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Abstract. The image labeling problem can be described as assigning
to each pixel a single element from a finite set of predefined labels.
Recently, a smooth geometric approach was proposed [2] by following
the Riemannian gradient flow of a given objective function on the so-
called assignment manifold. In this paper, we adopt an approach from
the literature on uncoupled replicator dynamics and extend it to the
geometric labeling flow, that couples the dynamics through Riemannian
averaging over spatial neighborhoods. As a result, the gradient flow
on the assignment manifold transforms to a flow on a vector space of
matrices, such that parallel numerical update schemes can be derived by
established numerical integration. A quantitative comparison of various
schemes reveals a superior performance of the adaptive scheme originally
proposed, regarding both the number of iterations and labeling accuracy.

Keywords: Image labeling · Assignment manifold · Riemannian gradi-
ent flow · Replicator equation · Multiplicative updates

1 Introduction

Overview, Motivation. The image labeling problem can be described as
assigning to each pixel a single element from a finite set of predefined labels.
Usually, this is done by finding optima of a globally defined objective function
which evaluates the quality of labelings. In general the problem of computing
globally optimal labels is NP-hard. Therefore, various relaxations are used to
yield a computationally feasible problem [7].

In [2] a smooth geometric approach is proposed on the manifold of row-
stochastic matrices with full support, called the assignment manifold and
denoted by W ⊂ Rm×n (for details see Sect. 2). Their approach is as follows. The
assignment manifold W is turned into a Riemannian manifold by the Fisher Rao
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(information) metric (cf. [5]). The i-th element of a given label set L = {l1, . . . ln}
is identified with the i-th corner of the standard simplex, i.e. li is identified with
the i-th standard unit vector ei ∈ Rn. For a chosen distance function, the distance
information between the image data and predefined labels L is collected into dis-
tance matrix D. This matrix is lifted onto the manifold W and denoted by L.
Riemannian means (also called Karcher means) are used to transform the lifted
distance information L into a similarity matrix S, which induces regularizing
dependencies between labels assigned to pixels within a spatial neighbourhood.
For a more detailed introduction of the assignment filter we refer again to [2].

The quality of an assignment W ∈ W is measured by the correlation with the
similarity matrix S(W ) ∈ W. Using the standard inner product ⟨·, ·⟩ on Rm×n,
the corresponding objective function is given by

J : W → R, W &→ J(W ) := ⟨W,S(W )⟩. (1.1)

Finding an optimal assignment corresponds to solving the nonlinear smooth opti-
mization problem maxW∈WJ(W ). Their optimization approach is to maximize
the objective function by following the Riemannian gradient ascent flow on the
manifold W,

Ẇ (t) = ∇WJ(W (t)), W (0) =
1
n
E, (1.2)

where E is the matrix containing one in every entry. This constitutes an unbiased
initialization in every row i at the barycenter of the respective simplex. Due
to the specific choice of the Fisher Rao metric, the gradient flow (1.2) can be
rewritten as a coupled non-linear system of replicator equations for each row Wi,
with i ∈ [m] := {1, . . . ,m}, given by

Ẇi(t) = Wi(t) · ∇iJ
(
W (t)

)
− ⟨Wi(t),∇iJ

(
W (t)

)
⟩Wi(t), (1.3)

where ∇iJ(W ) = ( ∂
∂Wi1

J(W ), . . . , ∂
∂Win

J(W )) is the Euclidean gradient and ‘·’
denotes the componentwise multiplication of two vectors.

In [2, Sect. 3] an explicit Euler method is used to approximate the integral
curve of the gradient flow with the adaptive step-size of the i-th row explicitly
chosen as

h(k)
i =

1

⟨W (k)
i ,∇iJ(W (k))⟩

, W (k+1)
i =

W (k)
i · ∇iJ(W (k))

⟨W (k)
i ,∇iJ(W (k))⟩

, i ∈ [m], (1.4)

which results in a multiplicative update scheme for W (k)
i . This scheme is then

further simplified by approximating the Euclidean gradient with the similarity
matrix ∇iJ(W ) ≈ Si(W ). An obvious advantage of this update formula is that
it is easy to implement and computationally cheap. As demonstrated in [2] this
numerical scheme achieved good performance on some academical examples,
despite its simplicity.

On the other hand, this numerical scheme only works for this particular set-
ting : choice of the Fisher Rao metric, explicit Euler updates with a specific



Numerical Integration of Riemannian Gradient Flows for Image Labeling 363

step-size rule, the particular objective function J and the gradient approxima-
tion ∇iJ(W ) ≈ Si(W ). As a result, if any of these ingredients is changed, the
proposed scheme of [2] is not applicable anymore.

Contribution. In this paper we propose a more principled approach in terms of
a top down numerical framework. To this end, we generalize the transformation
of the uncoupled replicator equation from [3] to gradient flows of arbitrary objec-
tive functions on any Riemannian manifold. This transformation is then applied
to the assignment manifold. The main idea is to transform the gradient flow
from the assignment manifold W onto a vector subspace Tm ⊂ Rm×n of m × n
matrices, using a diffeomorphism expC : Tm → W (see Fig. 1). This transfor-
mation ensures that the corresponding numerical solution of the gradient flow,
computed on Tm, evolves on the assignment manifold W. In this framework,
the numerical algorithm can be flexibly chosen and adapted for any objective
function and any Riemannian metric on the assignment manifold.

As a second contribution, we use our framework for generating and comparing
various multiplicative update schemes, their efficiency regarding the number of
iterations, and how they effect the labeling accuracy.
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Fig. 1. Illustration of the transformation map. For m = 1, rays in T originating from
a point x ∈ T (a) are mapped by expC to curves on the simplex (b) starting at
p = expC(x). This curves are first-order approximation of the geodesics at p (see
Sect. 2).

2 Preliminaries: The Assignment Manifold

We briefly introduce the notation and geometric setting of the assignment man-
ifold from [2]. Let m,n ∈ N>0. The standard inner product on Rn as well as on
Rm×n is denoted by ⟨·, ·⟩ and 1 = (1, 1, . . . , 1)⊤ ∈ Rn. Let ∆n = {p ∈ Rn : pi ≥
0 for i = 1, . . . , n, ⟨p,1⟩ = 1} be the probability simplex of dimension n− 1. The
relative interior of the simplex

S := rint(∆n) = {p ∈ ∆n : pi > 0 for i = 1, . . . , n} (2.1)

is a smooth manifold of dimension n − 1 with a global chart and an n − 1
dimensional constant tangent space

TpS = {v ∈ Rn : ⟨v,1⟩ = 0} =: T ⊂ Rn. (2.2)
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There is an orthogonal decomposition Rn = T ⊕R1 with respect to ⟨·, ·⟩ together
with the linear projection map onto T given by

π : Rn → T, x &→ π[x] :=
(
I − 1

n11
⊤)

x. (2.3)

S equipped with the Fisher Rao metric becomes a Riemannian manifold. The
Fisher Rao metric at p ∈ S is given by

gSp : T × T → R, gSp (u, v) = ⟨u,Diag( 1p )v⟩, u, v ∈ T. (2.4)

Since there is a global chart for S and constant tangent space T , the tangent
bundle is trivial TS ∼= S × T . In order to assure closed form solutions to Rie-
mannian means, the exponential map of S is approximated in [2] by the so-called
lifting map

exp: TS = S × T → S, (p, u) &→ expp(u) =
peu

⟨p, eu⟩ , (2.5)

where eu is the componentwise exponential. Although, expp : T −→ S is a diffeo-
morphism for every p ∈ S, it is not the exponential map of the Riemannian man-
ifold. However, according to [2, Proposition 3.1] it provides a first-order approx-
imation of the geodesics at p ∈ S.

The assignment manifold W is defined to be the product manifold given by
(2.6). Using TpS = T and the usual identification of the tangent space of a
product manifold, the tangent space TWW of W at W ∈ W is

W :=
m∏

i=1

S, TWW =
m∏

i=1

TWiS =
m∏

i=1

T =: Tm. (2.6)

An element W = (W1, . . . ,Wm)⊤ ∈ W ⊂ Rm×n is a m×n matrix with W1 = 1,
where the i-th row Wi is an element of S. Similarly, V = (V1, . . . , Vm)⊤ ∈ Tm ⊂
Rm×n is a matrix with V 1 = 0, where every i-th row Vi is an element of T . In
the following this identification of W and Tm as subsets of Rm×n is used.

There is again an orthogonal decomposition Rm×n = Tm ⊕ {λ⊤E : λ ∈ Rm}
with respect to ⟨·, ·⟩, where E ∈ Rm×n is the matrix with Eij = 1 for all entries.
The orthogonal projection map onto Tm is given by

Π : Rm×n → Tm, X &→ Π[X] := (π[X1], . . . ,π[Xm])⊤, (2.7)

with π due to (2.3), and where Xi denotes the i-th row of the matrix X ∈ Rm×n.
The Fisher Rao metric on every component S induces a product metric and

turns W into a Riemannian manifold. At W ∈ W and for U, V ∈ Tm, this
Riemannian metric gWW is given by

gWW (U, V ) =
m∑

k=1

gSWk
(Uk, Vk) =

m∑

k=1

⟨Uk,Diag( 1
Wk

)Vk⟩,

where Wk, Vk and Uk again denote the k-th row of the matrices W , V and U .
The mapping (2.5) naturally extends to W by (we reuse the symbol exp)

exp: W × Tm → W, (W,V ) &→ expW (V ) =
(
expW1

(V1), . . . , expWm
Vm

)
.

The map expW : Tm → W is a diffeomorphism for every W ∈ W.
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3 Transformation of the Gradient Flow

3.1 General Approach: Isometric Manifolds

Before we present the result of this section, we briefly review some basic concepts
of differential geometry, based on [1,8].

Let (M, gM ) be a Riemannian manifold and f : M → R a smooth function.
Using the standard identification TrR = R for r ∈ R, the Riemannian gradient
∇Mf(x) of f at x ∈ M can be defined as the unique element of TxM satisfying

gMx (∇Mf(x), v) = Df(x)[v], ∀v ∈ TxM, (3.1)

where Df(x) : TxM → Tf(x)R = R is the differential of f .
Let (N, gN ) be another Riemannian manifold. The pullback of the Rie-

mannian metric gN via a smooth map F : M → N at p ∈ M is denoted as
F ∗gNp : TpM × TpM → R and defined by

(
F ∗gN

)
p
(v, u) = gNF (p)

(
DF (p)[v],DF (p)[u]

)
, u, v ∈ TpM. (3.2)

In general, F ∗gN need not be positive definite and hence may not be a Rie-
mannian metric. If F : M → N is an immersion, however, then gM := F ∗gN is
a Riemannian metric.

N

M

f

F
f̄

An isometry is a diffeomorphism F : (M, gM ) → (N, gN ) between Riemann-
ian manifolds with F ∗gN =gM . Using standard arguments from differential geo-
metry we have the following.

Lemma 1. Let F : (M, gM ) → (N, gN ) be an isometry
between two Riemannian manifolds and f : N → R as
well as f̄ : M → R be smooth real valued functions with
f̄ = f ◦ F , i.e. the diagram commutes. Then the Rie-
mannian gradients of f and f̄ are related for every x ∈ M
by ∇Nf(F (x)) = DF (x)[∇M f̄(x)].

An immediate consequence of the previous lemma is the following.

Proposition 1. Suppose (M, gM ) and (N, gN ) are isometric Riemannian man-
ifolds with isometry F : M → N . Let f : N → R be a smooth function and set
f̄ = f◦F : M → R. Furthermore, let C ⊂ R be an open interval with 0 ∈ C. Then
γ : C → N with γ(0) = y0 solves (3.3)(a) if and only if the curve η : C → M
with γ = F ◦ η and η(0) = F−1(y0) solves (3.3)(b).

(a) γ̇(t) = ∇Nf(γ(t)) (b) η̇(t) = ∇M f̄(η(t)). (3.3)

3.2 Application to the Assignment Manifold

Transformation for the Assignment Manifold. The idea of transforming
a gradient flow on W onto a vector space is as follows. Set C := 1

nE ∈ W,
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i.e. every row Ci = 1
n1 ∈ S is the barycenter of the simplex. The tangent

space TCW = Tm ⊂ Rm×n is a vector subspace and itself a smooth manifold.
Using the diffeomorphism expC : Tm → W, we turn Tm into a Riemannian
manifold through the pullback metric gT

m

:= exp∗
C gW . By construction, expC

is an isometry between (Tm, gT
m

) and (W, gW).
Suppose now f : W → R is a smooth function and set f̄ := f ◦expC : Tm → R.

Let ∇Wf and ∇Tm f̄ denote the Riemannian gradient of (W, gW) and (Tm, gT
m

)
respectively. Then we can transform the gradient flow of f due to Proposition 1.

Corollary 1. Given the setting above, the curve t &→ W (t) ∈ W with W (0) = C
solves the gradient flow (3.4)(a) if and only if the curve t &→ V (t) ∈ Tm with
V (0) = 0 and W (t) = expC

(
V (t)

)
solves the gradient flow (3.4)(b).

(a) Ẇ (t) = ∇Wf(W (t)) (b) V̇ (t) = ∇Tm f̄
(
V (t)

)
. (3.4)

Remark 1. The above construction works in general. One can choose any Rie-
mannian metric on S, define the induced product metric on W and then turn
expC into an isometry by using the pullback metric on Tm.

Corollary 1 enables the transformation of the Riemannian gradient flow (1.2),
which has the form (3.4)(a), to a flow of the form (3.4)(b) on the vector space
Tm ⊂ Rm×n, to which standard numerical methods can be applied. Furthermore,
this formulation ensures that the corresponding flow in terms of W (t) always
stays on the assignment manifold, and that there is no need for projecting onto
the simplex after a numerical integration step.

Calculating the Riemannian Gradient. In order to compute the gradient
flow V̇ (t) = ∇Tm f̄ of a pullback function f̄ = f ◦ expC with respect to the
pullback metric gT

m

= exp∗
C gW , we express the Riemannian gradient ∇Tm f̄

on (Tm, gT
m

) in terms of the Euclidean gradients ∇f̄ and ∇f with respect to
the induced Euclidean structure of Tm,W ⊂ Rm×n. To this end, we express
first the pullback metric gT

m

in terms of the canonical inner product ⟨·, ·⟩ on
Tm ⊂ Rm×n.

Lemma 2. Let U, V ∈ Tm. For any X ∈ Tm, the pullback metric gT
m

on Tm

is given by gT
m

X (U, V ) = ⟨U,D expC(X)[V ]⟩.

Proof. Set W = expC(X). It follows from the proof of [2, Proposition 3.1] that
the differential of the lifting map expCi

: T → S onto the simplex is given by
D expCi

(Xi) = Diag(Wi) − WiW⊤
i with Wi = expCi

(Xi) for all i = 1, . . . ,m.
A short calculation using this explicit formula and the orthogonal projection
π : Rn → T given by (2.3) shows π ◦ Diag( 1

Wi
) ◦ D expCi

(Xi)[Vi] = Vi. Insertion
into the definition of the pullback metric gT

m

proves the statement. ⊓1

Lemma 3. The Euclidean gradients of f̄ = f ◦ expC and f at X ∈ Tm are
related by ∇f̄(X) = D expC(X)

[
∇f

(
expC(X)

)]
.
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Proof. With W = expC(X), we have for all V ∈ Tm

⟨∇f̄(X), V ⟩ = Df̄(X)[V ] = Df(W )
[
D expC(X)[V ]

]

= ⟨∇f(W ),D expC(X)[V ]⟩ = ⟨D expC(X)[∇f(W )], V ⟩,

where the last equality holds due to the symmetry of D expC(X) with respect
to the Euclidean metric on Rm×n. Thus, ∇f̄(X) = D expC(X)[∇f(W )]. ⊓1
Lemma 4. Given the setting above, the Riemannian gradient of f̄ : Tm → R
with respect to gT

m

is given by ∇Tm f̄(X) = ∇f
(
expC(X)

)
.

Proof. Let X ∈ Tm. Due to the formula of Lemma2, we have

Df̄(X)[V ] = gT
m

X (∇Tm f̄(X), V ) = ⟨D expC(X)[∇Tm f̄(X)], V ⟩, (3.5)

for all V ∈ Tm. Using the induced inner product on Tm ⊂ Rm×n yields the
Euclidean gradient ∇f̄(X) with Df̄(X)[V ] = ⟨∇f̄(X), V ⟩ for all V ∈ Tm. Com-
bining these two equations gives ⟨∇f̄(X), V ⟩ = ⟨D expC(X)[∇Tm f̄(X)], V ⟩ for
all V ∈ Tm and therefore D expC(X)[∇Tm f̄(X)] = ∇f̄(X). By Lemma3

D expC(X)[∇Tm f̄(X)] = ∇f̄(X) = D expC(X)
[
∇f

(
expC(X)

)]

and the statement follows, since D expC(X) is a vector space isomorphism. ⊓1
Now we return to the objective function (1.1) from [2], given by J(W ) =

⟨W,S(W )⟩ for W ∈ W. We are prepared to use the transformed gradient flow for
solving the maximization problem maxW∈W J(W ). Applying Corollary 1 to the
gradient flow (1.2) on W yields the flow V̇ = ∇Tm J̄

(
V (t)

)
on the tangent space,

with J̄ = J ◦ expC . Due to Lemma4, we further have V̇ (t) = ∇J
(
expC(V (t)

)
.

It remains to compute the Euclidean gradient ∇J(W ) ∈ Tm.

Lemma 5. The Euclidean gradient of J : W → R with J(W ) = ⟨W,S(W )⟩ is
given by

∇J(W ) = Π
[
S(W )

]
+DS(W )∗ ◦ Π

[
W

]
,

where DS(W )∗ is the adjoint linear map of DS(W ) : Tm → Tm with respect to
the Euclidean inner product ⟨·, ·⟩ on Tm, and Π : Rm×n → Tm is the orthogonal
projection given by (2.7).

Proof. A smooth curve γ : (−ϵ, ϵ) → W with γ(0) = W, γ̇(0) = V ∈ Tm gives

DJ(W )[V ] =
d

dt
J
(
γ(t)

)∣∣∣
t=0

= ⟨γ̇(t), S
(
γ(t)

)
⟩
∣∣∣
t=0

+ ⟨γ(t), d
dt

S
(
γ(t)

)
⟩
∣∣∣
t=0

= ⟨V, S(W )⟩ + ⟨W,DS(W )[V ]⟩.

Using the projection Π : Rm×n → Tm, we decompose W and S(W ) into
W = Π[W ] + UW and S(W ) = Π[S(W )] + US , with UW , US ∈ (Tm)⊥. Due
to V,DS(W )[W ] ∈ Tm these orthogonal decompositions give

⟨V, S(W )⟩ + ⟨W,DS(W )[V ]⟩ = ⟨V,Π[S(W )]⟩ + ⟨Π[W ],DS(W )[V ]⟩
= ⟨V,Π[S(W )]⟩ + ⟨DS(W )∗ ◦ Π[W ], V ⟩,

where DS(W )∗ is the adjoint linear map ofDS(W ). Thus, we have DJ(W )[V ] =
⟨Π[S(W )] +DS(W )∗ ◦ Π[W ], V ⟩, ∀V ∈ Tm, which proves the claim. ⊓1
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Summing up, we obtain the explicit form of the flow (3.4)(b) in the specific
case f̄ = J̄ = J ◦ expC .

Theorem 1. Solving the gradient flow (1.2) from [2] is equivalent to W (t) =
expC(V (t)), where V (t) solves

V̇ (t) = ∇J
(
W (t)

)
= Π

[
S(W )

]
+DS(W )∗ ◦ Π

[
W

]
, V (0) = 0. (3.6)

4 Numerical Approach

Multiplicative Update Formulae. The reformulation of the gradient flow
on the tangent space enables the application of a broad range of numerical
schemes. We discretize the transformed flow using explicit Runge–Kutta methods
[6, Chap. II.2]. A general iteration step for each row i = 1, . . . ,m reads

V (k+1)
i = V (k)

i + h(k)P (k)
i , W (k+1)

i = expCi

(
V (k+1)

)
=

W (k)
i eh

(k)P (k)
i

⟨W (k)
i , eh

(k)P (k)
i ⟩

,

(4.1)
where h(k) ∈ R>0 denotes the step-size and P (k)

i the direction in the k-th iter-
ation. We point out the similarity to the multiplicative updates (1.4) and the
ability to modify them, through the choice of a numerical integration method
represented by P (k)

i of (4.1).

Assignment Normalization. Let W (t) ∈ W be a smooth curve solving the
gradient flow (1.2). Based on [2, Conjecture 3.1], every row Wi(t) ∈ S of this
solution curve is expected to approach some vertex of the simplex for t → ∞.
As a consequence, all but one entry of Wi(t) approach 0 as t → ∞. However, the
numerical computations also have to evolve on W, i.e. all entries of W (t) have
to be positive all the time. Since, there is a difference between mathematical
and numerical positivity, we adopt the strategy in [2] to avoid these numerical
problems. This is done by restricting the discrete flow of every row Wi(t) onto
the ε -simplex ∆ε := {p ∈ ∆n : pi ≥ ε for i = 1, . . . , n} through a normalization
step (cf. [2, Sect. 3.3.1]), after each iteration.

Let V (t) ∈ Tm be the solution of the transformed gradient flow and W (t) =
expC

(
V (t)

)
. The convergence of each Wi(t) ∈ S, i ∈ [m] to some vertex of the

simplex translates to the convergence of each Vi(t) ∈ T, i ∈ [m] to infinity in a
certain direction, as depicted in Fig. 1. In order to normalize W (t), we restrict
each Vi(t) to the closed ball BR(0) ⊂ Tm of radius R > 0 centered at 0. This
can be seen as a smooth approximation of the ε-simplex by choosing the radius
R such that the image of the sphere ∂BR(0) under expC intersects ∆ε at the
vertices (Fig. 2c).

As shown in [4], the normalization in [2] dramatically influences the discrete
flow. Therefore, it is expected that the normalization on the tangent space influ-
ences the discrete flow as well. In this paper, however, we investigate the flow
up to the smooth ε boundary for ε = 10−10 (Fig. 2c) and leave a numerical
analysis of the flow on this boundary for follow-up work.
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(a) (b) (c)

Fig. 2. Assignment Normalization on the Tangent Space. Illus-
tration of how balls centered at 0 on the tangent space T (a)
are mapped by each component of expC : Tm → W onto the
simplex (b) in order to smoothly approximate the ε-simplex
∆ε (c dashed line).

Fig. 3. Typical st-
epsizes. Manifold
approach: red line.
Tangent space: gre-
en line step length
1, blue line step
length 5. (Color
figure online)

5 Experiments

In this section we investigate the influence of the discretization method and the
specific choice of the step-size in [2], by comparing it to our approach using a
more accurate discretization. In [2], an adaptive step-size for the i-th row W (k)

i

in the k-th iteration is explicitly set to h(k)
i given by (1.4) in order to arrive at the

multiplicative update scheme (1.4) for numerically integrating the gradient flow
(1.3). At first glance, this choice seems rather non-intuitive: During the initial
phase of the iteration, whenWi and Si are uncorrelated, then ⟨W (k)

i , Si(W (k))⟩ ≈
0 and the step-sizes are large, whereas if they are correlated, then the step-sizes
are small and slow down the convergence of the algorithm.

Our focus in this paper is on the initial phase of the iteration where by far
the most assignments of labels emerge: Do the aggressive step-sizes (1.4) affect
the quality of the resulting labeling?

Set-Up and Implementation. For this assessment, we chose an academical
labeling scenario depicted by Fig. 4. The color image comprised 256 colors which
also served as labels C = {c1, . . . , c256}. By shuffling colors at randomly chosen
pixel locations we created a noisy version as input for the different methods. The
labeling task is to recover the ground truth image. The success of this task is
measured by the percentage of correctly labeled pixels.

In order to compare impartially the discretization methods we also used the
simplified gradient on the tangent space ∇J(W ) ≈ Π[S(W )] (cf. [2, Sect. 3.3.3]).
The main intuition behind this simplification is that the similarity matrix S(W )
is the result of averaging over spatial neighborhoods and therefore is expected to
change slowly, i.e. DS(W ) ≈ 0. Due to this assumption and in view of Theorem1
the transformed flow simplifies to
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V̇ (t) = Π
[
S

(
W (t)

)]
. (5.1)

Likewise, the similarity matrix S(W ) is computationally efficiently approximated
by the normalized geometric mean according to [2, Lemma3.3].

For our experiments we used ε = 10−10 for the ε-simplex normalization,
which corresponds to a radius R ≈ 23 of the closed ball in the tangent space
(Fig. 2c). To avoid the aforementioned influence of the discrete flows caused by
the normalization (cf. Sect. 4), we only compared the solutions after numerical
integration up to the first time where the flow meets the ε -simplices and nor-
malization occurs (cf. Fig. 2). Due to this termination criterion not all the rows
W (k)

i ∈ S may have converged to a vertex of the respective simplex.
After termination of every discretization method, we do the following to

obtain an unique labeling as output. At every pixel i, we choose label cki ∈ C
with ki the column index of the maximum entry of Wi = (Wi1, . . . ,Wi256).

For the integration of the gradient flow (5.1) on the tangent space, we con-
sidered the common explicit Euler method, which reads

V (k+1)
i = V (k)

i + h(k)Π
[
S

(
W (k)

)]
, (5.2)

and Heun’s method, which reads

Ṽi
(k+1)

= V (k)
i + h(k)Π

[
S

(
W (k)

)]
,

V (k+1)
i = V (k)

i +
h(k)

2
(Π

[
S

(
W (k)

)]
+ Π

[
S

(
W̃ (k+1)

)]
).

(5.3)

In both cases we us the initial value V (0) = 0. For more details about these
methods, we refer e.g. to [6, Chap. II.2].

Results. Figure 4 and Table 1 summarize our quantitative findings. The app-
roach [2] (‘manifold approach’) is compared to the two schemes (5.2) and (5.3)
(‘tangent space approach’) using three different stepsizes for each, and three
different scales for spatial regularization (neighbourhood size |Nε| for geometric
averaging). During all experiments the selectivity parameter ρ ([2, Sect. 3.1]) for
scaling the distance matrix is chosen to be constant. Observations:

(i) Despite early termination after first-time hitting the ε-simplex boundary,
≥93% correct decisions are made by all methods, for a reasonable strength of
regularization (≥5×5 neighbourhoods). The performance is slightly inferior
for weak regularization (3× 3 neighbourhood), due to the influence of noise.
It also deteriorates for larger spatial scales, because then signal structure is
regarded as noise, too (compare the slightly decreasing performance of 7×7
vs. 5 × 5).

(ii) Although the manifold approach takes the minimal number of updates
(listed as numbers in brackets) due to the aggressive adaptive stepsizes (1.4),
it performed best !

Observation (ii) is our major – somewhat surprising – finding: A more careful
numerical evolution and integration of the Riemannian gradient flow does not
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Original data

Noisy data

|Nε| = 3 × 3 |Nε| = 5 × 5 |Nε| = 7 × 7

Fig. 4. Step-size influence on labeling. First row: method from [2]. Second row: Explicit
Euler method on the tangent space with constant step-size 1. Third row Heun’s method
on the tangent space with step-size 1. All experiments where done with ρ = 0.1. (Color
figure online)

Table 1. Labeling performance of geometric flows. The table displays for each integra-
tion method the percentages of correctly labeled pixels and the number of iterations
in parentheses until the first normalization occurs. hadapt denotes the adaptive step-
sizes of [2] given by (1.4). We compare hadapt with constant step-sizes on the tangent
space with length h1

const = 1, h5
const = 5 and h10

const = 10. For an interpretation of the
parameters ρ and |Nε|, we refer to [2, Sect. 3.1]. See Sect. 5, paragraph ‘Results’, for a
discussion of the table.

ρ = 0.1 Manifold approach Tangent space approach

Explicit Euler Heun’s method

Step-size hadapt h1
const h5

const h10
const h1

const h5
const h10

const

Neighborhood
size |Nε|

3× 3 87,7 90,6 89,4 89,0 91,1 91,0 91,3

(2) (24) (5) (3) (24) (5) (3)

5× 5 95,1 93,7 94,0 94,2 93,6 93,5 93,4

(3) (24) (5) (3) (24) (5) (3)

7× 7 94,9 93,5 93,8 94,0 93,3 92,9 93,3

(3) (26) (6) (3) (25) (6) (3)
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pay in terms of labeling accuracy (Fig. 3)! This validates the claim of [2] that their
geometric approach yields robust flows towards high-quality labelings, despite
being overall non-convex.

6 Conclusion

We generalized the transformation of the uncoupled replicator equation from [3]
to gradient flows of arbitrary objective functions on any Riemannian manifold.
This transformation was then applied to the assignment manifold, to reformulate
the gradient flow of [2] for image labeling on a vector space, amenable to numer-
ical integration. This enables the generation of parallel multiplicative update
schemes using etablished methods of numerical integration.

A comparison of various update schemes reveales a remarkable efficiency of
the adaptive scheme used in [2] regarding both required number of iterations and
labeling accuracy.

Our further work will study a major extension of the present framework, in
order to address the open point: How to cope with the flow on the ε-simplex
boundary in a continuous and efficient manner, similar to the ‘interior’ flow
studied in this paper.

References

1. Absil, P.-A., Mathony, R., Sepulchre, R.: Optimization Algorithms on Matrix Man-
ifolds. Princeton University Press, Princeton, Woodstock (2008)
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