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Abstract
At the present time optical coherence tomography (OCT) is among the most commonly used non-invasive imaging methods
for the acquisition of large volumetric scans of human retinal tissues and vasculature. The substantial increase of accessible
highly resolved 3D samples at the optic nerve head and the macula is directly linked to medical advancements in early
detection of eye diseases. To resolve decisive information from extracted OCT volumes and to make it applicable for further
diagnostic analysis, the exact measurement of retinal layer thicknesses serves as an essential task be done for each patient
separately. However, manual examination of OCT scans is a demanding and time consuming task, which is typically made
difficult by the presence of tissue-dependent speckle noise. Therefore, the elaboration of automated segmentation models
has become an important task in the field of medical image processing. We propose a novel, purely data driven geometric
approach to order-constrained 3DOCT retinal cell layer segmentationwhich takes as input data in anymetric space and can be
implemented using only simple, highly parallelizable operations. As opposed to many established retinal layer segmentation
methods, we use only locally extracted features as input and do not employ any global shape prior. The physiological order
of retinal cell layers and membranes is achieved through the introduction of a smoothed energy term. This is combined with
additional regularization of local smoothness to yield highly accurate 3D segmentations. The approach thereby systematically
avoid bias pertaining to global shape and is hence suited for the detection of anatomical changes of retinal tissue structure.
To demonstrate its robustness, we compare two different choices of features on a data set of manually annotated 3D OCT
volumes of healthy human retina. The quality of computed segmentations is compared to the state of the art in automatic
retinal layer segmention as well as to manually annotated ground truth data in terms of mean absolute error and Dice similarity
coefficient. Visualizations of segmented volumes are also provided.
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1 Introduction

1.1 Overview, Motivation

Optical coherence tomography (OCT) is a non-invasive
imaging technique which measures the intensity response
of back scattered light from millimeter penetration depth.
Here we consider its use in ophthalmology as a means of
aquiring high-resolution volume scans of human retina in
vivo to understand eye functionalities. Figure 1 gives an
overview of relevant anatomy. OCT devices record multiple
two-dimensional B-scans in rapid succession and combine
them to a single volume in a subsequent alignment step.
Taking an OCT scan only takes multiple seconds to fewmin-
utes and can help detect symptoms of pathological conditions
such as glaucoma, diabetes, multiple sclerosis or age-related
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macular degeneration. The relative ease of data acquisition
also enables to use multiple OCT volume scans of a single
patient over time to track the progression of a pathology or
quantify the success of therapeutic treatment. As a conse-
quence of the technological progress in OCT imaging which
was made over the past few decades since its invention by
Huang et al. (1991), more expertise for extraction of manual
annotations is required which in the presence of big volumet-
ric data sets is difficult to access.

To better leverage the availability of retinal OCT data
in both clinical settings and empirical studies, much work
is focused on the analysis of appropriate automatic feature
extraction techniques. In particular, the access to such meth-
ods is especially crucial for achieving enhanced effectiveness
of existing quantitative retinal multi cell layer segmentation
approaches, and for increasing their clinical potential in real
life applications, such as detection of fluid regions and recon-
struction of vascular structures. The difficulty of these tasks
lies in the challenging signal-to-noise ratio which is influ-
enced by multiple factors including physical eye movement
during registration and the presence of speckle noise.

In this paper, we extend the assignment flow approach
proposed in Åström et al. (2017) for labeling data on graphs
to automatic cell layer segmentation in OCT data. After a
feature extraction step, each voxel is labeled by smoothing
local layer decisions and jointly leveraging a global geo-
metric invariant—the natural order of cell layers along the
vertical axis of each B-scan, as shown in the second row
of Fig. 2. We are able to produce high-quality segmenta-
tions of OCT volumes by using local features as input for a
purpose-built assignment flow variant which serves to incor-
porate global context in a controlledway. This is in contrast to
common machine learning approaches which use essentially
full B-scans as input.

The empirical success of deep learning methods is driven
by the striking ability of deep networks to discover infor-
mative features which capture even very subtle patterns in
data. However, despite their apparent expressiveness, such
features are notoriously hard to interpret by humans. While
neural networks often generalize surprisingly well to unseen
data, their lack of interpretability makes it hard to antici-
pate or otherwise reason about specific failure cases. This
is particularly relevant in medical applications because deep
networks may produce predictions which appear plausible
even in cases where they fail to generalize. Additionally,
the aquisition of high-quality labeled data for training is
laborious and may require the expertise of skilled medical
professionals such that data availibility is limited compared
to other problem domains. We propose to localize the influ-
ence of feature extraction on the segmentation process by
limiting field of view. Consequently, the used features are
semantically weaker than the ones computed by competing
deep learning methods. However, we still achieve state of
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Fig. 1 Schematic illustration of human eye functionality designed by
Kjpargeter (n.d): Light enters the Cornea 5 and passes through the
vitreous humour 6 towards the retina 4 and choroid 3 which are located
around the fovea 1

the art performance by leveraging domain knowledge. In our
pipeline, ambiguities in local features are resolved by regu-
larizing to achieve local regularity as well as physiological
cell layer ordering.

Our segmentation approach is a smooth image labeling
algorithm based on geometric numerical integration on an
elementary statistical manifold. It can work with input data
fromanymetric space,making it agnostic to the choice of fea-
ture extraction and suitable as plug-in replacement in diverse
pipelines. In addition to respecting the natural order of cell
layers, the proposed segmentation process has a high amount
of built-in parallelism such that modern graphics acceler-
ation hardware can easily be leveraged. We compare the
effectiveness of our novel approach between a selection of
input features ranging from traditional covariance descriptors
to convolutional neural networks. Figure 2 shows a typical
volume segmentation computed by the proposed method. It
illustrates how local ambiguity is caused by similar signal
intensity and visual appearance of some layers and exac-
erbated by speckle noise. This ambiguity in local features is
systematically resolved by leveraging the domain knowledge
of local smoothness and global physiological layer order.

1.2 RelatedWork

Effective segmentation of OCT volumes is a very active area
of research. Here, we briefly review the current state of the
art approaches originating from the broad research fields of
graphical models, variational methods andmachine learning.

1.2.1 Graphical Models

The first mathematical access to the problem is provided by
the theory of graphical models which transforms the segmen-
tation task into an optimization problem with hard pairwise
interaction constraints between voxels. Starting with Kang
et al. (2006) and Haeker et al. (2007), simultaneous retina
layer detection attempts were made by finding an s-t min-
imum graph cut. Garvin et al. (2009) further extended this
approach with a shape prior modeling layer boundaries. The
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Fig. 2 a Left Normalized view on a 3D OCT volume scan dimension
512× 512× 256 of healthy human retina with ambiguous locations of
layer boundaries. Middle The resulting segmentation of 11 layers dis-
playing the order preserving labeling of the proposed approach. Right
Boundary surfaces between different segmented cell layers are illus-

trated. b Typical result of the proposed segmentation approach for
a single B-scan of healthy retina. Left raw OCT input data. Middle
segmentation by locally selecting the label with maximum score for
each voxel after feature extraction. Right segmentation by the proposed
assignment flow approach using the same extracted features

methods benefit from low computational complexity, but are
lacking of robustness in the presence of speckle and therefore
require additional preprocessing steps. Along this line of rea-
soning, Antony et al. (2010) used a two stage segmentation
process by applying anisotropic diffusion in a preprocessing
step and consequently segmenting outer retina layers using
graphical models. Similarly, Kafieh et al. (2013) proposed
to use specific distances based on diffusion maps which are
computed by coarse graining the original graph. However,
increased performance for noisy OCT data gained by reg-
ularizing in this way comes at the cost of introducing bias
in the preprocessing step which in turn inpairs robustness in
settings with medical pathologies.

Motivated by Song et al. (2013), Dufour et al. (2013)
comes up with a circular shape prior for segmentation of
6 retinal layers by incorporating soft constraints which are
more suitable for the robust detection of pathological retina
structures. Chiu et al. (2015) relies on a graphical model
approach as a postprocessing step after applying a super-
vised kernel regression classification with features extracted
according to Quellec et al. (2010). Rathke et al. (2014)
reduced the overall complexity by a parallelizable segmenta-
tion approach based on probabilistic graphical models with
global low-rank shape prior representing interacting retina
tissues surfaces. While the global shape prior works well
for non-pathological OCT data, it cannot be adapted to the
broad range of variations caused by local pathological struc-
ture resulting in a inherent limitation of this approach. Here
we refer to Rathke et al. (2017) for possible adaption of the
probabilistic approach (Rathke et al. 2014) to pathological
retina detection.

1.2.2 Variational Methods

Another category of layer detection methods focus on mini-
mizing an energy functional to express the quantity of interest
as the solution to an optimization problem. To this class of
methods for retina detection level set approaches have proven
to be particularly suitable by encoding each retina layer as
the zero level sets of a certain functional. Yazdanpanah et al.
(2011) introduces a level set method forminimizing an active
contour functional supported by a multiphase model pre-
sented in Chan and Vese (2001) as circular shape prior, to
avoid limitations of hard constraints as opposed to graph-
ical model proposed by Garvin et al. (2009). Duan et al.
(2015) suggests the approach to model layer boundaries with
a mixture of Mumford Shah and Vese and Osher function-
als by first preprocessing the data in the Fourier domain. A
capable level set approach for joint segmentation of patho-
logical retina tissues was reported in the work of Novosel
et al. (2017). However, due to the involved hierarchical opti-
mization, their method is computationally expensive. One
common downside of the above algorithms are their inherent
limitations to only include local notions of layer ordering,
making their extension to cases with pathologically caused
retina degeneracy a difficult task.

1.2.3 Machine Learning

Much recent work has focused on the use of deep learning to
address the task of cell layer segmentation in a purely data
driven way. The U-net architecture (Ronneberger et al. 2015)
has proven influential in this domain because of its good
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predictive performance in settings with limited availability
of training data. Multiple modifications of U-net have been
proposed to specifically increase its performance in OCT
applications (Roy et al. 2017; Liu et al. 2019). The com-
mon methods largely rely on convolutional neural networks
to predict layer segmentations for individual B-scans which
are subsequently combined to full volumes. These methods
have also been used as part of a two-stage pipeline where
additional prior knowledge such as local regularity andglobal
order of cell layers along a spatial axis is incorporated through
graph-based methods (Fang et al. 2017) or a second machine
learning component (He et al. 2019).

1.3 Contribution, Organization

We propose a geometric assignment approach to retinal layer
segmentation. By leveraging a continuous characterization of
layer ordering, our method is able to simultaneously perform
local regularization and incorporate the global topological
ordering constraint in a single smooth labeling process. The
segmentation is computed from a distance matrix containing
pairwise distances between data for each voxel and prototyp-
ical data for each layer in some feature space. This highlights
the ability to extract features from raw OCT data in a variety
of different ways and to use the proposed segmentation as a
plug-in replacement for other graph-based methods.

As a result of the proposed method, it becomes possible
to compute high-quality cell layer segmentations of OCT
volumes by using only local features for each voxel. This
is in contrast to competing deep learning approaches which
explicitly aim to incorporate as much global context into
the feature extraction process as possible. The exclusive
use of local features combats bias introduced through lim-
ited data availability in training and makes incorporation of
three-dimensional information easily possible without limit-
ing runtime scalability. To demonstrate this, we implement
two feature extraction approaches. The first is based on iden-
tifying each voxel with a covariance descriptor and finding
prototypical descriptors as cluster centers. For each voxel,
Riemannian distances to the prototypical descriptors are used
as input for subsequent segmentation. The second is based
on training a relatively shallow convolutional neural network
to classify small voxel patches of raw OCT data. Predicted
class scores for each voxel are subsequently used as input for
the proposed segmentation method.

The final pipeline thus comprises a preliminary feature
extraction step (summarized in Sect. 5.2) which yields local
data to subsequently be labeled in a regularized fashion by
the proposed ordered assignment flow (Definition 2).

It enables robust cell layer segmentation for raw OCT
volumes at scale, labeling an entire OCT volume in the time
frame between 30s and several minutes on a single GPU and
in general leads to increased performance in the case of more

informative features. This is without using any prior knowl-
edge other than local regularity and order of cell layers. In
particular, no global shape prior is used thus making our pro-
posed approach suited for retina detection in OCT volumes
with observable pathological patterns.

Our paper considerably elaborates the conference version
(Sitenko et al. 2020) in the following ways. We extended
the discussion of related work and added descriptions of two
reference methods to make the paper more self-contained.
The mechanism we use to promote topological layer order-
ing through regularization is based on a generalized notion
of order preservation restated in Definition 1. In the present
work, wemotivate this notion by examining a related discrete
graphical model in Proposition 1. Furthermore, regarding the
choice of covariance descriptors (Tuzel et al. 2006) for reti-
nal tissue representation we extensively discussed the impact
of retrieving prototypical descriptors by approximating Rie-
mannian distance via divergence functions. Accordingly, we
provided a detailed qualitative performance evaluation in
terms of the labeling accuracy and computational efficiency
by comparing to the alternative Riemannian mean retrieval
approach (Bini and Iannazzo 2013). We also substantially
extended the evaluation of numerical labeling experiments by
adding multiple illustrations as well as quantitative results.
This includes comparison to the additional reference method
proposed inRathke et al. (2014). Finally,we addeddiscussion
of feature locality and of variance in the reference segmen-
tations used for training.

The remainder of this paper is organized as follows. The
assignment flow approach is summarized in Sect. 2 and
extended in Sect. 4 in order to take into account the order
of layers as a global constraint. In Sect. 3, we consider
the Riemannian manifold Pd of positive definite matrices
as a suitable feature space for local OCT data descriptors.
Various Riemannian metrics are discussed with regard to
computational efficiency of clustering. The resulting features
are subsequently compared to local features extracted by a
convolutional network in Sect. 5. Performance measures for
OCT segmentation will be reported for our novel approach
and for twoother state-of-the-artmethodswith available stan-
dalone software, that were evaluated in detail as summarized
in Sect. 5. In Sect. 6, we shortly discuss the access to appro-
priate ground truth data and the impact of feature locality
underlying our approach.

2 Assignment Flow

We summarize the assignment flow approach introduced by
Åström et al. (2017) and refer to the recent survey (Schnörr
2020) for more background and a review of recent related
work.
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2.1 Overview

The assignment manifoldW (16) is a product space of prob-
ability simplices. Hence each pointW ∈ W is a collection of
discrete probability vectors, one for each pixel, called assign-
ment vectors. These vectorsW (t) evolve onW according to
the assignment flow ODE (25). Due to the imposed Fisher–
Rao geometry (12), W (t) converges to an integral solution
(Zern et al. 2020a): for t → ∞, each Wi (t) approaches an
unit vector that encodes the class label j assigned to the data
point fi given at pixel i ∈ I .

Thus, assignment flows perform labelings as do discrete
graphical models (Kappes et al. 2015). Yet, unlike the lat-
ter models, the assignment flow approach is smooth which
enables efficient numerical inference (Zeilmann et al. 2020),
parameter learning (Hühnerbein et al. 2021) and extensions
to unsupervised and self-supervised scenarios (Zern et al.
2020b; Zisler et al. 2020).

Section 4 extends the assignment flow approach such that
the natural ordering of labels due to retinal tissue layers is
taken into account.

2.2 Assignment Manifold

Let (F , dF ) be a metric space and

Fn = { fi ∈ F : i ∈ I }, |I | = n (1a)

given data. Assume that a predefined set of prototypes

F∗ = { f ∗j ∈ F : j ∈ J }, |J | = c (1b)

is given. Data labeling denotes the assignments

j → i, f ∗j → fi (2)

of a single prototype f ∗j ∈ F∗ to each data point fi ∈ Fn .
The set I is assumed to form the vertex set of an undirected
graph G = (I ,E ) which defines a relation E ⊂ I × I and
neighborhoods

Ni = {k ∈ I : ik ∈ E } ∪ {i}, (3)

where ik is a shorthand for the unordered pair (edge) (i, k) =
(k, i). We require these neighborhoods to satisfy the symme-
try relation

k ∈ Ni ⇔ i ∈ Nk, ∀i, k ∈ I . (4)

The assignments (labeling) (2) are represented bymatrices
in the set

W∗ = {W ∈ {0, 1}n×c : W1c = 1n} (5)

with unit vectors Wi , i ∈ I , called assignment vectors,
as row vectors. These assignment vectors are computed by
numerically integrating the assignment flow below (25) in
the following geometric setting. The integrality constraint of
(5) is relaxed and vectors

Wi = (Wi1, . . . ,Wic)

 ∈ S , i ∈ I , (6)

that we still call assignment vectors, are considered on the
elementary Riemannian manifold

(S , g), S = {p ∈ Δc : p > 0} (7)

with the probability simplex

Δc =
{
p ∈ R

c+ :
c∑

i=1
= 〈1, p〉 = 1

}
, (8)

the barycenter

1S = 1

c
1c ∈ S , (barycenter) (9)

tangent space

T0 = {v ∈ R
c : 〈1c, v〉 = 0} (10)

and tangent bundle TS = S×T0, the orthogonal projection

Π0 : Rc → T0, Π0 = I − 1S 1
 (11)

and the Fisher–Rao metric

gp(u, v) =
∑
j∈J

u jv j

p j
, p ∈ S , u, v ∈ T0. (12)

Based on the linear map

Rp : Rc → T0, Rp = Diag(p)− pp
, p ∈ S (13)

that satisfies

Rp = RpΠ0 = Π0Rp, (14)

exponential maps and their inverses are defined by

Exp : S × T0 → S , (p, v) 
→ Expp(v) = pe
v
p

〈p, e v
p 〉

,

(15a)

Exp−1p : S → T0, q 
→ Exp−1p (q) = Rp log
q

p
,

(15b)

expp : T0 → S , expp = Expp ◦Rp, (15c)
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exp−1p : S → T0, exp−1p (q) = Π0 log
q

p
(15d)

where multiplication, exponentials and logarithms apply
componentwise. Applying the map expp to a vector in R

c =
T0 ⊕ R1 does not depend on the constant component of the
argument, due to (14).

Remark 1 The map Exp corresponds to the e-connection of
information geometry (Amari and Nagaoka 2000), rather
than to the exponential map of the Riemannian connection.
Accordingly, the affine geodesics (15a) are not length-mini-
mizing.But they provide a close approximation (Åströmet al.
2017, Prop. 3) and are more convenient for numerical com-
putations.

The assignment manifold is defined as

(W , g), W = S × · · · ×S . (n = |I | factors) (16)

We identify W with the embedding into Rn×c

W =
{
W ∈ R

n×c : W1c = 1n and Wi j > 0

for all i ∈ [n], j ∈ [c]
}
.
(17)

Thus, pointsW ∈ W are row-stochastic matricesW ∈ R
n×c

with row vectors Wi ∈ S , i ∈ I that represent the assign-
ments (2) for every i ∈ I . We set

T0 := T0 × · · · × T0 (n = |I | factors). (18)

Due to (17), the tangent space T0 can be identified with

T0 = {V ∈ R
n×c : V1c = 0}. (19)

Thus, Vi ∈ T0 for all row vectors of V ∈ R
n×c and i ∈ I .

All mappings defined above factorize in a natural way and
apply row-wise, e.g. ExpW = (ExpW1

, . . . ,ExpWn
) etc.

2.3 Assignment Flow

Based on (1a) and (1b), the distance vector field

DF ;i =
(
dF ( fi , f ∗1 ), . . . , dF ( fi , f ∗c )

)

, i ∈ I (20)

is well-defined. These vectors are collected as row vectors of
the distance matrix

DF ∈ Sn+, (21)

where Sn+ denotes the set of symmetric and entrywise non-
negative matrices.

Remark 2 In this paper, we build upon two different types
of features to determine vectors (20) which are serving as
input before mapping the assembled matrix (21) onto the
assignment manifold as explained below. Hereby, the first
class of features access our model by calculating distance to
prototypes (1) with metric introduced in section (Sect. 3.2)
while the second feature class directly possess the form of
(21) as argued in section (Sect. 5.2.3).

The likelihood map and the likelihood vectors, respec-
tively, are defined for i ∈ I as

Li : S → S ,

Li (Wi ) = expWi

(
− 1

ρ
DF ;i

)
= Wie

− 1
ρ
DF ;i

〈Wi , e
− 1

ρ
DF ;i 〉

,
(22)

where the scaling parameter ρ > 0 is used for normalizing
the a-prior unknown scale of the components of DF ;i that
depends on the specific application at hand.

A key component of the assignment flow is the interaction
of the likelihood vectors through geometric averaging within
the local neighborhoods (3). Specifically, using weights

ωik > 0 for all k ∈ Ni , i ∈ I with
∑
k∈Ni

wik = 1, (23)

the similarity map and the similarity vectors, respectively,
are defined for i ∈ I as

Si : W → S ,

Si (W ) = ExpWi

⎛
⎝∑

k∈Ni

wik Exp
−1
Wi

(
Lk(Wk)

)⎞⎠ .
(24)

If ExpWi
were the exponential map of the Riemannian (Levi-

Civita) connection, then the argument inside the brackets of
the right-hand side would just be the negative Riemannian
gradient with respect toWi of center of mass objective func-
tion comprising the points Lk, k ∈ Ni , i.e. the weighted
sum of the squared Riemannian distances between Wi and
Lk (Jost 2017, Lemma 6.9.4). In view of Remark 1, this
interpretation is only approximately true mathematically, but
still correct informally: Si (W ) moves Wi towards the geo-
metric mean of the likelihood vectors Lk, k ∈ Ni . Since
ExpWi

(0) = Wi , this mean precisely is Wi if the aforemen-
tioned gradient vanishes.

The assignment flow is induced on the assignment man-
ifold W by the locally coupled system of nonlinear ODEs

Ẇ = RW S(W ), W (0) = 1W , (25a)

Ẇi = RWi Si (W ), Wi (0) = 1S , i ∈ I , (25b)
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where 1W ∈ W denotes the barycenter of the assignment
manifold (16). The solution W (t) ∈ W is numerically com-
puted by geometric integration (Zeilmann et al. 2020) and
determines a labeling W (T ) ∈ W∗ for sufficiently large T
after a trivial rounding operation. Convergence and stabil-
ity of the assignment flow have been studied by Zern et al.
(2020a).

3 OCT Data Representation by Covariance
Desciptors

In this section, we work out the basic geometric notation for
representation of OCT data by means of covariance descrip-
tors (Tuzel et al. 2006). Specifically, the metric data space
(F , dF ) underlying (1) will be identified with the Rie-
mannian manifold (Pd , dg) of positive definite matrices
of dimension d × d, with Riemannian metric g and Rie-
mannian distance dg as specified in Sect. 5. In particular
regarding the computation of corresponding prototypes (1b),
an important aspect concerns the trade-off between respect-
ing the Riemannian distance dg of the matrix manifold Pd

and approximating surrogate distance functions, that enable
to computemore efficientlyRiemannianmeans of covariance
descriptors while adopting their natural geometry.We review
and discuss various choices in Sect. 3.2 after reviewing few
required concepts of Riemannian geometry in Sect. 3.1.

3.1 TheManifoldPd

We collect few concepts related to data p ∈M taking values
on a general Riemannian manifold (M , g)with Riemannian
metric g; see, e.g., Lee (2013), Jost (2017) for background
reading. Then we apply these concepts to the specific man-
ifold (Pd , g) and the corresponding distance dg , keeping
the symbol g for the metric for simplicity. We refer to, e.g.,
Bhatia (2007, 2013), Pennec et al. (2006) and Moakher and
Batchelor (2006) for further reading and to the references in
Sect. 3.2.

Let γ : [0, 1] →M a smooth curve connecting twopoints
p = γ (0) and q = γ (1). The Riemannian distance between
p and q is given by

dg(p, q) = min
γ : γ (0)=p,γ (1)=q L(γ ) (26a)

with

L(γ ) =
∫ 1

0
‖γ̇ (t)‖γ (t)dt =

∫ 1

0

√
gγ (t)

(
γ̇ (t), γ̇ (t)

)
dt .

(26b)

Assume the minimum of the right-hand side of (26a) is
attained at γ . Then the exponential map at p is defined on

some neighborhood Vp ⊆ TpM of 0 in the tangent space to
M at p by

expp : Vp ⊇ TpM → Up ⊆M ,

v 
→ expp(v) := γ (1).
(27)

This mapping is a diffeomorphism of Vp and its inverse map
exp−1p : Up → Vp exists on a corresponding open neighbor-
hood Up. Let X (M ) denote the set of all smooth vector
fields on M , i.e. X ∈ X (M ) evaluates to a tangent vector
X p ∈ TpM smoothly depending on p. The set of all smooth
covector fields (one-forms) is denoted by X ∗(M ), and
d f (X)denotes the action of the differentiald f ∈X ∗(M )of
a smooth function f : M → R on a vector field X . The Rie-
mannian gradient of f is the vector field grad f ∈ X (M )

defined by

g(grad f , X) = d f (X) = X f , ∀X ∈X (M ). (28)

We now focus on the following problem: Given a set of
points {pi }i∈[N ] ⊂ M , compute the weighted Riemannian
mean as minimizer of the objective function

p = arg min
q∈M

J (q), J (q) =
∑
i∈[N ]

ωi d
2
g (q, pi ),

∑
i∈[N ]

ωi = 1, ωi > 0, for all i .
(29)

The Riemannian gradient of this objective function is given
by Jost (2017, Lemma 6.9.4)

grad J (p) = −
∑
i∈[N ]

ωi exp
−1
p (pi ). (30)

Hence the Riemannian mean p is determined by the optimal-
ity condition

∑
i∈[N ]

ωi exp
−1
p (pi ) = 0. (31)

A basic numerical method for computing p is the fixed point
iteration

q(t+1) = expq(t)

⎛
⎝∑

i∈[N ]
ωi exp

−1
q(t)

(pi )

⎞
⎠ , t = 1, 2, . . . (32)

that may converge for a suitable initialization q(0) to p.
We now focus on the specific manifold (Pd , g)

Pd = {S ∈ R
d×d : S = S
, S is positive definite} (33)

123



International Journal of Computer Vision

with the tangent space

TSPd = {S ∈ R
d×d : S
 = S}, (34)

equipped with the Riemannian metric

gS(U , V ) = tr(S−1US−1V ), U , V ∈ TSPd . (35)

The Riemannian distance (26a) is given by

dPd (S, T ) =
⎛
⎝∑

i∈[d]

(
log λi (S, T )

)2⎞⎠
1/2

, (36)

whereas the exponential map (27) reads

expS(U ) = S
1
2 expm

(
S−

1
2US−

1
2

)
S

1
2 , (37)

and expm(·) denotes the matrix exponential. Finally, given
a smooth objective function J : Pd → R, the Riemannian
gradient is given by

grad J (S) = S
(
∂ J (S)

)
S ∈ TSPd , (38)

where the symmetric matrix ∂ J (S) denotes the Euclidean
gradient of J at S. SincePd is a simply connected, complete
and nonpositively curvedRiemannianmanifold (Bridson and
Häflinger 1999, Section 10), the exponential map (37) is
globally defined and bijective, and the Riemannian mean
always exists and is uniquely defined as minimizer of the
objective function (29), after substituting the Riemannian
distance (36).

3.2 Computing Prototypical Covariance Descriptors

In this section, we focus on the computational differential
geometric framework required for extraction of prototypes
(1b) as Riemannian means from a set of covariance descrip-
tors assembled from OCT data. Application details are
reported in Sect. 5. Particularly with regard to more effi-
cient handling present volumetric data and to reduce the
computational costs, a surrogate metrics and distances are
reviewed in Sects. 3.2.2 and 3.2.3. Their qualitative compar-
ison is reported in Sect. 5.

3.2.1 Computing Riemannian Means

Given a set of covariance descriptors

SN = {(S1, ω1), . . . , (SN , ωN )} ⊂Pd (39)

together with positive weights ωi , we next focus on the solu-
tion of the problem (29) for specific geometry (33),

S = arg min
S∈Pd

J (S;SN ), J (S;SN ) =
∑
i∈[N ]

ωi d
2
Pd

(S, Si ),

(40)

with the distance dPd given by (36). From (37), we deduce

U = exp−1S ◦ expS(U ) = S
1
2 logm

(
S−

1
2 expS(U )S−

1
2

)
S

1
2

(41)

with the matrix logarithm logm = expm−1 (Higham 2008,
Section 11). As a result, optimality condition (31) reads

∑
i∈[N ]

ωi S
1
2 logm

(
S
− 1

2 Si S
− 1

2

)
S

1
2 = 0. (42)

Applying the corresponding basic fixed iteration (32) has two
drawbacks, however (Congedo et al. 2015): Convergence is
not theoretically guaranteed and if the iteration converges,
than at a linear rate only. Since each iterative step requires
nontrivial numerical matrix decomposition that has to be
applied multiple times to every voxel (vertex) of a 3D grid-
graph, this results in an overall quite expensive approach, in
particular when larger data sets are involved as is the case for
highly resolved 3D OCT volumetric scans.

The following variant proposed by Bini and Iannazzo
(2013) is guaranteed to converge at a quadratic rate assum-
ing the matrices {S1, . . . , SN } to pairwise commute. Using
the parametrization

S = LL
 (43)

corresponding to the Cholesky decomposition replacing the
map of fixed point iteration (32) with its linearization leads
to the following fixed point iteration

Fτ (L;SN ) = LL
 − τ
∑
i∈[N ]

ωi L

 logm(L−
S−1i L−1)L,

(44)

with damping parameter τ > 0. Comparing to (42) shows
that the basic idea is to compute the Riemannian mean S as
fixed point of the iteration

S = lim
t→∞ S(t), S(t+1) = F(S(t);SN ). (45)

Algorithm1provides a refined variant of this iteration includ-
ing adaptive stepsize selection. See Congedo et al. (2015) for
alternative algorithms that determine the Riemannian mean.
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Algorithm 1: Fixed Point Iteration for Computing the
Riemannian Matrix Mean.
Initialization
ε (termination threshold)
t = 0, S(0) = LL
, with S(0) solving (47).

c0 = λmax(S(0))

λmin(S(0)))
, {α0, β0} =

[ log(c0)
c0−1 , c0

log(c0)
c0−1

]
(condition number

and step size selection parameters)
τ0 = 2

α0+β0
S(1) = Fτ (L;SN ) (iterative step)

ε1 =
∥∥∑

i∈[N ] ωi logm(S
1
2
(1)S

−1
i S

1
2
(1)

∥∥
F , t = 1

while εt > ε do
S(t) = LL


ct = λmax(S(t))

λmin(S(t))

if ct = 1 then
stop

{αt , βt } = {∑t
k=0

log(ck )
ck−1 , ck

log(ck )
ck−1 }

τt = 2
αt+βt

S(t+1) = Fτt (L;SN )

εt+1 :=
∥∥∑

i∈[N ] ωi logm(S
1
2
(t+1)S

−1
i S

1
2
(t+1))

∥∥
F , t ← t + 1

3.2.2 Log-Euclidean Distance andMeans

A computationally cheap approach was proposed byArsigny
et al. (2007) (among several other ones). Based on the oper-
ations

S1 � S2 = expm
(
logm(S1 + logm(S2)

)
), (46a)

λ · S = expm
(
λ logm(S)

)
, (46b)

the set (Ps,�, ·) becomes isomorphic to the vector space
where � plays the role of addition. Consequently, the mean
of the data SN given by (39) is defined analogous to the
arithmetic mean by

S = expm

⎛
⎝∑

i∈[N ]
ωi logm(Si )

⎞
⎠ . (47)

While computing themean is considerably cheaper than inte-
grating the flow (38) using approximation Algorithm 1, the
critical drawback of relying on (47) is not taking into account
the (curved structure) of the manifoldPd . Therefore, in the
next section,we additionally consider another approximation
of the Riemannian mean that better respects the underlying
geometry but can still be evaluated more efficiently than the
Riemannian mean of Sect. 3.2.1.

3.2.3 S-Divergence andMeans

A general approach to the approximation of the objective
function (29) is to replace the squared Riemannian d2g(p, q)

distance by a divergence function

D(p, q) ≈ 1

2
d2g (p, q) (48)

that satisfies

D(p, q) ≥ 0 and D(p, q) = 0 ⇔ p = q, (49a)

∂21D(p, q) � 0, ∀p ∈ dom D(·, q). (49b)

We refer to, e.g., Bauschke and Borwein (1997) and Censor
and Zenios (1997) for a complete definition. Property (49b)
says that, for any feasible p, the Hessian with respect to the
first argument is positive definite. In fact, suitable divergence
functions D recover in this way locally the metric tensor of
the underlyingmanifoldM , in order to qualify as a surrogate
for the squared Riemannian distance (48).

For the present case M = Pd of interest, Sra (2016)
proposed the divergence function, called Stein divergence
and is given for S, S1, S2 ∈Pd as

Ds(S1, S2) = log det

(
S1 + S2

2

)
− 1

2
log det(S1S2). (50)

Regarding the task of evaluating the Riemannian distance
(36), which is required for the second term of problem (40)
for subsequential extraction of prototypes (1b) in Sect. 5,
while avoiding to solve the numerically involved numerical
generalized eigenvalue problem, we replace (40) by

S = arg min
S∈Pd

Js(S;SN ), Js(S;SN ) =
∑
i∈[N ]

ωi Ds(S, Si ).

(51)

The resulting Riemannian gradient flow reads

Ṡ = − grad Js(S;SN )
(38)= −S∂ J (S;SN )S (52a)

= −1

2

(
SR(S;SN )S − S

)
, (52b)

with

R(S;SN ) =
∑
i∈[N ]

ωi

(
S + Si

2

)−1
. (53)

Discretizing the flow using the geometric explicit Euler
scheme with step size h,

S(t+1) = expS(t)

(− h grad Js(S(t);SN )
)

(54a)

(37)= S
1
2
(t) expm

(
h

2

(
I − S

1
2
(t)R(S(t);SN )S

1
2
(t)

))
S

1
2
(t)

(54b)
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and using the log-Euclidean mean (47) as initial point S(0),
defines Algorithm 2 as listed below.

Algorithm 2: Computing the Geometric Matrix Mean
Based on the S-divergence.
Initialization
ε (termination threshold)
t = 0, S(0) solves (47)
ε0 > ε (any value ε0)
while εt > ε do

LL
 = S(t)

Li L
i = S(t)+Si
2 for i ∈ [N ]

U = I − S
1
2
(t)

(∑
i∈[N ] ωi (Li L
i )−1

)
S

1
2
(t)

S(t+1) = S
1
2
(t) expm( h2U )S

1
2
(t)

εt+1 := ‖U‖F , t ← t + 1

4 Ordered Layer Segmentation

In this section, we work out an extension of the assignment
flow (Sect. 2) which is able to respect the order of cell layers
as a global constraint while remaining in the same smooth
geometric setting. In particular, existing schemes for numer-
ical integration still apply to the novel variant.

4.1 Ordering Constraint

With regard to segmenting OCT data volumes, the order
of cell layers is crucial prior knowledge. In this paper we
focus on segmentation of the following 11 retina layers: reti-
nal nerve fiber layer (RNFL), ganglion cell layer (GCL),
inner nuclear layer (INL), outer plexiform layer (OPL), outer
nuclear layer (ONL), two photoreceptor layers (PR1, PR2)
separated by the external limiting membrane (ELM), Chori-
ocapillaris (CC) and the retinal pigment epithelium (RPE)
together with the choroid section (CS). Figure 3 also con-
tains positions for the internal limiting membrane (ILM) and
Bruch’s membrane Membrane (BM).

To incorporate this knowledge into the geometric setting
of Sect. 2, we require a smooth notion of ordering which
allows to compare two probability distributions. In the fol-
lowing, we assume prototypes f ∗j ∈ F , j ∈ [n] in some
feature space F to be indexed such that ascending label
indices reflect the physiological order of cell layers.

Definition 1 (Ordered Assignment Vectors) A pair of voxel
assignments (wi , w j ) ∈ S 2, i < j within a single A-scan
is called ordered, if w j −wi ∈ K = {By : y ∈ R

c+} with the
matrix

Fig. 3 OCT volume acquisition: 1© is the A-scan axis (single A-scan
is marked yellow). Multiple A-scans taken in rapid succession along
axis 2© form a two-dimensional B-scan (single B-scan is marked blue).
The complete OCT volume is formed by repeating this procedure along
axis 3©. A list of retina layers that we expect to find in every A-scan is
shown on the left (Color figure online)

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
1 −1

1
. . .

. . . −1
1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠
∈ R

c×c. (55)

This new continuous ordering of probability distributions
is consistent with discrete ordering of layer indices in the
following way.

Lemma 1 Let wi = el1 , w j = el2 , l1, l2 ∈ [c] denote two
integral voxel assignments. Then w j −wi ∈ K if and only if
l1 ≤ l2.

Proof B is regular with inverse

B−1 = −Q, Qi, j =
{
1 if i ≥ j

0 else
(56)

and w j − wi ∈ K ⇔ B−1(w j − wi ) ∈ R
c+. It holds

B−1(w j − wi ) = Qel1 − Qel2 =
c∑

k=l1
ek −

c∑
k=l2

ek (57)

such that B−1(w j − wi ) has nonnegative entries exactly if
l1 ≤ l2. ��

The continuous notion of order preservation put forward
inDefinition 1 can be interpreted in terms of a related discrete
graphical model. Consider a graph consisting of two nodes
connected by a single edge. The order constrained image
labeling problem on this graph can be written as the integer
linear program

min
W∈{0,1}2×c,M∈Π(wi ,w j )

〈W , D〉 + θ〈Q − I, M〉 (58)
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where Π(wi , w j ) denotes the set of coupling measures for
marginals wi , w j and θ � 0 is a penalty associated with
violation of the ordering constraint. By taking the limit θ →
∞ we find the more tightly constrained problem

min
W∈{0,1}2×c,M∈Π(wi ,w j )

〈W , D〉 s.t. 〈Q − I, M〉 = 0. (59)

Its feasible set has an informative relation to Definition 1
examined in Proposition 1.

Lemma 2 Let M ∈ R
c×c be an upper triangular matrix with

non-negative entries above the diagonal and non-negative
marginals

M1c ≥ 0, M
1c ≥ 0. (60)

Then there exists a modified matrix M1 with the same prop-
erties such that M1 ≥ 0.

Proof Equation (60) directly implies M11 ≥ 0 and Mcc ≥ 0
because M is upper triangular. For row indices l �= m and
column indices q �= r , define the matrix Olm,qr with

Olm,qr
i j =

⎧⎪⎨
⎪⎩
−1 if (i, j) = (l, q) ∨ (i, j) = (m, r)

1 if (i, j) = (l, r) ∨ (i, j) = (m, q)

0 else

. (61)

Then Olm,qr1 = (Olm,qr )
1 = 0. Adding a matrix Olm,qr

to M does therefore not change its marginals, but it redis-
tributes mass from the positions (l, q) and (m, r) to the
positions (l, r) and (m, q).Due to (60), it is possible to choose
scalars αk

lr ≥ 0 such that

M +
∑

2≤k≤c−1

∑
l<k
r>k

αk
lr O

lk,kr ≥ 0. (62)

��
Proposition 1 A pair of voxel assignments (wi , w j ) ∈ S 2

within an single A-scan is ordered if and only if the set

Π(wi , w j ) ∩ {M ∈ R
c×c : 〈Q − I, M〉 = 0} (63)

is not empty.

Proof See Appendix A. ��
Proposition 1 shows that transportation plans between

ordered voxel assignments wi and w j exist which do not
move mass from wi,l1 to w j,l2 if l1 > l2. This character-
izes order preservation for non-integral assignments as put
forward in Definition 1.

4.2 Ordered Assignment Flow

Likelihoods as defined in (22) emerge by lifting − 1
ρ
DF

regarded as Euclidean gradient of− 1
ρ
〈DF ,W 〉 to the assign-

mentmanifold. It is our goal to encode order preservation into
a generalized likelihood matrix Lord(W ). To this end, con-
sider the assignment matrix W ∈ S N for a single A-scan
consisting of N voxels. We define the related matrix Y (W ) ∈
R

N (N−1)×c with rows indexed by pairs (i, j) ∈ [N ]2, i �= j
in fixed but arbitrary order. Using the matrix Q defined by
(56), let the rows of Y be given by

Y(i, j)(W ) =
{
Q(w j − wi ) if i > j

Q(wi − w j ) if i < j
. (64)

By construction, an A-scan assignmentW is ordered exactly
if all entries of the corresponding Y (W ) are nonnegative.
This enables to express the ordering constraint on a single
A-scan in terms of the energy objective

Eord(W ) =
∑

(i, j)∈[N ]2, i �= j

φ(Y(i, j)(W )). (65)

where φ : Rc → R denotes a smooth approximation of δRc+ .
In our numerical experiments, we choose

φ(y) =
〈
γ exp

(
− 1

γ
y

)
,1

〉
(66)

with a constant γ > 0. Suppose a full OCT volume assign-
ment matrix W ∈ W is given and denote the set of
submatrices for each A-scan by C(W ). Then order preserv-
ing assignments consistent with given distance data DF in
the feature space F are found by minimizing the energy
objective

E(W ) = 〈DF ,W 〉 +
∑

WA∈C(W )

Eord(WA). (67)

We consequently define the generalized likelihood map

Lord(W ) = expW (−∇E(W ))

= expW

⎛
⎝− 1

ρ
DF −

∑
WA∈C(W )

∇Eord(WA)

⎞
⎠ (68)

and specify a corresponding assignment flow variant.

Definition 2 (OrderedAssignmentFlow)Thedynamical sys-
tem

Ẇ = RW S(Lord(W )), W (0) = 1W (69)

evolving on W is called the ordered assignment flow.
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Fig. 4 Left En-face view on the volumetric OCT data superimposed
by parallel blue lines which represent the location of 61 B-scans within
the volume. The red line indicates the position of a B-scan shown in
the center image. Center The enlarged view on a B-scan depicts typi-
cal artifacts such as shadow regions and speckle noise. Right The gray

value intensity of a single vertical A-scan located near the Fovea region.
This A-scan is highlighted by a yellow line in the enlarged B-scan (cen-
ter image). Noisy intensity variations along the A-scan indicate the
difficulty of automatically extracting retinal tissue boundary positions
(Color figure online)

By applying known numerical schemes (Zeilmann et al.
2020) for approximately integrating the flow (69), we find
a class of discrete-time image labeling algorithms which
respect the physiological cell layer ordering in OCT data.
In Sect. 5, we benchmark the simplest instance of this class,
emerging from the choice of geometric Euler integration.

5 Experimental Results

5.1 Data, Competing Approaches, Performance
Measures

5.1.1 OCT-Data

In the following sections, after introducing key terminology
in volumetric OCT data we describe experiments performed
on a set of OCT volumes depicting the intensity of light
reflection in chorioretinal tissues centered around the fovea.
The scanswere obtained using a spectral domainOCTdevice
(Heidelberg Engineering, Germany) formultiple patients at a
variety of resolutions by averagingvarious registeredB-scans
which share the same location in order to reduce speckle
noise. This is representative of the fact that different resolu-
tions may be desirable in clinical settings at the preference
of medical practitioners. In the following, we always assume
an OCT volume in question to consist of NB B-scans, each
comprising NA A-scans with N voxels and use the term sur-
face to refer to the set of voxels located at the interface of
two retina layers. See Fig. 3 for a schematic illustration of
the data acquisition process.

In the present work, we use a private dataset of 3D OCT
volume scans provided by Heidelberg Engineering GmbH
whichwe split into 82 volumes for training and 8 volumes for
testing. In particular, the test set contains scans frommultiple

different patients without any observable pathological retina
changes. See Appendix C for a detailed list of volume sizes
and resolutions along each axis.

Figure 4 demonstrates the typical organization of a 3D-
OCT volume acquired by scanning healthy human retina
using an OCT device. B-Scans are indicated as blue lines
placed in the Fundus image on the left. The particular B-
Scan marked in red is depicted in the middle of Fig. 4. This
illustrates the typical artifacts and corrupted layer intensities
of the OCT volume. The right plot depicts the noisy signal
along an A-scan indicated by a yellow vertical line which
underpins the difficulty of segmenting the underlying data
sets.

5.1.2 Reference Methods

To assess the segmentation performance of our proposed
approach we compare ourselves to state of the art retina seg-
mentation methods presented in Rathke et al. (2014) and
Kang et al. (2006) which are applicable for both healthy
and pathological patient data. In particular, we prefer these
reference methods over Dufour et al. (2013), Song et al.
(2013) and Garvin et al. (2009) because available implemen-
tations of the latter are limited to the segmentation of up to
9 retina layers. For both reference methods, we use the soft-
ware implementation of their authors without any additional
tuning or retraining.

IOWA Reference Algorithm A well-known graph-based
approach to segmentation of macular volume data was devel-
oped by the Retinal Image Analysis Laboratory at the Iowa
Institute forBiomedical Imaging (Kanget al. 2006;Abràmoff
et al. 2010; Garvin et al. 2009). The problem of localizing
cell layer boundaries in 3D OCT volumes is posed and ulti-
mately transformed into a minimum st-cut problem on a
non-trivially constructed graph G. To this end, a distance
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tensor Dk ∈ R
NB×NA×N is formed in a feature extraction

step for each boundary k ∈ [c− 1]. This encodes c− 1 sep-
arate binary segmentation problems on a geometric graph
Gk spanning the volume. In each instance, voxels are to be
classified as either belonging to boundary k or not belonging
to boundary k. By utilizing a (directed) neighborhood struc-
ture on each Gk , smoothness constraints are introduced and
regulated via user-specified stiffness parameters. To model
interactions between different boundaries, the graphs Gk are
combined to a global graph G, introducing additional edges
between them. The latter set up constraints on the distance
between consecutive boundaries within each A-scan which
can be used to enforce physiological ordering of cell layers.
OnG, the problemof optimal boundary localization takes the
formofminimal closed set constructionwhich is in turn trans-
formed into a minimum st-cut problem for which standard
methods exist. Their standalone software is freely available
for research purposes.1

Probabilistic Model Rathke et al. (2014) proposed a
graph-based probabilistic approach for segmentingOCTvol-
umes for given data y by leveraging the Bayesian ansatz

p(y, s, b) = p(y|s)p(s|b)p(b). (70)

Here, the tensor b ∈ R
NB×NA×(c−1) contains real-valued

boundary positions between retina layers and s denotes
discrete (voxel-wise) segmentation. The appearance terms
p(y|s), p(s|b) and p(b) represent data likelihood, Markov
random field regularizer and global shape prior respectively.
In order to approximate the desired posterior

p(b, s|y) = p(y|s)p(s|b)p(b)
p(y)

, (71)

a variational inference strategy is employed. This aims to find
a tractable distribution q decoupled into

q(b, s) = qb(b)qs(s) (72)

which is close to p(b, s|y) in terms of the relative entropy
KL(q | p). The shape prior p(b) is learned offline by max-
imum likelihood estimation in the space of normal dis-
tributions using a low-rank approximation of the involved
covariance matrix. Ordering constraints

1 ≤ s1,i j ≤ s2,i j ≤ · · · ≤ sc−1,i j , i j ∈ [NB] × [NA] (73)

are enforced for the discrete segmentation s and are not
enforced for the continuous boundaries b. This is in con-
trast to the proposed model which integrates the ordering of
retina layers by adding a cost function (63) penalizing the

1 see https://www.iibi.uiowa.edu/oct-reference.

overall deviation of soft assignments during numerical inte-
gration of (25) from the subspace of probability distributions
satisfying (1). The method comes along with a standalone
software which is freely available.2

5.1.3 Performance Measures

We will evaluate the computed segmentations by their direct
comparison with manual annotations regarded as gold stan-
dard which were realized by a medical expert. Respective
metrics are suitable for segmentation tasks that involve mul-
tiple tissue types (Crum et al. 2006). Specifically, we report
the mean DICE similarity coefficient (Dice 1945) for each
segmented cell layer.

Definition 3 (DICE) Given two sets A, B the DICE similar-
ity coefficient is defined as

DSC(A, B) := 2|A ∩ B|
|A| + |B| =

2TP

2TP+ FP+ FN
∈ [0, 1],

(74)

where {TP,FN,FP} denotes the number of true positives,
false negatives and false positives respectively.

The DICE similarity coefficient quantifies the region
agreement between computed segmentation results andman-
ually labeled OCT volumes which serve as ground truth.
High similarity indexDSC(A, B) ≈ 1 indicates large relative
overlap between the sets A and B. This metric is well suited
for average performance evaluation and appears frequently in
the literature (e.g. Chiu et al. 2015; Yazdanpanah et al. 2011;
Novosel et al. 2017). It is closely related to the positively
correlated Jaccard similarity measure (Jaccard 1908) which
in contrast to (74) is more strongly influenced by worst case
performance.

In addition, we report the mean absolute error (MAE) of
computed layer boundaries used in Rathke et al. (2014) and
Garvin et al. (2009) to make our results more directly com-
parable to these references.

Definition 4 (Mean Absolute Error) For a single A-scan
indexed by i j ∈ [NB] × [NA], let ei j := |gi j − pi j | denote
the absolute difference between a layer boundary position
gi j in the gold standard segmentation and a predicted layer
boundary pi j . The mean absolute error (MAE) is defined as
the mean value

MAE(g, p) = 1

NBNA

∑
i j∈[NB ]×[NA]

ei . (75)

2 https://github.com/FabianRathke/octSegmentation.
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5.2 Feature Extraction

5.2.1 Region Covariance Descriptors

To apply the geometric framework proposed in Sect. 3 we
next introduce the region covariance descriptors (Tuzel et al.
2006)whichhavebeenwidely applied in computer vision and
medical imaging, see e.g. Cherian andSra (2016), Turaga and
Srivastava (2016), Depeursinge et al. (2014) and Sirinukun-
wattana et al. (2015). We model the raw intensity data for
a given OCT volume by a mapping I : D → R+ where
D ⊂ R

3 is the underlying spatial domain. To each voxel
v ∈ D , we associate the local feature vector f : D → R

10,

f : D → R
10 (76)

v 
→ (I (v),∇x I (v),∇y I (v),∇z I (v),√
2∇xy I (v), . . . ,∇zz I (v))
. (77)

assembled from the intensity I (v) aswell as first- and second-
order responses of derivative filters capturing information
from larger scales following (Hashimoto andSklansky1987).
To improve the segmentation accuracy we combine the
derivative filter responses from various scales in an com-
putationally efficient way we first normalize the derivatives
of the input volume I (v) at every scale σs by convolution
each dimension with a 1D window:

∇x Ĩσs (v) = σ 2
s

∂

∂x
G̃(v, σs) (78)

where G̃(v, σs) is an approximation to a Gaussian win-
dow

(
G(v, σs) ∗ I

)
(v) at scale σs as in detail described in

Hashimoto and Sklansky (1987). Subsequentlywe follow the
idea presented by Lindeberg (2004) by taking local maxima
over scales

∇x Ĩ (v) = max
σs

∇x Ĩσs (v), (79)

which are serving for the mapping (76).
By introducing a suitable geometric graph spanning D ,

we can associate a neighborhood Ni of fixed size with each
voxel i ∈ [n] as in (24). For each neighborhood, we define
the regularized region covariance descriptor

Si :=
∑
j∈Ni

θi j ( f j − fi )( f j − fi )
T + ε I , fi =

∑
k∈Ni

θik fk,

(80)

as a weighted empirical covariance matrix with respect to
feature vectors f j . The small value 1� ε > 0 acts as a reg-
ularization parameter enforcing positive definiteness of Si .
Diagonal entries of each covariance matrix Ci are empirical

variances of feature channels in (76) while the off-diagonal
entries represent empirical correlations within the regionNi .

5.2.2 Prototypes onPd

In view of the assignment flow framework introduced in
Sect. 2, we interpret region covariance descriptors (80) as
data points in the metric space Pd of symmetric positive
definite matrices and model each retina tissue indexed by
l ∈ [c] with a random variable Sl taking values inPd . Sup-
pose we draw Nl samples {Skl }Nl

k=1 from the distribution of
Sl . The most basic way to apply assignment flows to data
inPd is based on computing a prototypical element ofPd

for each tissue layer, e.g. the Riemannian center of mass of
{Skl }Nl

k=1. This corresponds to directly choosing Pd as fea-
ture spaceF in (1a). We find that superior empirical results
are achieved by considering a dictionary of Kl > 1 prototyp-
ical elements for each layer l ∈ [c]. This entails partitioning
the samples {Skl }Nl

k=1 into Kl disjoint subsets Ŝ
j
l ⊆ {Skl }Nl

k=1,
j ∈ [Kl ] with representatives S̃ j

l determined offline.
Tofind a set of representativeswhich captures the structure

of the data, weminimize expected loss measured by the Stein
divergence (50) leading to the K -means like functional

Epl (S̃l) =
Kl∑
j=1

p( j)
∑
Sil ∈Ŝ j

l

p(i | j)
p( j)

DS(S
i
l , S̃

j
l ),

p(i, j) = 1

Nl
, pl( j) = N j

Nl
.

(81)

A hard partitioning is achieved by applying Lloyd’s algo-
rithm in conjunction with Algorithm 2 for mean retrieval.
We additionally employ themore common soft K-means like
approach for determining prototypes by employing the mix-
ture exponential family model based on Stein divergence to
given data

p(Sil , �l) =
K∑
j=1

π
j
l p(S

i
l , S̃

j
l )), (82)

where the parameters

�l = {(π j
l }Kj=1, {S̃ j

l }Kj=1), (π1
l , . . . , π

|J |
l ) ∈ S (83)

have to be adjusted to given data. The prototypes are recov-
ered as mean parameters S j,T

l though an iterative process
commonly refered to as expectation maximation (EM)
defined by alternation of the following iterations

pl( j |Sil , �t
l ) =

π
( j,t)
l e−DS(Sil ,S̃

( j,t)
l )∑

k=1 π
(k,t)
l e−DS(Sil ,S̃

(k,t)
l )

,

(Expectation step)

(84)
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Fig. 5 Top Metric classification evaluated on thin layers (IPL, INL,
OPL, PR2). BottomAnalogous metric evaluation for (GCL, ONL, PR1,
RPE). From left to right The number of true outcomes after direct
comparison with ground truth, for the choice of the exact Riemannian
geometry ofPd , Stein divergence and Log-Euclidean distance for geo-
metric mean computation. The results of first two columns indicate

higher detection performance while respecting the Riemannian geom-
etry of a curved manifold. Enlarging the set of prototypical covariance
descriptors leads to increased matching accuracy which is in contrast
to the observed flattening of matching curves when using the Log-
Euclidean distance

followed by updating the marginals at each time step up to
final time T

π
( j,t+1)
l =

N j∑
i=1

pl( j |Sil , �t
l )S̃

j,t (85)

S̃ j,t+1
l = argminS∈Pd

(
n∑

i=1
p( j |�t

i )DS(S
i
l , S)

)
.

(Maximization step) (86)

The decision to approximate the Riemannian metric on
Pd by the Stein divergence (50) can be backed up empir-
ically. To this end, we randomly select descriptors (80)
representing the nerve fibre layer in real-world OCT data and
compute their Riemannian mean as well as their mean w.r.t.
the Log-Euclidianmetric (46) and Stein divergence (50). Fig-
ure 6 illustrates that Stein divergence approximates the full
Riemannian metric more precisely than the Log-Euclidian
metric while still achieving a significant reduction in compu-
tational effort. Furthermore to evaluate the classification we
extracted a dictionary of 200 prototypes for representing each
retina tissue for different choice of metric and subsequently
evaluated the resulting segmentation accuracy by assigning
each voxel to a class containing the prototype with smallest
distance using a croppedOCTVolume of size 138×100×40
taken from the testing set.

Figure 5 visualizes the correct classification matches
for retina layers ordered by color according to Fig. 3. In

particular, we inspect a notable gain of correct matches
while respecting the Riemannian geometry (first column) as
opposed to Log-Euclidean setting (third column). Regarding
the approximation of (36) by (50), we are observing more
effective detection of outer photoreceptor layer (PR1), inner
nuclear layer (INL) and retinal pigment epithelium (RPE).
Furthermore, taking a closer look at (OPL) and (ONL) we
note a typical tradeoff between the number of prototypes
and detection performance indicating superior retina to voxel
allocationby applying (46),whereas the surrogate divergence
metric (50) has the tendency to improve the accuracy while
increasing the size of evaluated prototypes in contrast to flat-
tening curves when relying on (47).

This illustrates a tradeoff between computational effort
and labeling performance, cf. Fig. 6. Note that prototypes are
computed offline, making runtime performance less relevant
tomedical practitioners. However, building a distancematrix
involves computing n

∑
l∈[c] Kl Riemannian distances resp.

Stein divergences to prototypes. This still leads to a large
difference in (online) runtime since evaluation of theRieman-
nian distance (36) involves generalized eigendecomposition
while less costlyCholesky decomposition suffices to evaluate
the Stein divergence (50).

Summarizing the discussed results concerning the appli-
cation of Algorithms 1 and 2, we point out that respecting
the Riemannian geometry leads to superior labeling results
providing more descriptive prototypes (Figs. 5, 6).
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Fig. 6 Left Deviation of the geometric means computed using the
Log-Euclidian metric and Stein divergence, respectively, from the true
Riemannian mean. Right Runtime for geometric mean computation
using the different metrics. All evaluations were performed on a ran-

domly chosen subset of covariance descriptors representing the retinal
nerve fibre layer in a real-world OCT scan. Both graphics clearly
highlight the advantages of using Stein the divergence in terms of
approximation accuracy and efficient numerical computation

5.2.3 CNN Features

In addition to the covariance features in Sect. 5.2.1, we com-
pare a second approach to local feature extraction based on
a convolutional neural network architecture. For each node
i ∈ [n], we trained the network to directly predict the cor-
rect class in [c] using raw intensity values in Ni as input.
As output, we find a score for each layer which can directly
be transformed into a distance vector suitable as input to
the ordered assignment flow (69) via (68). The specific net-
work used in our experiments has a ResNet architecture
comprising four residually connected blocks of 3D convo-
lutions and ReLU activation. Model size was hand-tuned for
different sizes of input neighborhoods, adjusting the number
of convolutions per block as well as corresponding channel
dimensions. Details of the employed architecture are listed
in Appendix B. In particular, the input is a patch of voxels
with size 17× 17× 5 which upper-bounds the network field
of view. We thus limit the network to extracting localized
features as compared to commonly used machine learning
approaches which aim to incorporate as much global context
into the feature extraction process as possible. For example,
the U-Net architecture employed in Liu et al. (2019) works
with large (496× 64) slices of B-scans and comprises three
2×2 pooling operations. On the coarsest scale (bottom of the
U), a single convolution with filter size 7× 3 thus translates
into a field of view of at least 56× 24 after unpooling.

5.3 Segmentation via Ordered Assignment

By numerically integrating the ordered assignment flow (2)
parametrized by the distance matrix D, an assignment state
W is evolved onW until mean entropy of pixel assignments
is low. We specifically use geometric Euler integration steps

on TW with a constant step-length of h = 0.1 (see Zeilmann
et al. 2020 for details of this process). Geometric averaging
with uniform weights leads to local regularization of assign-
ments which smooths regions in which the features do not
conclusively point to any label.More global knowledge about
the ordering of cell layers is incorporated into Eord which
addressesmore severe inconsistencies between local features
and global ordering. In all experiments, the neighborhood of
each voxel i ∈ [n] is choosen as the voxel patch of size
5× 5× 3 centered at i .

5.4 Evaluation

To benchmark our novel segmentation approach, we first
extract local features for each voxel from a rawOCT volume.
As described above, either region covariance descriptors
(Sect. 5.2.1) or class scores predicted by a CNN (Sect. 5.2.3)
are computed for segmenting the retina layers with ordered
assignment flow which we in the following abbreviate as
OAF (A) and OAF (B) respectively. To facilitate the perfor-
mance examination between the proposed approach and the
reference methods introduced in (Sect. 5.1.2) we evaluate
the obtained results through direct comparison of different
metrics from (Sect. 5.1.3) and by providing side-by-side
visualizations of segmented OCT-volumes in each subsec-
tion separately. Specifically,we calculate theDICE similarity
coefficient (Dice 1945) and the mean absolute error for seg-
mented cell layers within the pixel size of 3.87µm compared
to human grader by segmenting 8OCTvolumes consisting of
61B-scans. Throughout the performed experiments, we fixed
the grid connectivity Ni for each voxel i ∈ I to 3× 5× 5.
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(a)

(b)

(c)

(d)

Fig. 7 From top to bottom: Row a One B-scan from a OCT-volume
showing the shadow effect, with ground truth plot on the right. Row b
Local nearest neighbor assignments based on prototypes byminimizing
(81) computed with Stein divergence, with the result of the segmenta-
tion returned by the basic assignment flow (Sect. 2) on the right. Row

c Proposed layer-ordered volume segmentation based on covariance
descriptors. From left to right: ordered volume segmentation for dif-
ferent γ = 0.5, γ = 0.1 [cf. Eq. (66)]. Row d Local rounding result
extracted from Res-Net on the left and the result of the ordered assign-
ment flow on the right

5.4.1 Covariance Descriptor vs. CNN

In order to compare OAF (A) and OAF (B), we first specifi-
cally evaluate the segmentation performance based on local
features given by the covariance descriptor (Sect. 5.2.1) as
well as features extracted by a CNN (5.2.3). For OAF (A),
a dictionary of k = 400 prototypical cluster centers on the
positive definite cone (Sect. 33) has been determined offline
for each retina layer using the iterative clustering with (82).
These are compared to descriptors extracted from the unseen
volumebycomputingpairwiseStein divergence (Sect. 3.2.3).
The minimum value corresponding to the lowest divergence
for each pair of voxel i ∈ [n] and cell layer j ∈ [c] is noted
as entry di j of the distance matrix Dcov, i.e. for every voxel i
the divergence to its closest representative of layer j is given
by

(Dcov)i j := min
k∈[400] DS(Si , S̃

k
j ). (87)

For OAF (B), class scores C ∈ R
n×c predicted by the neu-

ronal network (Sect. 5.2.3) are transformed into a distance
matrix Dcnn = −C simply by switching their sign followed
by adjusting the parameter ρ to adjust data scale in the like-
lihood matrix (22).

A naive way to segment the volume in accordance with
the observed data is by choosing argmin j∈[c] Di j for each
voxel i . However, due to the challenging signal-to-noise
ratio in real-world OCT data, classes will not usually be
well-separated in the feature space at hand. The resulting
uncertainty pertaining to the assignment of classes using
exclusively local features is encoded into each distance
matrix.

The experimental results discussed next illustrate the
relative influence of the covariance descriptors (80) and
regularization properties of the ordered assignment flow,
respectively. To overcome the high computational complex-
ity when extracting features given by (80) and the subsequent
assembly of distance matrix (87) during the experiments
carried out for OAF(A) and OAF(B) we segmented OCT
volumes consisting of 41 remaining B-scans after cropping
10 B-scans from each volume boundary. Additionally we
reduced the size of each B-scan by 148 voxels from each
side along the NA axis to avoid artifacts caused by high
varying shape and strong thinning of the retinal layers near
volume bounds. Figure 7 illustrates real-world labeling per-
formance based on extracting a dictionary of 400 prototypes
per layer by minimizing (81) and employing Algorithm 2
for mean retrieval. The second row in Fig. 7 illustrates a
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Table 1 Dice indices (±
standard deviation) per cell
layer for each of the compared
segmentation approaches

OAF (A) OAF (B) Rathke et al. (2014) IOWA

ILM 0.8837 ± 0.2564 0.9739 ± 0.0189 0.9972 ± 0.0006 0.9837 ± 0.0043

RNFL 0.6963 ± 0.1998 0.8842 ± 0.0313 0.8841 ± 0.0125 0.8323 ± 0.0236

GCL 0.6657 ± 0.1909 0.8373 ± 0.0263 0.8735 ± 0.0152 0.7757 ± 0.0334

IPL 0.5853 ± 0.1773 0.8151 ± 0.0367 0.7860 ± 0.0189

INL 0.6671 ± 0.1773 0.8414 ± 0.0035 0.7501 ± 0.0292 0.8434 ± 0.0269

OPL 0.7018 ± 0.2013 0.8442 ± 0.0437 0.7651 ± 0.0124 0.8024 ± 0.0311

ONL 0.8575 ± 0.2523 0.9254 ± 0.0486 0.9312 ± 0.0068 0.8893 ± 0.0182

PR1 0.8199 ± 0.2407 0.8717 ± 0.0441 0.7945 ± 0.0271

PR2 0.6787 ± 0.1976 0.8330 ± 0.0516

RPE 0.6313 ± 0.1821 0.8213 ± 0.0835

CS 0.8606 ± 0.2469 0.9445 ± 0.0488 0.9858 ± 0.0073 0.9667 ± 0.0167

Lowest mean in bold. The reference methods (Rathke et al. 2014) and IOWA distinguish between a smaller
number of cell layers as indicated. Evaluation was performed on a test set consisting of eight OCT volumes
(see Appendix C)

Table 2 Mean absolute errors
(± standard deviation) per cell
layer interface for each of the
compared segmentation
approaches in pixels (1 pixel
= 3.87µm)

OAF (A) OAF (B) Rathke et al. (2014) IOWA

ILM-RNFL 1.3590 ± 0.4114 0.8856 ± 0.3513 1.3080 ± 0.6039 2.7799 ± 0.9485

RNFL-GCL 2.5426 ± 0.7819 1.4767 ± 0.5589 2.9180 ± 1.0303 2.0561 ± 0.4978

GCL-IPL 3.0183 ± 1.0682 1.6082 ± 1.5291 – 3.1970 ± 1.1408

IPL-INL 2.6160 ± 1.1294 1.5004 ± 0.8652 5.1853 ± 1.3642 2.7583 ± 1.3776

INL-OPL 1.6080 ± 0.5120 1.6220 ± 1.0786 4.8489 ± 1.5898 3.0330 ± 1.2837

OPL-ONL 1.6342 ± 0.7174 1.8853 ± 1.3951 4.1490 ± 1.2310 4.4292 ± 1.5052

ONL-PR1 0.6995 ± 0.2467 0.7500 ± 0.3216 – –

PR1-PR2 0.6320 ± 0.2442 0.8458 ± 0.4914 5.7281 ± 1.5411 –

PR2-RPE 1.7244 ± 0.6038 1.2850 ± 1.3660 – –

RPE-CS 2.1354 ± 1.0836 2.8613 ± 2.5612 5.2757 ± 1.6452 7.3738 ± 3.2031

Lowest mean in bold. Evaluation was performed on a test set consisting of eight OCT volumes (see
Appendix C)

typical result of volume segmentation by nearest neighbor
assignment without ordering constraint. As expected, the
high texture similarity between the choroid and GCL layer
yields wrong predictions resulting in violation of physiolog-
ical cell layer ordering through the whole volume. However,
using pairwise correlations captured by covariance matrices
leads to accurate detection of the internal limiting membrane
(ILM)with its characteristic highly reflective boundary. Sim-
ilarly, the light rejecting fiber layers RNFL, PR1 andRPE can
also be detected by this approach. For the particularly chal-
lenging inner layers such as GCL, INL and ONL that are
mainly comprised of weakly reflective neuronal cell bodies,
regularization by imposing (65) is required. In the third row
of Fig. 7, we plot the ordered volume segmentation for two
different values of the parameter γ defined in (66), which
controls the ordering regularization by means of the novel
generalized likelihood matrix (68). Direct comparison with
the ground truth shows how ordered labelings evolve on the
assignment manifold while simultaneously giving accurate
data-driven detection ofRNFL,OPL, INLand theONL layer.

For the remaining critical inner layers, the local prototypes
extracted by (81) fail to represent the retina layers properly
and lead to artifacts due to the presence of vertical shadow
regions caused by existing blood vessels, which contribute
to a loss of the interference signal during the OCT scanning
process, as shown in Fig. 7.

After segmentation of the test data set, the mean and stan-
dard deviation were calculated for better assessment of the
retina layer detection accuracy of the proposed segmenta-
tion method, according to the performance measures (75)
and (74). The evaluation results for each retina tissue as
depicted in Fig. 3, are detailed in Tables 1 and 2. The first
row of Fig. 8 clearly shows the superior detection accuracy
of utilizing the Ordered Assignment Flow for the first outer
retina layers (RNFL, GCL, IPL, INL) and the (PR2-RPE)
region in connection with local features extracted by a CNN
(Sect. 5.2.3). Nonetheless, the covariance descriptor achieves
comparable results for characterization of the outer plexiform
layer (OPL) and exhibits increased retina detection regard-
ing the photoreceptor region (PR1,PR2) and outer nuclear
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Fig. 8 Performance measures per layer in terms of the mean average
error based on the segmentation of 10 healthy OCT volumes. Top row
Error bars for retina layers separated by the external limiting membrane
(ELM) corresponding to OAF (A) and OAF (B).Middle row Compari-

son of the mean errors of OAF (B) and the probabilistic method (Rathke
et al. 2014). Bottom row Comparison of mean average errors of OAF
(B) and the the IOWA reference algorithm

region (ONL). Table 1 includes the evaluation based on Dice
similarity which is less sensitive to outliers and serves as an
appropriate metric for calculating the performance measures
across large 3D volumes. To obtain a consistent and clear
comparability between the involved features on which we
rely to tackle the specific problem of retina layer segmenta-

tion, the corresponding results are visualized in Fig. 9. The
graphic illustrates higher Dice similarity and relatively small
standard deviation when incorporating features (Sect. 5.2.3)
as input to our model, which characterizes their superior
informative content. According to the left plot, the covari-
ance descriptor performs well for detecting the prototypical
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Fig. 9 Box plots of DICE similarity coefficients between computed segmentation results and manually labeled ground truth. Left OAF (A). Right
OAF (B). The OAF based on CNN features yields improved segmentations for all retina layers
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Fig. 10 From top to bottom Three sample B-Scans extracted for dif-
ferent locations from a healthy OCT volume with 61 scans, with the
fovea centered OCT scan visualized in the middle column. The asso-
ciated augmented labeling. OAF (A) segmentation using a dictionary
of covariance descriptors determined by (82). OAF (B) segmentation

using features determined the CNN network. In contrast to to results
achieved by OAF (A), the above visualization indicates more accurate
detection of retina boundaries using OAF (B), in particular near the
fovea region (middle column)

textures of the internal limiting membrane (ILM), the (ONL)
and (PR1) layers as well as the RPE boundary to the choroid
section. Especially this highlights the ability of using gra-
dient based features for accurate detection of retina tissues
indicating sharp contrast between the neighboring layers, as
is the case for ONL and PR1.

In general, the more robust retina detection features
extracted by a CNN can be attributed to the underlying
manifold geometry of symmetric positive definite matrices

where the data partition is performed linearly by hyper-
planes. This further indicates the nonlinear structure of the
acquired volumetric OCT data. Figure 10 presents typical
labelings of a B-scan for different locations in the segmented
healthy OCT volume obtained with the proposed approach.
Direct comparison with the ground truth, as depicted in row
(b), demonstrates higher accuracy and smoother boundary
transitions by using CNN features instead of covariance
descriptors. In particular, for the challenging segmentation
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Fig. 11 Box plots of DICE similarity coefficients between computed
segmentation results andmanually labeled ground truth. Left IOWA ref-
erence algorithm (Garvin et al. n.d). Right OAF based on CNN features.

See Table 1 for mean and standard deviations. Exploiting OAF (B) for
retina tissue classification results in improved overall layer detection
performance, especially for the PR1-RPE region
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Fig. 12 Illustration of retina layer segmentation results listed in Tables 1 and 2. From top to bottom Ground truth labeling. Labeled retina tissues
using the proposed approach based on covariance descriptors and CNN features, respectively. The resulting segmentation obtained using the IOWA
reference algorithm

of the ganglion cell layer (GCL) with a typical thinning near
the macular region (middle scan), we report a Dice index of
0.8373±0.0263 as opposed to 0.6657±0.1909. The remain-
ing numerical experiments are focused on the validation of
OAF against the retina segmentation methods summarized
in Sect. 5.1.2 serving as reference.

5.4.2 IOWA Reference Algorithm

To assess the segmentation performance of our proposed
approach, we first compared to the state of the art graph-

based retina segmentation method of 10 intra-retinal layers
developed by the Retinal Image Analysis Laboratory at the
Iowa Institute for Biomedical Imaging (Kang et al. 2006;
Abràmoff et al. 2010; Garvin et al. 2009), also referred to
as the IOWA Reference Algorithm. We quantify the region
agreement with manual segmentation regarded as gold stan-
dard. Since both the augmented volumes and the compared
reference methods determine boundary locations of retina
layers intersections, we first transfer the retina surfaces to a
layer mask by rounding to the voxel size and assign to voxels
within each A-scan the associated layer label, starting from
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the observed boundary to the location of the next detected
intersection surface of two neighboring layers.

To access a quantitative direct comparison with the IOWA
reference algorithm, the tested OCT volumes were imported
into OCTExplorer 3.8.0 and segmented using the predefined
Macular-OCT IOWA software after properly adjusting the
resolution parameters. Additionally, we preprocessed each
volume by removing 2 B-scans from each side to get rid
of boundary artifacts and performed segmentation with the
resulting volume size of 498×768×59 voxels. Quantitative
results are summarized in Tables 1 and 2. Figure 11 provides
a statistical illustration of the Dice index which reveals the
high performance accuracy for methods which is in accor-
dance with the mean average error shown in the last row of
Fig. 8. In particular, we observe a notable increase of perfor-
mance using the OAF for detection of the ganglion cell layer
with overall accuracy of 0.8546± 0.0281µm, see Fig. 12
for visualized segmentations of 3 B-scans.

5.4.3 Probabilistic Model

Next, we provide a visual and statistical comparison of the
proposed approach and the probabilistic state of the art
retina segmentation approach (Rathke et al. 2014) underly-
ing Eq. (70). As before, to achieve a direct comparison with
the proposed approach, we first adopted the OCT volumes
by performing a cropping of 134 voxel from volume bound-
ary along NA axis to match the shape and parameters for
the trained model given in Rathke et al. (2014) which sup-
ports the detection of retinal layer boundaries on data sets of
dimension 496 × 500 × 61. Subsequently, we removed the
boundaries between regions GCL and IPL, ONL and PR1,
PR2 and RPE to obtain three characteristic layers which have
to be detected. Figure 13 displays the labeling accuracy. Both
methods perform well by accurately segmenting flat shaped
retina tissues, as shown in the first and last columns. How-
ever, closer inspection of the second column reveals a more
accurate detection of layer thickness for the (PR2+RPE)
and (INL) regions below the concave curved fovea region
by using OAF(B). This is mainly due to the connectivity
constraints imposed on boundary detection in Rathke et al.
(2014). However, the method in Rathke et al. (2014) is more
accurate by dealing with rapidly decreasing layer thickness
near the fovea region, as observed for GCL and IPL layers in
the middle column of Fig. 13 after visual comparison against
the manual delineations (first row). In contrast to the Gaus-
sian shape prior used in Rathke et al. (2014), the proposed
method does not model connectivity constraints. This allows
for the observed oversmoothing artifact, but also makes the
OAF approach more amenable for extension to pathological
volumes with vanishing retina boundaries. For example, in
the case of vitreomacular traction or diabetic macular edema,

imposing connectivity constraints aggravates the problem of
dealing with irregular retina boundaries.

Figure 14 additionally provides a 3D view on detected
retina surfaces for each evaluated reference method used in
this publication. The corresponding performance measures
(Table 1) underpin the notably higher Dice similarity for
(PR2+RPE) and for the (INL) layers. The statistical plots
for the mean average error and the Dice similarity index are
given in Figs. 8 and 15, clearly showing the overall superi-
ority of OAF (B) with respect to both Dice index and mean
average error. In particular, following Table 2, small error
rates are observed among all the segmented layers, except
for the (ILM) boundary which is detected by all methods
with high accuracy. We point out that in general our method
is not limited to any number of segmented layers, if ground
truth is available.

6 Discussion

We discuss additional aspects pertaining to the data used for
training feature extractors as well as the locality of extracted
features and limitations of the proposed approach.

6.1 Ground Truth Generation

The training and evaluation of supervised models for feature
extraction requires a sizeable amount of high-quality labeled
ground truth data. This presents a commonly encountered
challenge in 3DOCT segmentation (Dufour et al. 2013;Kang
et al. 2006), because the process of manually labeling every
voxel of a 3D volume is extremely laborious. The desire
to account for inter-observer variability in manual segmenta-
tions further compounds this problem.OCTvolumes used for
testing purposes in the present paperwere initially segmented
by an automatic procedure based on hand-crafted features. In
a subsequent step, each B-scan segmentation was manually
corrected by a medical practitioner. The automatic method
used for initial segmentation only explicitly regularizes on
each individual B-scan, leading to irregularity between con-
secutive B-scans (see Fig. 16).

Manual correction of initial automatic segmentations
leads to a noticeable reduction of irregularity but does not
completely remove it. We therefore cannot rule out that a
small bias towards the initial automatic segmentation based
on hand-crafted features may still be present in the ground
truth segmentations that we used to quantify segmentation
performance of novel methods as well as baseline methods
in this paper. During feature extraction, deep learning mod-
els may be capable of discovering the specific hand-crafted
features used for initial automated segmentation which may
in turn lead to exploitation of any bias towards them. In con-
trast, because the reference methods are not trained on the
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Fig. 13 From top to bottom Ground truth for the augmented retina layer corresponding to Table 2. Segmentation results of the OAF based on
manifold valued features and on CNN features, respectively. Segmentation results achieved by the probabilistic graphical model approach (Rathke
et al. 2014)

Fig. 14 Row a: From left to right: 3D retinal surfaces determined using
OAF (A) (left column) and OAF (B) (middle column). The last column
depicts ground truth. Row b: From left to right: Segmentation of reti-
nal tissues with the IOWA reference algorithm (left column) with the
proposed approach (middle column). Row c: Visual comparison of the

probabilistic method (Rathke et al. 2014) (left column) left and the OAF
(B) (middle column). Our approach OAF (B) leads to accurate retina
layer segmentation with smooth layer boundaries, as observed in the
middle column
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Fig. 15 Box plots of DICE similarity coefficients between computed
segmentation results and manually labeled ground truth. Left Proba-
bilistic approach (70) proposed in Rathke et al. (2014). Right OAF

based on CNN features. See Table 1 for mean and standard deviations.
Direct comparison shows a notably higher detection performance for
segmenting the intraretinal layers using OAF (B)

Fig. 16 Left Initial automatic segmentation of individual B-scan based on hand-crafted features. Right Section of the same automatically segmented
volume orthogonal to each B-scan

same data, they can not exploit any such bias, putting them
at a possible disadvantage.

Figure 16 also highlights the fact that manual annota-
tions as a gold standard still have nontrivial variance and
are partly inconsistent between B-scans. In Rathke et al.
(2014), the variance in manual annotations is further ana-
lyzed by comparing between two different human observers.
They found that for a similar dataset, the discrepancybetween
both humanobservers varies between 1.37± 0.51µm for the
most consistent layer boundary and 7.57± 1.06µm for the
least consistent. Comparison to the results in Table 2 (1 pixel
= 3.87µm) illustrates that the proposedmodel is close to the
quality of manual annotation in terms of mean average error.
It is to be noted, that similar or even higher scores have been
reported for deep learning methods such as Liu et al. (2019)
which work on individual B-scans. In view of the inconsis-
tency between manual B-scan segmentations displayed in
Fig. 16, it is to be questioned to what extent further improve-
ment of these scores truely reflects improved detection of
retina layers if manual annotation is the most precise method
available for reference. Part of the contribution of the present
work is notably the introduction of a 3D segmentation frame-
work (Definition 2) which serves to regularize by leveraging
domain knowledge based on arbitrary features. In particular,
any deep network can be used as a drop-in replacement for
the feature extraction methods discussed in Sect. 5.2.

6.2 Feature Locality

The ordered assignment flow segmentation approach can
work with data from any metric space and is hence com-
pletely agnostic to the choice of preliminary feature extrac-
tion method. In this paper, we chose to limit the field of
view of deep networks such that features with local dis-
criminative information are extracted. This makes empirical
results directly comparable between features basedon covari-
ance descriptors and features extracted by these networks. In
addition, we conjecture that local features may generalize
better to unseen pathologies. Specifically, if a pathological
change in retinal appearance pertains to the global shape of
cell layers, local features are largely uneffected. In this way,
we expect segmentation performance to be relatively con-
sistent on real-world data. Conversely, widening the field
of view in feature extraction should be accompanied by a
well-considered training procedure in order to achieve simi-
lar generalization behavior, by employing e.g. extensive data
augmentation. While raw OCT volume data has become rel-
atively plentiful in clinical settings, large volume datasets
with high-quality gold-standard segmentation are not widely
available at the time of writing. Therefore, by representing a
given OCT scan locally as opposed to incorporating global
context at every stage, it is our next hypothesis that supe-
rior generalization can be achieved in the face of limited
data availability. Similarly, although based on local features,
the method proposed by Rathke et al. (2014) combines local
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knowledge in accordance with a global shape prior. This
makes clear why some layer scores achieved by this method
are very competitive, but it also limits the methods ability to
generalize to unseen data if large deviation from the expected
global shape seen in training is present.

6.3 Limitations, FutureWork

While the OAF typically achieves strong improvement over
trivial rounding or baseline regularization, it does not come
with a guarantee that physiological layer order will be
attained. This is because we use the smooth function (66)
instead of the indicator function δRc+ to define Eord in (65).
The parameter γ consequently presents a tradeoff between
adherence to physiological layer order and difficulty of
numerical integration in the smooth assignment framework
(Sect. 2.3). In Fig. 7 [row (c)], this tradeoff becomes appar-
ent when segmenting based on relatively weak covariance
descriptor features. Choosing γ smaller leads to improved
adherence to the physiological layer order in computed seg-
mentations. However, this also makes numerical integration
of the flow (69) more difficult such that the choice of con-
stant step-length h = 0.1 may lead to artifacts [row (c), right
image]. In such cases, choosing adaptive step-length for inte-
gration or using a higher-order numerical integration scheme
should still yield stable algorithms at the cost of longer run-
time.

We also note that at the fovea, uniformlyweighted 5×5×3
averaging neighborhoods may lead to oversmoothing (see
Fig. 13cmiddle image)whichmanifests in excessive thinning
of e.g.GCL.To combat such artifacts, the choice of averaging
weights (23) could be made adaptive to each local neighbor-
hood. However, for most regions of the volume the constant
choice of averaging weights made in our experiments does
not lead to oversmoothing. Thus, weight adaptivity is to be
targeted primarily around the fovea which has a distinctive
shape. With regard to computational efficiency, another pos-
sible future direction is to encode the notion of layer ordering
put forward in Definition 1 within the context of a linear
dynamical system for data labeling (Zeilmann et al. 2020).

On the application side, modeling considerations similar
to the ones underlying the flow (69) most likely also apply
in other areas involving ordering constraints such as seismic
horizon tracking for landscape analysis. We thus expect that
much of the present work is also relevant outside of optical
coherence tomography.

7 Conclusion

In this paper we presented a novel, fully automated and
purely data driven approach for retina segmentation in OCT-
volumes. Compared to methods (Kang et al. 2006) (Dufour
et al. 2013) and (Rathke et al. 2014) that haveproven tobepar-

ticularly effective on tissue classificationwith a priory known
retina shape orientation, our ansatzmerely relies on local fea-
tures and yields ordered labelingswhich are directly enforced
through the underlying geometry of statistical manifold (16).
To address the task of leveraging 3D-texture information,
we proposed two different feature selection processes by
means of region covariance descriptors (80) and the out-
put obtained by training a CNN network as described in
Sect. 5.2.3, which are both based on the interaction between
local feature responses.

As opposed to other machine learning methods devel-
oped for segmenting human retina from volumetric OCT
data, the proposed method only takes the pairwise distance
between voxels and prototypes (1b) as input. As a direct
consequence our approach can be applied in connection with
broader range of features living in anymetric space and addi-
tionally provides the incorporation of outputs from trained
neuronal convolution networks interpreted as image features,
where a particular instance of such type was demonstrated
in Sect. 5.2.3. Even in view of the moderate result achieved
after segmentation using OAF (A) in connection with covari-
ance descriptors, we observe the importance of our automatic
algorithm by its high level of regularization. Compared to
the approach presented in Chiu et al. (2015) which employs
a higher number of input features but still requires postpro-
cessing steps to yield order preserving labeling, our approach
provides a way to perform this tasks simultaneously.

Using locally adapted features for handling volumetric
OCT data sets from patients with observable pathological
retina changes is in particular valuable to suppress wrong
layer boundaries predictions caused by prior assumptions on
retinal layer thicknesses typically made by graphical model
approaches as in Dufour et al. (2013) and Song et al. (2013).
Our method overcomes this limitation by mainly avoiding
any bias towards using priors to global retina shape and
instead only relies on the natural biological layer order-
ing, which is accomplished by restricting the assignment
manifold to probabilities that satisfy the ordering constraint
presented in Sect. 4. The experimental results reported in
Sect. 5, and the direct comparison to the state of the art
segmentation techniques (Garvin et al. n.d) and (Rathke
et al. 2014) by using common validation metrics, underpin
a notable performance and robustness of the geometric seg-
mentation approach introduced in Sect. 2, thatwe extended to
order-preserving labeling in Sect. 4. Furthermore, the results
indicate that the ordered assignment flowsuccessfully tackles
problems in the field of retinal tissue classification on 3D-
OCT data which are typically corrupted by speckle noise,
with achieved performance comparable to manual gr-aders
which makes it to a method of choice for medical image
applications and extensions therein. We point out that our
approach consequently differs from common deep learning
methods which explicitly aim to incorporate global context
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into the feature extraction process. In particular, throughout
the experiments we observed higher regularization resulting
in smoother transitions of layer boundaries along the B-scan
acquisition axis similar to the effect in Rathke et al. (2014)
where the used smooth global Gaussian prior leads to limi-
tations for pathological applications.

To reduce the reliance ofmanually segmentedground truth
for extracting dictionaries of prototypes, our method can eas-
ily be extended to unsupervised scenarios in the context of
Zisler et al. (2020). To deal with highly variable layer bound-
aries another possible extension of our method is to predict
weights for geometric averaging (23) in an optimal control
theoretic way, to cope with the linearized dynamics of the
assignment flow (Zeilmann et al. 2020) as in detail elabo-
rated in Hühnerbein et al. (2021). Consequently, by building
on the feasible concept of spatially regularized assignments
(Schnörr 2020), the ordered flow (2) possesses the potential
to be extended towards the detection of pathological retina
changes and vascular vessel structure. We expect that the
joint interaction of retina tissues and blood vessels during
the segmentation with the assignment flow will lead to more
effective layer detection, which is the objective of our current
research.
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A Proof of Proposition 1

Proof “⇐” Suppose there exists a measure M ∈ R
c×c with

marginals wi , w j and 〈Q − I, M〉 = 0. Then

w j − wi = By ⇔ Q(M − M
)1 = y. (88)

It suffices to show that no entry of y is negative. Define the
shorthand ζ = (M−M
)1. Further, let M·,k denote the k-th

column of M and let Mk,· denote the k-th row of M . For
l ∈ [c] the components of ζ are given by

ζl = (M−M
)1|l = 〈Ml,·−M·,l ,1〉 =
c∑

k=l
Ml,k−

l∑
k=1

Mk,l .

(89)

By (88), the entries of y read

yr =
r∑

q=1
ζq . (90)

We can now inductively show that yr ≥ 0 for all r ∈ [c]. The
cases r = 1 and r = c are immediate:

y1 = ζ1 =
c∑

k=1
M1,k − M1,1 =

c∑
k=2

M1,k ≥ 0 (91)

yc = 〈ζ,1〉 = 〈M − M
,11
〉
=

∑
i, j∈[c]

Mi, j −
∑

i, j∈[c]
M


i, j = 0 . (92)

For r ∈ {2, . . . , c − 1} we make the hypothesis that

yr =
r∑

q=1
ζq =

c∑
k=r+1

(
M1,k + · · · + Mr ,k

) ≥ 0 (93)

which is consistent with the result for r = 1 in (91). It follows

yr+1 =
r+1∑
q=1

ζq (94)

= ζr+1 +
c∑

k=r+1

(
M1,k + · · · + Mr ,k

)
(95)

=
c∑

k=r+1
Mr+1,k −

r+1∑
k=1

Mk,r+1

+
c∑

k=r+1

(
M1,k + · · · + Mr ,k

)
(96)

=
c∑

k=r+2
Mr+1,k +

c∑
k=r+2

(
M1,k + · · · + Mr ,k

)
(97)

=
c∑

k=r+2

(
M1,k + · · · + Mr ,k + Mr+1,k

)
(98)

where we used (93) in (95). This completes the inductive step
and thus shows y ≥ 0.
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“⇒” Let (wi , w j ) be ordered. Following Definition (1), it
holds

B−1(w j − wi ) = Q(wi − w j ) ∈ R
c+. (99)

We show the existence of a transport plan M ≥ 0 satisfying

M1 = wi , M
1 = w j (100)

as well as the ordering constraint 〈Q − I, M〉 = 0 by direct
construction. For c = 2,

M =
(

(w j )1 (wi )1 − (w j )1
0 1− (wi )1

)
(101)

satisfies these requirements. Now, let c > 2 and define the
mapping

Cc−1
1 : Δc → Δc−1 (102)

w 
→ w̃ = (w2, . . . , wc)+ w1

c − 1
1c−1. (103)

If (wi , w j ) ∈ Δ2
c is ordered, then the two assignments

(w̃i , w̃ j ) := (Cc−1
1 (wi ),C

c−1
1 (w j )) ∈ Δ2

c−1 (104)

are ordered as well because

Q(w̃i−w̃ j ) = Q(w̄i−w̄ j )+ (wi )1 − (w j )1

c − 1
Q1 ≥ 0 (105)

where w̄i denotes the vector ((wi )2, . . . , (wi )c). Suppose a
transport plan M̃ ∈ R

(c−1)×(c−1) exists such that

M̃1c−1 = w̃i M̃
1c−1 = w̃ j , M̃ ≥ 0. (106)

To complete the inductive step, we consider the matrix

M0:=
(

(w j )1 s

0 M̃ − (wi )1

c−1 I

)
, s = (wi )1 − (w j )1

c − 1
1c−1

(107)

which satisfies (100) as well as 〈Q−I, M0〉 = 0. By Lemma
2, M0 can be modified to yield a transport plan with the
desired properties. ��

B Details of employed CNN architecture

As described in Sect. 5.2.3, we employed a CNN architec-
ture for feature extraction which comprises four residually
connected blocks. Figure 17 shows a detailed account of
how network components are connected. The network pro-
duces a sequence of hidden states with channel dimensions

Fig. 17 Convolutional neural
network architecture employed
for feature extraction
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8, 16, 32, 64. Each block contains 3D convolution with fil-
ter size 3 × 3 × 3 and rectified linear unit (ReLU) is used
as activation function. We trained the network until train-
ing loss stopped decreasing after around 4.45M iterations
of the stochastic gradient descent optimizer in pytorch with
step-length 0.001, momentum 0.9 and batch size 512. Image
patches were drawn in random order from the volumes in
the training set. During training, we also used dropout with
probability 0.3 prior to the single linear layer which decodes
class scores.

C Details of Used OCT Data

See Tables 3 and 4.

Table 3 Metadata of OCT
volume scans used for training

# B-Scans # A-Scans Height (px) B-Scan distance (µm) A-Scan distance (µm) H-Scale (µm/px)

19 1536 496 232.68 5.50 3.87

19 1536 496 249.88 5.51 3.87

19 1536 496 230.57 5.59 3.87

19 1536 496 23.55 5.40 3.87

19 1536 496 241.00 0.58 3.87

19 1536 496 249.07 5.79 3.87

19 1536 496 231.81 5.48 3.87

19 1536 496 255.27 5.78 3.87

19 1536 496 249.04 5.70 3.87

19 1536 496 261.67 5.97 3.87

19 1536 496 244.90 5.58 3.87

19 1536 496 233.74 5.44 3.87

19 1536 496 240.63 5.59 3.87

19 1536 496 236.18 5.45 3.87

19 1536 496 233.71 5.36 3.87

19 1536 496 244.55 0.57 3.87

19 1536 496 252.80 5.93 3.87

19 1536 496 239.38 5.61 3.87

19 1536 496 254.07 0.60 3.87

19 1536 496 247.47 5.83 3.87

19 1536 496 238.06 5.52 3.87

19 1536 496 259.48 6.05 3.87

19 1536 496 26.13 5.88 3.87

19 1536 496 243.29 5.60 3.87

19 1536 496 241.77 5.76 3.87

61 768 496 118.57 11.31 3.87

61 768 496 1.17 11.29 3.87

61 768 496 117.17 11.08 3.87

61 768 496 122.79 11.37 3.87

61 768 496 121.09 11.52 3.87

61 768 496 123.31 11.38 3.87

61 768 496 123.50 11.72 3.87

61 768 496 115.40 10.92 3.87

61 768 496 114.32 10.79 3.87

61 768 496 116.34 10.96 3.87
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Table 3 continued # B-Scans # A-Scans Height (px) B-Scan distance (µm) A-Scan distance (µm) H-Scale (µm/px)

61 768 496 119.15 11.30 3.87

61 768 496 127.25 11.81 3.87

61 768 496 126.43 12.19 3.87

61 768 496 121.90 11.45 3.87

61 768 496 12.30 11.64 3.87

61 768 496 124.78 11.86 3.87

61 768 496 123.42 11.40 3.87

61 768 496 120.17 11.40 3.87

61 768 496 126.53 12.04 3.87

61 768 496 115.97 10.96 3.87

61 768 496 128.34 12.19 3.87

61 768 496 124.72 11.74 3.87

61 768 496 119.16 11.10 3.87

61 768 496 119.46 11.23 3.87

61 768 496 123.59 11.80 3.87

61 768 496 118.64 11.07 3.87

61 768 496 125.97 1.21 3.87

61 768 496 119.12 11.47 3.87

61 768 496 122.94 11.65 3.87

61 768 496 129.43 12.07 3.87

61 768 496 116.85 11.26 3.87

61 768 496 122.56 11.64 3.87

61 768 496 128.97 12.09 3.87

512 512 496 0.58 0.58 3.87

512 512 496 0.58 0.58 3.87

256 384 496 11.57 1.15 3.87

256 384 496 11.57 1.15 3.87

512 512 496 0.58 0.58 3.87

256 384 496 11.57 1.15 3.87

512 512 496 5.86 5.85 3.87

256 384 496 11.57 1.15 3.87

512 512 496 5.77 0.58 3.87

256 384 496 11.57 1.15 3.87

512 512 496 0.58 0.58 3.87

512 512 496 0.58 0.58 3.87

256 384 496 12.10 12.05 3.87

512 512 496 6.04 6.03 3.87

512 512 496 6.04 6.03 3.87

512 512 496 6.04 6.03 3.87

512 512 496 5.70 5.69 3.87

19 512 496 242.72 11.38 3.87

19 512 496 241.81 11.33 3.87

19 512 496 242.72 11.38 3.87

19 512 496 242.72 11.38 3.87

19 512 496 241.81 11.33 3.87

19 512 496 245.15 1.15 3.87

19 512 496 242.72 11.38 3.87
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Table 4 Metadata of OCT volume scans used for testing

# B-Scans # A-Scans Height (px) B-Scan distance (µm) A-Scan distance (µm) H-Scale (µm/px)

61 768 496 116.89 11.08 3.87

61 768 496 120.11 11.33 3.87

61 768 496 123.18 11.72 3.87

61 768 496 127.47 11.94 3.87

61 768 496 127.31 1.23 3.87

61 768 496 122.97 11.52 3.87

61 768 496 113.69 1.10 3.87

61 768 496 124.13 11.80 3.87
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