with the terminals such that the resulting topology is TCST, and 2) for any SP s that
is collapsed with terminal t, then all SPs along the path connecting s to t must also collapse
with t. In other words, a SP cannot overtake any other SP in the collapse process. Figure 8a
(from top to bottom) shows the steps to transform a topology TBCST into a topology TCST by
iteratively collapsing the SPs. Analogously, we can derive a topology TBCST from TCST by
spawning SPs from the terminals in TCST, i.e., introducing SPs connected to the terminals.
Since in a full tree topology SPs have degree 3 and terminals have degree 1, we add one SP
per each pair of nodes adjacent to a common terminal node, so that the SP is connected to
the triple of nodes.

12
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(a) Original
mST (α = 0.0)

(b) Subsample
mST (α = 0.0)

(c) Original
Steiner (α = 0.0)

(d) Subsample
Steiner (α = 0.0)

(e) Original
CST (α = 0.5)

(f) Subsample
CST (α = 0.5)

(g) Original
BCST (α = 0.5)

(h) Subsample
BCST (α = 0.5)

(i) Original
MRCT (α = 1.0)

(j) Subsample
MRCT (α = 1.0)

(k) Original
(B)MRCT (α = 1.0)

(l) Subsample
(B)MRCT (α = 1.0)

Figure 5: mST, (B)CST and BMRCT of the Paul Dataset. We applied the algorithms
to both the original data (top) and a perturbed version with half of the points randomly
removed (bottom). PAGA was used for 2D visualization, while the trees were computed in
a 50-dimensional PCA projection. Colors represent different cell populations. The width
of the edges is proportional to their centralities. 5a-5d) In the original data, the mST and
Steiner tree do not faithfully model the trajectory bifurcation highlighted by the rectangle.
Moreover, the trajectory changes drastically at this point once a subset of the samples is
removed. 5e-5h) The CST and BCST at α = 0.5 are able to detect the bifurcation, and
preserve the main backbone of the tree after the data has been perturbed. 5i-5l) The MRCT
and its branched version are robust to perturbations due to its star shape structure, but this
shape is also responsible for its incapability to model the data properly



BCST α = 0.00 BCST α = 0.50 BCST α = 0.70 BCST α = 1.00

Figure 6: BCST 3D plant skeletonization. BCST for different α values of a 3D point
cloud with 5000 samples capturing the surface of a plant. With α = 0.00, the tree branches
exhibit greater irregularity, while at α = 1.00, finer details are obscured. Intermediate α
values offer a more faithful representation of the plant’s structure.
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Figure 7: Realizable BCST Solutions Topologies from a Full Tree Topology with 4
Terminals. Terminal nodes and SPs are represented in blue and red, respectively. Different
topologies emerge from a single full tree topology depending on how the SPs collapse with
other nodes.

The correspondence mapping between TCST and TBCST, as shown in Figures 8b and 8c,
is not unique. Multiple TCST can be derived from a single TBCST and vice versa. At most,
any TBCST can generate O(3N−2) TCST topologies because each SP locally has 3 nodes to
merge with. In concrete, the number of TCST topologies derivable from a singular full tree
topology is given by the determinant of a submatrix of the Laplacian matrix, denoted as
LSPs,SPs. This submatrix is obtained by selecting the rows and columns indexed by the
SPs. Hence, the number of derivable topologies is precisely detLSPs,SPs. This assertion is
proven in Theorem F.2 (refer to Appendix F.2 for details). The proof leverages the bijective
relationship between the derivable CST topologies and the terminal separating spanning
forests of a full tree topology. By combining this bijectivity with the fact that the minors
of the Laplacian matrix provide the count of forests separating the non-indexed rows and
columns, the desired result is established.
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(b) Topologies derived from TBCST
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(c) Topologies derived from TCST

Figure 8: CST and BCST Topology Correspondence. 8a) Mapping from a BCST
topology, TBCST, to a CST one, TCST and vice versa. Terminal nodes and SPs are represented
in blue and red, respectively. From top to bottom it is shown how the SPs couple to different
terminals. From bottom to top, the SPs are spawned by different pairs of adjacent neighbors.
First by the pair 3 and 4 and later by 2 and 6. 8b) TCST feasible topologies derived from a
single TBCST. 8c) TBCST feasible topologies derived from a single TCST.

Similarly, the number of TBCST topologies derived from TCST is given by∏
v : dv≥2

(2dv − 3)!!, (7)

where dv is the degree of terminal v in the TCST topology. Higher-degree terminals can
generate more topologies as they can spawn more pairs of nodes. For more details on the
cardinalities of derivable topologies, see Appendix F.

Despite the mapping ambiguity between the topologies, we can reduce the number of
trees to explore in the CST/BCST given a BCST/CST topology. Although the optimum of
one problem is not guaranteed to be derived from the optimum of the other (see Figure 9),
we show empirically that the heuristic proposed in Section 6 can exploit the positions of the
SPs together with the correspondence between the sets of topologies of both problems to
produce competitive results.

5 Geometry of Optimal BCST Topologies

In this section, we will analyze the geometry of the optimal topologies of a BCST problem.
Concretely, we will determine an analytical formula of the angles that form the edges at a SP.
Using this relation, we will prove that when the terminal points lie in a plane, then SPs with
degree higher than 3 are not realized in optimal solutions for α ∈ [0, 0.5] ∪ {1} unless they
collapse with a terminal. For α ∈ ]0.5, 1[ we provide empirical evidence that the statement
also holds in that case.

5.1 Branching Angles at the Steiner Points

In this section, we formulate the branching angles in terms of the centralities of the edges for
a given topology of the BCST problem. The derivation of the angles is based on previous
works [4, 22], which apply analogous arguments for the Branched Optimal Transport (BOT)
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(a) Optimal CST solution (b) Optimal BCST solution

Figure 9: Optimal CST and BCST Topologies May Not Be Derived from Each
Other Given the Same Terminal Configuration. Left: Optimal CST solution. Right:
Optimal BCST solution. The CST topology cannot include nodes 4 and 1 as direct neighbors
if derived from BCST, as it would result in nodes adjacent to a common neighbor. Similarly,
the optimal BCST topology cannot be derived from the CST topology, as nodes 1 and 4
would not be connected to a common SP.

problem. The main difference lies in the weighting factors that multiply the distances in
the objective function (2), which in our case are the edge betweeness centralities, and in
BOT are flows matching supply to demand. Appendix C.1 elaborates on the similarities and
differences between the BOT and BCST problems.

First and foremost, we emphasize the locality characteristic of the geometric optimization
of SPs of the BCST problem. Because of the convexity of the BCST objective (2) given a
fixed topology, it can be shown that the geometric optimization of the SPs coordinates can
be solved locally, meaning that the optimal position of a SP is determined by its neighbors
and weighting factors. Lemma 5.1 formalizes this statement. For a proof, we refer to Lemma
2.1 of [22], where the same statement was shown for the BOT problem. Since the proof
is independent of the weighting factors multiplying the distances, the result applies to the
BCST problem as well.

Lemma 5.1. Given a topology, its SPs are in optimal position w.r.t. the BCST problem
if and only if any individual SP interconnects its neighbors at minimal cost. Moreover, the
optimal topology of the BCST is optimal if and only if for any subset of connected nodes the
corresponding subtopology solves the respective subproblem.

Proof. See Lemma 2.1 of [22].
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ζ0

ζ1 ζ2

θ1 θ2

Figure 10: Branching Angles at Steiner Point. The symbols ζi represent the normalized
centralities of the edges, that is ζi := mbai(1−mbai).

Recall that any feasible topology of the BCST problem can be represented as a full tree
topology where each SP has degree 3. Thus, as a consequence of Lemma 5.1, it is enough to
study the geometric optimization of 3 nodes connected by a single SP. Consider the problem
configuration depicted in Figure 10, where node b represents the branching point whose
coordinates need to be optimized, nodes {ai}i are the terminals with fixed positions and
{ζi := mbai(1−mbai)}i are the normalized centralities of the edges {(b, ai)}i. The objective
to be minimized is

C(b) = ζ0||b− a0||+ ζ1||b− a1||+ ζ2||b− a2|| (8)

Bernot et al. showed that when the b does not collapse with any terminal, then the angles θ1
and θ2 are given by

cos(θ1) =
ζ2α0 + ζ2α1 − ζ2α2

2ζα0 · ζα1

cos(θ2) =
ζ2α0 + ζ2α2 − ζ2α1

2ζα0 · ζα2

cos(θ1 + θ2) =
ζ2α0 − ζ2α1 − ζ2α2

2ζα1 · ζα2

(9)

Alternatively, we can analyze when node b collapses with one of the terminals. Assuming
without loss of generality that b collapses with a0, let γ := ∠a1a0a2. According to Lippmann
et al., b collapses with a0 if

γ ≥ arccos

(
ζ2α0 − ζ2α1 − ζ2α2

2ζα1 · ζα2

)
= θ1 + θ2. (10)

Hence, b collapses to a0 if ∠a1a0a2 exceeds the optimal angle specified by (9). This scenario
results in the so-called V -branching.

For a comprehensive derivation of the angles, please refer to Appendix G, where we
present the arguments from the works of Bernot et al. [4] and Lippmann et al. [22].

5.2 Infeasibility of Degree-4 Steiner Points in the Plane

In this section, we will prove the infeasibility of degree-4 SPs in the optimal solution of
the BCST. Specifically, we will focus on the scenario where the terminal nodes lie in the

17



plane and the value of α falls within the range α ∈ [0, 0.5] ∪ {1}. Moreover, we will provide
compelling evidence to support the validity of the statement for the case where α ∈ ]0.5, 1[.
We will divide the proof into two parts: one for α ∈ [0, 0.5], presented here, and the other for
α = 1, which is detailed in Appendix H.

a3

a1 a2

a4

b1 b2

ψ
1
=
θ 1

+
θ 2

ψ
3
=
θ̂ 1

+
θ̂ 2

(a) Feasible Topology

a3

a1 a2

a4

b1

b2

ψ2 = θ̄1 + θ̄2

ψ4 = θ̃1 + θ̃2

(b) Feasible Topology

a3

a1 a2

a4

bγ1

γ2

γ4

γ4

(c) Collapsed topology

Figure 11: Optimal Angles in Degree-4 SP Require ψ ≤ γi. Figures 11a) and 11b)
depict two topologies, where the optimal angles given by equation (10) are represented by ψi.
Figure 11c illustrates the collapsed solution with the corresponding angles γi. An essential
requirement for the optimality of Figure 11c is that ψi ≤ γi.

Theorem 5.1. Let α ∈ [0, 0.5]. Given a set of terminals which lie in the plane, then the SPs
of the optimal solution of the BCST problem will not contain SPs of degree-4 unless these
collapse with a terminal.

Proof. The optimality of a solution in the BCST problem relies on the locality characteristic,
as stated in Lemma 5.1. Specifically, each subtopology within a connected subset must solve
its respective problem for the overall solution to be optimal. Consequently, the realization
of a degree-4 SP, as depicted in Figure 11, requires the collapse of b2 with b1. Moreover,
this collapse must occur in any topology. As we have discussed in Section 5.1, both nodes
b1 and b2 will collapse if a V -branching occurs, that is if the angle realized between the
collapsed node and the two other nodes connected to it exceeds the optimal angle given by
(10). Therefore, from Figure 11 it follows that γi ≥ ψ. We will demonstrate that the sum of
4∑
i=1

γi is greater than 2π, rendering a SP of degree-4 infeasible. To do this we will prove that

ψi > π/2 for all i.
W.l.o.g. let us consider i = 1 and denote ψ1 as ψ. If cos(ψ) < 0, the angle ψ ∈ [0, π] will

be greater than π/2. Based on (10), we can derive the following:

cos(ψ) =
F (ma3b1 +ma1b1)

2α − F (ma3b1)
2α − F (ma1b1)

2α

2F (ma3b1)
α F (ma1b1)

α (11)

The function F (x)2α = (x(1− x))2α is strictly subadditive in R+ for α ∈ [0, 0.5],4 that is
F (x + y)2α < F (x)2α + F (y)2α if x, y > 0. Thus, the numerator of (11) is negative and
therefore cos(ψ) < 0. Consequently, ψ > π/2. This argument applies to all ψi, hence their
sum will be greater than 2π. Consequently, a SP with degree-4 cannot be part of an optimal
solution.

4In fact, all concave functions, f , with f(0) ≥ 0 are subadditive on the positive domain. It is easy to see

that (x(1− x))2α is concave for α ∈ [0, 0.5].
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In [22], Lippmann et al. applied the same argument to establish the infeasibility of degree-4
SPs in the context of the BOT problem for α ∈ [0, 0.5]. Our proof shows explicitly that
this argument generalizes to other minimization problems of the same nature, where the
edge-lengths are multiplied by weighting factors F (mij), with F (·) being a positive function
dependent on mij and exhibiting subadditivity when squared. For higher α > 0.5 the
argument used in the previous theorem does not apply. Indeed, we can find values for the
edge centralities for which the lower bounds of γi, given by (10), are all lower than π/2.5

Now, we will take a more general approach that can rule out degree-4 branching for higher α
values. In concrete, we will show the infeasibility for α = 1.

a3

a1 a2

a4

b

γ

θ1 θ2

(a)

a3

a1 a2

a4

b1 b2
← · →θ1 θ2

(b)

Figure 12: Splitting Collapsed SP while Preserving Optimal Angles. 12a) illustrates
the collapsed solution of a 4-terminal configuration. (12b) demonstrates that it is possible
to move jointly the terminal points {a1, a3} in a specific but opposite direction to the one
of the terminals {a2, a4}, resulting in the splitting of the collapsed SP b into two distinct
SPs, b1 and b2. Remarkably, this split can be executed while preserving the angles θ1 and θ2.
Importantly, these angles must correspond to the optimal angles given by (9).

The optimal position of the SPs is continuously dependent on the terminal positions and
solely relies on the branching angles, as shown in Section 5.1. Consequently, assuming that
there exists a configuration such that the SPs collapse, it is possible to find terminal positions
that lead to an unstable collapse of the SPs. Here, instability refers to a configuration where
an infinitesimal translation of the terminals results in the splitting of the SPs. This scenario
is depicted in Figure 12. In such cases, the angles realized by the terminals and the SPs will
reach the upper bounds specified by (10). Therefore, the angles depicted in Figure 12a fulfill
the condition

γ = π − θ1 − θ2, (12)

where the angles satisfy

cos(γ) =
F (ma1b +ma2b)

2α − F (ma1b)
2α − F (ma2b)

2α

2F (ma1b)
α F (ma2b)

α , (13)

cos(θ1) =
F (ma3b +ma1b)

2α + F (ma1b)
2α − F (ma3b)

2α

2F (ma3b +ma1b)
α F (ma1b)

α , (14)

cos(θ2) =
F (ma2b +ma4b)

2α + F (ma2b)
2α − F (ma4b)

2α

2F (ma2b +ma4b)
α F (ma2b)

α , (15)

5For instance for α = 1, ma3b1 = ma1b1 = 0.2 and ma2b2 = ma4b2 = 0.3 all ψi angles are acute. Hence
their sum is also lower than 2π.
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with F (x) = x(1−x). By processing further equation 12, we arrive at the following expression
(see Appendix H for further details)

(cos(γ) + cos(θ1) cos(θ2))
2 −

(
1− cos(θ1)

2
) (

1− cos(θ2)
2
)
= 0. (16)

Solving (16) analitically for all α is difficult. Nonetheless, in Appendix H we show analitically
that for α = 1 (12) can not hold given the constraints on the terms mai,b, namely

∑4
i=1mai,b =

1 and 0 < mai,b < 1 for all i.

Theorem 5.2. Let α = 1. Given a set of terminals which lie in the plane, then the SPs
of the optimal solution of the BCST problem will not contain SPs of degree-4 unless these
collapse with a terminal.

Proof. See Appendix H

Though we have not been able to prove analytically the infeasibility of degree-4 SPs for
α ∈]0.5, 1[, we strongly believe that the statement still holds. Figure 13 shows the surface
plots of the numerator of the equality 16 (once expanded) w.r.t. m1 and m2 for different fixed
values of α and m3. Upon analysis, it appears that the numerator exhibits an increasing
trend with respect to α within the interval [0.5, 1]. This observation leads us to hypothesize
that if the equality holds for α = 0.5 and α = 1, it is likely to hold for intermediate values as
well. However, due to the complexity of the formula, it is challenging to verify this hypothesis
analytically.

In section 2.1, we have demonstrated that as α > 1 and N → ∞, the BCST tends to
converge to a star graph centered at the geometric median. Consequently, for α > 1, a
degree-4 SP becomes feasible.

Remark 5.1. In [22], it was shown for the BOT problem that if degree-4 SPs are not feasible
then higher degree SPs are not possible either. The same reasoning applies for the BCST,
since the proof does not depend on the weighting factors. Thus for α ∈ [0, 0.5] ∪ {1}, only
degree-3 SPs are feasible unless they do collapse with a terminal node. Due to the compelling
evidence shown, we also believe this is the also the case for α ∈]0.5, 1[. Lippmann et al.
[22] also showed that some of the results of the BOT problem obtained on the plane can be
extended to other 2-dimensional manifolds. Again, this is also the case for the BCST problem.
Among these properties, we emphasize the optimal angles formulae exposed in section 5.1
and the infeasibility of degree-4 SPs for appropriate α values. We refer to Appendix F of [22]
for more details.

6 CST and BCST Optimization Algorithm

This section details the proposed heuristic for optimizing the BCST and CST problems. We
will first focus on the BCST. The heuristic iterates over two steps: First, given a fixed
topology, the algorithm finds the geometric positions of the Steiner points (SPs) that exactly
minimize the cost conditioned on the topology. Given the optimal coordinates of the SPs,
we then update the topology of the tree by computing an mST over the terminals and SPs.
This procedure is iterated until convergence or until some stopping criterion is met.
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Figure 13: SPs of Degree-4 in the Plane are Likely not Feasible for α ∈]0.5, 1[. Surface plots are
depicted, illustrating the left side of equation (16), as a function of m1 and m2, with different fixed values of
α and m3. From left to right: m3 is fixed and α ranges over {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. From top to bottom:
α is fixed and m3 ranges over {0.1, 0.2, . . . , 0.8, 0.9}. For m3 fixed, m1 and m2 range over the domain defined
by {(x, y) : 0 < x+ y +m3 < 1}. In all plots, the function values are negative and tend towards 0 as m1,
m2, or m3 approaches 0. We can observe that for fixed m1, m2 and m3, the function seems to be increasing
with respect to α (from right to left). Since we have previously demonstrated that the left side of equation
(16) does not equal zero in the desired domain for α = 0.5 and α = 1, the plots suggest that this is also the
case for α ∈]0.5, 1[.



6.1 Geometry Optimization

The BCST problem can be divided into two subproblems: combinatorial optimization of
the tree topology and geometric optimization of the coordinates of the SPs, XB. When
conditioning on a topology T , the BCST objective (2) is a convex problem w.r.t. XB. Despite
its convexity, the objective is not everywhere differentiable. We build on the iteratively
reweighted least squares (IRLS) approach from Smith [36] and Lippmann et al. [22] to
efficiently find the positions of the SPs.

Starting from arbitrary SPs coordinates, denoted as X(0) = {x(0)i }2N−2
i=1 , the algorithm

iteratively solves the following linear system of equations.

x
(k+1)
i =

∑
j:(i,j)∈E

ζαij
x
(k+1)
j

||x(k)i − x
(k)
j ||∑

j:(i,j)∈E

ζαij

||x(k)i − x
(k)
j ||

, ∀N + 1 ≤ i ≤ 2N − 2. (17)

where ζij = mij(1 − mij). We assume, without loss of generality, that the coordinates
corresponding to the SPs are indexed from N + 1 to 2N − 2, where N is the number of
terminals. The coordinates for the terminals, which remain fixed throughout all iterations,
are represented by the other indices. Thanks to the tree structure of the graph, the linear
systems can be efficiently solved in linear time.

In Appendix I, we show that the algorithm is agnostic to the weighting factors that
multiply the distances, and can therefore be applied to compute any weighted geometric
mean.

6.2 Heuristic Optimizer for the (B)CST Problem

We now present a heuristic which alternates between the SP geometric coordinate optimization
(convex) and a topology update (combinatorial). The heuristic’s main characteristic is how it
exploits the location of the Steiner points given an initial topology guess. The heuristic’s
underlying assumption is that the optimum position of the Steiner points may suggest a more
desirable topology.

Unless otherwise stated, the heuristic we propose starts from the mST over all terminal
nodes. At this point, the mST does not contain any SPs and is therefore not a full tree
topology. Thus, we need to transform the mST into a full tree topology. As mentioned in
Section 4, and highlighted in Figure 8, this process is not unambiguous. In particular, for
each terminal node v with degree dv ≥ 2, we have to add dv − 1 SPs. Consequently, there are
(2dv − 3)!! ways to connect these SPs to the neighbors of v. Among all possible subtopologies
connecting the SPs with v and its neighbors, we choose the one given by the dendrogram
defined by the hierarchical single linkage clustering algorithm applied to v and its neighbors.
In practice, this choice tends to work relatively well since nearby terminals are also closer in
the subtopology.

Once we have a full tree topology, we can apply the geometry optimization step to obtain
the optimal coordinates of the SPs. We assume that the optimal positions of the SPs indicate
which connections between nodes might be more desirable, since they may be biased to move
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Figure 14: mSTreg Heuristic. The mSTreg heuristic iteratively transforms an mST to
an approximate BCST. Given a set of points, the heuristic first computes the mST over
all points and transforms it into a full tree topology by adding Steiner points (SPs). Next,
the optimal positions of the SPs are computed using iteratively reweighted least squares.
Given the updated SPs coordinates, the heuristic recomputes the mST over the union of the
terminals nodes and the previous SPs. This mST produces a new topology, which is again
transformed into a full tree topology by adding SPs whose coordinates are optimized. This
process is repeated until some stopping criterion is satisfied.

closer to other nodes than the ones to which they are connected. Therefore, we propose to
recompute a mST over the terminals together with the SPs. This new mST defines a new
topology that needs to be transformed into a full tree topology for the geometry optimization.
Once we have a valid full tree topology, we recompute the optimal positions of the SPs. This
process is repeated iteratively until convergence or until some stopping criterion is met. We
refer to this algorithm as the mST regularization (mSTreg) heuristic. The algorithm’s steps
are illustrated in Figure 14, and its pseudocode is provided in Algorithm 1. The algorithm’s
complexity is O(dn log(n)2). A detailed complexity analysis is available in Appendix J. We
remark that the mSTreg heuristic is independent of the weighting factors that multiply the
distances, thus it can also be used to approximate other problems as well, for instance a
generalized version of the optimum communication tree with SPs.

Optionally, before the mST step is computed over the terminals and previous SPs, we can
add intermediate points along the edges of the output generated by the geometry optimization
step. These additional points will allow the mST to more reliably follow the edges of the
geometry-optimized tree from previous step. Moreover, in case the initial topology was poor,
these extra points may help to detect and correct edge crossings, which are known to be
suboptimal. An illustration of the effect of these extra points can be found in Appendix K.

The heuristic designed for the BCST problem can also be applied to the CST problem by
transforming BCST topologies at each iteration into CST topologies. While this transforma-
tion isn’t unique, we found that iteratively collapsing one SP at a time with the neighbor that
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Algorithm 1: mSTreg Heuristic

Input: X, num iterations, sampling frequency, optimize CST
Output: Tree
1 mSTinit =minimum spanning tree(X) // Define initial topology as mST

2 TBCST =transform2fulltopo(mSTinit) // transform topology to full tree

topology

3 SP =compute SP(Tinit) // compute optimal SP coordinates

4 bestcost BCST =∞ if optimize CST then
5 bestcost CST =∞

6 while it <num iterations do
7 if sampling frequency>2 then

/* sample extra points from edges */

8 Y =sample from edge(TBCST,X ∪ SP ,sampling frequency)
9 SP = SP ∪ Y

10 mSTX∪SP =minimum spanning tree(X ∪ SP )
11 TBCST =transform2fulltopo(mSTX∪SP ) // transform mSTX∪SP to full

tree topology

12 SP =compute SP(Treg) // compute optimal SP coordinates

13 if cost(TBCST) <bestcost BCST then
14 bestcost BCST =cost(TBCST)
15 TBCSTbest = TBCST

16 if optimize CST then
17 TCST =remove SP(TBCST) // Derive CST topology from BCST

topology

18 if cost(TCST) <bestcost CST then
19 bestcost CST =cost(TCST)
20 TCSTbest = TCST

leads the smallest increase in cost produces compelling results. Additionally, when collapsing
SPs together, centering the new node at the weighted geometric median of its new neighbors
improves results slightly. Further details can be found in Appendix L.

7 Benchmark

7.1 Brute Force Benchmark

To assess the quality of the mSTreg heuristic, we compare the cost of the trees computed
by the mSTreg algorithm with the globally optimal solutions obtained by brute force of
configurations with up to nine terminals. We generate 200 instances with N ∈ {5, 6, 7, 8, 9}
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(a) BCST relative error (b) BCST rank of heuristic (c) CST relative error (d) CST rank of heuristic

Figure 15: Bruteforce mSTreg Benchmark. Relative cost errors between the mSTreg
heuristic and optimal solutions; and sorted position of the heuristic tree for different number
of terminals, N . For each N , we uniformly sampled 200 different terminal configuration and
solved them for different α values. Most runs ended up close to the global optimum, though
the heuristic is slightly better for the BCST problem.

terminals sampled from a unit square. Both CST and BCST problems are solved for each
α ∈ {0, 0.1, . . . , 0.9, 1}. In Figure 15, the relative error, calculated as 100(ch − co)/co where
ch and co are heuristic and optimal costs, is shown for different N . We also show how the
heuristic solution ranks, once the costs of all topologies are sorted. The heuristic attains the
optimum in the majority of cases, with slightly better performance in the BCST problem
than in the CST one. Appendix M provides α-based results.

7.2 Steiner and MRCT Benchmark

In addition, we evaluate mSTreg on bigger datasets from the OR library6 [3] for the Steiner
tree (α=0) and the MRCT (α=1) problems. This dataset includes exact solutions of Steiner
problem instances of up to 100 nodes randomly distributed in a unit square. The used
instances are labeled as en.k, where n denotes the number of terminals, and k represents the
instance number. Figure 16a compares the cost of our heuristic with the optimal cost. We
also provide for reference the costs of the mST and the topology obtained by transforming the
mST into a full tree topology with its SP coordinates optimized (referred to as mST fulltopo).
Though our heuristic does not reach the optimal cost, it produces good topologies. The
average relative error is lower than 1%.

For the MRCT, we compare our heuristic with the Campos [7] and GRASP PR [31]
algorithms. Campos modifies Prim’s algorithm with heuristic rules, while GRASP PR
conducts local search by exchanging one edge at a time. We test the algorithms on the OR
library datasets for problem instances with 50, 100 and 250 terminals. Figure 16b shows
the relative errors. In this case, we do not have access to the optimal cost, therefore we
use GRASP PR costs cited from Sattari and Didehvar [31] as reference. Campos costs are
obtained from our own implementation. For reference, we also show the 2-approximation
[42] given by the star graph centered at the data centroid. While mSTreg proves competitive
(surpassing Campos but falling short of GRASP PR by a modest average relative error

6http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
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(a) Steiner (b) MRCT

Figure 16: Steiner and MRCT OR Library Dataset Benchmark. Relative cost error
with respect to a reference cost for the Steiner and MRCT problems for different instances
and different methods (lower is better). Left: For the Steiner problem, the reference cost
is the optimal cost. mSTreg finds good solutions and improves over mST fulltopo. Right:
For MRCT the reference cost is given by the GRASP PR algorithm. The heuristic beats all
other methods, but is still sightly worse than GRASP PR algorithm.

of 1.16%), it is worth noting that GRASP PR relies on a time-consuming local search.
Leveraging the competitive solution provided by mSTreg as an initial step can enhance the
performance and convergence of local search based algorithms, such as GRASP PR.

7.3 Comparing GRASP PR and mSTreg for the CST Problem

In the previous section, the GRASP PR algorithm by [31] outperformed the mSTreg heuristic
when solving the MRCT problem. However, it’s important to note that the complexity of
each iteration of the GRASP PR scales quadratically with the number of nodes for complete
graphs. This is due to its local search algorithm, which involves swapping edges. In contrast,
the complexity per iteration of the mSTreg algorithm is O(dn log(n)2) (refer to Appendix J),
making it more efficient.

Additionally, GRASP PR requires an initial random guess to initiate the local search.
The quality of this guess impacts the number of iterations needed for the local search to
converge. We will show that initializing the local search with a solution generated by the
mSTreg allows for initializations that enhance the performance of GRASP PR. To ensure
variability in the mSTreg output, we initialize it with random topologies instead of the
mST. Despite this modification, as the mST initialization yielded favorable results, we opt to
sample trees similar to it. To achieve this, we construct a tree by randomly sampling edges,
prioritizing shorter ones. In concrete, we sample edge (i, j) with probability proportional to
exp(−µ||xi−xj||) for some inverse temperature µ. This sampling approach is akin to the one
used in Karger’s algorithm for approximating the minimum cut [18, 17] and differs from the
GRASP PR construction phase in that it doesn’t require that one end of the edges belongs
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(a) α = 0.2 (b) α = 0.4 (c) α = 0.6

(d) α = 0.8 (e) α = 1.0

Figure 17: Comparing mSTreg and GRASP PR. Relative cost error concerning the
CST problem at different α values in the set {0.2, 0.4, 0.6, 0.8, 1} for various instances of
the OR library dataset (lower is better). The comparison involves mSTreg, GRASP PR,
and the combination of GRASP PR initialized with the mSTreg solution (referred to as
GRASP PR mSTreg). The relative error is computed using the cost from GRASP PR mSTreg
as a reference. The combination of the mSTreg heuristic with GRASP PR consistently
achieved the lowest cost, with all relative costs above 0, demonstrating the enhancement of
GRASP PR performance by mSTreg. To manage time constraints, a threshold of 5 minutes
was imposed for methods utilizing GRASP PR.

to the current tree.
While the previous section relied on the MRCT costs reported in [31] for the GRASP PR

algorithm, we now validate our claims using our implementation of GRASP PR. Given that
the GRASP PR is a versatile algorithm, we used it to compute the CST with alternative
α values besides 1. Acknowledging that for lower α values, the optimum trees will be more
similar to the mST, we adapted the construction phase of GRASP PR. Specifically, for
α < 0.7, it generates the random tree based on the Karger’s sampling method mentioned
above. For α ≥ 0.7, it uses the construction proposed by [31]. Due to the relatively slow
performance of our Python implementation of GRASP PR, we imposed a 5-minute time
threshold. If exceeded, the algorithm returns the best solution at the end of the path relinking
(PR) phase of the GRASP PR algorithm.

To assess performance, we conducted tests using GRASP PR, GRASP PR initialized
with mSTreg (GRASP PR mSTreg), and the mSTreg algorithms on OR library datasets
for problems with 50 and 100 terminals. Analogously to the plots shown in the previous
section, Figure17 displays the relative errors using GRASP PR mSTreg cost as a reference
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for different α values in the set {0.2, 0.4, 0.6, 0.8, 1}. Notably, the combination of the mSTreg
heuristic with GRASP PR consistently achieved the lowest cost, as all relative costs are above
0, proving that the mSTreg can enhance GRASP PR performance.

Across 30 runs (combining 5 α values, 2 problem sizes, and 3 instances), GRASP PR
outperformed mSTreg in only 12 instances. Moreover, achieving a lower cost took minutes
for GRASP PR, while mSTreg run in the order of seconds. Consequently, mSTreg emerges
as a favorable alternative, delivering a descent solution quickly.

8 Conclusion

We introduced the novel problem of the (branched) central spanning tree, which encompasses
the minimum spanning, the Steiner and minimum routing cost trees as particular cases. The
CST weighs the edge-costs with the edge-centralities, whose influence are regulated by the
parameter α. We have focused on the Euclidean version of the problem, where the nodes are
embedded in an Euclidean space. Moreover, we presented a variant of the problem allowing
the addition of extra nodes, referred to as Steiner points (SPs). In addition, we provided
empirical evidence for the robustness of the (B)CST tree structure to perturbations in the
data, which increases with α. In this regard, α serves as a parameter that trades-off between
data-fidelity and stability. We also provided examples of potential applications such as 3D
plant skeletonization or single cell trajectory inference.

On the theoretical side, we showed that as α→∞ or the number of terminals approaches
infinity when α > 1, (B)CST converges to a star-tree, indicating inadequacy in extracting
structural information when α > 1. Conversely, as α→ −∞, the (B)CST tends towards a
path graph. Additionally, thanks to the closed formulae of the branching angles, we proved
the infeasibility of degree-4 SPs when the terminals lie on a plane and α ∈ [0, 0.5] ∪ {1}. We
also provided evidence that suggests a similar case for α ∈ ]0.5, 1[.

Based on an efficient algorithm to compute the optimal locations of the SPs, we have
proposed the mSTreg heuristic, which exploits the optimal position of the SPs and the
correspondence between the CST and BCST topologies to find approximate solutions for
either. We benchmarked this algorithm and showed its competitiveness on small toy data sets.
Since the proposed heuristic is agnostic to the weighting factors that multiply the distances,
we leave as future work to test whether it is equally competitive for other problems, like the
general optimum communication tree. Another open question is whether the algorithm can
be adapted to perform well on non-complete or non-Euclidean graphs.
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Overview of Appendix Contents

The appendix is organized into the following sections:

A Stability Examples: Illustrates the effect of α upon computing the CST and BCST on
different 2-dimensional toy datasets.

B Applications: Explores further the applications mentioned in the main paper, namely
trajectory inference of single-cell data and 3D plant skeletonization, and provides further
examples.

C Reinterpreting CST as a Minimum Concave Cost Flow Problem: Presents how
the CST can be interpreted as an instance within the broader category of problems posed
by the Minimum Concave Cost Network Flow (MCCNF) problems. In addition, it also
discusses the relation to the Branched Optimal Transport problem

D Equivalence of the CST Problem with α = 1 and the Minimum Routing Cost
Tree Problem: Demonstrates the equivalence between the Minimum Routing Cost Tree
(MRCT) and the CST when α = 1.

E Limit cases of the CST/BCST problems beyond the range α ∈ [0, 1]: Proves
the statements regarding the limiting trees of both the CST and BCST as α approaches
negative and positive infinity, and as the number of terminals, N , approaches infinity.

F Exploring the Number of Derivable Topologies from CST and BCST Topolo-
gies: Analytically illustrates the quantity of BCST topologies that can be derived from a
single CST topology, and vice versa.

G Branching Angles at the Steiner Points in the BCST problem: Analytically
examines the angles formed by the edges meeting at Steiner points in the BCST problem.

H Infeasibility of Degree-4 Steiner Points in the Plane for α = 1: Proves the
infeasibility of degree-4 Steiner points in the 2-dimensional Euclidean BCST problem for
α = 1.

I Iteratively Reweighted Least Square for the Geometric Optimization of the
Steiner Points: Extends the iteratively reweighted least square approach to compute
the optimal positions of the Steiner points presented in [36, 22] to the BCST case.

J Complexity mSTreg heuristic: Analyzes the complexity of the mSTreg heuristic.

K Effect of Additional Intermediate Points in the mSTreg heuristic: Examines the
impact of introducing additional intermediate points, sampled along the edges of the tree,
during the mST step in the mSTreg heuristic.

L Strategies to Transform a Full Tree Topology into a CST Topology: Analyzes
different strategies to transform a BCST topology into a CST topology in order to
optimize the CST problem using the mSTreg heuristic.
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M Further Details on the Brute Force Experiment: Provides additional details on the
brute force experiment discussed in Section 7 and examines the behavior of the mSTreg
heuristic concerning α.

N Selection of α: Offers empirical insights to guide the selection of the optimal value for
α.

O Implementation Details: Provides further details regarding the implementation.

A Stability Examples

In this section, we show how stable the BCST and CST for different α values are. We sample
1000 points uniformly from uniform distributions over different supports and perturb them
by adding zero centered Gaussian noise. We generate two perturbations and show how the
tree structure evolves across different values. See Figures 18 19 and 20. As we increase the
value of α, the trees exhibit a more pronounced ”star-shaped” pattern and enhanced stability.
The parameter α provides a trade-off mechanism between preserving the structure of the
data and ensuring the stability of the resulting tree.
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(a) mST (CST, α = 0.0) (b) Steiner tree (BCST, α = 0))

(c) CST, α = 0.2 (d) BCST, α = 0.2

(e) CST, α = 0.4 (f) BCST, α = 0.4

(g) CST, α = 0.6 (h) BCST, α = 0.6

(i) CST, α = 0.8 (j) BCST, α = 0.8

(k) CST, α = 1.0 (l) BCST, α = 1.0

Figure 18: (B)CST Examples from Rectangle Uniform Distribution. CST and BCST
are computed for two perturbed instances generated by adding zero-centered Gaussian noise
to points derived from a common sample uniformly taken within a rectangle. (B)CST for
higher α values are more robust to noise and adhere to large scale structure in the data
better. The width of each edge is proportional to its centrality. All trees except for the mST
were computed using the heuristic proposed in Section 6.2.
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(a) mST
(CST, α = 0.0)

(b) Steiner tree
(BCST, α = 0)

(c) CST, α = 0.2 (d) BCST, α = 0.2

(e) CST, α = 0.4 (f) BCST, α = 0.4 (g) CST, α = 0.6 (h) BCST, α = 0.6

(i) CST, α = 0.8 (j) BCST, α = 0.8 (k) CST, α = 1.0 (l) BCST, α = 1.0

Figure 19: (B)CST Examples from Triangle Uniform Distribution. CST and BCST
are computed for two perturbed instances generated by adding zero-centered Gaussian noise
to points derived from a common sample uniformly taken within a triangle. (B)CST for
higher α values are more robust to noise and adhere to large scale structure in the data
better. The width of each edge is proportional to its centrality. All trees except for the mST
were computed using the heuristic proposed in Section 6.2.

B Applications

B.1 Single cell transcriptomic data

Single-cell transcriptomics analyzes the gene expression levels of individual cells in a particular
population by counting the RNA transcripts of genes at a given time. The high dimensional
single cell RNA-sequencing data can be used to model the gene expression dynamics of a cell
population as well as the cell differentiation process. The reconstruction of these trajectories
can help discover which genes are critical to understand the underlying biological process. It
is often assumed that these trajectories can be represented as trees [30, 37], and therefore
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(a) mST
(CST, α = 0.0)

(b) Steiner tree
(BCST, α = 0.0)

(c) CST, α = 0.2 (d) BCST, α = 0.2

(e) CST, α = 0.4 (f) BCST, α = 0.4 (g) CST, α = 0.6 (h) BCST, α = 0.6

(i) CST, α = 0.8 (j) BCST, α = 0.8 (k) CST, α = 1.0 (l) BCST, α = 1.0

Figure 20: (B)CST Examples from Non-Convex Uniform Distribution.CST and
BCST are computed for two perturbed instances generated by adding zero-centered Gaussian
noise to points derived from a common sample uniformly taken within a non convex shape.
(B)CST for higher α values are more robust to noise and adhere to large scale structure in
the data better. The width of each edge is proportional to its centrality. All trees except for
the mST were computed using the heuristic proposed in Section 6.2.

the (B)CST can be applied to model such trajectories.
In this section we will give additional details on the example shown in the main paper

regarding the Paul dataset. In addition, we show another example of the performance of the
(B)CST with a different dataset, namely the Setty dataset [34]

Paul dataset The Paul datset consists of gene expressions measurements of cells of mouse
bone marrow Paul et al. [29]. The original dataset is formed by 2730 cells each with 3451 gene
measurements. The data is preprocessed using the recipe described in Zheng et al. [45], which
reduces the dimensionality to 1000 by selecting the most relevant genes. We further reduce
the dimensionality of the data, by applying PCA with 50 principal components. Finally,
we apply the corresponding spanning tree algorithm. For visualization purposes, we used
the PAGA algorithm [41], one of the best algorithms for single cell trajectory inference [30].
PAGA was designed to faithfully represent the trajectories. Thus, if a spanning tree aligns
well with the embedding, this is an indication that the tree approximates the trajectory
well. Figure 5 in the main part shows the mST, Steiner tree (α = 0) and CST, BCST (at
α = 0.5) and (B)MRCT (α = 1) of the original sample and a perturbed sample with 50%
of the cells randomly sampled. The mST and Steiner tree miss the highlighted bifurcation
and they are more sensitive to the noise. The CST and BCST are robust to the perturbation
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and align well with the PAGA embedding, though the CST may not reconstruct well the
finer details. The addition of SPs enables the BCST to follow the trajectory more closely.
The MRCT results in a star tree, and its branched version nearly resembles a star tree as
well. In high-dimensional data, such as the Paul dataset with 50 dimensions, the star-shaped
tendency becomes more prominent. For α = 1, most of the intricate structure of the data is
lost. Therefore, for higher dimensions lower α values become more relevant.

Setty dataset: Extending our analysis, we applied the same experiment from Section 3.2
to a different real dataset: the human bone marrow dataset from Setty et al. [34] referred
here as the Setti dataset. After applying the same preprocessing as the one used for the
Paul dataset, this dataset consists of 5780 samples within a 50-dimensional space, as opposed
to the unprocessed data, which existed in a 14651-dimensional space. We computed BCST,
CST, Steiner tree and mST on both the original dataset and a downsampled version (25% of
the original), comparable in size to the Paul dataset’s downsampled version. For visualization
purposes we used the TSNE projection of the data provided by the scvelo library. 7 Figure
21 presents the results, showing a consistent pattern akin to the Paul dataset. BCST and
CST exhibited superior robustness compared to mST and Steiner tree, with BCST providing
enhanced trajectory modeling.8 This additional example reinforces the efficacy and robustness
of our proposed methods.

B.2 3D Plant skeletonization

Plant skeletonization is a foundational technique for elucidating growth patterns, branching
hierarchies, and responses to environmental factors in plants. It simplifies complex plant
structures into skeletal representations, often described by spanning trees. In this section, we
demonstrate how the BCST can model a plant’s skeleton using a point cloud of its surface.9

We provide additional examples beyond those presented in the main paper.
For the skeletonization process, we utilized the 4D Plant Registration Dataset.10 It

consists of 3D point cloud data that captures the surface of different plants at different growth
stages. Specifically, our analysis focused on the point clouds of the tomato plant on days 5, 8,
and 13. From each point cloud, we subsample uniformly at random 5000 points and then we
compute the BCST.

Figure 22 presents the BCST results computed for different α values. When α = 0.00, the
tree branches exhibit greater irregularity, while at α = 1.00, the finer details are obscured.
Intermediate α values offer a more faithful representation of the plant’s structure. However,
some modeled branches deviate from the data, creating shortcut connections between points.
This issue can be readily addressed by incorporating prior information about the root’s

7https://scvelo.readthedocs.io/en/stable/scvelo.datasets.bonemarrow/
8In this particular case, we have excluded the α = 1.00 scenario. This is because, similar to the Paul

dataset, both the CST and BCST algorithms yield star-shaped graphs under this condition.
9Note that we do not test the CST in this context, as the ideal skeleton should closely follow the object’s

centerline. While the BCST has Steiner points, which naturally align with the center of the surrounding
points to minimize the distance, the CST lacks this flexibility. Consequently, the backbone of the CST can
not align with the centerline, given that the terminals lie on the surface.

10Data accessible at https://www.ipb.uni-bonn.de/data/4d-plant-registration/
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(a) Original; mST (b) Original; CST α = 0.40 (c) Original; BCST α = 0.40

(d) Subsample; mST (e) Subsample; CST α = 0.40 (f) Subsample; BCST α = 0.40

Figure 21: mST, CST and BCST of the the Setty dataset [34]. We applied the
algorithms on the original data (top) and perturbed version where 25% of the points have
been randomly removed (bottom). We use the TSNE algorithm to visualize the data in 2D,
though the trees were computed on a 50 dimensional PCA projection of the preprocessed
data. Colors correspond to different ground truth cell populations. The width of the edges is
proportional to their centralities. The mST fails to accurately represent the trajectory and
proves to be highly susceptible to noise. The CST and BCST are more faithful and robust,
though the BCST performance is superior.

position within the plant. By augmenting the point density near the root through virtual
point replication (creating five times as many virtual points as there are original points at
the root location), we encourage the branches to closely follow the natural branch density,
resulting in a more faithful representation of the data. That is, if the original point cloud
contains 5000 points, we introduce 25000 virtual points at the root location.

Figure 23 displays the results after incorporating this prior information for the point
cloud of the plant at different growth stages.11 Notably, the model exhibits greater fidelity
for intermediate α values when the prior is applied.

11Day 8 of Figure 23 corresponds to Figure 6 in the main paper
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Tomato plant 2, day 5.

(a) BCST α = 0.00 (b) BCST α = 0.50 (c) BCST α = 0.70 (d) BCST α = 1.00

Tomato plant 2, day 8.

(e) BCST α = 0.00 (f) BCST α = 0.50 (g) BCST α = 0.70 (h) BCST α = 1.00

Tomato plant 2, day 13.

(i) BCST α = 0.00 (j) BCST α = 0.50 (k) BCST α = 0.70 (l) BCST α = 1.00

Figure 22: Skeletons at different α values of 3D point clouds of a tomato plant at different
growth stages. The skeletons are modeled using the BCST with varying α values. With
α = 0.00, the tree branches exhibit greater irregularity, while at α = 1.00 the finer details are
missed. Intermediate α values offer a more faithful representation of the plant’s structure.
Nonetheless these may present some slight deviation, where some modeled branches do not
align through the center of the actual branches (see day 13). This effect is alleviated once
prior information concerning the root’s location is added (see Figure 23).

C Reinterpreting CST as a Minimum Concave Cost

Flow

In this section, we will pose the central spanning tree (CST) problem as a minimum concave
cost network flow (MCCNF) problem. The MCCNF problem minimizes the transportation
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Tomato plant 2, day 5.

(a) BCST α = 0.25 (b) BCST α = 0.50 (c) BCST α = 0.70 (d) BCST α = 1.00

Tomato plant 2, day 8.

(e) BCST α = 0.00 (f) BCST α = 0.50 (g) BCST α = 0.70 (h) BCST α = 1.00

Tomato plant 2, day 13.

(i) BCST α = 0.00 (j) BCST α = 0.50 (k) BCST α = 0.70 (l) BCST α = 1.00

Figure 23: Skeletons at different α values of 3D point clouds of a tomato plant at different
growth stages. The skeletons are modeled using the BCST with varying α values, incorporating
prior information about the root’s location. In contrast to Figure 22, we have enhanced the
density of points at the root location, by virtually augmenting the number of points at the
root’s coordinates. This enhancement results in a more accurate and faithful representation
of the plant’s skeleton.

cost of a commodity from sources to sinks. Here, the edge costs are modeled by concave
functions that depend on the edge flow. Formally, given a demand vector µ ∈ RN with
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∑N
i=1 µi = 0 and a network G = (V,E) with N nodes, we define the MCCNF problem as

min
f

∑
ij∈E

Cij(fij), subject to∑
(i,j)∈E

fij −
∑

(j,i)∈E

fji = µi, ∀i ∈ V

fij ≥ 0

. (18)

In the equation, fij represents the flow associated with edge (i, j) and Cij is a concave function
dependent on fij which determines the cost of the edge (i, j). Note that the network defined
by the flow, i.e. by the edges with fij > 0, does not necessarily have to be a tree. We will
refer to nodes with negative demands as sources and nodes with positive demands as sinks.

To be able to represent the CST problem as an MCCNF, we need to identify the terms
me as flows. Since the function (me(1−me))

α ce is concave for α ∈ [0, 1], it will follow that
the CST is an instance of the MCCNF problem.

Next, we will show how the me can be interpreted as the flow along an edge of a particular
single source flow problem. Consider a graph with N nodes, where there is one source node
s with a mass (N − 1)/N that needs to be transported to the rest of the nodes. Each sink
node has a demand of 1/N mass. Thus, (18) becomes

min
x

∑
ij∈E

cij
(
fij(1− fij)

)α
, subject to

∑
(j,s)∈E

fjs −
∑

(s,j)∈E

fsj =
N − 1

N
,

∑
(i,j)∈E

fij −
∑

(j,i)∈E

fji =
1

N
, ∀i ̸= s

fij ≥ 0

(19)

For single source flow problems, it is well-known that the optimal solutions can only form
trees [44]. We will show that for this particular problem, fij is equal to mij for any tree.
Recall that for a given tree T , the value me associated with an edge e was defined as the
number of nodes that lie on one of the sides of e divided by the total number of nodes.
Although for our purposes the chosen side of the edge is arbitrary, since the objective function
is symmetrized thanks to being multiplied by (1−me), that is not the case when we want to
interpret it as a flow. However, which side to choose will be canonically determined by the
flow direction.

Let T be a feasible solution of (19), i.e. a tree. The flow fij at edge (i, j) of T indicates
the outgoing mass that is transported through the edge. This mass is equal to the sum of
the demands of the nodes that lie in the side of the edge (i, j) indicated by the flow. Given
that each node has a demand of 1/N , then the flow fij is equal to 1/N multiplied by the
number of nodes in the side in question, that is fij = mij.
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C.1 Relation to the Branched Optimal Transport Problem

The branched or irrigation optimal transport (BOT) problem is also a particular MCCNF
instance. In the BOT problem, the nodes are embedded in a Euclidean space and also allows
for the inclusion of additional Steiner points. It is an extension of the optimal transport
problem, distinguished by its diminishing costs which lead to a branching effect by promoting
the joint transportation of mass.

Formally, the BOT problem minimizes

min
xB ,mE

∑
(i,j)∈E

mα
ij ∥xi − xj∥2 , subject to∑

(i,j)∈E

mij −
∑

(j,i)∈E

mji = µi, ∀i ∈ V ∪B

mij ≥ 0

, (20)

where mij is the flow transported along an edge (i, j) and B and xB are the set of SPs and
their coordinates, respectively. As before, the vector µ represents the demands of the nodes.
The demands of the SPs are set to zero.

In the scenario where there is a single source and all nodes share the same demand, the
BCST and BOT problems differ only in the factors that multiply the distances. In the BOT
problem, these factors correspond to mα

ij, representing the mass transported along an edge

raised to the power of α. In the BCST problem, the factors are given by
(
mij(1−mij)

)α
,

representing the centralities of the edges raised to the power of α. It is worth mentioning,
that both problems converge to the Steiner tree problem when α = 0.

The primary distinction between the two problems lies in the selection of a source node.
In the BOT problem, the selection of the source node determines the optimal topology of
the network. However, that is not the case for the BCST problem. Indeed, for the BCST
problem, the specific source node chosen is irrelevant due to the symmetrization effect caused
by the term me(1 − me). In other words, the location of the source determines the edge
orientation, which then defines the value of me. Nonetheless, this effect is nullified when
multiplied by (1 −me). This independence of the source node choice makes the BCST a
more natural extension of the Steiner tree problem, since it does not require the choice of
sources and sinks, unlike the BOT problem.

D Equivalence of the CST Problem with α = 1 and

the Minimum Routing Cost Tree Problem

As mentioned in the main text, the term mij(1 −mij) is proportional to the betweenness
centrality of the edge (i, j). This centrality quantifies the number of shortest paths that
traverse the given edge. Thus, the multiplication of the length of each edge by its frequency
in a shortest path is a rearrangement of the sum over all shortest path costs, i.e. the MRCT
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cost. Formally,∑
i,j∈V×V

dT (i, j) =
∑

i,j∈V×V

∑
(u,v)∈℘ij

||xu − xv||

=
∑

(u,v)∈T

∣∣{℘ij : (u, v) ∈ ℘ij, i, j ∈ V × V }
∣∣︸ ︷︷ ︸

(u,v) betweeness centrality

||xu − xv||

∝
∑

(u,v)∈T

muv(1−muv)||xu − xv||,

(21)

where dT (i, j) is the shortest path distance in tree T between i and j realized by the path
℘ij.

E Limit Cases of the CST/BCST Problems Beyond the

Range α ∈ [0, 1]

In this section, we investigate the topologies of the limit cases of the CST as α approaches
±∞. We will use the following notation.

• N will represent the number of terminals.

• For a given tree T containing edge (x, y), mT
xy indicates the proportion of nodes

(normalized by N) that are reachable from x, once edge (x, y) is removed from T . That
is, the normalized number of nodes that lie in the side of x.

• For a given tree T , the term Nx denotes the set of neighbors of x in T

E.1 Proof Theorem 2.1

Theorem 2.1 states that when a “stronger” variant of the triangle inequality holds, then the
optimum solution of the BCST problem is a star tree. We divide the proof in two lemmas,
Lemma E.1 that proves it for the CST problem; and Lemma E.2 for the BCST case.

Lemma E.1. Given a complete graph G with N nodes, let cij be the edge-costs of any pair
of nodes i, j in the graph. If there exists

t ≤ min
ℓ∈[2,N/2]

(
ℓ(N−ℓ)
N−1

)α
− 1

ℓ− 1

such that
ckv + tcuv ≥ cku (22)

for all triangles in the graph, then there exists an optimum CST evaluated at α which is a
star tree.
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Proof. We will show that given a tree T , we can always increase the degree of a particular
node without increasing the CST-cost. Without loss of generality, we can assume n ≥ 4,
otherwise, any possible tree is a star-tree and the result holds trivially.

Let us assume that T is not a star-tree. Thus, there exist at least two nodes, u and v,
with degrees higher than 1, such that they are adjacent to each other. Moreover, we can
assume that one of them, say v, is an extreme inner node, meaning that all its neighbors
(except u) have degree 1. Without loss of generality, we can assume that ℓ := |Nv| ≤ N/2,
where Nv is the set of neighbors of v in T . Otherwise, we could have chosen a different
extreme inner node. Note that the centrality of the edge (u, v) is muv(1−muv) =

ℓ(N−ℓ)
N2 .

We will show that the topology T ′ which connects all k ∈ Nv\{u} to u instead of v has a
lower CST cost. The only edge centralities affected by this change are those associated with
the edges (u, v), (u, k), and (k, v) for all k ∈ Nv\{u}. To compare the costs of the topologies,
it suffices to focus on these specific edges.

First, let’s determine the values of the centralities for the edges in both trees:

• Normalized centrality of edge (u, v) in T :

mT
uv(1−mT

uv) =
ℓ(N − ℓ)
N2

• Normalized centrality of edge (u, v) in T ′:

mT ′

uv(1−mT ′

uv) =
N − 1

N2

Note that v has become a leaf of T ′.

• Normalized centrality of edge (k, v) in T and centrality of edge (k, u) in T ′ for all
k ∈ Nv\{u}:

mT
kv(1−mT

kv) =
N − 1

N2
= mT ′

ku(1−mT ′

ku)

These nodes are leaves in both trees.

The difference between the costs of the topologies is

CST(T )− CST(T ′) =cuv

(
ℓ(N − ℓ)
N2

)α

+
∑
k∈Nv
k ̸=u

ckv

(
N − 1

N2

)α

− cuv
(
N − 1

N2

)α

−
∑
k∈Nv
k ̸=u

cku

(
N − 1

N2

)α

=cuv

((
ℓ(N − ℓ)
N2

)α

−
(
N − 1

N2

)α)
+
∑
k∈Nv
k ̸=u

(ckv − cku)
(
N − 1

N2

)α

=
∑
k∈Nv
k ̸=u

cuv
((

ℓ(N−ℓ)
N2

)α
−
(
N−1
N2

)α)
ℓ− 1

+ (ckv − cku)
(
N − 1

N2

)α


=

(
N − 1

N2

)α ∑
k∈Nv
k ̸=u

cuv
((

ℓ(N−ℓ)
N−1

)α
− 1
)

ℓ− 1
+ (ckv − cku)



(23)
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Thus the decrease in cost will positive if each term in the summand of the last equality of
(23) is positive, namely

ckv +

((
ℓ(N−ℓ)
N−1

)α
− 1
)

ℓ− 1
cuv ≥ cku, (24)

which holds by assumption. Therefore, T ′ will have a lower cost. Repeating this process, we
can always decrease the cost till we form a star tree.

The next result extends Lemma E.1 to be applicable the BCST problem. In contrast to the
CST case, the BCST involves Steiner points, which must be treated differently. Lemma E.2
shows that if the “strong” triangle inequality holds, we can collapse sequentially all Steiner
points while decreasing the BCST cost of a tree T .

Lemma E.2. Consider a solution T of the BCST problem with N terminals. Let cij be the
edge-costs of any pair of nodes i, j in the graph (Steiner or terminals). If there exists

t ≤ min
ℓ∈[2,N/2]

(
(ℓ)(N−ℓ)
N−1

)α
− 1

ℓ− 1

such that
ckv + tcuv ≥ cku (25)

for all triangles, then there exists an star tree with lower cost.

Proof. Analogously to Lemma E.1 we will show that given a tree T , we can always increase
the degree of a particular node without increasing the BCST-cost.

Let us assume that T is not a star-tree. Thus, there exist at least two nodes, u and v,
with degree higher than 1 which are adjacent to each other. Moreover, we can assume that
one of them, say v, is an extreme inner node, meaning that all its neighbors (except u) have
degree 1. Without loss of generality, we can assume that muv :=

ℓ
N2 ≤ 1

2N
. Otherwise, we

could have chosen a different extreme inner node.
If v is a terminal node, we can apply the same reasoning as in Lemma E.1 to increase the

degree of u. Let us assume then that v is a Steiner point. In this case, we will construct a
new topology T ′ by collapsing v with u. This implies that the edge (u, v) will disappear and
that all k ∈ Nv\{u} will be connected to u. In this case the normalized centralities of the
edges are not changed.

• Normalized centrality of edge (u, v) in T :

mT
uv(1−mT

uv) =
ℓ(N − ℓ)
N2

• Edge (u, v) is not anymore in T ′:

• Normalized centrality of edge (k, v) in T and centrality of edge (k, u) in T ′ for all
k ∈ Nv\{u}:

mT
kv(1−mT

kv) =
N − 1

N2
= mT ′

ku(1−mT ′

ku)

These nodes are leaves in both trees.
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The difference between the costs of the topologies is

CST(T )− CST(T ′) =cuv

(
ℓ(N − ℓ)
N2

)α

+
∑
k∈Nv
k ̸=u

ckv

(
N − 1

N2

)α

−
∑
k∈Nv
k ̸=u

cku

(
N − 1

N2

)α

=cuv

(
ℓ(N − ℓ)
N2

)α

+
∑
k∈Nv
k ̸=u

(ckv − cku)
(
N − 1

N2

)α

=
∑
k∈Nv
k ̸=u

cuv(
(

ℓ(N−ℓ)
N2

)α
ℓ− 1

+ (ckv − cku)
(
N − 1

N2

)α


=

(
N − 1

N2

)α ∑
k∈Nv
k ̸=u

cuv
((

ℓ(N−ℓ)
N−1

)α)
ℓ− 1

+ (ckv − cku)



(26)

Thus the decrease in cost will positive if each term in the summand of the last equality of
(26) is positive, namely

ckv +

(
ℓ(N−ℓ)
N−1

)α
ℓ− 1

cuv ≥ cku, (27)

which holds by assumption, since(
ℓ(N−ℓ)
N−1

)α
ℓ− 1

≥ min
ℓ∈[2,N/2]

(
ℓ(N−ℓ)
N−1

)α
ℓ− 1

> min
ℓ∈[2,N/2]

(
ℓ(N−ℓ)
N−1

)α
− 1

ℓ− 1
.

Therefore, T ′ will have a lower cost. Repeating this process, we can always decrease the
cost till we form a star tree.

Remark E.1. Note that Lemma E.1 and Lemma E.2 state only a sufficient condition, which
means that the optimum can be a star tree even if the strong triangle inequality does not
hold. Additionally, it is worth to highlight that Lemma E.1 also holds true for the CST
problem even when the nodes lack embedding in any specific space, allowing for edge costs
with arbitrary values.

E.2 Proof h1(ℓ,N, α) > 1 as N Approaches Infinity, for α > 1

Recall that h1 is defined as

h1(ℓ,N, α) :=

((
ℓ(N−ℓ)
N−1

)α
− 1
)

ℓ− 1
=

(
1 + (ℓ−1)(N−ℓ−1)

N−1

)α
− 1

ℓ− 1
.

We will show that for high enough N , minℓ∈[2,N/2] h1(ℓ,N, α) > 1. By leveraging the Math-
ematica software [16], we can establish that the function h1(ℓ,N, α) exhibits concavity
concerning ℓ within the interval [2, N/2] under the conditions α > 1 and N > 3. Conse-
quently, for fixed values of α > 1 and N , the minimum of h is achieved either at ℓ = 2 or at
ℓ = N/2. Next we show that as N tends to infinity, both evaluations tend towards a value
greater than 1.
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• When ℓ = 2 we have

h1(2, N, α) =

(
1 +

N − 3

N − 1

)α
− 1

N→∞−−−→ 2α − 1 > 1 (28)

• When ℓ = N/2 we have

h1(N/2, N, α) =

(
1 + (N/2−1)2

N−1

)α
− 1

N/2− 1

N→∞−−−→∞ (29)

Therefore, h1(ℓ,N, α) > 1 as N approaches infinity and α > 1.
Combining this inequality with Theorem 2.1, we conclude that the optimum (B)CST will

be a tree as N approaches infinity and α > 1.

E.3 Computation α∗(N)

Given N , recall that α∗(N) is the minimum α at which h1(ℓ,N, α) > 1 for all ℓ ∈ [2, N/2].
Since h1 is concave with respect to ℓ when α > 1, our focus narrows down to investigating
the cases ℓ = 2 and ℓ = N/2 –the values where the minima can be attained.

• When ℓ = 2 we have

h1(2, N, α) =

(
1 +

N − 3

N − 1

)α
− 1 > 1 ⇐⇒

(
1 +

N − 3

N − 1

)α
> 2

⇐⇒ α log

(
1 +

N − 3

N − 1

)
> log(2)

⇐⇒ α >
log(2)

log
(
1 + N−3

N−1

)
(30)

• When ℓ = N/2 we have

h1(N/2, N, α) =

(
1 + (N/2−1)2

N−1

)α
− 1

N/2− 1
> 1 ⇐⇒

(
1 +

(N/2− 1)2

N − 1

)α

> N/2

⇐⇒ α log

(
1 +

(N/2− 1)2

N − 1

)
> log(N/2)

⇐⇒ α >
log(N/2)

log
(
1 + (N/2−1)2

N−1

)
(31)

Therefore,

α∗(N) := max

 log(2)

log
(
1 + N−3

N−1

) , log(N/2)

log
(
1 + (N/2−1)2

N−1

)
 (32)
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E.4 Proof Theorem 2.2

In this section we prove Theorem 2.2 which states that if a variant of the triangle inequality
holds, then the optimum (B)CST tree will be a path as α approaches infinity. First,
Lemma E.3 will show that if the triangle inequality holds strictly, then for α negative enough
the optimum CST will be a path. Corollary E.1 demonstrates that when the nodes are
embedded in a geodesic space, the triangle inequality does not need to hold strictly for
Lemma E.3 to be true. Theorem 2.2 will also be derived as corollary (Corollary E.2).

Lemma E.3. Let G be a complete graph with edge-costs satisfying the condition of the
strict triangle inequality for every triplet of nodes (u, v, k), defined as

cuv + ckv < cku

As the parameter α approaches negative infinity (α→ −∞), there exists a Hamiltonian path
T⋆ in G with a lower CST cost than any other tree T that is not a path.

Proof. We will show that for any node v with degree higher than 2, we can always decrease
its degree such that the CST cost of T decreases. By iteratively applying this process, we
ensure that the degrees of all nodes will eventually be reduced to at most 2, culminating in
the formation of a path.

Let v be a node with degree higher than 3. Let (k, v) and (u, v) be the two edges adjacent
to v and assume w.l.o.g that mT

uv = mini∈Nv miv. Since m
T
kv ≥ mT

uv, we have(
mT
kv

(
1−mT

kv

))
≥
(
mT
uv

(
1−mT

uv

))
.

We will now demonstrate that the modified topology T ′, where node k is connected to node
u instead of node v, results in a lower CST cost. The only edge centralities affected by this
change are those associated with edges (u, v), (u, k), and (k, v). To compare the costs of the
topologies, it suffices to focus on these specific edges.

First, we determine the values of the centralities for these edges in both trees.

• Normalized centrality of edge (u, v) in tree T :

mT
uv(1−mT

uv)

• Normalized centrality of edge (u, v) in tree T ′:

mT ′

uv(1−mT ′

uv) =
(
mT
uv +mT

kv

) (
1−mT

uv −mT
kv

)
The equality is due to the fact that once k is a neighbor of u, all nodes that were in the
same side as k will be now in the same side as u.

• Normalized centrality edge k, v in T and normalized centrality edge k, u in T ′:

mT
kv(1−mT

kv) = mT ′

ku(1−mT ′

ku)

Both u and v lie in the same side of the edges, hence the equality of their normalized
centralities.
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Note that mT ′
uv(1−mT ′

uv) > mT
uv(1−mT

uv). Otherwise, it would imply that

mT ′

uv(1−mT ′

uv) < mT
uv(1−mT

uv) ⇐⇒(
mT
uv +mT

kv

) (
1−mT

uv −mT
kv

)
< mT

uv(1−mT
uv) ⇐⇒

min
(
mT
uv +mT

kv, 1−mT
uv −mT

kv

)
< min

(
mT
uv, 1−mT

uv

)
= mT

uv

Trivially, mT
uv +mT

kv < mT
uv leads to a contradiction since mT

kv > 0. Thus, the only possibility
is

1−mT
uv −mT

kv < mT
uv ⇐⇒ 1−mT

kv < 2mT
uv

⇐⇒ 1−mT
kv = mT

uv +
∑
i∈Nv
i ̸=k,i̸=u

mT
iv < 2mT

uv

⇐⇒
∑
i∈Nv
i ̸=k,i̸=u

mT
iv < mT

uv

which is also a contradition since by assumption mT
uv = mini∈Nv m

T
iv. Now we are able to

show that the cost of T ′ is lower than the one of T

CST(T )− CST(T ′) = cuv
(
mT

uv

(
1−mT

uv

))α
+ ckv

(
mT

kv

(
1−mT

kv

))α
− cuv

((
mT

uv +mT
kv

)(
1−mT

uv −mT
kv

))α
− cku

(
mT

kv

(
1−mT

kv

))α
=cuv

((
mT

uv

(
1−mT

uv

))α
−
((
mT

uv +mT
kv

)(
1−mT

uv −mT
kv

))α)
+ (ckv − cku)

(
mT

kv

(
1−mT

kv

))α

=
(
mT

uv

(
1−mT

uv

))α
cuv − cuv


(
mT

uv +mT
kv

) (
1−mT

uv −mT
kv

)(
mT

uv

(
1−mT

uv

))︸ ︷︷ ︸
>1


α

+ (ckv − cku)

mT
kv

(
1−mT

kv

)
mT

uv

(
1−mT

uv

)︸ ︷︷ ︸
≥1


α .

We can differentiate two cases. If mT
kv

(
1−mT

kv

)
= mT

uv

(
1−mT

uv

)
then

CST(T )− CST(T ′)(
mT
uv

(
1−mT

uv

))α α→−∞−−−−→ (cuv + ckv − cku) > 0, (33)

where we have used the strict triangle inequality. Otherwise, the limit tends to

CST(T )− CST(T ′)(
mT
uv

(
1−mT

uv

))α α→−∞−−−−→ cuv > 0.

Hence, for sufficiently negative values of α, the difference CST(T ) − CST(T ′) will be
positive. By repeating this process, we can continue reducing the degree of nodes with degree
higher than 2 until all nodes have degree at most 2. This process will eventually lead to the
formation of a Hamiltonian path with a lower cost than the original tree T .

Remark E.2. Due to equation (33), Lemma E.3 required the triangle inequality to hold
strictly. However, the strict triangle inequality is not an indispensable for the validity of
Lemma E.3. Corollary E.1 demonstrates that, when the nodes of the graph are embedded
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in a geodesic metric space (e.g. Euclidean space), the strict triangle inequality becomes
unnecessary. This result extends also to the BCST problem.

Nevertheless, the scenario portrayed in Figure 24 serves as an example where the strict
triangle inequality is not satisfied, leading to a non-optimal Hamiltonian path. This illustrates
that while the strict triangle inequality may be dispensable under certain conditions, there are
instances of arbitrary graphs, as demonstrated in the figure, where it cannot be abandoned.

1 2

3

4

1

1

1

2

2

2

(a) Graph with edge costs

1 2

3

4

1

1

2

(b) Hamiltonian path

1 2

3

4

1

1

1

(c) Optimal CST solution

Figure 24: Necessity of the Triangle Inequality for Path Graph to be (B)CST
Optimum as α → −∞. 24a) Graph with edge costs depicted, where the triangle inequality
is not strictly satisfied. 24b) Optimal hamiltonian path with CST cost equal to 3α·3+4α

16α
. 24c)

Optimal CST with cost equal to 3·3α
16α

. Thus, if the triangle inequality does not strictily hold,
the Hamiltonian path will not necessarily be optimal even for sufficiently negative α values

Corollary E.1. Consider the BCST and CST problem where the nodes are embedded in a
geodesic metric space. As α tends to negative infinity (α→ −∞) there exists a Hamiltonian
path T⋆ with a lower CST/BCST cost than any other tree T that is not a path.

Proof. The reasoning aligns with the exposition in Lemma E.3, proving that for any node v
with degree exceeding 2, we can always decrease its degree such that the CST/BCST cost of
T decreases. Through the iterative application of this process, the degrees of all nodes are
systematically decreased, ultimately converging to a state where each node has at most a
degree of 2, thereby resulting in the formation of a path.

Consider a node v with a degree higher than 2. To apply the logic presented in Theorem
E.3, it is essential to ensure the ability to select two neighbors such that the triangle inequality
holds strictly. Let u, k, and ℓ represent three distinct neighbors of v, and assume that the
triangle inequality is an equality between each pair of neighbors and the node v. In other
words, we have

cuv + cvk = cuk, (34)

cuv + cvℓ = cuℓ, (35)

cℓv + ckv = cℓk. (36)

Starting with (34), we conclude that v lies on the geodesic path between u and k. Similarly,
from (35) and (36), we deduce that v is positioned between u and ℓ and also between ℓ and
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k. Consequently, ℓ is established to be between u and k, as it is situated between u and v
and also between k and v.

As a result, we can infer that cℓk + cℓu = cuk. Summing (34) and (35) and utilizing the
derived equality cℓk + cℓu = cuk (owing to the position of ℓ between u and k), we obtain:

cuv + cvk + cuv + cvℓ = cuℓ + cuk → 2cuv + cℓk = cℓk → cuv = 0

The deduction that cuv = 0 implies that nodes u and v occupy the same position and
can effectively be considered as a single node. Consequently, we can systematically remove
neighbors of v by repeating this process until v attains a degree of 2.

Alternatively, if the triangle inequality must hold strictly for a pair of nodes u, k, and
node v, we can, w.l.o.g., assume that node u is chosen such that muv = mini∈Nv miv. In this
scenario, applying the same reasoning as the one presented in Lemma E.3, we demonstrate
that the modified topology T ′ –where node k is connected to node u instead of node v– results
in a lower BCST/CST cost.

Lemma E.3 resembles Lemma E.1 in the sense that both lemmas require the satisfaction
of a weighted triangle inequality. The following corollary reformulates Lemma E.3, mirroring
the structure found in Lemma E.1, and accentuates the correlation between the weighted
triangle inequality and the number of terminals denoted by N .

Corollary E.2 (Theorem 2.2). Given a complete graph G with N nodes, let cij be the
edge-costs of any pair of nodes (i, j). If there exists

t ≤ min
1≤s≤N−3

1≤ℓ≤min(s,(N−s)/2−1)

(ℓ(N − ℓ))α − ((ℓ+ s)(N − ℓ− s))α

(s(N − s))α

such that
ckv + tcuv ≥ cku

for all triangles in the graph, then there exists an optimum CST evaluated at α which is a
Hamiltonian path.

Proof. Lemma E.3 holds if(
cuv − cuv

(
(mT

uv+m
T
kv)(1−mT

uv−mT
kv)(

mT
uv

(
1−mT

uv

)) )α

+ (ckv − cku)
(
mT

kv

(
1−mT

kv

)
mT

uv

(
1−mT

uv

))α) > 0

⇐⇒ cuv

(
mT

uv

(
1−mT

uv

))α

−((mT
uv+m

T
kv)(1−mT

uv−mT
kv))

α

(mT
kv(1−mT

kv))
α

+ ckv > cku (37)

where it is assumed that muvmini∈Nv miv. Thus, let muv =
ℓ
N

and mkv =
s
N
. Substituting

these values into (37), we derive the following inequality

ckv +
(ℓ(N − ℓ))α − ((ℓ+ s)(N − ℓ− s))α

(s(N − s))α
cuv ≥ cku.
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Note that ℓ ≤ min(s, (N − s)/2− 1) since muvmini∈Nv miv. Thus, muv =
ℓ
N
≤ mkv =

s
N
.

On the other hand, since in the proof of Lemma E.3, v has at least three neighbors (u, k
and say p), the N − s nodes not lying in the side corresponding to k of edge (k, v) must be
distributed in the side of v. At exception of node v, one part of the remaining N − s − 1
nodes will be in the side corresponding to u of edge (u, v) and the other part in the side
corresponding to p of edge (p, v). Since muv must be minimum, the side corresponding to u
of edge (u, v) can at most be equal to N−s−1

2N
.

Notice also that 1 ≤ s ≤ N − 3, since v has degree at least three and therefore there are
at least three nodes (v, u, p) lying in the same side of v with respect to edge (k, v). Thus,
mT
vk = (1−mT

kv) = 1− s
N
≥ 3

N
, or equivalently s ≤ N − 3.

F Exploring the Number of Derivable Topologies from

CST and BCST Topologies

F.1 Number of BCST Topologies Derivable from a CST Topology

In this section, we explicitly determine the number of topologies of the BCST problem that
can be derived from a single CST topology.

To derive a full tree topology TBCST from a CST topology TCST with N terminals, we
need to add N − 2 SP. In particular, for each terminal node, v, with degree dv ≥ 2, we need
to spawn dv − 1 SP. Since for k terminal nodes, there exist a total (2k − 5)!! of full tree
topologies [32], there are (2(dv + 1) − 5)!! = (2dv − 3)!! ways to connect the added SP to
the neighbors of v and v itself. Thus the total number of full tree topologies is equal to the
number of possible combinations of subtopologies engendered per terminal neighborhood for
terminals with degree higher than 2. Formally, this number is equal∏

v : dv≥2

(2dv − 3)!!. (38)

Note that, on the one hand, if all nodes have degree lower or equal than 2, i.e. the tree is
a path, then a single full tree topology can be derived. On the other hand, if the original
TCST is a star graph, then there is a single graph with degree higher than 2, which is equal to
N − 1. Thus, the total number of topologies derived from it is equal to (2N − 5)!!. This is
the total number of possible full tree topologies, hence a star graph can generate any full tree
topology. In general, the higher the degree of the nodes in TCST, the higher the number of
derivable full tree topologies.

F.2 Number of CST Topologies Derivable from a BCST Topology

In this case, we need to collapse each SP to a terminal. The collapse process can be carried
out sequentially, where each SP is collapsed to one of its neighboring nodes, until no SP
remain. Naively, we might assume that there are 3N−2 possible topologies, given that each
SP has 3 neighbors available for collapse and there are N − 2 SPs. However, this is not the
case because some combinations may result in non-valid topologies. For instance, if all SPs
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collapse with neighbors that are also SP, none of the SP will be collapsed with a terminal
node.

Before providing the formula for the number of CST topologies that can be derived from a
full tree topology, let’s introduce the All Minors Matrix Tree Theorem [9], which is necessary
to derive the formula. The Matrix Tree Theorem [38, 20] states that the number of spanning
trees of a given graph G = (V,E) can be calculated from the determinant of a submatrix of
its Laplacian. Recall that the Laplacian matrix of a graph L is given by

L = D − A, where Aij =

{
1 if (i, j) ∈ E
0 otherwise

& Dij =

{∑
k Aik if i = j

0 otherwise
.

In other words, A is the adjacency matrix of the graph, and D is the diagonal degree matrix.
We state a simplified version of the theorem without providing a proof.

Theorem F.1. Given a graph G = (V,E) and a subset U of nodes in G, let W = V \U .
We define LW,W as the submatrix of the Laplacian matrix of G, which includes the rows
and columns indexed by the nodes in W . In this context, the determinant of LW,W , denoted
as det(LW,W ), provides a count of the number of spanning forests of G that consist of |U |
disjoint trees, with the nodes in U being disconnected across these trees.

Proof. See Chaiken [9].

Now we are ready to present the main result of this subsection. Consider a full tree
topology TBCST. The number of topologies for the CST problem that can be derived from
TBCST is given by

det(LSPs,SPs), (39)

where LSPs,SPs represents the submatrix of the Laplacian matrix L of TBCST. This submatrix is
formed by selecting the rows and columns associated with the SPs. By virtue of Theorem F.1,
equation (39) counts the number of spanning forests of the TBCST which disconnect the
terminal nodes. To demonstrate that this count of forests coincides with the number of
topologies that can be derived from the full tree topology TBCST, we will establish a bijection.

Indeed, if we have a forest that disconnects all the terminals, each SP within the forest
must belong to a component with a single terminal. In this scenario, we can unambiguously
collapse each SP to its corresponding terminal. Once we have collapsed the SP, we still need
to reconnect the terminals between them to form a valid CST topology. Now, notice that
in the original full tree topology TBCST, each terminal is uniquely adjacent to a SP. We can
connect the terminals between them based on the collapse process of the SP. Specifically, a
terminal vt is connected to another terminal ut if the neighboring SP of vt in the original
TBCST has been collapsed to ut. Similarly, we can reverse these steps to map a CST topology
back to a unique forest that disconnects the terminals. Figure 25 illustrates the individual
steps of this bijection using two examples. We have proven the following theorem

Theorem F.2. Let TBCST be a full tree topology with N terminals. Consider the Laplacian
matrix L of TBCST. The number of CST topologies that can be derived from TBCST is equal
to the determinant of LSPs,SPs, which is the submatrix of the Laplacian obtained by selecting
the rows and columns indexed by the SPs. Hence, the number of CST topologies derived
from TBCST can be calculated as detLSPs,SPs.
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(a) Original full tree topology TBCST
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(b) Example 1, Bijection Steps
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(c) Example 2, Bijection Steps

Figure 25: Bijection Between Derivable CST Topologies from a Full Tree Topology
and Their Terminal-Separating Forests. Figures 25b) and 25c) illustrate two examples
of the relationship between a spanning forest and a derived CST topology of a full tree
topology depicted in Figure 25a.

G Branching Angles at the Steiner Points in the BCST

Problem

In this section, we formulate the branching angles in terms of the centralities of the edges for
a given topology of the BCST problem. As stated in Section 5.1, it is sufficient to study the
geometric optimization of 3 nodes connected by a single SP, with minimization objective
given by

C(b) = ζ0||b− a0||+ ζ1||b− a1||+ ζ2||b− a2||. (40)

Recall that node b represents the Steiner point whose coordinates need to be optimized, nodes
{ai} are the terminals with fixed positions and ζi := mbai(1−mbai) are the centralities of the
edges (b, ai) (see Figure 26).

We will reproduce the arguments exposed for the BOT problem in Bernot et al. [4] and
Lippmann et al. [22] to determine the angles θ1 and θ2. We will differentiate two cases: when
the SP does not coincide with any other terminal node; and when b collapses with one of the
terminals.
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1

a0

a1 a2

b

ζ0

ζ1 ζ2

θ1 θ2

Figure 26: Branching Angles at Steiner Point. The symbols ζi represent the normalized
centralities of the edges, that is ζi := mbai(1−mbai).

G.1 Steiner Point b Does Not Collapse with a Terminal

In this case, the function is differentiable with respect to b, and therefore we just need to see
where the gradient of equation (40) is equal to zero. The formula for the gradient is as follows

∇bC(b) = ζα0 n0 + ζα1 n1 + ζα2 n2, (41)

where ni =
b−ai

||b−ai|| . By applying the dot product to ∇bC(b) with each ni and setting it equal
to zero, we derive the following equalities:

⟨∇bC(b), n0⟩ = 0 → ζα0 + ζα1 ⟨n1, n0⟩︸ ︷︷ ︸
− cos(θ1)

+ζα2 ⟨n2, n0⟩︸ ︷︷ ︸
− cos(θ2)

= 0

⟨∇bC(b), n1⟩ = 0 → ζα0 ⟨n0, n1⟩︸ ︷︷ ︸
− cos(θ1)

+ζα1 + ζα2 ⟨n2, n1⟩ = 0

⟨∇bC(b), n2⟩ = 0 → ζα0 ⟨n0, n2⟩︸ ︷︷ ︸
− cos(θ2)

+ζα1 ⟨n1, n2⟩+ ζα2 = 0

Solving the linear system we obtain that the angles satisfy

cos(θ1) =
ζ2α0 + ζ2α1 − ζ2α2

2ζα0 · ζα1
,

cos(θ2) =
ζ2α0 + ζ2α2 − ζ2α1

2ζα0 · ζα2
,

cos(θ1 + θ2) =
ζ2α0 − ζ2α1 − ζ2α2

2ζα1 · ζα2
.

(42)

G.2 Steiner Point b Collapses with a Terminal

In this case, in order to determine the optimality angles, we will use the subdifferential
argument applied in Lippmann et al. [22]. W.l.o.g. we will assume that b collapses with
terminal a0.

The subdifferential of a convex function h : Rn → R at x is defined as the following set of
vectors

∂g(x) := {v : h(z) ≥ h(x) + ⟨v, z − x⟩, ∀z ∈ Rn}.
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In other words, ∂g(x) comprises all vectors v such that the line passing through h(x) in
the direction of v lies below the function h at all points. Each of these vectors is called a
subgradient of h at x. When a function is differentiable at x, the subdifferential only contains
the gradient of the function at x.

Fermat rule states that a convex function attains its minimum at x if and only if 0 ∈ ∂g(x).
Furthermore, the subdifferential of two convex functions is equal to the union of the pairwise
sums of their subgradients. In other words, for g(x) = g1(x) + g2(x) then

∂g(x) = {v1 + v2 : v1 ∈ ∂g1(x), v2 ∈ ∂g2(x)}. (43)

We can apply Fermat’s rule to determine when the minimum is attained at b = a0. For
the function g(x) = w · ||x− a||, the subdifferential is given by

∂g(x) =

{
{v : ||v|| ≤ w}, if x = a{
w x−a

||x−a||

}
, otherwise

.

Thus, applying equation (43), the subdifferential of C(b) at b = a0 is given by

∂C(a0) =

{
v + ζα1

b− a1
||b− a1||

+ ζα2
b− a2
||b− a2||

: ||v|| ≤ ζα0

}
.

In order for b to be optimal at a0, zero has to belong to ∂C(a0), which is true if and only if∣∣∣∣∣∣∣∣ζα1 b− a1
||b− a1||

+ ζα2
b− a2
||b− a2||

∣∣∣∣∣∣∣∣ ≤ ζα0

⇐⇒
∣∣∣∣∣∣∣∣ b− a1||b− a1||

+
b− a2
||b− a2||

∣∣∣∣∣∣∣∣2 = ζ2α1 + ζ2α2 + 2ζα1 ζ
α
2 cos(γ) ≤ ζ2α0

(44)

where γ is the angle of the terminal triangle at a0, that is γ := ∠a1a0a2. Isolating γ, we get

γ ≥ arccos

(
ζ2α0 − ζ2α1 − ζ2α2

2ζα1 · ζα2

)
= θ1 + θ2. (45)

Thus b will collapse to a0 if the angle ∠a1a0a2 is greater than the optimal angle given by
(42). In such cases, the resulting branching is referred to as a V -branching.

Remark G.1. It is worth noting that the reasoning presented in this section remains
independent of the weighting factors, which, in our case, were set equal to the normalized
edge centralities powered to α. As a result, this finding holds true for any weights and can
be used to determine an arbitrary weighted geometric median of three points. Furthermore,
we emphasize that the position of the SP, b, depends exclusively on the angles and weighting
factors and not on the distances between the terminal nodes.

H Infeasibility of Degree-4 Steiner Points in the Plane

for α = 1

As stated in Section 5.2, the optimal position of the SPs is continuously dependent on
the terminal positions and solely relies on the branching angles, as shown in Section 5.1.
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Figure 27: Splitting Collapsed SP While Preserving Optimal Angles. 27a) illustrates
the collapsed solution of a 4-terminal configuration. 27b) demonstrates that it is possible
to move jointly the terminal points {a1, a3} in a specific but opposite direction to the one
of the terminals {a2, a4}, resulting in the splitting of the collapsed SP b into two distinct
SPs, b1 and b2. Remarkably, this split can be executed while preserving the angles θ1 and θ2.
Importantly, these angles must correspond to the optimal angles given by (42).

Consequently, assuming that there exists a configuration such that the SPs collapse, it
is possible to find terminal positions that lead to an unstable collapse of the SPs. Here,
instability refers to a configuration where an infinitesimal translation of the terminals results
in the splitting of the SPs. This scenario is depicted in Figure 27. In such cases, the angles
realized by the terminals and the SPs will reach the upper bounds specified by (45). Therefore,
the angles depicted in Figure 27a fulfill the condition

γ = π − θ1 − θ2, (46)

where the angles satisfy

cos(γ) =
F (ma1b +ma2b)

2α − F (ma1b)
2α − F (ma2b)

2α

2F (ma1b)
α F (ma2b)

α (47)

cos(θ1) =
F (ma3b +ma1b)

2α + F (ma1b)
2α − F (ma3b)

2α

2F (ma3b +ma1b)
α F (ma1b)

α (48)

cos(θ2) =
F (ma2b +ma4b)

2α + F (ma2b)
2α − F (ma4b)

2α

2F (ma2b +ma4b)
α F (ma2b)

α (49)

We can manipulate (46) in the following way

γ = π − θ1 − θ2 ⇐⇒ cos(γ − π) = cos(−θ1 − θ2)
⇐⇒ − cos(γ) = cos(θ1 + θ2) (50)

⇐⇒︸ ︷︷ ︸
∗

− cos(γ) = cos(θ1) cos(θ2)−
√

(1− cos(θ1)2) (1− cos(θ2)2)

where in (*) we have used the fact that

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y) = cos(x) cos(y)−
√

(1− cos(x)2)(1− cos(y)2).

If we square both sides of 50 and equate to 0 we obtain.

(cos(γ) + cos(θ1) cos(θ2))
2 −

(
1− cos(θ1)

2
) (

1− cos(θ2)
2
)
= 0. (51)
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Equation (51) depends on the variables ma1b, ma2b, ma3b, and α
12. Equation (51) is generally

too complex to be solved analytically. However, with the help of the Mathematica software
[16], we have determined that for α = 1, the equality does not hold within the constraints of
the problem, namely

4∑
i=1

mai,b = 1 and 0 < mai,b < 1, ∀i.

To simplify the notation, let’s denote maib as mi. For α = 1, when we expand equation
(51), we find that the numerator of the formula becomes a fourth-degree polynomial with

respect to m1. The four roots, {m(j)
1 } of the polynomial are

m
(1)
1 =

1

2

(
1−m2 −m3 −

√
(−1 +m2 +m3)2 −

4

3

(
−2m2 − 2m3 + 3m2m3 −
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√
(−1 +m2 +m3)2 −

4

3

(
−2m2 − 2m3 + 3m2m3 + 2

√
m2

2 −m2m3 +m2
3

))
, (52)

where we have highlighted the difference between the roots. We will show that

1 < m
(4)
1 +m2 +m3 < m

(2)
1 +m2 +m3 and m

(1)
1 < m

(3)
1 < 0,

which implies that the problem constraints are not satisfied, and therefore SPs of degree 4
are not possible.

Claim 1: 1 < m
(4)
1 +m2+m3 ≤ m

(2)
1 +m2+m3. From (52) it is clear thatm

(4)
1 ≤ m

(2)
1 .

Thus, it is enough to prove the inequality for m
(4)
1 :
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√√√√m
2
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>
1
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√
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>
1

2
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√
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1

2
(m2 + m3)︸ ︷︷ ︸

>2

 > 1

For the last inequality, we have used the fact 0 < m2 +m3 < 1, that the function g(x) =
1 + x+

√
1− x/2 is increasing in [0, 1] and that g(0) = 2.

12Since
∑4

i=1maib = 1, ma4b can be expressed as 1−ma1b −ma3b −ma4b.
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Claim 2: m
(1)
1 ≤ m

(3)
1 < 0. From (52) it is clear that m

(1)
1 ≤ m

(3)
1 . Thus, it is enough to

prove the inequality for m
(3)
1 .
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Thus, we need to focus on inequality 53. We will differentiate various cases:

• If 2/3 > m3 ≥ m2:(
−2m2 − 2m3 + 3m2m3 + 2

√
m2

2 −m2m3 +m2
3

)

= m2 (2− 3m3)︸ ︷︷ ︸
>0 ⇐⇒ 2/3>m3

+2

m3 −
√
m2

2 −m2m3 +m2
3︸ ︷︷ ︸

≥0 ⇐⇒ m3≥m2

 > 0

For the second term, we have used the fact that

m3 ≥
√
m2

2 −m2m3 +m2
3 ⇐⇒ m2

3 ≥ m2
2 −m2m3 +m2

3 ⇐⇒ m2m3 ≥ m2
2

⇐⇒ m3 ≥ m2

• If 2/3 ≥ m3 ≥ m2: Anologous to previous case due to the symmetry of m2 and m3 in
(53)

• If max(m2,m3) ≥ 2/3: W.l.o.g we can assume m2 ≥ 2/3 and m3 < 1/3 due to the
symmetry between m2 and m3. For this case, we will find the roots with respect to m2 of
inequality (53) and see that the constraints on m2 do not hold. Indeed,

−2m2 − 2m3 + 3m2m3 + 2
√
m2

2 −m2m3 +m2
3 = 0⇒

(−2m2 − 2m3 + 3m2m3)
2 = 4(m2

2 −m2m3 +m2
3)

The roots {m(j)
2 } of the polynomial are

m
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3
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2

3
,

m
(2)
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2m3
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3
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7− 12m3 + 6m2

3

& m3 ̸=
2−
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m
(3)
2 =

2(−3 + 2
√
2)

3(−2 + 3
√
2)

& m3 =
2−
√
2

3
.

, (54)

The denominator of the root m
(1)
2 has negative sign for 0 < m3 < 1, which leads to m

(2)
1 < 0,

contradicting the initial constraints. Trivially, m
(3)
2 is also negative.
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The denominator of the root m
(2)
2 is negative for 0 < m3 <

2−
√
2

3
, resulting in m

(2)
2 < 0.

When 2−
√
2

3
< m3 < 1/3, the denominator becomes positive but remains lower than 2m3,

thus m
(2)
2 > 1, which is also a contradiction.

We have ruled out all possible cases, thus we have proven the next theorem.

Theorem H.1. Let α = 1. Given a set of terminals which lie in the plane, then the SPs
of the optimal solution of the BCST problem will not contain SPs of degree 4 unless these
collapse with a terminal.

I Iteratively Reweighted Least Square for the Geomet-

ric Optimization of the Steiner Points

In this section we review briefly the iteratively reweighted least square (IRLS) algorithm
proposed in [36]. This algorithm was initially developed for the geometric optimization of
Steiner points (SPs) and later adapted in [22] for the branched optimal transport (BOT)
problem. We will show that the same algorithm can be adapted for the BCST problem, since
the algorithm is agnostic to the weighting factors multiplying the distances involved in the
BOT and BCST objectives, as defined in equations (20) and (2), respectively.

Consider the following minimization problem for a fixed tree topology

min
XB

C(X) = min
XB

∑
(i,j)∈E

wij ∥xi − xj∥ (55)

where wij are arbitrary weights, E is the set of edges of the tree, XB = {xN+1, . . . , x2N−2}
are the coordinates of the SPs, which need to be optimized, and X = {x1, . . . , x2N−2} is the
set of all coordinates (terminals and SPs). Starting from arbitrary SPs coordinates, denoted
as X(0), the algorithm iteratively solves the following linear system of equations.

x
(k+1)
i =

∑
j:(i,j)∈E

wij
x
(k+1)
j

||x(k)i − x
(k)
j ||∑

j:(i,j)∈E

wij

||x(k)i − x
(k)
j ||

, ∀N + 1 ≤ i ≤ 2N − 2. (56)

Note that only the coordinates corresponding to the SPs are updated. The coordinates of
the terminals are kept fixed and set equal to their original coordinates.

We will show that in each iteration the cost of the objective function decreases, i.e.
C(X(k+1)) < C(X(k)). As shown in [36], this implies that the limk→∞X(k) = argminC(X).

The algorithm can be considered an IRLS approach because it reinterprets the cost
function as a quadratic function. Indeed, C(X) can be rewritten as

C(X) =
∑

(i,j)∈E

wij ∥xi − xj∥ =
∑

(i,j)∈E

wij
∥xi − xj∥︸ ︷︷ ︸
Wij(X)

∥xi − xj∥2 =
∑

(i,j)∈E

Wij(X) ∥xi − xj∥2
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In concrete, the solution of the linear system (56) minimizes the following quadratic
function

Q(k)(X) =
∑

(i,j)∈E

Wij(X
(k)) ∥xi − xj∥2 .

That is Q(k)(X) ≥ Q(k)(X(k+1)) ∀X. Moreover, note that C(X(k)) = Q(k)(X(k)). Now we can
show that the cost C decreases at each iteration:
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(57)

J Complexity mSTreg Heuristic

We will delve into the complexity of the two steps of our heuristic.

• Complexity geometric optimization: We approximate the optimal SPs coordinates
using the IRLS approach presented in Section I. Each iteration of the IRLS requires
O(nd) operations, where n is the number of terminals and d is the data dimensionality.
Within each iteration, d linear systems are solved. These can be solved in linear time and
in parallel. The number of iterations needed for the IRLS to converge is not known a
priori, however, Lippmann et al. [22] suggest that this number could scale on average like
O(log(n)). Consequently, each geometric optimization step takes O(log(n)nd).

• Topology optimization step: In the topology optimization step, we compute the
minimum spanning tree (mST) over the terminals and SPs. Given a graph G = (V,E),
Kruskal’s algorithm takes O(|E| log |V |) operations to compute the mST. In a complete
graph, this becomes O(n2 log(n)). However, in some situations, we may expedite the mST
computation by computing the mST over a k-nearest neighbor (kNN) graph. Approximating
a kNN graph with k-d trees can have a complexity of O(dn log(n)2). In this case, the
number of edges in the graph would be |E| ≈ kn. Hence, the overall mST complexity
would be O(dn log(n)2 + kn log(n)) ≈ O(dn log(n)2).
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Figure 28: BCST time complexity. Computation time of 20 iterations of the mSTreg
heuristic averaged over 5 distinct instances with different numbers of terminals n, data
dimensionality d, and α values.



Figure 29: mSTreg Heuristic with Additional Sampled Points. Effect of adding
extra points per edge (visualized in violet) in the mST computation step of the mSTreg
heuristic. Top left: BCST solution obtained once the mST has been mapped to a full tree
topology and its Steiner point coordinates have been optimized. Top row: Next steps of the
mSTreg heuristic without adding any extra point. Bottom row: Next steps of the mSTreg
heuristic once an extra point has been added at the middle of each edge (shown in violet).
The addition of extra points may allow the mST to more reliably follow the edges of the
geometry-optimized tree from previous step. We zoom in to highlight an improvement in the
topology resulting from the addition of these extra points. In this particular case, the cost
obtained with the inclusion of the extra nodes is lower than the cost without them.

Therefore, the heuristic’s per-iteration complexity is approximatelyO(dn log(n)+n2 log(n))
or O(dn log(n)2) if the mST is computed over a kNN graph. Throughout our experiments, a
limit of 20 iterations was set, though practical convergence often demands fewer. In addition,
we gauged the computational time of the heuristic by averaging its performance over 20
iterations across 5 distinct instances, varying n, d, and α. Data was generated by sampling n
points from a d-dimensional unit cube. The performance times are presented in Figure 28.
The heuristic was executed on an Intel Xeon Gold 6254 CPU @ 3.10GHz.

K Effect of Additional Intermediate Points in the mSTreg

Heuristic

In Section 6.2 we have described the mSTreg heuristic as a solution approach for the BCST
problem. The algorithm can be summarized in two steps: 1) Optimization of the SPs
coordinates given a fixed topology; 2) topology update by computing the mST over the
terminals and SPs. The motivation for the topology update is that the optimal positions of
the SPs may suggest a more desirable topology, since they may be biased to move closer to
other nodes than the ones to which they are connected. Thus, we hope that the new topology,
defined by the mST over the SPs and the terminals, interconnects such nodes.
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However, there are instances where the SPs may not be sufficiently close to each other,
causing the mST to fail in recovering the desired connections. the addition of intermediate
nodes along the edges may address this problem, allowing the mST to more reliably follow
the edges of the geometry-optimized tree from the previous step. An illustrative example
highlighting the benefits of this approach can be seen in Figure 29. In general, we have seen
that adding between 1 and 3 nodes per edge can often yield improvements. However, the
impact on the main backbone is minimal. In Algorithm 1, the number of intermediate points
that are added along an edge is regulated by the sampling\_frequency variable.

L Strategies to Transform a Full Tree Topology into a

CST Topology

When using the mSTreg heuristic described in Section 6.2 for solving the CST problem
without branching points, we need to map from a full tree topology to a CST topology. As
shown in Section F.2, this process is ambiguous and there may be an exponential number of
derivable topologies with respect to the number of terminals. Hence to brute force the one
which minimizes the CST cost is out of reach.

In this section, we describe some heuristic rules to transform a full tree topology into a
CST topology. In order to transform a full tree topology into a CST topology, we collapse
iteratively one SP at a time with one of its neighbors until there are no more SPs to collapse.
The first factor to take into account is in which order the SPs are collapsed. We consider
two strategies: 1) collapse the SP that is closest to a terminal (“Ordclosestterminal”) or 2)
collapse the SP with the closest neighbor, i.e. the one that minimizes the distance to one of
each neighbors independently of if it is a terminal or a SP (“Ordclosest”). In practice we did
not see any big difference, though “Ordclosest” tends to be slightly better.

The second factor to take into account is to which neighbor should an SP collapse. We
again compare two different heuristics: 1) collapsing the SP to the neighbor that minimally
increases the CST cost (“greedy”); 2) collapsing the SP to the closest neighbor in terms of
distance. We found empirically that the greedy approach yields significantly superior results.

Lastly, we conducted tests on updating the position of the collapsed SP. When a SP,
denoted as b1, is collapsed with a neighbor b2, then the other neighbors of b1 become neighbors
of b2. We observed that updating the position of b2 to the weighted geometric median of
its neighbors (including those inherited from b1) yielded improved results compared to not
updating the coordinates of b2. The coordinates of b2 were only updated when b2 was an SP.
If b2 happened to be a terminal, its position was kept fixed. To denote if a strategy updated
the position or not we will use the expression “update” and “no update” respectively.

To evaluate the effectiveness of the strategies, we conducted a series of experiments by
sampling 200 problem instances for each N in the set {5, 6, 7, 8, 9}, where N represents the
number of terminals. For each instance, we applied the mSTreg heuristic with different α
values and utilized the aforementioned strategies to transform a full tree topology into a CST
topology. Figure 30 shows the mean ranking positions obtained by the different strategies,
once all feasible solutions have been sorted. The results confirm the observations that we
already pointed out. For all of our experiments we used the combination that produced the
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best results i.e. “update”+“greedy”+“Ordclosest”.

M Further Details on the Brute Force Experiment

In this section, we analyze the behavior of the mSTreg heuristic with respect to α. To
investigate this, we utilize the experiment described in Section 7, which compared the cost of
the output tree generated by our heuristic with the optimal solution for different numbers of
terminal nodes, denoted as N, while specifically examining the influence of α.

For each N ∈ {5, 6, 7, 8, 9}, we sample 200 problem instances. We computed the optimal
CST and BCST topologies of all problems via brute-force and with the mSTreg heuristic13

for all α ∈ {0, 0.1, . . . , 0.9, 1}. Figures 31 and 32 show the relative error and how the heuristic
solution ranks, when the costs of all topologies are sorted. When solving the BCST, though
there is not a clear trend, we can observe that for higher N the heuristic tends to perform
worse for higher α values, since on average the heuristic’s solution ranking is higher. When
solving the CST problem this pattern can be more clearly seen.

N Selection of α

In this section, we present our practical insights into determining the optimal value for α. It
is crucial to emphasize that the choice of α is task-dependent and influenced by the desired
level of structure preservation. Nevertheless, we share the observations derived from our
empirical experiences.

For simpler examples, as the ones illustrated in Section A, we have consistently found
that α values within the range of [0.7, 1] yield high stability while preserving the primary
data structure. In general, an increase in α correlates with a heightened inclination toward
a star-shaped tree, in line with the limit case discussed in Appendix 2.1. As pointed in
Remark 2.2, this pattern intensifies in higher dimensions, being noticeable with even modest
α values (α ≲ 1), which results in a nearly star-shaped tree that compromises the preservation
of data structure.

We refrained from further exploring the case of α > 1 due to both practical and theoretical
observations pointing towards an excessively star-shaped tree. Indeed, as demonstrated in
2.1, when the number of terminals, N , is sufficiently large and α > 1, the optimal solution
results in a star-graph. The transition to a star-tree occurs quite early in this scenario. For
instance, with moderate values of N and α ≳ 1 (e.g., N = 1000, α = 1.13), an optimal
star-tree emerges. Refer to Figure 2 to observe how the value of α at which the optimal
solution becomes a star-tree approaches 1 as N increases.

In summary, our empirical experience suggests that intermediate α values (around 0.5)
effectively preserve the data structure while maintaining relative stability. This choice holds
true for the applications highlighted in the thesis. We hope that by sharing our experiences,
practitioners can better select an appropriate α for their respective applications.

13As described in L, we can use different strategies to transform a full tree topology into a CST topology,
when solving the CST problem with the mSTreg heuristic. We used the one that updates the position of SPs
and collapses to the closest neighbor.
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(a) N=5 (b) N=6 (c) N=7

(d) N=8 (e) N=9

Figure 30: Performance SPs Collapse Strategies. Comparison of different collapse
strategies to transform a full tree topology into a CST topology. See Section L for a short
description of the strategies. We plot the average sorted position of the heuristic for different
number of terminals, N and for different α values. We observe that the strategy combinations
including the “greedy” collapse approach have significantly better results. The combinations
which update the position of the collapsed SP (“update”) perform slightly better than the
ones that do not (“no update”). Analogously, the strategies that order the SPs based on the
closeness to the neighbors (“Ordclosest”) is slightly better than “Ordclosestterminal”.



(a) N=5 (b) N=6 (c) N=7 (d) N=8 (e) N=9

BCST relative error for different number of terminals N

(f) N=5 (g) N=6 (h) N=7 (i) N=8 (j) N=9

BCST rank of heuristic for different number of terminals N

Figure 31: BCST Bruteforce Benchmark with Respect to α. Relative cost errors
between the mSTreg heuristic and BCST optimal solutions; and sorted position of the
heuristic tree for different number of terminals, N . For each N we uniformly sampled 200
different terminal configurations and we solved them for all α ∈ {0.0, 0.1, . . . , 1.0}. Most
runs ended up close to the global optimum. There is no clear pattern with respect to the
performance of the heuristic with respect to the value of α, though for higher number of
terminals, it seems that the rank of our solution gets to be worse on average.



(a) N=5 (b) N=6 (c) N=7 (d) N=8 (e) N=9

CST relative error for different number of terminals N

(f) N=5 (g) N=6 (h) N=7 (i) N=8 (j) N=9

CST rank of heuristic for different number of terminals N

Figure 32: CST Bruteforce Benchmark with Respect to α.Relative cost errors between
the mSTreg heuristic and optimal CST solutions; and sorted position of the heuristic tree for
different number of terminals, N . For each N we uniformly sampled 200 different terminal
configurations and we solved them for all α ∈ {0.0, 0.1, . . . , 1.0}. Most runs ended up close
to the global optimum. There is no clear pattern with respect to the performance of the
heuristic with respect to the value of α, though for higher number of terminals, it seems that
the rank of our solution gets to be worse on average.



O Implementation Details

In this section, we explain some implementation details of the mSTreg heuristic and also the
parameters used for the different experiments.

In each iteration of the mSTreg algorithm, it is necessary to compute the mST. Since we
are working with a complete graph, the computational complexity of the mST computation
is O(N2). To reduce this cost, we compute the mST over a k-nearest neighbor (kNN) graph,
where we set the value of k to log(N). While the resulting mST over the kNN graph may
not always match the optimal mST, in practice, they often yield similar results. It is worth
noting that the introduction of additional nodes, as described in Section K, may provide
more significant benefits when using the mST computed over a kNN graph.

In Section L we have described different approaches to transform a full tree topology into
a CST tree topology. The strategy used to collapse the SP nodes upon transforming a full
tree topology into a CST tree was the one that updates the collapsed SP to the weighted
geometric median, collapses greedily the SPs and determines the SP to be collapsed as the
one with minimum distance to one of its neighbors (“update+greedy+Ordclosest”).

In all experiments, we set the sampling_frequency variable of Algorithm 1 equal to 3,
and we set the maximum number of iterations of the mSTreg heuristic equal to 20.
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