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Abstract. We investigate the First-Order Primal-Dual (FPD) algorithm
of Chambolle and Pock [1] in connection with MAP inference for general
discrete graphical models. We provide a tight analytical upper bound of
the stepsize parameter as a function of the underlying graphical structure
(number of states, graph connectivity) and thus insight into the depen-
dency of the convergence rate on the problem structure. Furthermore,
we provide a method to compute efficiently primal and dual feasible so-
lutions as part of the FPD iteration, which allows to obtain a sound
termination criterion based on the primal-dual gap. An experimental
comparison with Nesterov’s first-order method in connection with dual
decomposition shows superiority of the latter one in optimizing the dual
problem. However due to the direct optimization of the primal bound,
for small-sized (e.g. 20x20 grid graphs) problems with a large number of
states, FPD iterations lead to faster improvement of the primal bound
and a resulting faster overall convergence.

Keywords: graphical model, MAP inference, LP relaxation, image la-
beling, sparse convex programming.

1 Introduction

1.1 Overview

Our goal is to compute maximum-a-posteriori (MAP) solutions for discrete
Markov random fields (MRF), specified by a hypergraph G = (V,F), where
the set of hyperedges F is a subset of the power-set 2V of V, which we will
call the set of factors.1 The states of random variables of the MRF belong to
finite sets Xv, v ∈ V. The notation Xa, a ∈ F is used the Cartesian product
⊗v∈aXv of state sets for variables belonging to the factor a ∈ F . The associated

1 Note that we represent factors directly as hyperedges here. In the representation of
[2] as a bipartite graph G̃ = (V,F ; E), this implies E = {(v, a) ∈ V × F | v ∈ a}.
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distribution is pG(x; θ) ∝ exp(−EG(x; θ)), with the energy function

EG(x; θ) =
∑
a∈F

θa(xa) , (1)

where θ denotes a collection of potential functions θa : Xa → R associated with
each factor a ∈ F .

1.2 Related Work and Motivation

Computing a MAP solution is equivalent to minimization of energy (1) and is
known to be NP-complete in general. Thus we will concentrate on its linear
programming (LP) relaxation over the local polytope [3]. The special case when
the problem contains only first and second order factors (∀a ∈ F , |a| ≤ 2), further
on referred to as pairwise or second-order case. Its LP relaxation was originally
studied in [4] (see also a modern overview [5]). There is a number of algorithms
for solving this LP relaxation. The first group of such algorithms contains DAG
and diffusion algorithms by Schlesinger (cf. [5]) and the closely related TRW-S
algorithm by Kolmogorov [6]. These algorithms decrease the value of the dual
LP monotonically but may not attain its optima in general, since they can be
interpreted as (block-)coordinate descent and thus can get stuck, due to the
non-smoothness of the dual objective. Indeed, TRW-S is considered as one of
the fastest approximate solvers for the problem [7].

As alternatives, sub-gradient schemes for maximizing the dual objective were
proposed in [8] and [9]. They are theoretically guaranteed to reach the optimum.
However, these schemes are rather slow not only in theory, but also in practice. A
recent paper [10] proposed to combine a dual decomposition [11] and Nesterov’s
first-order optimization scheme [12], which can be considered as a compromise
between speed of TRW-S and guarantee of convergence.

Another recent paper [1] proposes a first-order primal-dual iteration scheme
and a range of successful applications to variational optimization problems in
image processing. Since this method is suited for large-scale non-smooth convex
problems, and since MRF based image labeling covers a broad range of applica-
tions in computer vision, a competitive assessment of the method is of particular
interest.

1.3 Contribution

Our contribution is three-fold:

– We propose a way of applying the first order primal-dual method [1] to the
LP relaxation of the general (not obligatory pairwise) MRF energy mini-
mization problem (1) and numerically compare it to Nesterov’s optimization
scheme [10] and TRW-S [6].

– For the pairwise case we provide a tight bound showing how the step size
parameter of the method depends on the model structure and on the number
of variable states.
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– We generalize a method for computing an approximate primal solution [10]
to models of arbitrary order (it was proposed originally only for the pair-
wise case) and propose a similar approach for constructing an approximate
solution of the dual problem. These two approximations result in a sound
stopping criterion based on the duality gap.

2 Methods

2.1 LP Relaxation of the MAP problem

We introduce the notation F1 = {a ∈ F : |a| = 1} for the set of all unary factors.
Without loss of generality, we suppose that the model includes a unary factor
for each variable, i.e. {{v} : v ∈ V} ⊆ F , and all non-first order potentials are
absorbed into those of the highest order, i.e. if b ∈ F\F1, then ∀a ∈ F , from
a ⊂ b follows |a| = 1.

We start by representing the energy (1) in overcomplete form [3] as

EG(x; θ) =
∑
i∈I(G)

θi · φi(x) = 〈θ, φ(x)〉 , (2)

where x ∈ ⊗v∈VXv is a model configuration and the potentials θ = (θa(xa), a ∈
F , xa ∈ Xa) as well as indicator vectors φ(x) ∈ {0, 1}I(G) are indexed by I(G) =
{(a;xa)|a ∈ F , xa ∈ Xa}. The notation 〈·, ·〉 is used for the standard scalar
product.

Relaxing the binary vector φ to a vector µ = (µa(xa), a ∈ F , xa ∈ Xa)
with components from the interval [0; 1] and imposing consistency constraints
between the components leads to the well-known linear programming relaxation
of the problem of minimizing (2):

min
µ

〈θ, µ〉 s.t. Lµ = c, µ ≥ 0 . (3)

Here L is the matrix of a linear operator and c a vector of corresponding dimen-
sion, which we will define next.

Let 1a = (1, . . . , 1︸ ︷︷ ︸
|Xa|

)> denote an |Xa|-dimensional vector of ones. A specific

feature of our problem (3) is that the constraint matrix L has a block form.
Namely, for µa ∈ RXa , µb ∈ RXb the problem (3) can be written as

min
µ

〈θ, µ〉 (4)

s.t. Labµb = µa, b ∈ F\F1, a ⊂ b , (5)

1
>
a µa = 1, a ∈ F1 , (6)

µ ≥ 0 . (7)
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For the second-order case, problem (4)-(7) reads:

min
µ

〈θ, µ〉 (8)

s.t.
∑

xa′∈Xa′
µb(xa, xa′) = µa(xa) b ∈ F\F1, ∀a ∈ b, a′ ∈ b \ {a} , (9)∑

xa∈Xa
µa(xa) = 1, a ∈ F1 , (10)

µ ≥ 0 . (11)

The dual to (3),

max
ν

〈c, ν〉 s.t. L>ν ≤ θ , (12)

plays a significant role in many optimization schemes. We will analyze its struc-
ture for the general (non-pairwise) case in Section 2.3.

We cast the pair (3), (12) of optimization problems into a saddle point form
via their Lagrangian,

max
µ≥0

min
ν

{〈−c, ν〉+ 〈µ,L>ν〉 − 〈θ, µ〉} , (13)

which is of the general form to apply the first order primal-dual iteration scheme
– Algorithm 1 in [1]. This algorithm will be further on referred to as FPD.

2.2 Primal-Dual Iteration Scheme

Starting from any µ(1) ≥ 0, ν(1), ζ(1), the FPD algorithm iterates for t = 2, 3, . . .
and step-size τ ≥ 0 the updates:

µt+1 ← ΠR+

(
µt + τ

(
L>ζt − θ

))
(14)

νt+1 ← νt − τ
(
Lµt+1 − c

)
ζt+1 ← 2νt+1 − νt ,

where ΠR+
denotes the projection onto the positive orthant R+.2

As shown in [1, Th. 1], the algorithm achieves a O(1/t) convergence rate,
where t is the number of iterations.

Note that this algorithm requires only two sparse matrix multiplications
(with L and L>), and a projection ΠR+

, both of which are simple to imple-
ment and easily parallelizable.

Computing the maximal step length τ requires the estimation of the spectral
norm of the matrix L. We have the sufficient convergence condition [1, Th. 1]

τ ≤ λ−1/2max (LL>) , (15)

where λmax gives the largest eigenvalue of its argument, which depends on the
graph structure only, and may be computed a priori using power iterations [13].

However, λmax can be estimated also analytically, as is stated by the following
theorem.
2 We consider the case where the step-sizes for primal and dual iterations are set to

the same value τ .
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Theorem 1 Let G be a second-order factor graph and all its variables have an
equal number K of possible states. Then for dmax denoting the maximal degree
(number of adjacent pairwise factors) of any node of G,

λmax ≤
1

2

(
3K + dmax +

√
K2 + 6dmaxK + d2max

)
. (16)

We prove this theorem in the appendix.

Remark 1 Note that the bound (16) does not depend on the graph size for grids.
This bound is exact for regular graphs, i.e. having all nodes of equal degree. A
typical example are fully connected graphs (dmax = |V| − 1) and infinite grids
(dmax = 4). For finite grids numerical computations show that this bound is quite
sharp: for a particular 100×100 grid graph with 5 states the value λmax = 15.8418
was computed numerically using power iterations [13] and the value 15.8443 is
given by (16).

Remark 2 We also considered a variant of (13) that explicitly enforces the
constraint for the unary primal variables µa, a ∈ F1 to lie in the unit simplex
∆(Xa) defined by constraints (6) and (7):

max
µ≥0

a∈F1:µa∈∆(Xa)

min
ν

{〈−c, ν〉+ 〈µ, L̃>ν〉 − 〈θ, µ〉} , (17)

where L̃ is the matrix, obtained by removing constraints (6) from L. The neces-
sary simplex projections may be computed using e.g. [14], however this requires
an inner loop within the first FPD step. It can be shown that for the pairwise
case

‖L̃L̃>‖ ≤ dmax + 2K (18)

holds, thus the incurred extra computational cost does not necessarily outweigh
the larger maximal step-size allowed due to the reduced L̃, which increased only
marginally for our problems (compare (18) to (16)).

2.3 Estimating Primal and Dual Bounds

The primal µt and dual νt iterates are not necessarily feasible in the respective
primal (3) and dual (12) problems during the course of the algorithm, therefore
obtaining primal and dual bounds to base a stopping criterion on the duality
gap is not trivial.

We devise a method for computing sequences of primal and dual feasible
points such that primal and dual bounds and the duality gap, respectively, can
be estimated as a part of the overall iteration (14). Our method relies on strong
duality of the primal (3) and dual (12) pair and (13) which ensures a vanishing
duality gap after convergence.

A method to compute feasible points in the local polytope and hence an upper
bound for the energy of the relaxed problem was recently proposed in [10]. We
generalize this method to problems of arbitrary order, and we show that the
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same idea can be applied to obtain feasible points for both primal and dual
problems. To simplify understanding of the main idea we will provide explicit
formulations for the more common second order problems.

The estimation of feasible primal and dual points is based on the following
simple proposition.

Proposition 1 Let f : RN ×RM → R be a proper lower semi-continuous convex
function of two vector variables and (x∗, y∗) = argmin(x,y)∈RN×RM f(x, y) be

its minimizer. Let xt, t = 1, 2, . . . be a sequence of points in R
N converging

to x∗. If additionally the function ϕ(x) = miny∈RM f(x, y) is continuous, then

ϕ(xt)
t→∞−−−→ f(x∗, y∗).

The proof of the proposition is straightforward: since x
t→∞−−−→ x∗ then due to

continuity ϕ(x)
t→∞−−−→ ϕ(x∗) = miny∈RM f(x∗, y) = f(x∗, y∗).

To make use of the Proposition 1 for the calculation of primal and dual
feasible points, we split our set of variables into two parts (x and y according
to the notation of the Proposition 1). The subsets of variables should be se-
lected such that the function ϕ is continuous and easy to compute. Indeed, as
observed in [10] for the second-order case, with fixed µa, a ∈ F1 satisfying the
last two constraints in (8), the primal problem (8) splits into a set of indepen-
dent small subproblems: one subproblem for each second-order factor. This has
a straightforward generalization for problem (4) of arbitrary order, as stated by
the following theorem:

Theorem 2 Let µ∗ be any solution of (4)-(7), and let µt be a sequence such

that µta
t→∞−−−→ µ∗a, µ

t
a ≥ 0, a ∈ F1. Let µ′

t
be constructed as follows:

∀a ∈ F1 µ′
t
a(xa) = Π∆(Xa)(µ

t
a) , (19)

where Π∆(Xa) : RXa → ∆(Xa) denotes a projection operator to the |Xa|-dimensional
simplex ∆(Xa), and

∀b ∈ F\F1 µ′
t
b = arg min

µb∈RXb
〈θb, µb〉 (20)

s.t. Labµb = µ′
t
a, a ⊂ b ,

µb ≥ 0 .

Then
〈θ, µ′t〉 t→∞−−−→ 〈θ, µ∗〉 .

We prove the theorem in the appendix.
The dual to (20) reads (see its derivation in appendix):

max
ν

∑
a∈F1

νa +
∑

b∈F\F1

νb (21)

s.t. θa −
∑
b⊃a

b∈F\F1

νab ≥ νa · 1a, a ∈ F1 ,

θb +
∑
a⊂b
a∈F1

L>abνab ≥ νb · 1b, b ∈ F\F1 .
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In the second-order case this formulation has the following well-known (cf. [5])
form:

max
ν

∑
a∈F1

νa +
∑

b∈F\F1

νb (22)

s.t. θa(xa)−
∑
b⊃a

b∈F\F1

νab(xa) ≥ νa, a ∈ F1, xa ∈ Xa ,

θb(xa, xa′) + νab(xa) + νa′b(xa′) ≥ νb, b ∈ F\F1, b = a ∪ a′, (xa, xa′) ∈ Xb .

Since for each b ∈ F\F1 variable xb is in fact a collection of xa, a ⊂ b, we
will use the notation (xb)a for such xa. The dual problem (21) becomes easily
solvable with respect to νa, a ∈ F1 and νb, b ∈ F\F1, when νab are fixed. This
is stated by the following theorem.

Theorem 3 Let ν∗ denote any solution of (21), and νt be a sequence such that

νtab
t→∞−−−→ ν∗ab, b ∈ F\F1, a ⊂ b. Let ν′

t
be constructed as follows:

ν′
t
ab = νtab, b ∈ F\F1, a ⊂ b , (23)

ν′
t
a = min

xa∈Xa
θa(xa)−

∑
b⊃a

b∈F\F1

ν′ba(xa), a ∈ F1 , (24)

ν′
t
b = min

xb∈Xb
θb(xb) +

∑
a⊂b
a∈F1

L>abν
′
ba((xb)a), b ∈ F\F1 . (25)

Then ∑
a∈F1

ν′
t
a +

∑
b∈F\F1

ν′
t
b
t→∞−−−→

∑
a∈F1

ν∗a +
∑

b∈F\F1

ν∗b .

We prove the theorem in the appendix.

3 Experimental results

Test Cases. We compared the FPD approach to other established methods us-
ing standard grid-structured models from the Middlebury MRF-Benchmark [7],
in particular the well-known Tsukuba stereo problem. We additionally used var-
ious synthetic models with a varying number of variable states (range 2, . . . , 20)
and grid size (range 22, . . . , 402). The potential functions θ for nodes and edges
were sampled from a uniform distribution.

Furthermore, we tested with a set of specific grids leading to LP-tight re-
laxations, where the LP problem (3) always has an integer minimizer. These
graphical models were constructed as follows: First, starting from graphs with
uniformly sampled potentials, for each unary factor (a ∈ F1) we chose one state
to have the minimum local potential, and also modified the connected pairwise
factors to assign the minimum energy to each pair of selected states, such that the
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Fig. 1. FPD method for a 20 × 20 synthetic grid model with 5 states, in comparison
to (a) NEST with ε = 1, (b) TRW-S and (c) sub-gradient methods. The plots show
LP lower and upper bounds (unavailable for TRW-S and subgradients) as well as
integer bounds obtained by rounding (dashed). TRW-S is the fastest on this data,
but gets stuck in a non-optimal fixed point. FPD gives much better upper bounds
than NEST and achieves a low primal-dual gap much earlier, which is attributed to
its direct optimization of both primal and dual variables. The right plot displays a
close-up, highlighting the superiority w.r.t. subgradients and TRW-S in this case, but
also shows that NEST achieves a better lower bound for a given number of iterations.

problem becomes trivial3. Second, we randomly sampled νab, b ∈ F\F1, a ∈ b
(see (22)) associated with the pairwise factors and applied the reparametrization:

θa(xa)← θa(xa)−
∑
b⊃a

b∈F\F1

νab(xa), a ∈ F1, xa ∈ Xa , (26)

θb(xa, xa′)← θb(xa, xa′) + νab(xa) + νa′b(xa′),

b ∈ F\F1, b = a ∪ a′, (xa, xa′) ∈ Xb . (27)

It is known [4, 5] that this reparametrization does not change the energy of any
configuration.

Compared Algorithms. Our comparison includes Nesterov’s method (NEST)
of [10], a sub-gradient method [8], as well as TRW-S [6], all based on the same
dual decomposition to acyclic subgraphs corresponding to the rows and columns
of the input grid. For TRW-S and NEST, the authors kindly provided the original
implementation of their algorithms. We show the lower (LP-dual due to Th. 3)
and upper (LP-primal due to Th. 2 and integer-rounded values of µta, a ∈ F1)
bounds on the energy, which the algorithms achieve. To ensure comparability,
the algorithm progress is not plotted against time, but instead as a function
of the number of oracle calls, i.e. the required number of objective function or
gradient evaluations. For FPD, one oracle call corresponds to a single iteration.

3 For a definition of such problems, please see [5, Sect. III.D] or [9, part I, eq. (7)].
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Fig. 2. Convergence behaviour of FPD compared with NEST in terms of the number
of iterations (oracle calls) required to reach a 0.1% duality gap, for synthetic grid graph
problems. Left: varying the number of states; Right: varying the grid size. The lower
bar-plots show the number of runs (out of 5) which converged within a maximum of
15000 iterations, which were therefore included in the upper plot. The increase with the
number of states is more pronounced for NEST, probably because the primal problems
becomes more complicated, which only FPD optimizes directly along with the dual.
With increasing graph size however, the converse is true, where FPD quickly required
more than the maximum number of iterations permitted in the experiment.

Synthetic grid problem. In the first experiment, all four methods were com-
pared using a synthetic grid graph problem (Fig. 1). We first note that TRW-S
converges to a suboptimal fixed point. Furthermore, the subgradient scheme is
not competitive. The primal bound obtained from our FPD method drops faster
than that of the Nesterov-based method, which is attributed to the fact that the
latter does not optimize the primal problem directly, while FPD does. Note that
NEST employs smoothing, which depends on the required precision ε, which also
influences the convergence.

In the second group of experiments, we study the dependence of the number
of oracle calls required to reach a given precision in the number of variables
and the number of states per variable. Here, we compare only FPD against
NEST, because none of the other methods provides a primal bound of the relaxed
problem (3).

Dependence on the number of states. According to Figs. 2, 3, both FPD
and NEST require increasing numbers of iterations with increasing number of
states. This increase is more pronounced for NEST, which again probably is due
to NEST being a dual optimization method rather than a primal-dual one.

Dependence on the number of variables. When the number of variables in
the model increases, the number of iterations increases as Figs. 2, 3 show. As
opposed to the dependency on the number of states, here the growth is much
more pronounced for the FPD method, quickly exceeding the maximal number
of iterations we imposed for the experiment, while for NEST, the increase is
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Fig. 3. Convergence behaviour of FPD compared with NEST as in Fig. 2, but for
a target precision of a 1% duality gap and a maximum number of 30000 iterations
permitted. Left: varying the number of states; Right: varying the grid size. Again
NEST requires more oracle calls than FPD for larger numbers of states, but FPD
quickly becomes inferior with increasing numbers of variables.

moderate. This can be explained by dual decomposition into large subgraphs in
NEST, that leads to faster propagation of information across the graph.

LP-tight problems. One reason for the differences observed above may be the
different optimization strategies of FPD and NEST: While the first optimizes
primal and dual simultaneously, the latter only optimizes the dual. Hence we
confirmed this conjecture by considering LP-tight graphical models:Fig. 4 shows
the corresponding result. The required number of oracle calls for both methods
linearly depends on the number of states, and also grows for larger graphs, with
NEST achieving the required precision several times faster. The overall number
of oracle calls is much lower than for non-LP-tight problems, as the complexity
of the primal optimization is absent, and the algorithms mainly optimize the
dual, which is apparently much easier.

Tsukuba stereo problem. Fig. 5 finally presents results of a comparison of the
energy minimization algorithms for the Tsukuba dataset. Among all methods,
FPD shows the slowest convergence. This is indeed to be expected since the
problem is quite large for FPD (110592 variables) and contains a relatively large
number of states (16 depth states). Other methods (even typically slow sub-
gradient) are more efficient presumably due to use of the dual decomposition to
large subgraphs.

Parallelization properties. Besides the moderately-sized dual vector, the al-
gorithm requires to handle the set of primal variables, whose storage requirement
in the pairwise case is O(|F1|K + |F \F1|K2), where K is the number of states
(assuming an equal number of states per node). Due to the quadratic growth in
K, this is a major drawback of the method if the problem has many states.
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Fig. 4. Convergence behaviour of FPD compared with NEST for LP-tight synthetic
grid graph problems, in terms of the number of iterations (oracle calls) required to
reach a 0.1% duality gap. Left: varying the number of states; Right: varying the grid
size. The overall number of oracle calls is much less than for non-LP-tight problems, as
the complexity of the primal optimization is absent and the algorithms mainly optimize
the dual, which is apparently much easier. In that case, NEST is clearly superior to
FPD in almost all instances.

However, the method (including the bounds computation) is easily paralleliz-
able, which we exploited to provide a CUDA variant running on GPU hardware4.
This code allowed practical speedups up to a factor of 160 compared to a sequen-
tial variant running on a CPU5 (both not explicitly optimized for grid graphs).

4 Conclusion

We presented a study of the first order primal-dual algorithmic scheme [1] applied
to MAP inference for general discrete graphical models, via the LP relaxation of
this problem formulated in a saddle-point form. We supplemented the original
scheme by a method for computing upper and lower bounds, which results in a
sound stopping condition and thus ensures comparability and reproducibility of
results.

Our study shows that the performance of the algorithm rapidly drops as the
model size increases. Competitive methods, which use a dual decomposition tech-
nique, appear to propagate information across the graph much faster. However
due to an explicit optimization of the primal objective, FPD accomplishes faster
improvement of the primal bound than the application of Nesterov’s scheme [10]
to the dual objective, which is not optimizing the primal directly. This effect is
clearly visible for small-sized graphical models.

Future work will focus on a combination of efficient optimization and de-
composition schemes, both for primal and dual objectives. Good parallelization
properties – as given for the presented FPD method – will also play a key role
in further improving the efficiency of convergent inference methods.

4 NVidia GTX 480
5 Intel Core-i7 860 (using one of 4 cores) at 2.8 GHz
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Fig. 5. FPD method for Tsukuba data in comparison to (a) NEST with ε = 10, (b)
TRW-S and (c) sub-gradient methods. The plot shows LP lower and upper bounds (un-
available for TRW-S and subgradients) as well as integer bounds obtained by rounding
(dashed). FPD shows the slowest convergence among all methods, as the problem is
relatively large in terms of both the grid size and the number of states (16 depth states).
Note however that all other methods use dual decomposition into large subgraphs, and
therefore may be able to propagate information faster across the graph.
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5 Appendix

Proof of Theorem 1. The matrix L has a block form

L =

(
LV 0
LV E LE

)
,

where LV is determined by (10), LE and LV E respectively correspond to the
left hand and right hand sides of (9), and(

L1 L
>
2

L2 L3

)
:= LL>, L1 = KI|V | ,

where K is the number of possible states. Let x := ( xVxE ) denote the maximal
eigenvector of LL> corresponding to λmax. From the upper part of the eigenvalue
equation LL>x = λmaxx,

L1xv + L>2 xE = λmaxxV ,

and L1 = KI|V |, we conclude xV = 1
λmax−KL

>
2 xE . Insertion into the lower part

of the eigenvalue equation yields(
1

λmax −K
L2L

>
2 + L3

)
xE = λmaxxE . (28)

In terms of the components of L, this equation reads(
λmax

λmax −K
LV EL

>
V E + LEL

>
E

)
xE = λmaxxE .

The maximum eigenvalue of the matrix on the left hand side equals λmax and
itself depends on λmax. We therefore solve the equation

λ

λ−K
dmax + 2K = λ ⇒ λ =

1

2

(
3K + dmax +

√
K2 + 6dmaxK + d2max

)
.
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where dmax denotes the maximal degree of any node of G. The expression on the
left is an upper bound of the `1-norms of the row vectors of the matrix, which
is an upper bound of λmax by Gerschgorin’s theorem [13]. Because this function
decreases with λ, it follows λ ≥ λmax.
Derivation of the block form of the dual objective (21). The full La-
grangian corresponding to (4) reads:

L(µ, ν̃, γ) = 〈θ, µ〉+
∑

b∈F\F1

a⊂b

ν̃ab(Labµb − µa) +
∑
a∈F 1

ν̃a(1− 1
>
a µa)− 〈γ, µ〉 .

(29)

From this follows the dual problem (a detailed presentation of (12)):

max
ν̃

∑
a

ν̃a (30)

s.t. θa −
∑

b⊃a
b∈F\F1

ν̃ab ≥ ν̃a · 1a, a ∈ F 1

θb +
∑

a⊂b
a∈F1

L>abν̃ab ≥ 0 · 1b, b ∈ F\F 1 (31)

We introduce additional variables νb ∈ R, b ∈ F\F 1 and apply the following
change of variables:

νab := ν̃ab + νb · 1a , νa := ν̃a +
∑
b⊃a

νb
|b|
. (32)

The matrix Lab in (4) is of size |Xb| × |Xa|, and it possesses the important
property ∑

a⊂b

L>ab1a = 1b , (33)

following from the fact that each column of Lab contains exactly one non-zero
entry (equalling 1).
Taking into account (33) and

∑
a∈F 1

∑
b⊃a

νb
|b| =

∑
b∈F\F 1 νb leads to the equiv-

alent dual problem formulation (21).
Proof of Theorem 2. Due to Proposition 1 and continuity of the projection
in (19), it suffices to prove that the objective value of (20) continuously changes
with µ′

t
a. Our proof is a straightforward generalization of the one given in [10].

Problem (20) satisfies Slater’s condition [15] due to affinity of its constraints and
it always has at least one feasible point when 1

>
a µa = 1, a ⊂ b. This condition

holds due to (19). Since 1 ≥ µb ≥ 0 its optimal value is always finite. Thus its
Lagrange dual has the same finite optimal value. The Lagrange dual for (20)
reads:

max
ξab∈RXa
a⊂b

∑
a⊂b

ξabµ
′t
a s.t. θb − L>abξab ≥ 0 . (34)

It depends on µ′
t
a only through its objective, which continuously depends on µ′

t
a.

Since optimal value of (34) is finite, it is attained in one of the vertices of its
constraint set, which implies that it changes continuously with µ′

t
a.

Proof of Theorem 3. The proof follows from Proposition 1 and continuity of
the min-operation in (24)-(25).


