
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-023-06334-9

1 3

Learning system parameters from turing patterns

David Schnörr1 · Christoph Schnörr2

Received: 19 August 2021 / Revised: 14 March 2023 / Accepted: 30 March 2023
© The Author(s) 2023

Abstract
The Turing mechanism describes the emergence of spatial patterns due to spontaneous
symmetry breaking in reaction–diffusion processes and underlies many developmental pro-
cesses. Identifying Turing mechanisms in biological systems defines a challenging prob-
lem. This paper introduces an approach to the prediction of Turing parameter values from
observed Turing patterns. The parameter values correspond to a parametrized system of
reaction–diffusion equations that generate Turing patterns as steady state. The Gierer–
Meinhardt model with four parameters is chosen as a case study. A novel invariant pattern
representation based on resistance distance histograms is employed, along with Wasser-
stein kernels, in order to cope with the highly variable arrangement of local pattern struc-
ture that depends on the initial conditions which are assumed to be unknown. This enables
us to compute physically plausible distances between patterns, to compute clusters of pat-
terns and, above all, model parameter prediction based on training data that can be gener-
ated by numerical model evaluation with random initial data: for small training sets, classi-
cal state-of-the-art methods including operator-valued kernels outperform neural networks
that are applied to raw pattern data, whereas for large training sets the latter are more accu-
rate. A prominent property of our approach is that only a single pattern is required as input
data for model parameter predicion. Excellent predictions are obtained for single parameter
values and reasonably accurate results for jointly predicting all four parameter values.

Keywords Vector-valued parameter prediction · Turing patterns · Resistance distance
histograms

Mathematics Subject Classification 68T07 · 62M30 · 35B36 · 92C15

Editor: Sicco Verwer.

David Schnörr and Christoph Schnörr have contributed equally to this work.

 * Christoph Schnörr
 schnoerr@math.uni-heidelberg.de

 David Schnörr
 schnoerr@gmail.com

1 School of Life Sciences, Imperial College, London, UK
2 Institute for Applied Mathematics, Heidelberg University, Im Neuenheimer Feld 205,

69120 Heidelberg, Germany

http://orcid.org/0000-0002-8999-2338
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06334-9&domain=pdf

 Machine Learning

1 3

1 Introduction

1.1 Motivation and overview

Reaction–diffusion models in the form of Eq. (3) are used to describe the dynamic
behaviour of interacting and diffusing particles in various disciplines including biochem-
ical processes (Murray, 2001), ecology (Holmes et al., 1994), epidemiology (Martcheva,
2015) and tumor growth (Gatenby & Gawlinski, 1996). Here, we are interested in sys-
tems where the interaction of particles can give rise to spontaneous symmetry break-
ing of a homogenous system by means of the so-called Turing mechanism which was
first described by Alan Turing in 1952 (Turing, 1952). It describes the scenario where
a stable steady state of a non-spatial system of ordinary differential equations becomes
unstable due to diffusion (Murray, 1982; Pertham, 2015). This phenomeon is hence also
referred to as diffusion-driven instability. Such instabilities typically give rise to stable
non-homogenous spatial patterns. In two spatial dimensions, for example, these patterns
can take various forms such as spots, stripes or labyrinths (Murray, 2001). This variety
of patterns is generated by a reaction–diffusion model that is parametrised by a few
parameters that represent physical quantities of the system, such as reaction and diffu-
sion rate constants. Certain versions of the well-known Gierer–Meinhardt model, for
example, comprises four effective parameters (cf. Sect. 2.2) (Gierer & Meinhardt, 1972;
Murray, 2001).

It was not until almost 4 decades after Alan Turing’s seminal work that the first
experimental observation of a Turing pattern was realised in a chemically engineered
system (Castets et al., 1990). Recently, as a first practical application, a chemical Turing
system was engineered to manufacture a porous filter that can be used in water purifica-
tion (Tan et al., 2018). In biological systems, Turing patterns are regarded as the main
driving mechanism in the formation of spatial structures in various biological systems,
including patterning of palatel ridges and digits, hair follice distribution, feather for-
mation, and patterns on the skins of animals such as fish and zebras (Economou et al.,
2012; Jung et al., 1998; Nakamasu et al., 2009; Raspopovic et al., 2014; Sick et al.,
2006). For recent surveys, see Landge et al. (2020) and Vittadello et al. (2021). How-
ever, the biological and mathematical complexity has often prevented identification of
the precise molecular mechanisms and parameter values underlying biological systems.
One difficulty in fitting models to experimental data stems from the high sensitivity of
the arrangement of local structure on the initial conditions that are usually unknown in
practice.

In this paper, we focus on the inverse problem: given a single non-homogenous spa-
tial pattern and a reaction–diffusion model, the task is to predict the parameter values
that generated the pattern as steady state of the reaction–diffusion equation. To this end,
we introduce a novel pattern representation in terms of resistance distance histograms
that effectively represents the spatial structure of patterns, irrespective of the local vari-
ability stemming from different initial conditions. This enables to compute almost invar-
iant distances between patterns, to compute clusters of patterns and, above all, to predict
model parameter values using a single pattern only as input data.

Specifically, we focus on the Gierer–Meinhardt model as a case study and apply and
compare state-of-the-art kernel-based methods and neural network architectures for
parameter prediction using the aforementioned resistance distance histograms. Addi-
tionally, neural networks are also applied to the raw pattern data for comparison. All

Machine Learning

1 3

predictors are trained using various parameter values that generate diffusion-driven
instabilities and corresponding spatial patterns that result from solving numerically the
reaction–diffusion equations.

1.2 Related work

The problem studied in this paper, parameter prediction from observed Turing patterns,
has been studied in the literature from various angles. We distinguish three categories and
briefly discuss few relevant papers.

• Turing parameter estimation by optimal control. The work (Garvie et al., 2010) pre-
sents an approach for estimating parameter values by fitting the solution of the reac-
tion–diffusion equation to a given spatial pattern. This gives rise to a PDE-constraint
problem of optimal control requiring sophisticated numerics; see also Stoll et al.
(2016). A similar approach is studied in Sgura et al. (2019).

 The authors of Garvie et al. (2010) show and demonstrate that the proposed control
problem is solvable which indicates that the task studied in our work, i.e. learn-
ing directly the pattern-to-parameter mapping, is not unrealistic. The approach of
Garvie et al. (2010) has been generalized by Garvie and Trenchea (2014) in order
to handle also non-constant spatially-distributed parameters. In our work, we only
consider constant parameter values.

 A strong property of approaches employing PDE-based control is that they effec-
tively cope with noisy observed patterns, provided that the type of noise is known
such that a suitable objective function can be set up. A weak point is that in some
of these papers the initial conditions are assumed to be known which is not the case
in realistic applications, and that sophisticated and expensive numerics is required.

 The problem to control PDEs that generate time-varying travelling wave patterns has
been studied recently (Karasözen et al., 2020; Shangerganesh & Sowndarrajan, 2020;
Uzunca et al., 2017). In these studies the focus lies on fitting the trajectory of the evolv-
ing pattern in function space, however, rather than on estimating model parameter val-
ues that are assumed to be given.

• Turing parameter estimation by statistical inference. The paper Campillo-Funollet et al.
(2019) presents a Bayesian approach to parameter estimation using the reaction–diffu-
sion equation as forward mapping and a data likelihood function corresponding to addi-
tive Gaussian zero mean noise superimposed on observed patterns. Given a pattern, the
posterior distribution on the parameter space is explored using expensive MCMC com-
putations. A weak point of this approach shared with the works in the former category
discussed above is that the initial conditions are assumed to be known. This assumption
is not required in our approach presented below.

 Closer to our work is the recent paper Kazarnikov and Haario (2020). These authors
also study model parameter identification from steady-state pattern data only, without
access to initial conditions or the transient pattern evolving towards the steady state.
The key idea is to model statistically steady-state patterns of ‘the same class’, i.e. col-
lections of patterns whose spatial structure differs only due to varying initial condi-
tions. This is achieved by adopting a Gaussian model for the empirical distribution of
discretized L2 distances between spatial patterns, which can be justified theoretically in
the large sample limit. Regarding inference, this approach requires a few dozen to hun-

 Machine Learning

1 3

dreds of novel test patterns to estimate model parameters, unlike our approach which
only requires a single pattern as input data.

 In our work, we proceed differently: an almost invariant representation of patterns of
‘the same class’ is developed. This is advantageous in practice since parameter predic-
tion can be done directly whenever a novel pattern is obtained in an application.

• Turing parameter estimation: other approaches. The work (Murphy et al., 2018)
focuses on the identification of parameter values through a linear stability analysis on
various irregular domains, assuming that the corresponding predicted pattern is close
to a desired or observed pattern. However, the authors admit that, in many cases, the
steady-state pattern may not be an eigenfunction of the Laplacian on the given domain,
since the nonlinear terms play a role in the resultant steady-state pattern. Our approach
does not rely on such assumptions.

 A recent account of the broad variety of Turing pattern generating mechanisms and
corresponding identifiability issues is given by Woolley et al. (2021). In our work, we
focus on the well-known Gierer–Meinhardt model and study the feasibility of predict-
ing points in the four-dimensional parameter space based on given steady-state patterns.

1.3 Contribution and organisation

We introduce a novel representation of the spatial structure of Turing patterns which
is achieved by computing resistance distances within each pattern, followed by discre-
tization and using the empirical distribution of resistance distances as class representa-
tive. Discretization effects are accounted for by using the Wasserstein distance and a
corresponding kernel function for comparing pairs of patterns. Based on this represen-
tation we present results of a feasibility regarding the prediction of model parameter
values from observed patterns. To our knowledge, this is the first paper that applies
machine learning methods to the problem of mapping directly Turing patterns to
model parameter values of a corresponding system of reaction–diffusion equations that
generate the pattern as steady state. Adopting the Gierer–Meinhardt model as a case
study, we demonstrate that about 1000 data points suffice for highly accurate predic-
tion of single model parameter values using state-of-the-art kernel-based methods. The
accuracy decreases for predictions of all four model parameter values but is still suffi-
ciently good in terms of the normalized root-mean-square error and the corresponding
pattern variation. In the large data regime (≥ 20.000 data points) predictions by neural
networks trained directly on raw pattern data outperform kernel-based methods. Since
these models can be trained on simulated data, this approach allows to infer parameters
from single data points obtained e.g. by experimental measurements.

Our paper is organized as follows. Section 2 summarizes the basics of Turing patterns
that are required in the remainder of the paper: definition of diffusion-driven patterns; dis-
cretization and a numerical algorithm for solving a system of semi-linear reaction–diffu-
sion equations whose steady states correspond to the patterns that are used as input data
for model parameter prediction; the Gierer–Meinhardt PDE and its parametrization. Sec-
tion 3 details the features that are extracted from spatial patterns in order to predict model
parameter values. A key feature are histograms of resistance distances that represent spatial
pattern structure in a proper invariant way. Section 4 introduces four methods for model
parameter prediction from observed patterns: two kernel-based methods (basic SVM
regression and operator-valued kernels) and neural networks are applied to either nonlocal

Machine Learning

1 3

pattern features or to the raw pattern data directly. Numerical results are reported and dis-
cussed in Sect. 5. We conclude in Sect. 6.

1.4 Basic notation

We set [n] = {1, 2,… , n} and 𝟙n = (1,… , 1)⊤ ∈ ℝn for n ∈ ℕ . The Euclidean inner prod-
uct is denoted by ⟨p, q⟩ for vectors q, p ∈ ℝn with corresponding norm ‖q‖ =

√⟨q, q⟩ . The
�
∞
n

-norm is denoted by ‖p‖∞ = max{�pi� ∶ i ∈ [n]} . ⟨A,B⟩ = tr (A⊤B) is the canonical
inner product of matrices A, B with the operations trace tr (⋅) and transposition A⊤ of A.
The symbol � with matrix argument denotes an eigenvalue �(A) of the matrix. The spec-
tral matrix norm is defined as ‖A‖2 =

√
𝜆max(A

⊤A) , where 𝜆max(A
⊤A) is the largest eigen-

value of A⊤A . ℝn
+
 is the nonnegative orthant and u > 0 means u1 > 0,… , un > 0 if u ∈ ℝn .

Diag (u) is the diagonal matrix that has the components of a vector u as entries. Similarly,
Diag (A1,… ,An) is the block diagonal matrix with matrices Ai, i ∈ [n] as entries. The
probability simplex is denoted by Δn = {p ∈ ℝn

+
∶ ⟨𝟙n, p⟩ = 1}.

2 Turing patterns: definition and computation

This section provides the required background on Turing patterns: reaction–diffusion
systems (Sect. 2.1), concrete examples based on the Gierer–Meinhard model (Sect. 2.2),
Turing instability and patterns (Sect. 2.3) and a numerical algorithm for computing Turing
patterns (Sect. 2.4).

We refer to Murray (1982, 2001) for an analysis of the Gierer–Meinhard model devised
by Gierer and Meinhardt (1972), to Hairer et al. (2008 Section II.7) regarding the numeri-
cal implicit Euler method, to Murray (2001) and Pertham (2015) for comprehensive expo-
sitions of spatial pattern formation in biology and to Kondo and Miura (2010), Landge
et al. (2020) and Vittadello et al. (2021) for recent reviews.

2.1 Reaction–diffusion models

Consider a system of N interacting species described by the state vector
u(t) = (u1(t),… , uN(t)) , where ui(t) ∈ ℝ+ is the time-dependent concentration of the ith
species. We assume that the dynamics is governed by an autonomous system of ordinary
differential equations

where initial condition u0 ∈ ℝN
+

 is assumed to be positive and f ∶ ℝN
→ ℝN encodes inter-

actions of the species. We further assume that the functions fi, i ∈ [N] are continuously
differentiable with bounded derivatives. ‘Autonomous’ means that f does not explicitly
depend on the time t.

Next, model (1) is extended to a spatial scenario including diffusion. Concentrations
ui(t), i ∈ [N] are replaced by space-dependent concentration fields

(1)
d

dt
u(t) = f (u(t)), u(0) = u0 > 0,

 Machine Learning

1 3

where r ∈ S denotes a point in a region S of ℝM . The dynamics of these fields is described
by a system of reaction–diffusion equations

where

 with diffusion constants �i ∈ ℝ+, i ∈ [N] of species i ∈ [N] . ΔN denotes the
block-diagonal differential operator that separately applies the ordinary Laplacian
Δ = �2∕�r2

1
+⋯ + �2∕�r2

M
 to each component function r ↦ ui(r, t), i ∈ [N].

System (3) has to be supplied with boundary conditions in order to be well-posed. A
common choice are homogeneous Neumann conditions. We choose periodic boundary
conditions, however, because this considerably speeds up the generation of training data by
numerical simulation (Sect. 2.4), yet does not facilitate or change in any essential way the
learning problem studied in this paper.

2.2 The Gierer–Meinhardt nodel

As concrete examples, we consider evaluations of the Gierer–Meinhardt model (Gierer &
Meinhardt, 1972) comprising two species: a slowly diffusing activator that promotes its
own and the other species’ production, and a fast diffusing inhibitor that suppresses the
production of the activator. Regarding the representation of the model by means of a PDE
as in Eq. (3), several different variants have been proposed in the literature (Gierer & Mein-
hardt, 1972; Murray, 2001). Here, we use the dimensionless version analysed in Murray
(1982) and defined by

with parameters a, b, c, 𝛿, s > 0 and the shorthands [cf. Eq. (3)]

Since only the ratio between the diffusion constants of the two species effects the stabil-
ity of the system, the diffusion constant of the first species in (4) is normalised and we set
�1 = 1, �2 = � . The overall scaling of D determines however the wavelength of an emerg-
ing pattern, and we accordingly multiply the diffusion matrix D in Eq. (4) with an addi-
tional scaling factor s > 0.

Figure 1 displays the eigenvalues of the Jacobian of this model in the context of
Turing instabilities as described in Sect. 2.3, for one choice of parameters a, b, c, � , and

(2)u(r, t) = (u1(r, t),… , uN(r, t)), r = (r1,… , rM) ∈ S ⊂ ℝ
M ,

(3a)
�

�t
u(r, t) = f (u(r, t)) + DΔNu(r, t),

(3b)u(r, 0) = u0(r), r ∈ S, t ≥ 0,

(3c)D = Diag (�1,… , �N) ∈ ℝ
N×N

(3d)ΔN = Diag (Δ,… ,Δ)

(4)f (u) =

(
a − bu1 +

u2
1

u2(1+cu
2
1
)

u2
1
− u2

)
, D = s

(
1 0

0 �

)
,

(5)u1 = u1(r, t), u2 = u2(r, t).

Machine Learning

1 3

the corresponding Turing pattern emerging when simulating the model numerically as
described in Sect. 2.4. Figure 2 (page 10) shows simulation results for various param-
eter values c and � . The model gives rise to different types of patterns, ranging from
spots to labyrinths. The characteristic length scale, or ‘wavelength’, of the pattern var-
ies with these parameters. This limits the ranges of parameter values that we analyse in
the experiments: a too small wavelength leads to numerical artefacts when simulating

Fig. 1 Turing instability. Panel a displays the eigenvalue �̃i(q) of the Jacobian J̃(u∗, q) in Eq. (10) that gives
rise to the Turing instability. The real part of �̃i(q) is shown, evaluated at an asymptotically stable equilib-
rium point u∗ for the Gierer–Meinhardt model of Eq. (4), as a function of ‖q‖2 . The parameters of the model
were set to a = 0.01 , b = 1.2 , c = 0.7 , � = 40 and the scaling parameter to s = 1 . One has Re(�𝜆i(q))|q=0 < 0
due to an asymptotically stable equilibrium as explained after Eq. (8). We find that Re(�̃i(q)) becomes posi-
tive for an intermediate range of ‖q‖ values, which indicates a Turing instability. b The first species field
u1(r, t) of the solution to the system (3) computed on a 128 × 128 grid, as described in Sect. 2.4

Fig. 2 Pattern generation by model evaluation. Simulation results of species u1 in the Gierer–Meinhardt
model defined by Eq. (4) on a 128 × 128 grid with final time T = 5000 for varying parameters c and � and
fixed parameters a = 0.02 , b = 1.0 and s = 0.5 . We observe that different parameter combinations give
rise to different types of patterns and differing wavelengths. For c = 1.2 and � = 50 and � = 100 we find a
homogeneous solution and no pattern, which illustrates that the system does not exhibit an Turing instabil-
ity for these parameter values

 Machine Learning

1 3

the corresponding PDEs due to discretization errors; a too large wavelength on the
other hand only yields a small section of the spatial pattern as ‘close-up view’.

We hence only consider parameter values that exclude both extreme cases relative
to a fixed grid graph that was used for numerical computation.

2.3 Turing patterns

We characterize Turing instabilities that cause Turing patterns. Suppose u∗ ∈ ℝN
+

 is an
equilibrium point of (1) satisfying f (u∗) = 0 . In order to assess the stability of u∗ , we write

and compute a first-order expansion of the system (1),

with the Jacobian

Let �1 = �1(J(u
∗)),… , �N = �N(J(u

∗)) ∈ ℂ be the eigenvalues of J at u∗ . The equilib-
rium u∗ is asymptotically stable if and only if Re(𝜆i) < 0, i ∈ [N] (Schaeffer & Cain, 2016,
Cor. 6.1.2), that is a region of attraction U(u∗) containing u∗ exists such that u(t) ∈ U(u∗)
implies u(t) → u∗ as t → ∞.

Assuming that u∗ is asymptotically stable, we next consider the extended system (3)
that involves spatial diffusion. Let u∗ = u∗(r) denote the spatially constant extension
of the equilibrium point that neither depends on the time t nor on the spatial variable r:
u∗(r, t) = u∗(r) = u∗(r�), ∀r, r� ∈ S . Hence ΔNu

∗ = 0 . Due to the diffusion terms, this equi-
librium of f may not be stable anymore for the system (3), however. To assess the stability
of u∗ , a linear stability analysis is conducted using the ansatz

where i =
√
−1 , � ∈ ℝ+ , ũ(t) ∈ ℝN , q ∈ ℝM . The perturbation ũ(t)ei⟨q,r⟩ conforms to the

eigenvalue problem of the linearized spatial system (3). Substituting this ansatz into (3)
and expanding to the first order with respect to � yields a linear system of equations for
ũ(t) , similar to Eq. (7), but with Jacobian J̃ given by

Let �̃1(q) = �(J̃(u∗, q)),… , �̃N(q) = �(J̃(u∗, q)) be the eigenvalues of J̃(u∗, q) . For
‖q‖ = 0 , we have �̃i(0) = �i, i ∈ [N] [eigenvalues of J(u∗) given by (8)] and hence
Re(�𝜆i(0)) < 0, i ∈ [N] , since u∗ = u∗(r) is equal to the equilibrium of non-spatial system
(1) for every r.

We say u∗ is a Turing instability of the system (3) if there exists a finite ‖q‖ > 0 and
some i ∈ [N] for which Re(�𝜆i(q)) > 0 , i.e. the steady state u∗ becomes unstable for a cer-
tain wavevector q. Here, we are interested in the additional condition Re(�𝜆j(q)) < 0 for
‖q‖ → ∞ for all j ∈ [N] , such that Re(�̃i(q)) has a global maximum for some finite ‖q‖ .

(6)u(t) = u∗ + 𝜖 �u(t), 𝜖 > 0, �u(t) ∈ ℝ
N

(7)
d

dt
ũ(t) = J(u∗)ũ(t) +O(�),

(8)J(u∗) =
(
Ji,j(u

∗)
)
i,j∈[N]

, Ji,j(u
∗) =

�fi(u)

�uj

||||u=u∗

(9)u(r, t) = u∗ + � ũ(t)ei⟨q,r⟩,

(10)J̃(u∗, q) = J(u∗) − ‖q‖2D.

Machine Learning

1 3

This type of instability typically leads to a stable pattern of a wavelength corresponding to
q Murray (2001). In summary, the conditions for a Turing instability read

 For other types of instabilities, we refer the reader to Scholes et al. (2019). Figure 1 shows
Re(�̃i(q)) of a two-species system (N = 2) with Turing instability and the Turing pattern
resulting from solving numerically the system of equations (3).

2.4 Numerical simulation

This section describes the numerical algorithm used to simulate the system of PDEs (3).

2.4.1 Discretization

We consider reaction–diffusion systems of the form (3) with two spatial dimensions M = 2 ,
spatial points and domain

and their solutions within the time interval t ∈ [0, T] . We further assume doubly
periodic boundary conditions, i.e., ui(0, r2, t) = ui(nr, r2, t) for each r2 ∈ [0, nr] and
ui(r1, 0, t) = ui(r1, nr, t) for each r1 ∈ [0, nr] , t ∈ [0, T] and i ∈ [N] . The domain S is discre-
tized into a regular torus grid graph G = (V ,E) of size

where each node v ∈ V indexes a point rv ∈ S . The edge set E represents the adjacency
of each node to its four nearest neighbors on the grid and takes into account the doubly
periodic boundary conditions. Each of these edges have length 1 corresponding to uniform
sampling along each coordinate r1 and r2 , respectively, of size 1.

2.4.2 Algorithm

Case N = 1 . For simplicity, consider first the case of a single species N = 1 ,
u(r, t) = u1(r, t) , with diffusion constant � , and let v(t) denote the vector obtained by stack-
ing the rows of the two-dimensional array of function values

(
u(rv, t)

)
v∈V

 evaluated on
the grid. We discretize time into equal intervals of length h > 0 and write v(k) = v(kh) for
k ∈ ℕ . The discretized PDE of the single species case

of Eq. (3) is solved by the implicit Euler scheme (Hairer et al., 2008, Section II.7)

(11a)Re(�𝜆j(0)) = Re(𝜆j) < 0, for all j ∈ [N],

(11b)there exist ‖q‖ > 0 and i ∈ [N] for which Re(�𝜆i(q)) > 0,

(11c)Re(�𝜆j(q)) < 0 if ‖q‖ → ∞, for all j ∈ [N].

(12)r = (r1, r2) ∈ S = [0, nr] × [0, nr], nr ∈ ℕ,

(13)m = |V| = nr × nr,

(14)
�

�t
u(r, t) = f

(
u(r, t)

)
+ dΔu(r, t), u(r, 0) = u0(r)

 Machine Learning

1 3

where matrix L is the Laplacian discretized using the standard 5-point stencil. To perform
a single time-step update according to (15), we rewrite this equation as fixed point iteration
with an inner iteration index l

where I is the identity matrix. This fixed point equation is iterated until the convergence
criterion

is met for some constant 0 < 𝜀l ≪ 1 , followed by updating the outer iteration (16)

The outer iteration is terminated when

for some constant 0 < 𝜀k ≪ 1.
Due to the doubly periodic boundary conditions, the matrix I − h�L = WΛW∗ is a sparse,

block-circulant and can hence be diagonalized using the unitary Fourier matrix W correspond-
ing to the two-dimensional discrete Fourier transform of doubly periodic signals defined on
the graph G. As a result, using the fast Fourier transform (2D-FFT), multiplication of the
inverse matrix by some vector b,

can be efficiently computed due to the convolution theorem (Bracewell, 2000) by

• computing the 2D-FFT of b: b̂ = W∗b,
• pointwise multiplication with the inverse eigenvalues of the matrix: Λ−1b̂ , where Λ−1 is

a diagonal matrix and hence is inverted elementwise,
• transforming back using the inverse 2D-FFT: W(Λ−1b̂).

The eigenvalues Λ of the matrix I + h�L result from applying the 2D-FFT to the block-
circulant matrix corresponding to the convolution stencil

Case N > 1 . This procedure applies almost unchanged to the case of multiple species
(N > 1), because the diffusion operator DΔN of (3) is block-diagonal. It suffices to check
the case N = 2 : v(t) =

(
v1(t)

v2(t)

)
 denotes the stacked subvectors v1, v2 that result from stacking

the rows of the two-dimensional arrays of function values
(
u1(rv, t)

)
v∈V

,
(
u2(rv, t)

)
v∈V

 eval-
uated on the grid. The fixed point iteration (16) then reads

(15)v(k+1) − v(k)

h
= f

(
v(k+1)

)
+ �Lv(k+1),

(16)v(kl) = (I − h�L)−1
(
v(k) + hf

(
v(kl−1)

))
, l = 1, 2,… , v(k0) = v(k),

(17)
‖v(kl) − v(kl−1)‖

‖v(kl−1)‖ ≤ �l

(18)v(k+1) = v(kl).

(19)‖‖f
(
v(k+1)

)
+ �Lv(k+1)‖‖∞ ≤ �k

(20)(I − h�L)−1b = WΛ−1W∗b,

(21)
⎛
⎜⎜⎝

0 0 0

0 1 0

0 0 0

⎞
⎟⎟⎠
+ h�

⎛
⎜⎜⎝

0 − 1 0

−1 4 − 1

0 − 1 0

⎞
⎟⎟⎠
.

Machine Learning

1 3

where the mappings (I − h�iL)
−1, i = 1, 2 can be applied in parallel to the corresponding

subvectors. Note that the vector f (v(kl−1)) =
(
f1(v

(kl−1))

f2(v
(kl−1))

)
 couples the species concentrations.

The general case N > 2 is handled similarly.

2.4.3 Step size selection

Step size h has to be selected such that two conditions are fulfilled: Matrix I − h�LN should
be invertible where �LN means the block-diagonal matrix

and the fixed point iteration (16) should converge. We discuss these two conditions in turn.
The first condition holds if I − h�iL is invertible for every i ∈ [N] , which certainly holds

if 𝜆min(I − h𝛿iL) > 0 which yields

This also yields the estimate

�max(L) may be easily computed beforehand using the power method (Horn & Johnson,
2013, p. 81) or replaced by the upper bound due to Gerschgorin’s circle theorem (Horn &
Johnson, 2013, Section 6.1).

Now consider the fixed point iteration (16). Due to our assumptions stated after Eq. (1),
the mapping f is Lipschitz continuous, i.e. there exists a constant Lf > 0 such that

Thus, writing Th(v) = (I − h�LN)
−1
(
v(k) − hf (v)

)
 , we obtain using (25) and (26)

As a result, both above-mentioned conditions hold if h is chosen small enough to satisfy
(24) and

Then the mapping Th is a contraction and, by Banach’s fixed point theorem (Pathak,
2018, Section 5.1), the iteration converges.

(22)

(
v
(kl)

1

v
(kl)

2

)
=

(
(I − h�1L)

−1 0

0 (I − h�2L)
−1

)((
v
(k)

1

v
(k)

2

)
+ h

(
f1
(
v
(kl−1)

1
, v

(kl−1)

2

)
f2
(
v
(kl−1)

1
, v

(kl−1)

2

)
))

,

(23)dLN = Diag (d1L,… , dNL),

(24)h <
1

max{𝛿i}i∈[N]𝜆max(L)
.

(25)‖(I − h�LN)
−1‖2 = 1

�min(I − h�LN)
≤

1

1 − hmax{�i}i∈[N]�max(L)
.

(26)‖f (v) − f (v�)‖ ≤ Lf‖v − v�‖, ∀v, v�.

(27)‖Th(v) − Th(v
�)‖ ≤

hLf

1 − hmax{�i}i∈[N]�max(L)
‖v − v�‖, ∀v, v�.

(28)
hLf

1 − hmax{𝛿i}i∈[N]𝜆max(L)
< 1.

 Machine Learning

1 3

3 Extracting features from turing patterns

We extract two types of features from Turing patterns: resistance distance histograms
(Sect. 3.1) efficiently encode the spatial structure of patterns due to their stability under
spatial transformations. This almost invariant representation also includes few symme-
tries, however, which may reduce the accuracy of parameter prediction in certain scenar-
ios. Hence two additional features are extracted that remove some of these symmetries
(Sect. 3.2).

3.1 Resistance distance histograms (RDHs)

Resistance distance histograms (see Definition 1 below) require two standard preproc-
essing steps described subsequently: representing Turing patterns as weighted graphs
and computing pairwise resistance distances.

3.1.1 Graph‑based representation of Turing patterns

Let ui,j, i, j ∈ [nr] be the concentration values of some species of a reaction–diffusion
system at time t = T on a regular torus grid graph G = (V ,E) of size m = |V| = nr × nr ,
where each node v ∈ V indexes a point rv ∈ S = [0, nr] × [0, nr] (cf. Sect. 2.4.1). Let
uv = ui,j be the concentration value at v = (i, j) , obtained by simulating a system of PDEs
(3) as described in Sect. 2.4, and denote by

the mean concentration. We assign weights �vv′ to edges (v, v�) ∈ E between adjacent nodes
v, v� ∈ V by

that is edges between adjacent nodes receive the unit weight 1 if both concentrations are
either larger or smaller than the mean concentration u , and the weight � otherwise.

3.1.2 Resistance distances and histograms

Based on (30), we define the weighted adjacency matrix ΩG and graph Laplacian LG of
G,

(29)u =
1

m

∑
v∈V

uv

(30)𝜔vv� =

{
1, if (uv ≥ u and uv� ≥ u) or (uv < u and uv� < u),

𝜖, otherwise, where 0 < 𝜖 ≪ 1,

(31)ΩG = (�vv�)v,v�∈V ,

(32)DG = Diag (ΩG�m),

(33)LG = DG − ΩG,

Machine Learning

1 3

where �m is an m-dimensional column vector with all entries equal to 1. Using (33), in turn,
we define the Gram or kernel matrix K

and the resistance matrix R ∈ ℝm×m

Each entry Rvv′ is the resistance distance between v and v′ that was introduced in Klein
and Randić (1993). Its name refers to relations of the theory of electric networks (Doyle &
Snell, 1984), (Bapat, 2014, Chapter 10), (Brémaud, 2017, Chapter 8). A geometric inter-
pretation results from the relation

where dG denotes the length of the shortest weighted path connecting v and v′ in G. The
bound is tight if this path is unique. Conversely, if multiple paths connect v and v′ , then
the resistance distance is strictly smaller than dG(v, v�) . This sensitivity to the connectivity
between nodes in graphs explains its widespread use, e.g. for cluster and community detec-
tion in graphs (Fortunato, 2010).

A probabilistic interpretation of the resistance distance is as follows. Consider a ran-
dom walk on G performing jumps along the edges in discrete time steps, and assume
that the probability to jump along an edge is proportional to the edge’s weight. Then
Rvv′ is inversely proportional to the probability that the random walk starting at v visits
v′ before returning to v (Bapat, 2014, Section 10.3). In view of (30), this implies that the
process jumps more likely between neighbouring nodes with both large (small) concen-
trations than between differing concentrations.

We add a third interpretation of the resistance distance from the viewpoint of kernel
methods (Hofmann et al., 2008; Seto et al., 2014) and data embedding. Let

the space of functions on V that we identify with real vectors of dimension m = |V| , and
consider the bilinear form

Since G is connected, the symmetric and positive semidefinite graph Laplacian LG
has a single eigenvalue 0 corresponding to the eigenvector �m . Consequently, using E ,
one defines the Hilbert space

with inner product

(34)K = (Jm + LG)
−1 ∈ ℝ

m×m, Jm = 𝟙m𝟙
T
m
∈ ℝ

m×m

(35)R = (Rvv�)v,v�∈V , Rvv� = Kvv + Kv�v� − 2Kv�v, v, v� ∈ V .

(36)Rvv� ≤ dG(v, v
�),

(37)FG = {f ∶ V → ℝ} ≅ ℝ
m

(38a)E ∶ FG × FG → ℝ, E(f , g) =
1

2

∑
v,v�∈V

�vv� (fv − fv�)(gv − gv�)

(38b)= ⟨f , LGg⟩.

(39a)HG = (FG, ⟨⋅, ⋅⟩G)

(39b)⟨f , g⟩G =

��
v∈V

fv

���
v�∈V

gv�

�
+ E(f , g) =

�
f , (Jm + LG)g

�
.

 Machine Learning

1 3

Since dimHG < ∞ , all norms are equivalent and the evaluation map f ↦ fv is con-
tinuous. Hence HG is a reproducing kernel Hilbert space (Paulsen & Raghupathi, 2016,
Def. 1.1) with reproducing kernel

where Kvv′ denotes the entries of the Gram matrix (34), and Kv,Kv′ are the column vectors
indexed by v, v′ and interpreted as elements (functions) in HG . The resistance distance (35)
then takes the form

where ‖ ⋅ ‖G denotes the norm induced by the inner product (39b). This makes explicit
the nonlocal nature of the resistance distance Rvv′ between nodes v, v� ∈ V in terms of the
squared distance of the corresponding functions Kv,Kv′ in HG.

Overall, each of the three interpretations reveals how the resistance distance meas-
ures nonlocal spatial structure of Turing patterns. The second column of Fig. 3 vis-
ualises the resistance distances {Rvv� } v�∈V with respect to a single fixed node v. We

(40)K ∶ V → V → HG, K(v, v�) = Kvv� = ⟨Kv,Kv�⟩G, v, v� ∈ V ,

(41)Rvv� = ‖Kv − Kv�‖2
G
, v, v� ∈ V ,

Fig. 3 Resistance distances and histograms (RDHs). Each row of the figure shows from left to right: a pat-
tern, a resistance distance plot and the resistance distance histograms (RDH) for radii 8 and 32 of the first
species, obtained from simulating the Gierer–Meinhardt model in Eq. (4) on a 128 × 128 grid. Rows cor-
respond to different values of parameter c. Weights are assigned to the edges of the corresponding grid
graph according to Eq. (30). The resistance plots visualise resistance distances between all nodes and one
central node marked with red. These plots result from partitioning the column of the resistance matrix R
(35) corresponding to the central node into an 128 × 128 array. The darker the colour of a node the larger
its resistance towards the central node. One can observe how the resistance values vary depending on the
local structure of the pattern. In particular, the RDHs (cf. Definition 1) differ substantially for the different
types of patterns. The parameters are set to a = 0.02 , b = 1 , � = 100 and s = 0.8 for all three columns, and
the parameter c is set to 0.72, 0.47 and 0.11 for the three columns, respectively. The final simulation time is
T = 5000 . The RDHs are computed for B = 12 bins and hypergraph spacing of t = 1

Machine Learning

1 3

condense these data extracted from Turing patterns into features, in terms of corre-
sponding histograms described next.

Definition 1 (resistance distance histogram (RDH)) Let Vt ⊂ V , t ∈ ℕ denote the nodes
of the subgraph induced by the subgrid that is obtained from the underlying grid graph
G = (V ,E) by undersampling each coordinate direction with a factor t. Define the set of
resistance distance values

parametrized by t and a radius parameter r ∈ ℝ . The resistance distance histogram (RDH)
Hr,t ∈ ΔB is the normalized histogram of the resistance distance values Rt,r with respect to
a uniform binning with bin number B of the interval [0,Rmax] , with a suitably chosen maxi-
mal value Rmax.

The radius parameter r specifies the spatial scale at which the local structure of
Turing patterns is assessed through RDHs, in a way that is stable against spatial trans-
formations of the local domains corresponding to (42). r is the only essential parameter,
since RDHs are based on data Rr,t collected from nodes v ∈ Vt . This results in averaging
of local pattern structure and makes RDHs only weakly dependent on the spacing t. In
addition, the representation becomes robust against local noise in the pattern caused by
random initial conditions. This is illustrated in Fig. 4 where patterns and corresponding
RDHs are shown for fixed parameters and varying initial conditions. The influence of
the grid size on RDHs (cf. Sect. 2.4.1) is visualized in Fig. 5. Figure 6 demonstrates the
smooth dependence of RDHs on kinetic model parameters.

(42)Rt,r = {Rvv� ∶ v ∈ Vt, v
� ∈ V , ‖rv − rv�‖ ≤ r}

Fig. 4 Influence of initial conditions. Parameters and simulation details are the same as in Fig. 3. The
left side shows simulated patterns for three different initial conditions and for different c values, with all
other parameters fixed. The right side shows the corresponding resistance distance histograms (RDHs) for
radius 32. We find that while the patterns for each value of c vary substantially, the corresponding RDHs
are very similar to each other, in particular when applying the Wasserstein kernel for measuring similarity
(Sect. 4.2.3). On the other hand substantial differences can be observed between RDHs for different values
of c. This demonstrates the robustness (‘quasi-invariance’) of RDHs with respect to local variations in the
patterns due to noise in initial conditions

 Machine Learning

1 3

Fig. 5 Spatial resolution. Parameters and simulation details are the same as in Figs. 3 and 4 except that we
here varied the discretization grid (cf. Sect. 2.4.1) and the radius parameter r [cf. (42)]. The left side shows
simulated patterns for 64 × 64 , 96 × 96 and 128 × 128 grids and radii r = 16, 24 and 32, respectively. These
radii values ensure that resistance values are collected over the same physical distances for the different
grid sizes. The with of grid cells has to be scaled accordingly to ensure that distances in the underlying
graph, which upper bound resistance distances by (36), are comparable. The right side shows the corre-
sponding resistance distance histograms (RDHs) which up to binning effects do not change significantly in
each row. These plots demonstrate that up to such unavoidable binning effects which can be properly taking
into account using Wasserstein kernels (Sect. 4.2.3), relatively coarse spatial resolutions already suffice to
properly represent Turing patterns by RDHs

Fig. 6 Smooth parameter dependency of resistance distance histograms. Parameters and simulation details
are the same as in Fig. 3 but we use a 64 × 64 grid here and a radius r = 32 and scaling s = 0.2 . The
model parameter value c is varied on the range [0.06, 1.06] and the corresponding patterns are simulated
and RDHs computed. The figure shows these RDH values as a function of c in a contour density plot.
Up to some minor fluctuations stemming from the noise in initial conditions, we find that the RDHs vary
smoothly with varying c, demonstrating the systematic relation between RDHs and kinetic model param-
eters

Machine Learning

1 3

Remark 1 Typically, concentrations of different species in a Turing pattern are approxi-
mately scaled (and sometimes reflected) versions of each other, in particular for two-spe-
cies systems like the Gierer–Meinhardt model studied here. See Fig. 7 for an illustration.
The RDHs defined in Definition 1 hence contain redundant information when computed
for different species. Therefore, we only use concentrations of one species to compute
RDHs in the following.

3.2 Maximal concentration and connected components

RDHs according to Definition 1 represent the spatial structure of Turing patterns in a
compact way. However, this representation also includes few symmetries such that certain
properties of patterns are not captured, such as

1. absolute concentration values rescaling or shifting the concentration values of a pattern
does not change the RDHs;

2. range-reflection symmetry reflection of a pattern on any plane of constant concentration,
i.e. inverting the total order that defines the weights (30), does not change the RDHs.

To account for these two properties, we introduce the following two additional features.

1. Maximal concentration cm We aim to estimate the concentration of areas in the pattern
with large concentrations while disregarding local fluctuations that potentially arise from
numerical inaccuracies. To this end, we bin the concentration values of a pattern into
a histogram and define the maximal concentration cm as the location of the right-most
peak.

Fig. 7 Redundancy of two species. The patterns depicted by Fig. 3 are shown again, here for both spe-
cies, however. a–c correspond to the three rows of Fig. 3. It is apparent that the patterns of the two spe-
cies are qualitatively very similar: Basically, they are just rescaled and shifted versions of each other. Since
resistance distance histograms (RDHs) are invariant under such operations, the resulting RDHs would be
approximately equal. It is hence sufficient to use only the patterns of one species for computing RDHs and
subsequent analysis

 Machine Learning

1 3

2. Number of connected components nc To account for the above-mentioned range reflec-
tion symmetry, we define the graph G� = (V ,E�) with the same nodes V as the original
graph G but with only a subset of edges E′ ⊂ E between nodes of high concentration.
We then compute the number nc of connected components in G′.

This list of pattern properties not captured by RDHs is not exhaustive, of course. For exam-
ple, RDHs do not effectively measure the steepness of transitions between areas of high to
low concentrations. However, since RDHs turned out to be powerful enough for parameter
estimation, as shown below, we did not use further features in this study.

4 Learning parameters from spatial turing patterns

This section concerns the problem of learning the kinetic parameters of Turing patterns
described in Sect. 2.3. We start by formulating the learning problem in Sect. 4.1. Sec-
tions 4.2 and 4.3 introduce the approaches for parameter prediction studied in this paper,
kernel-based predictors and neural networks, respectively.

The first simple kernel-based approach to parameter prediction is illustrated by Fig. 8.
Each predictor fj, j ∈ [d] has the standard form (51) and is trained to predict a correspond-
ing parameter yj, j ∈ [d] of the underlying Gierer–Meinhard model using the resistance
distance histogram (RDH) x that is computed for a given spatial Turing pattern before-
hand (Sect. 3.1). Section 4.2.1 describes how the predictors fj are trained using a basic
setup (Sect. 4.1.1). Suitable kernels for Hilbert space embeddings of RDHs are presented
in Sect. 4.2.3.

Figure 9 illustrates a more ambitious kernel-based approach for jointly predicting model
parameter values from Turing patterns. In addition to a kernel for RDHs in the input space,
an output space kernel is used in order to also capture dependencies among the output
variables. The predictor mapping has the factorized form (61) which parametrizes the

Fig. 8 The approach described in Sect. 4.2.1: resistance histograms (RDHs) x are extracted from spatial
Turing patterns based on which support vector machines fj, j ∈ [d] separately predict the parameter values
yj, j ∈ [d] of the underlying Gierer–Meinhard model

Fig. 9 The approach described in Sect. 4.2.2: resistance histograms (RDHs) x are extracted from spatial
Turing patterns based on which an operator-valued kernel approach is employed in order to jointly predict
the model parameter values yj, j ∈ [d] . This approach not only aims to capture dependencies between input
data and output variables but also the dependencies among the output variables themselves

Machine Learning

1 3

operator-valued kernel approach to parameter prediction. Accordingly, both training and
inference are numerically more expensive than the basic SVM approach from Sect. 4.2.1.

Finally, two elementary neural network approaches for model parameter prediction are
illustrated by Fig. 10 and described in Sect. 4.3. The first approach replaces the embed-
dings intro reproducing kernel Hilbert spaces (RKHS) of the above-mentioned approaches
by a feedforward neural network. The second approach additionally ignores the resistance
distance histograms as features and applies a convolutional neural network (CNN) directly
to spatial Turing patterns for predicting model parameters.

4.1 Setup

4.1.1 Learning problem

We consider a multi-output learning problem with training set

where each xi is a resistance distance histogram Hr,t (RDH) according to Definition 1, and
vectors yi comprise parameter values of a model, such as the parameters a, b, c, � of the
Gierer–Meinhardt model (4). Our goal is to learn a prediction function f ∶ X → Y that
generalises well to points (x, y) ∉ Dn.

We distinguish individual parameter prediction (Sect. 4.2.1) corresponding to dimen-
sion d = 1 , where for each model parameter a predictor function f is separately learned,
and joint parameter prediction (Sect. 4.2.2) corresponding to d > 1 , where a single vector-
valued predictor function f is learned. In each of these cases, the output training data yi in
Dn (43) have to be interpreted accordingly.

Regarding individual parameter prediction, we employ basic support vector regression
(Evgeniou et al., 2000; Smola & Schölkopf, 2004) in Sect. 4.2.1 and specify suitable kernel
functions for resistance histograms as input data in Sect. 4.2.3. Regarding joint parameter
prediction, we employ regression using an operator-valued kernel function in Sect. 4.2.2.
For background reading concerning reproducing kernel Hilbert spaces (RKHS) and their
use in machine learning, we refer to Berg et al. (1984), Berlinet and Thomas-Agnan (2004),
Paulsen and Raghupathi (2016), Evgeniou et al. (2000), Cucker and Smale (2001) and Hof-
mann et al. (2008), respectively. We also utilize neural networks in Sect. 4.3 for both indi-
vidual and joint parameter prediction.

(43)Dn = {(xi, yi)}i∈[n] ⊂ X × Y, n ∈ ℕ, X = {Hr,t}, Y = ℝ
d,

Fig. 10 The two approaches described in Sect. 4.3: a feedforward neural network (FFNN) predicts model
parameter values based on RDHs (top row) whereas a CNN does the same including feature extraction from
spatial Turing patterns (bottom row)

 Machine Learning

1 3

4.1.2 Accuracy measure

A commonly used measure for the accuracy of an estimator f ∶ X → Y on a test set
X × Y = {(xi, yi)}i∈[m],m ∈ ℕ,X ⊂ X ⊂ ℝk, Y ⊂ Y = ℝd is the root-mean-square error
(RMSE) defined as

Additional normalisation by the empirical mean value of the nonnegative target variables
yields the normalised root-mean-square error (NRSME)

We use the NRMSE to measure the accuracy of predicted parameter values in this work.
Figure 12 (page 34) illustrates visually the variation of patterns for various NRMSE values.

We consider as “good” model parameter predictions with accuracy values NRMSE
≤ 0.2 and as “excellent” predictions with accuracy values NRMSE ≤ 0.05.

4.2 Kernel‑based parameter prediction

4.2.1 Individual parameter prediction using SVMs

In this section, we focus on the case d = 1 where along with a finite sample of RDHs xi ,
values yi ∈ ℝ of some model parameter are given as training set (43). Individual param-
eter prediction means that, for each model parameter, an individual prediction function

specific to this particular parameter is determined. We apply standard support vector
regression.

Given a symmetric and nonnegative kernel function (see Sect. 4.2.3 for concrete
examples)

the corresponding reproducing kernel Hilbert space (RKHS) with inner product ⟨⋅, ⋅⟩k is
denoted by Hk . ‘Reproducing’ refers to the

 Using the training set Dn and a corresponding loss function, our objective is to determine a
prediction function f ∈ Hk that maps a RDH x extracted from an observed pattern to a cor-
responding parameter value y = f (x) . We employ the �-insensitive loss function (Evgeniou
et al., 2000)

(44)RMSE =

�
1

md

�
i∈[m]

‖f (xi) − yi‖2
�1∕2

=

�
1

md

�
i∈[m]

�
j∈[d]

((fj(xi) − yi,j)
2

�1∕2

.

(45)NRMSE =
RMSE

1

md

∑
i∈[m]

∑
j∈[d] yi,j

.

(46)f ∶ X → ℝ

(47)k ∶ X × X → ℝ+,

(48a)kx = k(x, ⋅) ∈ Hk, ∀x ∈ X,

(48b)f (x) = ⟨f , k
x
⟩
k
, ∀x ∈ X, ∀f ∈ H

k
.

Machine Learning

1 3

to define the training objective function

where the regularizing parameter controls the size of the set of prediction functions f in
order to avoid overfitting. Since �� is continuous and the regularizing term monotonically
increases with ‖f‖k , the representer theorem (Whaba, 1990; Schölkopf et al., 2001) applies
and implies that the function f ∗ minimizing (50) lies in the span of the functions generated
by the training set

Using nonnegative slack variables �i, i ∈ [n] in order to represent the piecewise linear sum-
mands ��

(
yi − f (xi)

)
 of (50) by

and substituting f =
∑

i∈[n] �ikxi yields the training objective function (50) in the form

 Since Kn is positive definite, this is a convex quadratic program that can be solved using
standard methods. Substituting the minimizing vector �∗ into (51) determines the desired
prediction function f ∗.

This procedure is repeated to obtain prediction functions f ∗
j
, j ∈ [d] for each parameter

to be predicted, using the training sets {(xi, yi,j)}i∈[n] for j ∈ [d].

4.2.2 Joint parameter prediction using operator‑valued kernels

In this section, we consider the general case d ≥ 2 : each vector yi of the training set (43)
comprises the values of a fixed set of model parameters and xi is the RDH extracted from
the corresponding training pattern. Our aim is to exploit dependencies between input

(49)�� ∶ ℝ → ℝ+, z ↦ ��(z) = max{0, |z| − �}, � ≥ 0,

(50)
�
i∈[n]

��

�
yi − f (xi)

�
+

�

2
‖f‖2

k
,

(51)f ∗ ∈ Span{kx1 ,… , kxn}, f ∗ =
∑
i∈[n]

�∗
i
kxi .

(52)min
ℝ

�i subject to

⎧⎪⎨⎪⎩

�i ≥ 0,

�i ≥ yi − f (xi) − �,

�i ≥ f (xi) − yi − �,

(53a)min
𝛼,𝜉

��
i

𝜉i +
𝜆

2
⟨𝛼,Kn𝛼⟩

�
, 𝜆 > 0, Kn =

�
k(xi, xj)

�
i,j∈[n]

(53b)subject to �i ≥ 0,

(53c)�i +
∑
j

�jk(xj, xi) ≥ yi − �,

(53d)�i −
∑
j

�jk(xj, xi) ≥ −yi − �, i ∈ [n].

 Machine Learning

1 3

variables {xi}i∈[n] and output variables {yi}i∈[n] as well as dependencies between the output
variables. To this end, we use the method proposed by Kadri et al. (2013) for vector-valued
parameter prediction that generalizes vector-valued kernel ridge regression as introduced
by Evgeniou et al. (2005) and Micchelli and Pontil (2005). See Álvarez et al. (2012) for a
review of vector-valued kernels and Brouard et al. (2016) and Minh et al. (2016) for gen-
eral operator-valued kernels and prediction.

In addition to a kernel function k (47) for the input data, we additionally employ a ker-
nel function

for the output data with corresponding RKHS (Hl, ⟨⋅, ⋅⟩l) and properties analogous to (48),
and a operator-valued kernel function

that takes values in the space L(Hl) of bounded self-adjoint operators from Hl to Hl . K
enjoys the same properties as the more common scalar-valued kernel functions k, l, viz., it
is the reproducing kernel of a RKHS (HK , ⟨⋅, ⋅⟩K) of Hl-valued functions

The properties analogous to (48) now read

In particular, the operator-valued kernel matrix

is positive definite, due to the positive definiteness of the kernel function K,

for all m ∈ ℕ , x1,… , xm ∈ X , �1,… ,�m ∈ Hl.
In order to capture dependencies among the output variables as well as between input

and output variables, the prediction function

is not learned directly, unlike the individual predictors (46) in the preceding section
[cf. (51)]. Rather, the optimal mapping (60) is parametrized by

where �l ∶ Y → Hl is the feature map corresponding to the output kernel function (54)
(see, e.g., Cucker & Smale, 2001, Section 3) satisfying

(54)l ∶ Y × Y → ℝ+, Y = ℝ
d
+

(55)K ∶ X × X → L(Hl)

(56)g ∶ X → Hl.

(57a)K(x, ⋅)� ∈ HK , ∀x ∈ X, ∀� ∈ Hl,

(57b)⟨g,K(x, ⋅)�⟩K = ⟨g(x),�⟩l, ∀g ∈ HK , ∀x ∈ X, ∀� ∈ Hl.

(58)Ko
n
=
(
K(xi, xj)

)
i,j∈[n]

(59)
�

i,j∈[m]

⟨�i,K(xi, xj)�j⟩l ≥ 0

(60)f ∶ X → Y

(61)x ↦ f ∗(x) = �−1
l
◦g∗(x),

(62)⟨�(yi),�(yj)⟩l = l(yi, yj),

Machine Learning

1 3

and g∗ ∈ Hk is determined by regularized least-squares on the transformed training data
(xi,�l(yi))i∈[n] , that is by solving

Invoking again the representer theorem valid for the present more general scenario (Mic-
chelli & Pontil, 2005), g∗ admits the representation

which makes explicit how the approach generalizes the individual parameter predictors
(51).

It remains to specify a kernel function K and the computation of �−1
l

 in order to evaluate
the prediction map (61). As for K, our choice is

with the input kernel function k (47) and the conditional covariance operator

 on Hl . Since K is evaluated on the training data, CYY|X is replaced in practice by evaluating
the empirical covariance operators on the right-hand side, i.e.

with output kernel function l (54), lyi = l(yi, ⋅) and (lyi ⊗ lyj)𝜑 = ⟨lyj ,𝜑⟩llyi , and similarly for
the remaining mappings on the right-hand side of (65b). The kernel function (65) together
with the predictor (64) in the output feature space reveals how the dependencies are taken
into account of both the output variables and between the input and output variables.

In order to obtain for some test input (RDH) x the predicted parameter vector

from the predicted embedded output value g∗(x) , the mapping �−1
l

 of (61) has to be evalu-
ated. This is an instance of the so-called pre-image problem (Honeine & Richard, 2011;
Schölkopf et al., 1999). In the present scenario, putting together (63), (64), (65) and (57),
this yields after a lengthy computation (Kadri et al., 2013, Appendix) the optimization
problem

where

(63)g∗ = arg min
g∈HK

��
i∈[n]

‖g(xi) − 𝜙l(yi)‖2l + 𝜆‖g‖2
K

�
, 𝜆 > 0.

(64)g∗ =
∑
i∈[n]

Kxi
�∗
i
, �∗

i
∈ Hl, Kxi

= K(xi, ⋅),

(65a)K(xi, xj) = k(xi, xj)CYY|X

(65b)CYY|X = CYY − CYXC
−1
XX

CXY

(66)Cn;YY =
1

n

∑
i∈[n]

lyi ⊗ lyi ,

(67)ŷ = f ∗(x) = �−1
l
◦g∗(x)

(68a)�y = argmin
y∈Y

{
l(y, y) − 2l⊤

y
v(x;Dn)

}

(68b)v(x;Dn) =
(
k⊤
x
⊗ Tn

)(
Kn ⊗ Tn + n𝜆In2

)−1
vec(In), 𝜆 > 0,

(68c)Tn = Ln − (Kn + n𝜀In)
−1KnLn, 0 < 𝜀 ≪ 1,

 Machine Learning

1 3

 Here, � in (68b) is the regularization parameter of (63), � in (68c) is a small constant
regularizing the numerical matrix inversion, Kn, Ln are the input and output kernel matrices
corresponding to the training data (43), x is a novel unseen test pattern represented as
described in Sect. 3, and y is the parameter vector variable to be optimized.

Unlike the input kernel function k that is applied to RDHs (see Sect. 4.2.3), the output
kernel function l applies to the common case of parameter vectors and hence choosing
the smooth Gaussian kernel function as l is a sensible choice. Therefore, once the vec-
tor v(x;Dn) has been computed for a test pattern x, the optimization problem (68a) can be
solved numerically by iterative gradient descent with adaptive step size selection by line
search.

Regarding the computation of the vector (68b) that defines the objective function of
(68a), the matrix Tn given by (68c) can be directly computed for numbers n up to few thou-
sands data points using off-the-shelf solvers. This is not the case for the linear system of
(68b) involving the Kronecker product Kn ⊗ Tn , however, which is dense and has the size
n2 × n2 . Therefore, we solve the linear system

in a memory-efficient way using the global-GMRES algorithm proposed by Bouhamidi
and Jbilou (2008) that iteratively constructs Krylov matrix subspaces and approximates the
solution by solving a sequence of low-dimensional least-squares problems. Having com-
puted u, the vector (68b) results from computing

4.2.3 Kernels for resistance distance histograms

In this section, we specify kernel functions (47) that we evaluated for parameter prediction.
Below, x, x� ∈ Hr,t denote two RDHs.

• Symmetric �2 -kernel. This kernel is member of a family of kernels generated by Hil-
bertian metrics on the space of probability measures on X (Hein & Bousquet, 2005)
and defined by

• Exponential �2 -kernel. The exponential �2-kernel reads

(68d)Kn =
(
k(xi, xj)

)
i,j∈[n]

, kx =
(
k(x, x

1
),… , k(x, xn)

)⊤
,

(68e)Ln =
(

l(yi, yj)
)

i,j∈[n], ly =
(

l(y, y1,… , l(y, yn)
)⊤.

(69)
(
Kn ⊗ Tn + n𝜆In2

)
u = vec(In)

(70)v(x;Dn) = vec(Tnvec
−1(u)kx).

(71)k� (x, x
�) =

∑
i∈[B]

xix
�
i

xi + x�
i

.

(72)k𝛾 (x, x
�) = exp

(
−
1

𝛾

∑
i∈[B]

(
xi − x�

i

)2
xi + x�

i

)
, 𝛾 > 0.

Machine Learning

1 3

• Wasserstein kernel. We define a cost matrix

 and the squared discrete Wasserstein distance between x and x′

 where M∗ solves the discrete optimal transport problem (Peyré & Cuturi, 2019)

M is a doubly stochastic matrix, and the minimizer M∗ is the optimal transport plan for
transporting x to x′ with respect to the given costs C. The Wasserstein kernel is defined
as

 and can be shown to be a valid kernel for generating a RKHS and embedding (Bachoc
et al., 2018). For measures defined on the real line ℝ , it is well known that the dis-
tance dW between two distributions can be evaluated in terms of the corresponding
cumulative distributions. This carries over to discrete measures x, x′ and the distance
dW (x, x

�) considered here, provided the implementation takes care of monotonicity and
hence invertibility of the discrete cumulative distributions; we refer to Santambrogio
(2015, Section 2) for details.

4.3 Neural networks

4.3.1 Feedforward neural networks

Let nk and nd be the dimensions of the input and output space, respectively. A feedforward
neural network (FFNN) of depth L ∈ ℕ is a function f ∶ ℝnk → ℝnd that can be written
as the composition f (x) = f (o)(f (L)(… f (1)(x))) of L hidden layers f (j) ∶ ℝ

n
(j)

i → ℝn
(j)
o , j ∈ [L] ,

where n(1)
i

= nk , and a final output layer f (o) ∶ ℝn
(L)
o → ℝnd . Each hidden layer is in turn the

composition of a linear transformation and an activation function. We use the rectified lin-
ear unit (ReLU) as activation function defined as

The hidden layers can accordingly be written as

for an input vector x ∈ ℝ
n
(j)

i , weight matrix W (j) ∈ ℝ
n
(j)
o ×n

(j)

i and bias b(j) ∈ ℝn
(j)
o . The ReLU

function in Eq. (78) acts independently on each element of its argument. For the final out-
put function f (o) we use a linear transformation without activation function:

(73)C = (Ci,j)i,j∈[B], Ci,j = (i − j)2, i, j ∈ [B]

(74)d2
W
(x, x�) = ⟨C,M∗⟩,

(75)min
M

⟨C,M⟩ subject to M ≥ 0, M�n = x, M⊤
�n = x�.

(76)kW (x, x
�) = exp

(
−
1

𝛾
d2
W
(x, x�)

)
, 𝛾 > 0,

(77)ReLU(x) = max(0, x), x ∈ ℝ.

(78)f (j)(x) = ReLU
(
W (j)x + b(j)

)
, j ∈ [L],

(79)f (o)(x) = W (o)x + b(o),

 Machine Learning

1 3

with W (o) ∈ ℝnd ×ℝn
(L)
o and bias b(o) ∈ ℝnd . The values n(j)o are called the numbers of “hid-

den units” or “neurons” of the jth layer. Since for a general W (j) all neurons of the (j − 1) th
layer are connected to all neurons of the jth layer, hidden layers as in Eq. (78) are also
called “fully-connected layers”. To characterise a FFNN we specify the numbers of hid-
den units as (n(1)

o
,… , n(L)

o
) . For example, (10, 20, 5) denotes a FFNN of depth L = 3 with

n(1)
o

= 10, n(2)
o

= 20 and n(3)
o

= 5 , respectively. Accordingly, () denotes a FFNN without any
hidden layers, i.e., L = 0.

4.3.2 Convolutional neural networks

Convolutional neural networks (CNNs) have been used for learning problems on image
data in various different applications, in particular for classification tasks (Gu et al., 2018).
We will consider CNNs that were trained on raw pattern data to learn the kinetic param-
eters of the model, as a benchmark for the results obtained from training models on resist-
ance distance histograms.

Various different CNN architectures have been used in the literature. The majority
consist of three basic types of layers: convolutional, pooling, and fully connected layers.
The convolutional layer’s function is to learn feature representations of the inputs. This
is achieved by convolving the inputs with learnable kernels, followed by applying an ele-
ment-wise activation function. Convolutional layers are typically followed by pooling lay-
ers which reduce the dimension by combining the outputs of clusters of neurons into a sin-
gle neuron in the next layer. Local pooling combines small clusters, typically of size 2 × 2 ,
while global pooling acts on all neurons of the previous layer. A sequence of convolutional
and pooling layers is then typically followed by one or several fully-connected layers as in
Eq. (78). These are then followed by a final output layer chosen according to the specific
learning task such as a softmax layer for classification tasks (Gu et al., 2018).

For the applications in this paper, we found the best performance for minimalistic CNNs
consisting of only one convolutional and one fully-connected layer. The ReLU activation
function in Eq. (77) was applied to the output of both layers. We denote the architecture by
(nk∕np∕nf) where nk is the used number of kernels of size np × np and nf denotes the num-
ber of neurons in the fully connected layer.

5 Experiments and discussion

5.1 implementation details

5.1.1 Simulation details

According to Sect. 2.4.3, setting the step size h properly requires to estimate (an upper
bound of) the Lipschitz constant of f. It turned out, however, that applying standard calcu-
lus (Rockafellar & Wets, 2009, Ch. 9) to the concrete mappings f (4) yields too loose upper
bounds of Lf and hence quite small step sizes h, which slows down the numerical com-
putations unnecessarily. Therefore, in practice, we set h to a value that is ‘reasonable’ for
the backward Euler method and monitored the fixed point iteration (16) in order to check
every few iterations if the method diverges, in which case h was replaced by h/2. We found
h = 0.2 to be a reasonable choice for all applications studied here.

Machine Learning

1 3

The threshold �l for the convergence criterion of the inner iteration in Eq. (17) was
set to �l = 0.001 . The outer iteration was terminated if either the convergence criterion
in Eq. (19) was met with threshold �k = 10−6 , which we checked after time intervals of
�t = 100 , or when a fixed maximal time Tf was reached. We chose Tf = 2000 for domain
sizes of 32 × 32 and 64 × 64 , and Tf = 5000 for a domain size of 128 × 128 . We found that
the patterns do not change substantially beyond these time values even if the convergence
criterion in Eq. (19) was not satisfied.

5.1.2 Initial conditions

For simulating the Gierer–Meinhardt model described in Sect. 2 we need to specify initial
conditions for both species. Given a spatial discretisation of size nr × nr and given param-
eters a, b and c, we first find the equilibrium point u∗ of the according non-spatial system
given in Eq. (1). For each species and each spatial grid point we then sample a random
number in the interval [0.9 × u∗

i
, 1.1 × u∗

i
] , where u∗

i
 is the equilibrium value of the respec-

tive species. This choice of initial conditions leads to faster convergence of PDE simula-
tions while giving rise to large spatial variations of computed patterns as illustrated by
Fig. 4.

5.1.3 Colour scaling of pattern plots

Since the analysed patterns vary substantially in their absolute concentration values, the
colour scaling of patterns in figures is not normalised between different patterns. Some
systems can possess a Turing instabilty for certain parameter values but the resulting
pattern can have a vanishingly small amplitude making it irrelevant for real applications
(Scholes et al., 2019). The patterns in this work all have a non-trivial amplitude, with 99%
of patterns having an amplitude larger than 50% of the mean value of the pattern. Here, we
define the amplitude as the difference between the largest and smallest concentration value
in the pattern.

5.1.4 Resistance distance histograms

As pointed out in Remark 1, the resistance distance histograms (RDHs) for different spe-
cies are typically redundant. We hence used only the first species’ simulation results for
computing the RDHs from simulations of the Gierer–Meinhardt model in Eq. (4) studied
here.

For computing RDHs, we had to specify the edge weight parameter � of (30) which
penalises paths from high to low concentrations and vice versa. Choosing � too small (cor-
responding to a large penalty) leads to a saturation effect of large resistance values between
nodes at large distances, preventing to resolve the geometry of a pattern on such larger
scales. Similarly, a large � fails to resolve the geometry on small scales. We empirically
found � = 0.003 to be a good compromise.

For the parameter t in Definition 1 determining the undersampling of the graph, we
found t = 1 to give the most accurate results. Thus, all results presented in this study were
produced using t = 1 . Note that t = 1 means that the original graph was used without
undersampling.

 Machine Learning

1 3

When simulating a model for varying parameters, we found that some patterns led to
few occurences of very large resistance values, while the majority of patterns had maximal
resistance values substantially below these outliers. We believe that these large values arise
from numerical inaccuracies in the PDE solver. Rather than including all resistance values
which would cause most RDHs having only zeros for large values, we disregarded values
beyond a certain threshold. To specify this threshold, we computed the 99% quantile across
all patterns and picked the maximal value.

Finally, we set the bin number B introduced in Definition 1 to the value B = 12 . We
found empirically that smaller bin numbers give more accurate results for small data sets,
while larger numbers perform better for larger data sets. B = 12 appears as a good tradeoff
between these two regimes.

5.1.5 Additional features

In Sect. 3.2 we discussed the maximal concentration as an additional feature. Due to
numerical inaccuracies when simulating a system, a few pixels might have an artificially
large concentration. We aim here to disregard such values and instead estimate the concen-
tration value of the highest plateau in a given pattern. To this end, we collected the concen-
tration values of the pattern into a histogram of 25 bins and defined the maximal concentra-
tion as the location of the peak with the highest concentration value.

5.1.6 Data splitting

Consider the learning problem described in Sect. 4.1.1: given a data set
Dm = {(xi, yi)}i∈[m] ⊂ X × Y with RDHs xi and vectors yi comprising parameter values of
the model, we aimed to learn a prediction function f ∶ X → Y . In practice, we did not
use the whole data set Dm for training, but split it into mutually disjoint training, test and
validation sets, which respectively comprised 60%, 20% and 20% of Dm . The training set
was used to train a model for given hyperparameters, while the validation set was in turn
used to optimise the hyperparameters. The NRMSE of the trained model was subsequently
computed on the test set.

For small data sets Dm with m ≤ 500 , we observed large variations in the resulting
NRMSE values. To obtain more robust estimates we split a total data set of 1000 points
into subsets Dm of size m for m ≤ 500 , performed training and computed the NRMSE
value for each Dm as described above, and took the average over these NRMSE values. For
example, if m = 100 , then we averaged over 1000∕100 = 10 data sets. For data sets of size
m > 500 , the procedure above was performed on the single data set without averaging.

For convolutional neural networks trained on raw pattern data we found the results to
be substantially more noisy than for the other learning methods trained on RDHs. Accord-
ingly, we here averaged the NRMSE values over more training sets: for m ≤ 1000 points,
we split a total set of 5000 points into data sets Dm . For m = 2000 , 5000 and 10,000 we
used total data sets of 20,000 points. Finally, for m = 20,000 we trained the models three
times with random initialization on the same data set and averaged subsequently.

5.1.7 Target variable preprocessing

We normalised each component of the target variable by its maximal value over the whole
data set, i.e.,

Machine Learning

1 3

where d is the dimension of the target variable corresponding to the number of parameters
to be learned, and n is the number of data points. We use these normalised target variables
for both the regression task in Sect. 5.3 and for clustering in Sect. 5.4.

5.1.8 Support‑vector regression

The training procedure for learning a single parameter, i.e. a scalar-valued target variable,
using support-vector regression (SVR) is described in Sect. 4.2.1. We choose the hyperpa-
rameters � [cf. Eq. (72) for the exponential �2-kernel and Eq. (76) for the Wasserstein ker-
nel] and � [cf. Eq. (53a)] by minimising the NRMSE on the validation set on a grid in the
two parameters [note that the �2-kernel of Eq. (71) does not contain any hyperparameter].
In some cases, we performed a second optimisation over a finer grid centered around the
optimal parameters from the first run. We found this to lead to only minor improvements,
however. The model was then evaluated on the test set for the optimal parameters and the
resulting NRMSE value is reported.

For learning multiple parameters we applied the SVR approach separately to each target
parameter and subsequently computed the joint NRMSE value.

5.1.9 Operator‑valued kernels

For learning multiple parameters jointly, i.e. a vector-valued target variable, we used the
operator-valued kernel method described in Sect. 4.2.2. In addition to the input kernel
parameter � and regression parameter � used for support-vector regression, we here also
had to optimise the scale parameter of the output kernel [cf. the discussion after Eq. (68e)].
Optimisation of these hyperparameters was performed on a grid as in the SVR case, but
this time jointly for all target parameters.

5.1.10 Feedforward neural networks

We employed feedforward neural networks both for learning a single parameter as well
as learning multiple parameters jointly from RDHs. We used Mathematica’s© build-in
NetTrain function with the Adam optimization algorithm and the mean-squared loss
function for training (Wolfram Research, 2021). The network architecture that gives the
minimal loss on the validation set along the training trajectory was selected and evaluated
on the test set to obtain the NRMSE value. Training was performed for Tf training steps
with early stopping if the error on the validation set does not improve for more than Te
steps. For the data set sizes 20 and 50 we used (Tf , Te) = (4 × 105, 105) , for data set sizes
100, 1000 and 2000 we used (Tf , Te) = (2 × 105, 5 × 104) , and for data set sizes ≥ 5000 we
used (Tf , Te) = (105, 2 × 104).

5.1.11 Convolutional neural networks

Convolutional neural networks were trained on the raw simulation data of the first species,
i.e. not on RDHs. We used Abadi et al. (2015) and Chollet et al. (2015) for this purpose.

(80)y�
i,j
=

yi,j

max{yl,j}l∈[n]
, i ∈ [n], j ∈ [d],

 Machine Learning

1 3

We employed the same training procedure as for feedforward neural networks. For the
number of training steps we used (Tf , Te) = (500, 100).

5.2 Robustness of resistance distance histograms

Ideally, the RDHs should be characteristic of patterns of different types, while being robust
to noise in the patterns due to noise in the initial conditions, and being invariant under
immaterial spatial pattern transformations (translation, rotation). In other words, patterns
arising from simulations of the same model for different initial conditions should give
rise to RDHs that do not differ substantially, while patterns generated by different models
should lead to larger deviations. Figure 4 visualizes these properties by means of a few
examples and they will be assessed more quantitatively in the following.

To this end, we simulated the Gierer–Meinhardt model introduced in Sect. 2.2 for eight
different values for c with the other parameters fixed. For each value of c we simulate the
model for five random initial conditions. We subsequently embed the corresponding RDHs
into two dimensions. Figure 11 shows the results for differing domain sizes. We observe
that the points are reasonable well clustered for a domain size of 32 × 32 pixels, with a
substantial improvement when increasing the domain size to 64 × 64 pixels. This is to be
expected, since a larger snapshot of a pattern should reduce the noise in the corresponding
RDHs. The clustering appears to improve slightly upon further increase of domain size to
128 × 128 pixels.

Fig. 11 Visualization of sets of RDHs. a Dimensionality reduction of simulation results of the Gierer–
Meinhardt model defined in Eq. (4) for eight equally-distanced values of parameter c on the interval
[0.01, 1.15] indicated by different symbols, and five different random initial conditions each. The other
parameters are fixed to a = 0.02, b = 1, � = 100 . The resulting RDHs are embedded into the two-dimen-
sional plane using latent semantic analysis (Berry et al., 1995). Results are shown for domain sizes 32 × 32 ,
64 × 64 and 128 × 128 and radii 8 and 32. We found that while points corresponding to different patterns do
not separate into distinct clusters for a domain size of 32 × 32 , they do so for a domain size of 64 × 64 . For
a domain size of 128 × 128 , this separation appears even more pronounced. This demonstrates that resist-
ance distance histograms successfully encode characteristic features of patterns while averaging out noise,
if the domain size is chosen large enough. b Patterns for the eight different c values shown in (a) for one
initial condition each

Machine Learning

1 3

The fact that the different noisy realisations of the patterns separate well indicates that
the RDHs average out this noise while encoding the characteristic features of the patterns
to a large degree.

In view of these results, we only consider domain sizes of 64 × 64 and 128 × 128 in the
following.

5.3 Gierer‑Meinhardt model: Learning a single parameter

In this section we consider the prediction problem of learning a map from RDHs (poten-
tially combined with the additional features described in Sect. 3.2) generated from simula-
tions of the Gierer–Meinhardt model in Eq. (4) as described in Sect. 2.4 onto the corre-
sponding kinetic parameters. The training data thus consists of pairs (xi, yi) with xi being an
RDH and yi being a set of kinetic parameters of the model. As outlined in Sect. 5.1 we split
the data into a training, validation and test set, where the former two are used to train the
models and learn hyperparameters, and the latter is used to evaluate the model’s error in
terms of the normalised root-mean squared error (NRMSE) (cf. Sect. 4.1.2).

Figure 12 visualises how patterns vary for varying parameters corresponding to differ-
ent NRMSE values. We observe that the patterns look reasonably similar for NRMSE val-
ues of 0.2, while they are hardly distinguishable anymore for values below 0.05.

We start by varying the parameter c and fixing the other parameters to a = 0.02, b = 1
and � = 100 [cf. Eq. (4)]. We randomly sample 2 × 104 values for c on the interval [0, 1.15],
solve the corresponding PDE in Eq. (4) and compute the resulting RDHs as described in

Fig. 12 Pattern accuracy. Simulation results of the Gierer–Meinhardt model in Eq. (4) for fixed parameters
a = 0.02, b = 1 and � = 100 and varying values for parameter c on a 64 × 64 domain. The c values are var-
ied around a central value such that they correspond to a certain NRMSE value, and different rows cor-
respond to different NRMSE values. We find that for an NRMSE value of 0.4 the patterns deviate quite
substantially from each other, while they look relatively similar for a value of 0.2 already. Decreasing the
NRMSE value further successively decreases the deviations in the patterns. For NRMSE values smaller
than 0.05 different patterns are hardly distinguishable anymore. This illustrates the criteria defined in
Sect. 4.1.2 for rating parameter prediction as “good” or “excellent”, respectively

 Machine Learning

1 3

Sect. 3.1. Several different types of patterns emerge in this range of c values as can be seen
in Fig. 11b.

5.3.1 Support‑vector regression

Fig. 13a shows the NRMSE obtained by training the support-vector regression model with
both the exponential �2-kernel and the Wasserstein kernel as introduced in Sect. 4.2.3, for
the two RDH-radii 8 and 32. We find that small data sets of only 20 data points allow to
learn the parameter c reasonable well with NRMSE values in the range 0.17–0.25, which
indicates that the RDHs average out noise in the patterns to a large degree (as already noted
in Sect. 5.2).

Increasing the number of data points successively reduces the NRMSE down to values
of 0.059–0.055 for 1000 data points. We observe that even for relatively small snapshots
of the patterns of only 64 × 64 pixels, the RDHs allow to learn the parameter c with quite
high accuracy. While we don’t observe a substantial difference between the two analysed
RDH-radii we do find that the Wasserstein kernel gives more accurate results for small data
sets, while the two kernels perform similar for larger data sets. This finding is plausible
because unavoidable binning effects like slightly shifted histogram entries impact RDHs
more when the data set is small, but are reasonably compensated through ‘mass transport’
by the Wasserstein kernel. We ran the same experiments for the symmetric �2 kernel intro-
duced in Sect. 4.2.3 and obtained worse results than for the other two kernels (results not
shown). Therefore, in the rest of this paper, we will use the Wasserstein kernel.

Fig. 13 Kernel-based parameter prediction. NRMSE values for support-vector regression of parameter c of
the Gierer–Meinhardt model in Eq. (4). We vary c uniformly on the interval [0, 1.15] and fix the other
kinetic parameters to a = 0.02, b = 1 and � = 100 , the scaling parameter to s = 0.25 . The figures show the
NRMSE values for varying data set sizes and for the two RDH-radii 8 and 32 (cf. Definition 1). a The
figure shows the results for both the exponential �2—and Wasserstein kernel [cf. Eqs. (71) and (76), respec-
tively] and a domain size of 64 × 64 . We find that even for small data sets of only 20 data points a rea-
sonable good NRMSE value of about 0.2 is achieved (cf. Fig. 12). This value successively decreases for
increasing data set sizes down to a value of about 0.05. While the results for the two different RDH-radii
do not vary substantially, the Wasserstein kernel outperforms the �2 kernel for small data sets. b The figure
shows the results for the Wasserstein kernel in Eq. (76) and the two domain sizes 64 × 64 and 128 × 128 .
We observe about about 10–50% better results for the 128 × 128 domain. These results show that about
1000 data points suffice to reach the NRMSE value 0.05, which is quite accurate according to the scale of
NRMSE values discussed and fixed in Fig. 12 and in Sect. 4.1.2, respectively

Machine Learning

1 3

Figure 13b shows the results for an increased domain size of 128 × 128 . This larger
domain leads to improved NRMSE values of about 10–50%, with a larger improvement
for larger data sets. As already noted in Sect. 5.2, this improvement is to be expected since
a larger snapshot of a pattern allows the RDHs to average out local fluctuations more
efficiently.

For simplicity and computational convenience, however, we use only 64 × 64 domain
sizes in the following.

5.3.2 Neural networks

Figure 14 shows the regression results for learning the parameter c using feedforward neu-
ral networks (FFNN) for data sizes of up to 2 × 104 points. As one may expect, the FFNNs
perform worse than support-vector regression for small data sets and better for larger data
sets. Using FFNNs it is feasible to use data sets beyond the maximum of 5000 points used
for support-vector regression. However, we find that the NRSME value appears to not
improve any further beyond about 2000 points. This may be expected since in the compu-
tation of the RDHs some information about the patterns is inevitably lost, meaning there
is a lower bound of how accurate the parameter can be learned in the limit of an infinitely
large data set. We point out, however, that this saturation effect happens at NRSME values
≤ 0.03 which is very accurate (cf. Fig. 12).

Fig. 14 Kernel- versus NN-based parameter prediction. a NRMSE values for the same setting as in Fig. 13,
for a RDH radius of 8 and a domain size of 64 × 64 . The figure shows the results obtained using support-
vector regression (SVR) trained on RDHs, feedforward neural networks (FFNNs) once trained on RDHs
and once trained on RDHs combined with the maximal concentration cm as additional feature (cf. Sect. 3.2),
as well as convolutional neural networks (CNNs) trained on the raw patterns, as described in in Sect. 4.3.
We observe that the FFNNs perform slightly worse than the support-vector regression for small data sets,
similar for intermediate data set sizes of 100–200 points, and slightly better for larger data sets. The FFNNs
trained on RDHs and the maximal concentration cm perform slightly worse for less than 500 data points and
slightly better for larger sets. The NRSMSE value seems to level off and not decrease any further for larger
data sets. For the CNNs trained on the raw patterns we find that NRMSE values are substantially larger than
the corresponding FFNN and SVR values, which one may expect due to overfitting. The NRMSE values lie
outside of the shown plot range for data sets smaller than 200 points. The difference decreases for increas-
ing data sets until the CNNs eventually become more accurate for 104 − 2 × 104 data points. Note that no
SVR results for ≥ 104 data points are shown since our basic QP-solver failed to converge. However, the
SVR method only outperforms the other methods for quite small data sets anyway. b Architectures for both
the FFNNs and CNNs that gave the best performance and whose results are shown in (a) (see Sect. 4.3 for
the used notation)

 Machine Learning

1 3

5.3.3 Additional features

In Sect. 3.2 we introduced two additional features to account for certain symmetries of the
RDHs, namely the maximal concentration cm and the number of connected components nc
of a pattern. Figure 14 shows the results obtained by training FFNNs on RDHs with cm as
an additional feature. We find slightly larger NRMSE values for small data sets with less
than 500 points, and slightly smaller NRMSE values for larger data sets. In contrast, using
the number of connected components nc as an additional feature did not give rise to notably
more accurate results (results not shown).

5.3.4 Benchmark: CNN on raw data

Figure 14 also shows the NRMSE values obtained from training convolutional neural net-
works (CNNs) directly on the raw pattern data obtained through simulation (cf. Sect. 4.3).
For data set sizes of ≤ 200 data points we found substantially larger NRMSE values than
from FFNNs trained on RDHs. This shows once again that the RDHs efficiently encode
most of the relevant information while averaging out noise, allowing for more accurate
parameter learning for data sets of small and medium size. As one might except, the dif-
ference between the CNN and FFNN results becomes smaller for larger data set sizes since

Fig. 15 Joint parameter prediction. a NRMSE values for learning all four kinetic parameters a, b, c and � of
the Gierer–Meinhardt model in Eq. (4). The figures show the NRMSE values for varying data set sizes and
for the RDH-radius 8 (cf. Definition 1) and a domain size of 64 × 64 , for both cases of kernel-based learn-
ing the four parameters individually and jointly as outlined in Sects. 4.2.1 and 4.2.2, respectively, using the
Wasserstein kernel [cf. Eqs. (76)]. In addition, the NRMSE values of feedforward neural networks (FFNNs)
(cf. Sect. 4.3) are shown, once trained only on RDHs and once trained using the maximal concentration
cm as additional feature (cf. Sect. 3.2). As one may expect, the NRMSE values are substantially larger
here than in the scalar case of learning just one parameter for the same number of data points (cf. Fig. 14)
and once again decrease for increasing data sets. We find that all three methods trained on RDHs perform
very similar. This implies, in particular, that no correlation among the output parameter values could be
exploited for prediction. In contrast, including the maximal concentration cm as an additional feature leads
to substantially improved NRMSE values with an improvement of up to 35% for large data sets. b Architec-
tures for the FFNNs that gave the best performance and whose results are shown in (a). We found the same
optimal architectures for both training the FFNNs on the RDHs only and on the RDHs together with the
maximal concentration c

m

Machine Learning

1 3

the CNNs can effectively average out the noise themselves when a sufficient large number
of data points are provided. Consequently, we found that CNNs become more accurate than
the other methods for large data sets of about 104 − 2 × 104 data points.

5.4 Gierer‑Meinhardt model: Jointly predicting four parameters

We next consider the problem of learning all four kinetic parameters a, b, c and � of the
Gierer–Meinhardt model in Eq. (4). We vary a, b, c and � uniformly on the interals [0.01, 0.7],
[0.4, 2], [0.02, 7] and [20, 200], respectively. The scaling parameter was set to s = 0.4 and
assumed to be known. Parameter combinations for which the system does not possess a Turing
instability and hence does not produce a pattern in simulations are disregarded.

Figure 15 shows the NRMSE results for the separable SVR model, for the joint kernel-
based model, and for feedforward neural networks (FFNNs) trained on RDHs of radius
r = 8 and a domain size of 64 × 64 . We find that the three methods perform similar which
means, in particular, that no correlation among the output parameters could be exploited
for joint prediction in order to outperform separable parameter prediction (the SVR meth-
ods we trained only for data sets of up to 2 × 103 points). We further observe the NRMSE
values to be substantially higher than in the scalar case (cf. Fig. 14) for the same number
of data points, which is to be expected when learning more parameters. The NRMSE value
again successively decreases for increasing data set sizes, with a minimal value of about
0.26 for FFNNs and 104 data points, which is substantially larger than the minimal value of
0.033 obtained in the scalar case for the same data set size and radius (cf. Fig. 14). How-
ever, here the curve does not appear to have levelled off yet for 104 data points as in the
scalar case, and increasing the data set size further should further increase accuracy.

We performed the same experiment as shown in Fig. 15 but for RDHs radius r = 32 and
found similar results (results not shown).

5.4.1 Combining RDHs of different radii

In Sect. 3 we argued that the RDH radius r determines the scale at which the local structure
of a Turing pattern is resolved. We used the two radii r = 8 and r = 32 in the results pre-
sented so far in Figs. 13, 14 and 15 and found similar results for the two. However, since
RDHs with radius r = 8 should more accurately capture characteristics of patterns on small
scales and r = 32 should be able to capture larger-scale characteristics, one might expect
that combining the two should provide more information than each of them individually
and might therefore give rise to more accurate results. We trained feedforward neural net-
works on the RDHs of the two radii taken together as features for the same setting as in
Fig. 15, but did not obtain notably more accurate results (results not shown).

5.4.2 Additional features

While we found in Sect. 5.3 that using the maximal concentration cm as an additional fea-
ture did only slightly improve NRMSE values and only for large data sets when learning a
single parameter (cf. Fig. 14), we here find a substantial improvement for all data set sizes,
with improvements of up to 35% for large data set sizes as can be seen in Fig. 15. As in the
scalar case, we find that using the number of connected components nc does not improve
results (results not shown).

 Machine Learning

1 3

5.5 Cluster of patterns

We explored the geometry of patterns represented by resistance distance histograms
(RDHs) and the squared Wasserstein distance (74). Parameter c in the Gierer–Meinhardt
model in Eq. (4) was varied as described in Sect. 5.3, and 1000 patterns and corresponding
RDHs were computed as detailed in Sect. 2.4. Next, we examined the neighborhood graph
in which two patterns with corresponding RDHs x, x′ are adjacent if d2

W
(x, x�) ≤ 0.05 . As a

result, about 84% of all patterns were contained in one of the six clusters corresponding to
the connected components with the largest number of patterns.

Figure 16 depicts 10 sample patterns taken from each cluster. This result shows that
RDHs according to Definition 1, together with an appropriate distance function, are suited
for clustering patterns into qualitatively different categories.

6 Conclusion

We introduced a novel learning-based approach to Turing pattern parameter prediction.
A key difference to existing work is that any single observed pattern is directly mapped
to a predicted model parameter value, allowing to infer model parameters from single
data points. Major ingredients of the method are (1) the (almost) invariant representa-
tion of Turing patterns by histograms of resistance distances computed within patterns,
and (2) a kernel-based pattern similarity measure based on the Wasserstein distance that
takes properly into account minor but unavoidable binning effects.

Fig. 16 Clustering Turing patterns. Cluster of patterns obtained by varying parameter c as described in
Sect. 5.3. Each row shows 10 sample patterns from a cluster that comprises a large number of patterns
within a small radius, measured by the squared Wasserstein distance (74) between the corresponding resist-
ance distance histograms (RDHs). This result demonstrates how RDHs and a corresponding distance func-
tion represent distinct types of patterns

Machine Learning

1 3

We compared classical reproducing kernel Hilbert space methods using basic ker-
nels for single parameter prediction and operator-valued kernels for jointly predicting
all parameters. These methods performed best for small and medium-sized training data
sets. In addition, we evaluated various feedforward neural network architectures for
prediction. As for single parameter prediction, these methods performed best for larger
training data sets and but were on a par only with kernel-based methods in the case of
joint parameter prediction.

Finally, we applied convolutional neural networks to raw pattern data directly. We
found that, for very large training data sets with ≥ 2 × 104 data samples, they outper-
formed all other methods. However, it remains unexplained what internal pattern repre-
sentations are used.

Overall, we observed excellent parameter prediction of single parameters even for small
data sets with ≤ 1000 data samples, and fairly accurate joint prediction of all parameters for
large data sets. Our results indicate that the latter predictions should further improve when
even larger data sets can be used for training. We leave such experiments for future work.

We suggest to focus on two aspects in future work. In this paper, the Gierer–Meinhardt
model was chosen in order to conduct a representative case study. In practical applica-
tions, selecting also the model among various candidates, besides estimating its param-
eters, might be desirable. Furthermore, our current approach cannot quantify the uncer-
tainty of parameter prediction and in this respect falls short of statistical approaches like
Campillo-Funollet et al. (2019) and Kazarnikov and Haario (2020). On the other hand,
our approach can be applied to single patterns, rather than to ensemble of patterns like the
approach Kazarnikov and Haario (2020), and further input data like initial conditions as in
Campillo-Funollet et al. (2019) that are unknown in practice, are not required. Resolving
these pros and cons defines an attractive program for future research.

Acknowledgements DS gratefully acknowledges support from a “Life?” programme grant from the Volk-
swagen Stiftung and the Biotechnology and Biological Sciences Research Council (Grant Number BB/
P028306/1).

Author contributions DS and CS designed and performed the research. Both authors wrote the manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL.

Availability of data and material Not applicable.

Code availability No.

Declarations

Conflict of interest The authors have no conflict of interest to declare that are relevant to the content of this
article.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

 Machine Learning

1 3

material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,
Devin, M., & Ghemawat, S. (2015). TensorFlow: Large-scale machine learning on heterogeneous sys-
tems. Software available from https:// www. tenso rflow. org/

Álvarez, M. A., Rosasco, L., & Lawrence, N. D. (2012). Kernels for vector-valued functions: A review.
Foundations and Trends in Machine Learning, 4(3), 195–266.

Bachoc, F., Gamboa, F., Loubes, J.-M., & Venet, N. (2018). A Gaussian process regression model for distri-
bution inputs. IEEE Transactions on Information Theory, 64(10), 6620–6637.

Bapat, R. B. (2014). Graphs and matrices. Springer.
Berg, C., Christensen, J. P. R., & Ressel, P. (1984). Harmonic analysis on semigroups: Theory of positive

definite and related functions. Springer.
Berlinet, A., & Thomas-Agnan, C. (2004). Reproducing kernel Hilbert spaces in probability and statistics.

Springer.
Berry, M. W., Dumais, S. T., & O’Brien, G. W. (1995). Using linear algebra for intelligent information

retrieval. SIAM Review, 37(4), 573–595.
Bouhamidi, A., & Jbilou, K. (2008). A note on the numerical approximate solutions for generalized matrix

equations with applications. Applied Mathematics and Computation, 206(2), 687–694.
Bracewell, R. N. (2000). The Fourier transform and its applications (3rd ed.). McGraw-Hill.
Brémaud, P. (2017). Discrete probability models and methods. Springer.
Brouard, C., Szafranski, M., & d’Alché Buc, F. (2016). Input output kernel regression: Supervised and semi-

supervised structured output prediction with operator-valued kernels. Journal of Machine Learning
Research, 17, 1–48.

Campillo-Funollet, E., Venkataraman, C., & Madzvamuse, A. (2019). Bayesian parameter identification for
Turing systems on stationary and evolving domains. Bulletin of Mathematical Biology, 81(1), 81–104.

Castets, V., Dulos, E., Boissonade, J., & De Kepper, P. (1990). Experimental evidence of a sustained stand-
ing Turing-type nonequilibrium chemical pattern. Physical Review Letters, 64(2953), 24.

Chollet, F. et al. (2015). Keras. https:// keras. io
Cucker, F., & Smale, S. (2001). On the mathematical foundations of learning. Bulletin of AMS, 39(1), 1–49.
Doyle, P. G., & Snell, J. L. (1984). Random walks and electric networks. Cambridge University Press.
Economou, A. D., Ohazama, A., Porntaveetus, T., Sharpe, P. T., Kondo, S., Basson, M. A., Gritli-Linde, A.,

Cobourne, M. T., & Green, J. B. A. (2012). Periodic stripe formation by a Turing mechanism operating
at growth zones in the mammalian palate. Nature Genetics, 44(3), 348–351.

Evgeniou, T., Miccelli, C. A., & Pontil, M. (2005). Learning multiple tasks with kernel methods. Journal of
Machine Learning Research, 6, 615–637.

Evgeniou, T., Pontil, M., & Poggio, T. (2000). Regularization networks and support vector machines.
Advances in Computational Mathematics, 13, 1–50.

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486, 75–174.
Garvie, M. R., Maini, P. K., & Trenchea, C. (2010). An efficient and robust numerical algorithm for estimat-

ing parameters in Turing systems. Journal of Computational Physics, 229(19), 7058–7071.
Garvie, M. R., & Trenchea, C. (2014). Identification of space-time distributed parameters in the Gierer–

Meinhardt reaction–diffusion system. SIAM Journal on Applied Mathematics, 74(1), 147–166.
Gatenby, R. A., & Gawlinski, E. T. (1996). A reaction–diffusion model of cancer invasion. Cancer Research,

56(24), 5745–5753.
Gierer, A., & Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik, 12(1), 30–39.
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., & Chen,

T. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354–377.
Hairer, E., Nørsett, S. P., & Wanner, G. (2008). Solving ordinary differential equations I (3rd ed.). Springer.
Hein, M., & Bousquet, O. (2005). Hilbertian metrics and positive definite kernels on probability measures.

In AISTATS: Proceedings.
Hofmann, T., Schölkopf, B., & Smola, A. J. (2008). Kernel methods in machine learning. Annals of Statis-

tics, 36(3), 1171–1220.
Holmes, E. E., Lewis, M. A., Banks, J. E., & Veit, R. R. (1994). Partial differential equations in ecology:

Spatial interactions and population dynamics. Ecology, 75(1), 17–29.

http://creativecommons.org/licenses/by/4.0/
https://www.tensorflow.org/
https://keras.io

Machine Learning

1 3

Honeine, P., & Richard, C. (2011). Preimage problem in kernel-based machine learning. IEEE Signal Pro-
cessing Magazine, 28(2), 77–88.

Horn, R. A., & Johnson, C. R. (2013). Matrix analysis (2nd ed.). Cambridge University Press.
Jung, H.-S., Francis-West, R. B., Widelitz, P. H., Jiang, T.-X., Ting-Berreth, S., Tickle, C., Wolpert, L.,

& Chuong, C.-M. (1998). Local inhibitory action of BMPs and their relationships with activators in
feather formation: Implications for periodic patterning. Developmental Biology, 196(1), 11–23.

Kadri, H., Ghavamzadeh, M., & Preux, P. (2013). A generalized kernel approach to structured output learn-
ing. Proceedings of Machine Learning Research, 28, 471–479.

Karasözen, B., Uzunca, M., & Küçükseyhan, T. (2020). Reduced order optimal control of the convective
FitzHugh–Nagumo equations. Computers & Mathematics with Applications, 79(4), 982–995.

Kazarnikov, A., & Haario, H. (2020). Statistical approach for parameter identification by Turing patterns.
Journal of Theoretical Biology, 501, 110319.

Klein, D. J., & Randić, M. (1993). Resistance distance. Journal of Mathematical Chemistry, 12, 81–95.
Kondo, S., & Miura, T. (2010). Reaction–diffusion model as a framework for understanding biological pat-

tern formation. Science, 329(5999), 1616–1620.
Landge, A. N., Jordan, B. M., Diego, X., & Müller, P. (2020). Pattern formation mechanisms of self-organ-

izing reaction–diffusion systems. Developmental Biology, 460(1), 2–11.
Martcheva, M. (2015). An introduction to mathematical epidemiology. Text in applied mathematics, 61.

Springer.
Micchelli, C. A., & Pontil, M. (2005). On learning vector-valued functions. Neural Computation, 17,

177–204.
Minh, H. Q., Bazzani, L., & Murino, V. (2016). A unifying framework in vector-valued reproducing kernel

Hilbert spaces for manifold regularization and co-regularized multi-view learning. Journal of Machine
Learning Research, 17(25), 1–72.

Murphy, L., Venkataraman, C., & Madzvamuse, A. (2018). Parameter identification through mode isola-
tion for reaction–diffusion systems on arbitrary geometries. International Journal of Biomathematics,
11(04), 1850053.

Murray, J. D. (1982). Parameter space for Turing instability in reaction diffusion mechanisms: A compari-
son of models. Journal of Theoretical Biology, 98(1), 143–163.

Murray, J. D. (2001). Mathematical biology II: Spatial models and biomedical applications. Springer.
Nakamasu, A., Takahashi, G., Kanbe, A., & Kondo, S. (2009). Interactions between zebrafish pigment cells

responsible for the generation of Turing patterns. Proceedings of the National Academy of Sciences,
106(21), 8429–8434.

Pathak, H. K. (2018). An introduction to nonlinear analysis and fixed point theory. Springer.
Paulsen, V. I., & Raghupathi, M. (2016). An introduction to the theory of reproducing kernel Hilbert spaces.

Cambridge University Press.
Pertham, B. (2015). Parabolic equations in biology. Springer.
Peyré, G., & Cuturi, M. (2019). Computational optimal transport: With applications to data science. Foun-

dations and Trends in Machine Learning, 11(5–6), 355–607.
Raspopovic, J., Marcon, L., Russo, L., & Sharpe, J. (2014). Digit patterning is controlled by a Bmp-Sox9-

Wnt Turing network modulated by morphogen gradients. Science, 345(6196), 566–570.
Rockafellar, R. T., & Wets, R.J.-B. (2009). Variational analysis (3rd ed.). Springer.
Santambrogio, F. (2015). Optimal transport for applied mathematicians. Birkhäuser.
Schaeffer, D. G., & Cain, J. W. (2016). Ordinary differential equations: Basics and beyond. Springer.
Scholes, N. S., Schnoerr, D., Isalan, M., & Stumpf, M. P. H. (2019). A comprehensive network atlas reveals

that Turing patterns are common but not robust. Cell Systems, 9(3), 243–257.
Schölkopf, B., Herbrich, R., & Smola, A. J. (2001). A generalized represent theorem, computational learn-

ing theory (Vol. 2111, pp. 416–426). Springer.
Schölkopf, B., Mika, S., Burges, C. J. C., Knirsch, P., Müller, K.-R., Rätsch, G., & Smola, A. J. (1999).

Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks,
10(5), 1000–1017.

Seto, M., Suda, S., & Taniguchi, T. (2014). Gram matrices of reproducing kernel Hilbert spaces over graphs.
Linear Algebra and its Applications, 445, 56–68.

Sgura, I., Lawless, A. S., & Bozzini, B. (2019). Parameter estimation for a morphochemical reaction–diffu-
sion model of electrochemical pattern formation. Inverse Problems in Science and Engineering, 27(5),
618–647.

Shangerganesh, L., & Sowndarrajan, P. T. (2020). An optimal control problem of nonlocal Pyragas feedback
controllers for convective FitzHugh–Nagumo equations with time-delay. SIAM Journal on Control and
Optimization, 58(6), 3613–3631.

 Machine Learning

1 3

Sick, S., Reinker, S., Timmer, J., & Schlake, T. (2006). WNT and DKK determine hair follicle spacing
through a reaction–diffusion mechanism. Science, 314(5804), 1447–1450.

Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14,
199–222.

Stoll, M., Pearson, J. W., & Maini, P. K. (2016). Fast solvers for optimal control problems from pattern for-
mation. Journal of Computational Physics, 304, 27–45.

Tan, Z., Chen, S., Peng, X., Zhang, L., & Gao, C. (2018). Polyamide membranes with nanoscale Turing
structures for water purification. Science, 360(6388), 518–521.

Turing, A. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of
London B, 237(641), 37–72.

Uzunca, M., Küçükseyhan, T., Yücel, H., & Karasözen, B. (2017). Optimal control of convective FitzHugh–
Nagumo equation. Computers & Mathematics with Applications, 73(9), 2151–2169.

Vittadello, S. T., Leyshon, T., Schnoerr, D., & Stumpf, M. P. H. (2021). Turing pattern design principles and
their robustness. Philosophical Transactions of the Royal Society A, 379(2213), 20200272.

Whaba, G. (1990). Spline models for observational data. SIAM.
Wolfram Research. (2021). Mathematica, version 12.3.1.
Woolley, T. E., Krause, A. L., & Gaffney, E. A. (2021). Bespoke Turing systems. Bulletin of Mathematical

Biology, 83(5), 1–32.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Learning system parameters from turing patterns
	Abstract
	1 Introduction
	1.1 Motivation and overview
	1.2 Related work
	1.3 Contribution and organisation
	1.4 Basic notation

	2 Turing patterns: definition and computation
	2.1 Reaction–diffusion models
	2.2 The Gierer–Meinhardt nodel
	2.3 Turing patterns
	2.4 Numerical simulation
	2.4.1 Discretization
	2.4.2 Algorithm
	2.4.3 Step size selection

	3 Extracting features from turing patterns
	3.1 Resistance distance histograms (RDHs)
	3.1.1 Graph-based representation of Turing patterns
	3.1.2 Resistance distances and histograms

	3.2 Maximal concentration and connected components

	4 Learning parameters from spatial turing patterns
	4.1 Setup
	4.1.1 Learning problem
	4.1.2 Accuracy measure

	4.2 Kernel-based parameter prediction
	4.2.1 Individual parameter prediction using SVMs
	4.2.2 Joint parameter prediction using operator-valued kernels
	4.2.3 Kernels for resistance distance histograms

	4.3 Neural networks
	4.3.1 Feedforward neural networks
	4.3.2 Convolutional neural networks

	5 Experiments and discussion
	5.1 implementation details
	5.1.1 Simulation details
	5.1.2 Initial conditions
	5.1.3 Colour scaling of pattern plots
	5.1.4 Resistance distance histograms
	5.1.5 Additional features
	5.1.6 Data splitting
	5.1.7 Target variable preprocessing
	5.1.8 Support-vector regression
	5.1.9 Operator-valued kernels
	5.1.10 Feedforward neural networks
	5.1.11 Convolutional neural networks

	5.2 Robustness of resistance distance histograms
	5.3 Gierer-Meinhardt model: Learning a single parameter
	5.3.1 Support-vector regression
	5.3.2 Neural networks
	5.3.3 Additional features
	5.3.4 Benchmark: CNN on raw data

	5.4 Gierer-Meinhardt model: Jointly predicting four parameters
	5.4.1 Combining RDHs of different radii
	5.4.2 Additional features

	5.5 Cluster of patterns

	6 Conclusion
	Acknowledgements
	References

