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A Nonlocal Graph-PDE and Higher-Order Geometric Integration for Image
Labeling*
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Abstract. This paper introduces a novel nonlocal partial difference equation (G-PDE) for labeling metric
data on graphs. The G-PDE is derived as a nonlocal reparametrization of the assignment flow
approach that was introduced in [J. Math. Imaging Vision, 58 (2017), pp. 211--238]. Due to
this parameterization, solving the G-PDE numerically is shown to be equivalent to computing the
Riemannian gradient flow with respect to a nonconvex potential. We devise an entropy-regularized
difference of convex (DC) functions decomposition of this potential and show that the basic geometric
Euler scheme for integrating the assignment flow is equivalent to solving the G-PDE by an established
DC programming scheme. Moreover, the viewpoint of geometric integration reveals a basic way to
exploit higher-order information of the vector field that drives the assignment flow, in order to devise
a novel accelerated DC programming scheme. A detailed convergence analysis of both numerical
schemes is provided and illustrated by numerical experiments.
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1. Introduction.

1.1. Overview, motivation. Nonlocal iterative operations for data processing on graphs
constitute a basic operation that underlies many major image and data processing frameworks,
including variational methods and PDEs on graphs for denoising, morphological processing,
and other regularization-based methods of data analysis [1, 2, 3, 4, 5]. This includes deep
networks [6] and time-discretized neural ODEs [7] whose layers generate sequences of nonlocal
data transformations.

Among the extensions of such approaches to data labeling on graphs, that is, the assign-
ment of an element of a finite set of labels to data points observed at each vertex, one may
distinguish approaches whose mathematical structure is directly dictated by the labeling task
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and approaches that combine traditional data processing with a subsequent final discretization
step:

\bullet Examples of the former class are discrete graphical models [8, 9] that encode directly
the combinatorial label assignment task, as a basis for the design of various sequential
nonlocal processing steps performing approximate inference, like belief propagation.
However, the intrinsic nonsmoothness of discrete graphical models constitutes a major
obstacle for the design of hierarchical models and for efficient parameter learning.
Graphical models, therefore, have been largely superseded by deep networks during
the last decade.

\bullet Examples of the latter class include the combination of established PDE-based dif-
fusion approaches and threshold operations [10, 11, 12]. The mathematical formula-
tions inherit the connection between total variation--based variational denoising, mean
curvature motion, and level set evolution [13, 14, 15, 16], and they exhibit also con-
nections to gradient flows in terms of the Allen--Cahn equation with respect to the
Ginzburg--Landau functional [11, 15]. Regarding data labeling, however, a concep-
tual shortcoming of these approaches is that they do not provide a direct and natural
mathematical problem formulation. As a consequence, this renders it difficult to cope
with the assignment of dozens or hundreds of labels to data, and to efficiently learn
parameters in order to tailor regularization properties to the problem and the class of
data at hand.

Assignment flows [17, 18] constitute a mathematical approach tailored to the data labeling
problem, aimed at overcoming the aforementioned shortcomings. The basic idea is to represent
label assignments to data by a smooth dynamical process, based on the Fisher--Rao geometry
of discrete probability distributions and on a weighted (parametrized) coupling of local flows
for label selection across the graph. As a result, no extrinsic thresholding or rounding is
required since the underlying geometry enables one to perform both spatial diffusion for as-
signment regularization and rounding to an integral solution just by integrating the assignment
flow.

Stability and convergence to integral solutions of assignment flows hold under mild condi-
tions [19]. A wide range of numerical schemes exist [20] for integrating geometrically assign-
ment flows with GPU-conforming operations. Generalized assignment flows for unsupervised
and self-supervised scenarios [21, 22] are more involved computationally but do not essentially
change the overall mathematical structure.

Assignment flows regularize the assignment of labels to data by parameters \Omega that couple
the local flows at edges across the graph. These parameters can be determined either di-
rectly in a data-driven way as demonstrated in Figure 4 or learned offline in a supervised way.
Learning the parameters of assignment flows from data can be accomplished using symplectic
numerical integration [23] or, alternatively and quite efficiently, using exponential integration
of linearized assignment flows [24, 25]. In particular, deep parametrizations of assignment
flows do not at all change the mathematical structure, which enables one to exploit recent
progress on PAC-Bayes bounds in order to compute a statistical performance certificate of
classifications performed by deep linearized assignment flows in applications [26]. The assign-
ment flow approach is introduced in section 2.2.
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minS\in \scrW J(S) \partial tS = RS

\Bigl( 
1
2\scrD 

\alpha 
\bigl( 
\Theta \scrG \alpha (S)

\bigr) 
+ \lambda S

\Bigr) 
\.S = RS(\Omega S)

minS\in \scrW J(S), J(S) = g(S) - h(S)

\bfg \bfe \bfo \bfm \bfe \bft \bfr \bfi \bfc \bfi \bfn \bft \bfe \bfg \bfr \bfa \bft \bfi \bfo \bfn 

\bfD \bfC -\bfP \bfr \bfo \bfg \bfr \bfa \bfm \bfm \bfi \bfn \bfg 

\bfa 
\bfc 
\bfc 
\bfe 
\bfl \bfe 
\bfr \bfa 

\bft \bfi \bfo 
\bfn 

\bfn \bfo 
\bfn \bfl 
\bfo \bfc 
\bfa \bfl 

\bfb \bfo 
\bfu \bfn 

\bfd \bfa 
\bfr \bfy 

\bfc \bfo 
\bfn \bfd 

\bfi \bft \bfi 
\bfo \bfn 

Section 3

Section
5

\bfR \bfi 
\bfe \bfm 

\bfa \bfn 
\bfn \bfi \bfa 

\bfn 
\bfd \bfe 
\bfs \bfc \bfe 

\bfn \bft 

Se
cti
on

2.2

\bfn \bfo \bfn \bfl \bfo \bfc \bfa \bfl \bfG -\bfP \bfD \bfE 

Figure 1. Summary of results. The starting point (section 2.2) is a particular formulation of the as-
signment flow ODE (top) that represents the Riemannian gradient descent of a functional J (left). The first
main contribution of this paper is an equivalent alternative representation of the assignment flow equation in
terms of a PDE on the underlying graph (right), with a nonlocal data-driven diffusion term in divergence form
and further terms induced by the information-geometric approach to the labeling problem. The second ma-
jor contribution concerns a DC-decomposition of the nonconvex functional J (bottom) and a novel accelerated
minimization algorithm using a second-order tangent space parametrization of the assignment flow.

1.2. Contribution, organization. This paper makes two contributions, illustrated by Fig-
ure 1:

(a) Given an undirected weighted regular grid graph \scrG = (\scrV ,\scrE ,\Omega ), we show that solving a
particular parametrization of the assignment flow is equivalent to solving the nonlocal
nonlinear partial difference equation (G-PDE ) on the underlying graph \scrG ,

\partial tS(x, t) =RS(x,t)

\biggl( 
1

2
\scrD \alpha (\Theta \scrG \alpha (S)) + \lambda S

\biggr) 
(x, t) on \scrV \times \BbbR +,(1.1a)

S(x, t) = 0 on \scrV \alpha \scrI \times \BbbR +,(1.1b)

S(x,0) = S(x)(0) on \scrV \times \BbbR +,(1.1c)

where the vector field S takes values at x \in \scrV in the relative interior of the proba-
bility simplex that is equipped with the Fisher--Rao metric. \scrD \alpha and \scrG \alpha are nonlocal
divergence and gradient operators based on established calculus [27, 28]. The linear
mapping RS(x),t is the inverse metric tensor corresponding to the Fisher--Rao metric,
expressed in ambient coordinates.
The G-PDE (1.1) confirms and provides a generalized nonlocal formulation of a PDE
that was heuristically derived by [29, section 4.4] in the continuous-domain setting.
In particular, (1.1) addresses the data labeling problem directly without any further
pre- or postprocessing step and thus contributes to the line of PDE-based research of
image analysis initiated by Alvarez et al. [30] and Weickert [31].

(b) The particular parametrization of the assignment flow that we show in this paper
to be equivalent to (1.1), constitutes a Riemannian gradient flow with respect to a
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504 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

non-convex potential [29, section 3.2]. We consider a difference of convex (DC) func-
tion decomposition [32] of this potential and show

(i) that the simplest first-order geometric numerical scheme for integrating the as-
signment flow can be interpreted as basic two-step iterative method of DC pro-
gramming [33];

(ii) that a corresponding tangent-space parametrization of the assignment flow and
second-order derivatives of the tangent vector field can be employed to accelerate
the basic DC iterative scheme.

Due to result (a), both schemes (i) and (ii) also solve the G-PDE (1.1). In addition, we
point out that while a rich literature exists about accelerated convex optimization (see,
e.g., [34, 35, 36] and references therein), methods for accelerating nonconvex iterative
optimization schemes have been less explored.

Organization. Our paper is organized as follows. Section 2 introduces nonlocal calculus and
the assignment flow, respectively. The equivalence of the assignment flow and the G-PDE
(1.1) is derived in section 3, together with a tangent space parametrization as the basis for
the development of iterative numerical solvers, and with a balance law that reveals how spatial
diffusion interacts with label assignment by solving (1.1). Section 4 is devoted to explicitly
working out common aspects and differences of (1.1) to related work:

-- continuous-domain nonlocal diffusion [37],
-- nonlocal variational approaches to image analysis [3], and
-- nonlocal G-PDEs on graphs [2, 5].

As summarized by Figure 8 and Table 1, these approaches can be regarded as special cases
from the mathematical viewpoint. They differ, however, regarding the scope and the class
of problems to be solved: the approach (1.1) is only devoted to the data labeling problem,
which explains its mathematical form. Finally, we show how our work extends the result of
[29]. Section 5 details contribution (b) on DC programming from the viewpoint of geometric
integration. The corresponding convergence analysis is provided in section 6. Numerical
results that illustrate our findings are reported in section 7. We conclude in section 8.

2. Preliminaries. This section contains basic material required in the remainder of this
paper. A list of symbols and their meanings follows.

Symbol Description

\scrG = (\scrV ,\scrE ,\Omega ) A graph with vertex set \scrV , edge set \scrE , and weights \Omega .

\scrV Set of vertices representing the discrete domain \scrV \subset \BbbZ d.
n Total number n= | \scrV | of nodes in the graph \scrG .
d Dimension of the discrete domain associated with \scrV .
\Omega Weighted symmetric adjacency matrix of the graph \scrG .
\scrN (x) Neighborhood of x\in \scrV induced by \Omega .
E Subset of a Euclidean space.
\scrF \scrV ,\scrF \scrV ,E Space of one-point functions defined on \scrV , taking values in \BbbR , resp., E.
\scrF \scrV \times \scrV ,\scrF \scrV \times \scrV ,E Space of two-point functions defined on \scrV \times \scrV , taking values in \BbbR , resp., E.

\alpha \in \scrF \scrV \times \scrV Antisymmetric mapping that defines the interaction of nodes x, y \in \BbbZ d.
\Theta \in \scrF \scrV \times \scrV Nonnegative scalar-valued symmetric mapping that parametrizes the introduced

nonlocal diffusion process.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 505

\scrV \alpha 
\scrI Nonlocal interaction domain which represents the connectivity of nodes x\in \scrV to nodes

y \in \BbbZ d \setminus \scrV .
\scrV Extension of the discrete domain associated with \scrV by the nodes in \scrV \alpha 

\scrI .
\scrD \alpha ,\scrG \alpha Nonlocal divergence and gradient operators parametrized by the mapping \alpha .
\scrN \alpha Nonlocal interaction operator parametrized by the mapping \alpha .
\scrL \omega Nonlocal Laplacian with weight function \omega .
\scrX n Data on the graph \scrG taking values in a metric space \scrX .
X(x) Data point X \in \scrX n given at x\in \scrV .
\scrX \ast Set of labels \{ X\ast 

j : j \in \scrJ \} \subset \scrX .
c Number of labels c= | \scrJ | , one of which is uniquely assigned to each data point.
\Delta c Probability simplex in \BbbR c of dimension c - 1.
\scrS Relative interior of the probability simplex \Delta c, forming the factors of the product

manifold \scrW .
T0 Tangent space corresponding to \scrS .
\scrW , \scrT 0 Assignment manifold and the corresponding tangent space at the barycenter 1\scrW .
S,W \in \scrW Points on the assignment manifold taking values S(x),W (x)\in \scrS at x\in \scrV .
S\ast ,W \ast \in \scrW \setminus \scrW Integral vectors on the boundary of \scrW .
V \in \scrT 0 Points in the tangent space taking values V (x)\in T0 at x\in \scrV .
\Pi 0 Orthogonal projection onto the tangent space \scrT 0.
RS Replicator map at S \in \scrW .
\odot Hadamard product (componentwise multiplication)

2.1. Nonlocal calculus. Following [27], we collect some basic notions of nonlocal calculus
which will be used throughout this paper. See [38] for a detailed exposition.

Let (\scrV ,\scrE ,\Omega ) be an undirected weighted regular grid graph with

(2.1) n= | \scrV | , \scrV \subset \BbbZ d, 2\leq d\in \BbbN ,

nodes, with edge set \scrE \subset \scrV \times \scrV that has no self-loops, and with the weighted adjacency matrix
\Omega that satisfies

(2.2) 0\leq \Omega (x, y)\leq 1, \Omega (x, y) =\Omega (y,x) \forall x, y \in \scrV .

\Omega defines the neighborhoods

(2.3) \scrN (x) := \{ y \in \scrV : \Omega (x, y)> 0\} , x\in \scrV ,

and serves as a function \Omega : \scrV \times \scrV \rightarrow \BbbR measuring the similarity of adjacent nodes.
We define the function spaces

\scrF \scrV := \{ f : \scrV \rightarrow \BbbR \} , \scrF \scrV \times \scrV := \{ F : \scrV \times \scrV \rightarrow \BbbR \} ,(2.4a)

\scrF \scrV ,E := \{ F : \scrV \rightarrow E\} , \scrF \scrV \times \scrV ,E := \{ F : \scrV \times \scrV \rightarrow E\} ,(2.4b)

where E denotes a (possibly improper) subset of a Euclidean space. The spaces \scrF \scrV and \scrF \scrV \times \scrV ,
respectively, are equipped with the inner products

\langle f, g\rangle \scrV :=
\sum 

x\in \scrV 
f(x)g(x), \langle F,G\rangle \scrV \times \scrV :=

\sum 

(x,y)\in \scrV \times \scrV 
F (x, y)G(x, y).(2.5)
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\Omega 

\partial \Omega 

\in \scrV 
\in \partial \Omega 

\in Z2 \setminus \scrV 

\Omega 

\partial \Omega 

\in \scrV 
\in \scrV \alpha 

\scrI 
\in Z2 \setminus \scrV 

y

x

Figure 2. Schematic visualization of a nonlocal boundary. Left: A bounded open domain \Omega \subset \BbbR 2

with local boundary \partial \Omega overlaid by the grid \BbbZ 2. Right: A bounded open domain \Omega with nonlocal boundary (light
gray). Nodes \bullet and , respectively, are vertices on the graph \scrV and on the interaction domain \scrV \alpha 

\scrI given by
(2.8).

We set

(2.6) \scrV := \scrV \.\cup \scrV \alpha \scrI (disjoint union),

where the nonlocal interaction domain \scrV \alpha \scrI with respect to an antisymmetric mapping

(2.7) \alpha \in \scrF \scrV \times \scrV , \alpha (x, y) = - \alpha (y,x) \forall x, y \in \scrV 

is defined as

\scrV \alpha \scrI := \{ x\in \BbbZ d \setminus \scrV : \alpha (x, y) \not = 0 for some y \in \scrV \} .(2.8)

\scrV \alpha \scrI serves discrete formulations of conditions on nonlocal boundaries with positive measure
in a Euclidean domain. Such conditions are distinct from traditional conditions imposed on
boundaries that have measure zero. Figure 2 displays a possible nonlocal boundary configu-
ration.

We state the following identity induced by (2.7):

\sum 

x,y\in \scrV 
(F (x, y)\alpha (x, y) - F (y,x)\alpha (y,x)) = 0 \forall F \in \scrF \scrV \times \scrV .(2.9)

The nonlocal divergence operator \scrD \alpha and the nonlocal interaction operator \scrN \alpha are defined
by

\scrD \alpha : \scrF \scrV \times \scrV \rightarrow \scrF \scrV , \scrD \alpha (F )(x) :=
\sum 

y\in \scrV 
(F (x, y)\alpha (x, y) - F (y,x)\alpha (y,x)) , x\in \scrV ,(2.10a)

\scrN \alpha : \scrF \scrV \times \scrV \rightarrow \scrF \scrV \alpha 
\scrI 
, \scrN \alpha (F )(x) := - 

\sum 

y\in \scrV 
(F (x, y)\alpha (x, y) - F (y,x)\alpha (y,x)) , x\in \scrV \alpha \scrI .(2.10b)

Based on the mapping \alpha given by (2.7), the operator (2.10b) is nonzero in general and
accounts for the density of a nonlocal flux from the entire domain \scrV to nodes x \in \scrV \alpha \scrI [38].
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L(W )(x)

S(W )(x)W (t, x)

\.W = RW (x)S(W )(x)

D\scrX (x)

X\ast 
j , j \in \scrJ X(x), x \in \scrV 

distance
matrix

similarity
matrix

data

assignment flow

metric space \scrX assignment manifold \scrW 

expW (x)
S(0)(x)

exp1\scrW ( - \Omega D\scrX )

min
S\in \scrW 

J(S) =  - 1
2\langle S,\Omega S\rangle 

via

\.S(x) = RS(\Omega S)(x)

nonlocal geometric diffusion

W (t) = exp1\scrW 

\Bigl( \int t
0 \Pi 0S(\tau )d\tau 

\Bigr) 

\partial tS(x, t) = RS(x,t)

\Bigl( 
1
2\scrD 

\alpha 
\bigl( 
\Theta \scrG \alpha (S)

\bigr) 
+ \lambda S

\Bigr) 
(x, t)

S
ec
ti
on

3

Figure 3. Inference of label assignments via assignment flows. Center column: Application task
of assigning data to prototypes in a metric space. Right column: Overview of the geometric approach [17].
The data are represented by the distance matrix D\scrX and by the likelihood vector field L(W ) on the assignment
manifold \scrW . The similarity vectors S(W )(x), determined through geometric averaging of the likelihood vectors,
drive the assignment flow whose numerical geometric integration results in spatially coherent and unique label
assignment to the data. Left column: Alternative equivalent reformulation of the assignment flow [29] which
separates (i) the influence of the data that only determine the initial point of the flow (cf. (2.38a)), and (ii) the
influence of the parameters \Omega that parametrize the vector field which drives the assignment flow. This enables
us to derive the novel nonlocal geometric diffusion equation in section 3.

This generalizes the notion local flux density \langle q(x), n(x)\rangle on continuous domains \Omega \subset \BbbR d with
outer normal vector field n(x) \in \BbbR d on the boundary \partial \Omega , and with a vector-valued function
q(x) on \partial \Omega that typically stems from an underlying constitutive physical relation. Due to the
identity (2.9), the operators (2.10) satisfy the nonlocal Gauss theorem

\sum 

x\in \scrV 
\scrD \alpha (F )(x) =

\sum 

y\in \scrV \alpha 
\scrI 

\scrN \alpha (F )(y).(2.11)

The operator \scrD \alpha maps two-point functions F (x, y) to \scrD \alpha (F )\in \scrF \scrV , whereas \scrN \alpha (F ) is defined
on the domain \scrV \alpha \scrI given by (2.8) where nonlocal boundary conditions are imposed.

The adjoint mapping (\scrD \alpha )\ast with respect to the inner product (2.5) is determined by the
relation

(2.12) \langle f,\scrD \alpha (F )\rangle \scrV = \langle (\scrD \alpha )\ast (f), F \rangle \scrV \times \scrV \forall f \in \scrF \scrV , \forall F \in \scrF \scrV \times \scrV ,

which yields the operator

(2.13) (\scrD \alpha )\ast : \scrF \scrV \rightarrow \scrF \scrV \times \scrV , (\scrD \alpha )\ast (f)(x, y) := - (f(y) - f(x))\alpha (x, y) \forall f \in \scrF \scrV .

The nonlocal gradient operator is defined as

(2.14) \scrG \alpha : \scrF \scrV \rightarrow \scrF \scrV \times \scrV , \scrG \alpha (f)(x, y) := - (\scrD \alpha )\ast (f)(x, y) \forall f \in \scrF \scrV .

For vector-valued mappings, the operators (2.10) and (2.13) naturally extend to \scrF \scrV \times \scrV ,E and
\scrF \scrV ,E , respectively, by acting componentwise.
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508 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

Using the mappings (2.13), (2.14), the nonlocal Gauss theorem (2.11) implies Green`s
nonlocal first identity

(2.15)
\sum 

x\in \scrV 
u(x)\scrD \alpha (F )(x) - 

\sum 

x\in \scrV 

\sum 

y\in \scrV 
\scrG \alpha (u)(x, y)F (x, y) =

\sum 

x\in \scrV \alpha 
\scrI 

u(x)\scrN \alpha (F )(x),
u \in \scrF \scrV ,
F \in \scrF \scrV \times \scrV .

Given a function f \in \scrF \scrV and a symmetric mapping

(2.16) \Theta \in \scrF \scrV \times \scrV with \Theta (x, y) =\Theta (y,x),

we define the linear nonlocal diffusion operator

(2.17) \scrD \alpha (\Theta \scrG \alpha (f)) (x) = 2
\sum 

y\in \scrV 
\scrG \alpha (f)(x, y)\Theta (x, y)\alpha (x, y), f \in \scrF \scrV .

For the particular case with no interactions, i.e., \alpha (x, y) = 0 if x \in \scrV and y \in \scrV \alpha \scrI , expression
(2.17) reduces with \Theta (x, y) = 1, x, y \in \scrV to

(2.18) \scrL \omega f(x)
(2.13)
=

\sum 

y\in \scrN (x)

\omega (x, y) (f(y) - f(x)) , \omega (x, y) = 2\alpha (x, y)2,

which coincides with the combinatorial Laplacian [39, 40] after reversing the sign.
The next remark provides an intuition for appropriate setup of parameters \alpha ,\Theta \in \scrF \scrV \times \scrV .

Remark 2.1 (role of parameters in modeling nonlocal diffusion processes). In our work we
differentiate the parameters \alpha ,\Theta by their role in modeling nonlocal diffusion processes of
the form (2.17). More precisely, we use the antisymmetric mapping \alpha \in \scrF \scrV \times \scrV for definition
of first-order derivative operators \scrD \alpha ,\scrG \alpha ,\scrN \alpha and the symmetric mapping \Theta \in \scrF \scrV \times \scrV for
specifying the constitutive function at each x \in \scrV that controls the smoothing properties of
operator (2.18). Instances of \alpha ,\Theta along with an analytical ablation study will be presented in
section 4.

2.2. The assignment flow approach. We summarize the assignment flow approach intro-
duced by [17] and refer to [18] for more background and a review of related work. Figure 3
illustrates on the left the assignment flow approach and on the right its extension presented
in section 3 (left panel).

2.2.1. Assignment manifold. Let (\scrX , d\scrX ) be a metric space and

(2.19) \scrX n = \{ X(x)\in \scrX : x\in \scrV \} 

be given data on a graph (\scrV ,\scrE ,\Omega ) as specified in section 2.1. We encode assignments of data
X(x), x\in \scrV , to a set

(2.20) \scrX \ast = \{ X\ast 
j \in \scrX , j \in \scrJ \} , c := | \scrJ | ,

of predefined prototypes by assignment vectors

(2.21) W (x) = (W1(x), . . . ,Wc(x))
\top \in \scrS ,
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A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 509

where \scrS = rint\Delta c denotes the relative interior of the probability simplex \Delta c \subset \BbbR c
+ that we turn

into a Riemannian manifold (\scrS , g) with the Fisher--Rao metric g from information geometry
[41, 42] at each p\in \scrS ,

(2.22) gp(u, v) =
\sum 

j\in \scrJ 

ujvj
pj

= \langle u, v\rangle p, u, v \in T0,

with tangent space T0 given by (2.24). The assignment manifold (\scrW , g) is defined as the
product space \scrW = \scrS \times \cdot \cdot \cdot \times \scrS of n= | \scrV | such manifolds. Points on the assignment manifold
row-stochastic matrices with full support are denoted by

(2.23) W = (. . . ,W (x), . . .)\top \in \scrW \subset \BbbR n\times c
++ , x\in \scrV .

The assignment manifold has the trivial tangent bundle T\scrW with TW\scrW = \scrT 0 \forall W \in \scrW and
tangent space

(2.24) \scrT 0 = T0 \times \cdot \cdot \cdot \times T0, T0 = \{ v \in \BbbR c : \langle 1c, v\rangle = 0\} .

The metric (2.22) naturally extends to

(2.25) gW (U,V ) =
\sum 

x\in \scrV 
gW (x) (V (x),U(x)) , U,V \in \scrT 0.

The orthogonal projection onto T0 is given by

(2.26) \Pi 0 : \BbbR c\rightarrow T0, \Pi 0(u) = u - \langle 1\scrS , u\rangle 1c, 1\scrS :=
1

c
1c.

The orthogonal projection onto \scrT 0, also denoted by \Pi 0 for simplicity, is

(2.27) \Pi 0 : \BbbR n\times c\rightarrow \scrT 0, \Pi 0D= (. . . ,\Pi 0D(x), . . .)\top .

2.2.2. Assignment flows. Based on the given data and prototypes, we define the distance
vector field on \scrV by

(2.28) D\scrX (x) = (d\scrX (X(x),X\ast 
1 ), . . . , d\scrX (X(x),X\ast 

c ))
\top , x\in \scrV .

This data representation is lifted to \scrW to obtain the likelihood vectors

(2.29) L(x) : \scrS \rightarrow \scrS , L(W )(x) =
W (x)\odot e - 

1

\rho 
D\scrX (x)

\langle W (x), e - 
1

\rho 
D\scrX (x)\rangle 

, x\in \scrV , \rho > 0,

where the exponential function applies componentwise and \odot denotes the componentwise
multiplication

(2.30) (p\odot q)j = pjqj , j \in [c], p, q \in \scrS ,

of vectors p, q. Accordingly, we denote componentwise division of vectors by

(2.31)
v

p
=

\biggl( 
v1
p1

, . . . ,
vc
pc

\biggr) \top 
, p\in \scrS ,
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510 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

for strictly positive vectors p.
The map (2.29) is based on the affine e-connection of information geometry [41, 42]. The

scaling parameter \rho > 0 normalizes the a priori unknown scale of the components of D\scrX (x).
Likelihood vectors are spatially regularized by the similarity map and the similarity vectors,
respectively, given for each x\in \scrV by

(2.32) S(x) : \scrW \rightarrow \scrS , S(W )(x) = ExpW (x)

\left( 
 \sum 

y\in \scrN (x)

\Omega (x, y)Exp - 1
W (x) (L(W )(y))

\right) 
 ,

where

(2.33) Exp: \scrS \times T0\rightarrow \scrS , Expp(v) =
p\odot e

v

p

\langle p, e
v

p \rangle 
,

v

p
=

\biggl( 
v1
p1

, . . . ,
vc
pc

\biggr) \top 

is the exponential map corresponding to the e-connection. If the exponential map of the
Riemannian (Levi-Civita) connection were used instead, then the term in parentheses in
(2.32) would be the optimality condition for the weighted Riemannian mean of the vectors
\{ L(W )(y) : y \in \scrN (x)\} [43, Lemma 6.9.4]. Using the exponential map of the e-connection
enables one to evalute the right-hand side of (2.32) in closed form and to define the similarity
vectors as geometric means of the likelihood vectors [18].

The weights \Omega (x, y) determine the regularization properties of the similarity map; cf.
Remark 2.2 below. They satisfy (2.2) and the additional constraint

\sum 

y\in \scrN (x)

\Omega (x, y) = 1 \forall x\in \scrV .(2.34)

The assignment flow is induced on the assignment manifold\scrW by solutions W (t, x) =W (x)(t)
of the system of nonlinear ODEs

(2.35) \.W (x) =RW (x)S(W )(x), W (0, x) =W (x)(0)\in 1\scrS , x\in \scrV ,

where the map

(2.36) Rp =Diag(p) - pp\top , p\in \scrS ,

corresponds to the inverse metric tensor expressed in the embedding coordinates of the ambient
Euclidean space \BbbR c, which turns the right-hand side into the tangent vector field

(2.37) \scrV \ni x \mapsto \rightarrow RW (x)S(W )(x) =Diag (W (x))S(W )(x) - \langle W (x), S(W )(x)\rangle W (x) \in T0.

Integrating the system (2.35) numerically [20] yields integral assignment vectors W (t, x), x\in 
\scrV , for t\rightarrow \infty , that uniquely assign a label from the set \scrX \ast to each data point X(x) [19].

Remark 2.2(regularization). From the viewpoint of variational imaging, regularization of
the assignment flow has to be understood in a broad sense: The parameters \Omega define by (2.32),
at each location x and locally within neighborhoods \scrN (x), what similarity of the collection of
likelihood vectors L(W )(y), y \in \scrN (x), which represent the input data, really means in terms
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A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 511

of a corresponding geometric average, called similarity vector S(W )(x). Unlike traditional
variational approaches where regularization affects the primary variables directly, regular-
ization of the assignment flow is accomplished more effectively by affecting velocities that
generate the primary assignment variables: the vector field S(W ) drives the assignment flow
(2.35). Figure 4 illustrates two applications of the assignment flow approach using data-driven
nonlocal regularization. Learning the regularization parameters \Omega from data was studied by
[23, 25].

2.2.3. S-flow parametrization. We adopt from [29, Proposition 3.6] the S-parametrization
of the assignment flow system (2.35)

\.S =RS(\Omega S), S(0) = exp1\scrW 
( - \Omega D\scrX ),(2.38a)

\.W =RW (S), W (0) = 1\scrW , 1\scrW (x) = 1\scrS , x\in \scrV ,(2.38b)

where both S and W are points on \scrW and hence have the format (2.23) and

RS(\Omega S)(x) =RS(x) ((\Omega S)(x)) , (\Omega S)(x) =
\sum 

y\in \scrN (x)

\Omega (x, y)S(y),(2.39)

exp1\scrW 
( - \Omega D\scrX ) :=

\bigl( 
. . . ,Exp1\scrS 

\circ R1\scrS ( - (\Omega D\scrX )(x)), . . .
\bigr) \top \in \scrW , x\in \scrV ,(2.40)

with the mappings Expp,Rp, p\in \scrS defined by (2.33) and (2.36), respectively. In view of (2.40),
we define the lifting map

(2.41) expp : T0\rightarrow \scrS , expp(v) := Expp \circ Rpv=
p\odot ev

\langle p, ev\rangle , p\in \scrS , v \in T0,

which satisfies

exp\mathrm{e}\mathrm{x}\mathrm{p}p(v)
(v\prime ) = expp(v+ v\prime ), p\in \scrS , v, v\prime \in T0.(2.42a)

In addition, one has (cf. (2.24), (2.26))

expp(d) = expp(\Pi 0d) \forall d\in \BbbR c.(2.42b)

Analogous to (2.40), the lifting map (2.41) extends to

expS : \scrT 0\rightarrow \scrW , expS(V ) =
\Bigl( 
. . . , expS(x) (V (x)) , . . .

\Bigr) 
(2.43a)

and the relations (2.42) extend to

exp\mathrm{e}\mathrm{x}\mathrm{p}S(V )(V
\prime ) = expS(V + V \prime ), S \in \scrW , V,V \prime \in \scrT 0,(2.44a)

expS(D) = expS(\Pi 0D) \forall D \in \BbbR n\times c.(2.44b)

Parametrization (2.38) has the advantage that W (t) depends on S(t), but not vice versa.
As a consequence, it suffices to focus on (2.38a) since its solution S(t) determines the solution
to (2.38b) by [19, Proposition 2.1.3],

(2.45) W (t) = exp1\scrW 

\biggl( \int t

0
\Pi 0S(\tau )d\tau 

\biggr) 
.
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BM RPE PR2 PR1 ONL OPL INL IPL GCL RNFL ILM

\bfN 
\bfo 
\bfi \bfs 
\bfy 
\bfd 
\bfa 
\bft \bfa 

\bfG 
\bfr \bfo 

\bfu 
\bfn 
\bfd 

\bfT 
\bfr \bfu 

\bft \bfh 

\bfR 
\bfe 
\bfs \bfn 

\bfe 
\bft 

\bfL 
\bfo 
\bfc 
\bfa 
\bfl 

\bfN 
\bfo 
\bfn 
\bfl \bfo 
\bfc 
\bfa 
\bfl 

(\bff ) (\bfg ) (\bfh ) (\bfi )

(\bfa )

(\bfb )

(\bfc )

(\bfd )

(\bfe )

Figure 4. Two image labeling scenarios demonstrating the influence of nonlocal regularization. Top: Ap-
plication of assignment flows to a three-dimensional (3D) medical imaging problem for segmenting the human
retina (see [44] for a detailed exposition). (a) A B-scan from a 3D OCT-volume showing a section of the hu-
man retina that is corrupted by speckle noise. (b) The corresponding ground truth labeling with ordered retina
layers. (c) Output from a Resnet that serves as the distance matrix (2.28). (d) Result of applying assignment
flow with local neighborhoods given by a 3D seven-point stencil. (e) Labeling obtained with nonlocal uniform
neighborhoods of size | \scrN | = 11\times 11\times 11. Increasing the connectivity leads to more accurate labeling that satisfies
the ordering constraint depicted in (b). Bottom: Labeling of noisy data by assignment flows with data-driven
parameters \Omega determined by nonlocal means [4] using patches of size 7\times 7 pixels. (f) Synthetic image with thin

repetitive structure. (g) Severely corrupted input image to be labeled with . (h), (i) Labeling by
the assignment flow that was regularized with neighborhood sizes | \scrN | = 3\times 3 and | \scrN | = 11\times 11, respectively.
Enlarging the neighborhood size | \scrN | increases labeling accuracy.

In addition, (2.38a) was shown in [29] to be the Riemannian gradient descent flow with respect
to the potential

(2.46) J : \scrW \rightarrow \BbbR , J(S) = - 1

2
\langle S,\Omega S\rangle = 1

4

\sum 

x\in \scrV 

\sum 

y\in \scrN (x)

\Omega (x, y)\| S(x) - S(y)\| 2  - 1

2
\| S\| 2F ,

where \| \cdot \| F denotes the Frobenius (matrix) norm and the vector field \scrV \ni x \mapsto \rightarrow S(x) \in \scrS is
identified with the matrix
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A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 513

(2.47) S = (Sj(x))x\in \scrV , j\in [c] \in \BbbR n\times c
++

such that (2.39) can be written as

(2.48) ((\Omega S)(x))j =
\sum 

y\in \scrN (x)

(\Omega (x, y)S(y))j =
\sum 

y\in \scrN (x)

\Omega (x, y)S(y, j) = (\Omega S)x,j .

Convergence and stability results for the gradient flow (2.38a) have been established by [19].

3. Nonlocal graph-PDE. In this section, we show that the assignment flow corresponds
to a particular nonlocal diffusion process. This results in an equivalent formulation of the
Riemannian gradient flow (2.38a) in terms of a suitable nonlinear extension of the nonlocal
linear diffusion operator (2.17).

3.1. \bfitS -flow: Nonlocal PDE formulation. We start with specifying a general class of para-
meter matrices \Omega satisfying (2.2) and (2.34) in terms of antisymmetric and symmetric map-
pings \alpha \in \scrF \scrV \times \scrV and \Theta \in \scrF \scrV \times \scrV , respectively.

Lemma 3.1. Let

(3.1)
\alpha \in \scrF \scrV \times \scrV ,
\Theta \in \scrF \scrV \times \scrV ,

\alpha (y,x) = - \alpha (x, y), \forall x, y \in \scrF \scrV \times \scrV ,
\Theta (x, y) =\Theta (y,x)\geq 0, \forall x, y \in \scrF \scrV \times \scrV ,

be antisymmetric and nonnegative symmetric mappings, respectively. Assume further that \alpha 
satisfies

(3.2) \alpha (x, y) = 0 \forall x, y \in \scrV \alpha \scrI .

Then, for neighborhoods \scrN (x) defined by (2.3) and with parameter matrix

(3.3) \Omega (x, y) =

\Biggl\{ 
\Theta (x, y)\alpha 2(x, y) if x \not = y,

\Theta (x,x) if x= y,
x, y \in \scrV ,

for each function f \in \scrF \scrV with f | \scrV \alpha 
\scrI 
= 0, the identity

(3.4)
\sum 

y\in \scrV 
\Omega (x, y)f(y) =

1

2
\scrD \alpha (\Theta \scrG \alpha (f)) (x) + \lambda (x)f(x) \forall x\in \scrV , \forall f \in \scrF \scrV : f | \scrV \alpha 

\scrI 
= 0

holds with \scrD \alpha ,\scrG \alpha given by (2.10), (2.14), and

(3.5) \lambda (x) =
\sum 

y\in \scrV 
\Theta (x, y)\alpha 2(x, y) +\Theta (x,x), x\in \scrV .

In addition, if \lambda (x) \leq 1 in (3.5) \forall x \in \scrV , then \Omega given by (3.3) satisfies (2.2), and equality
\lambda (x) = 1\forall x\in \scrV is achieved if property (2.34) holds.
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514 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

Proof. See section A.1 for the proof.

Remark 3.2(comments). Lemma 3.1 characterizes a class of parameter matrices \Omega whose
action (3.4) admits a representation using the nonlocal operators from section 2.1.

Some comments follow on parameter matrices not covered by Lemma 3.1, due to the
imposed constraints.

(i) By ignoring the nonnegativity constraint of (3.1) imposed on \Omega through the mapping
\Theta , Lemma 3.1 additionally covers a class of nonlocal graph Laplacians proposed in
[5] and [3] for the aim of image inpainting. We refer to section 4 for a more detailed
discussion.

(ii) Due to assuming symmetry of the mapping \Theta , formulation (3.3) does not cover non-
local diffusion processes on directed graphs (\scrV ,\scrE ,\Omega ).

(iii) Imposing zero nonlocal Dirichlet boundary conditions is essential for relating assign-
ment flows to the specific class of nonlocal PDEs related to (3.4); see Proposition 3.3
below.
As argued in [19] by a range of counterexamples, using nonsymmetric parameter ma-
trices \Omega compromises convergence of the assignment flow (2.38a) to integral solutions
(labelings) and is therefore not considered. The study of more general parameter ma-
trices is left for future work; see sections 8 and 4.1 for modifying the identity (3.4) in
view of nonsymmetric parameter matrices \Omega .

Next, we generalize the common local boundary conditions for PDEs to nonlocal volume
constraints for nonlocal PDEs on discrete domains. Following [27], given an antisymmetric
mapping \alpha as in (2.8) and Lemma 3.1, the natural domains \scrV \alpha \scrI N

,\scrV \alpha \scrI D
for imposing nonlocal

Neumann and Dirichlet constraints are given by a disjoint decomposition of the interaction
domain (2.8),

(3.6) \scrV \alpha \scrI = \scrV \alpha \scrI N
\.\cup \scrV \alpha \scrI D

.

The following proposition reveals how the flow (2.38a), with \Omega satisfying the assumptions of
Lemma 3.1, can be reformulated as a nonlocal partial difference equation with zero nonlocal
Dirichlet boundary condition imposed on the entire interaction domain, i.e., \scrV \alpha \scrI = \scrV \alpha \scrI D

. Recall
the definition of the manifold \scrS of discrete probability vectors with full support in connection
with (2.21).

Proposition 3.3 (S-flow as nonlocal G-PDE). Let \alpha ,\Theta \in \scrF \scrV \times \scrV be as in (3.2). Then the flow
(2.38a) with \Omega given through (3.3) admits the representation

\partial tS(x, t) =RS(x,t)

\biggl( 
1

2
\scrD \alpha (\Theta \scrG \alpha (S)) + \lambda S

\biggr) 
(x, t) on \scrV \times \BbbR +,(3.7a)

S(x, t) = 0 on \scrV \alpha \scrI \times \BbbR +,(3.7b)

S(x,0) = S(x)(0) on \scrV \times \BbbR +,(3.7c)

where \lambda = \lambda (x) is given by (3.2) and S \in \scrF \scrV ,\BbbR c
+
denotes the zero extension of the \scrS -valued

vector field S \in \scrF \scrV ,\scrS to the interaction domain \scrV \alpha \scrI .
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A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 515

Proof. See section A.1 for the proof.

Proposition 3.3 states the equivalence of the potential flow (2.38a), with \Omega defined by (3.3),
and the nonlocal diffusion process (3.7) with zero nonlocal Dirichlet boundary condition. We
now explain that the system (3.7a) can represent any descent flow of the form (2.38a) defined
in terms of an arbitrary nonnegative symmetric mapping \Omega \in \scrF \scrV \times \scrV . Specifically, given such
a mapping \Omega , let the mappings \widetilde \alpha , \widetilde \Theta \in \scrF \scrV \times \scrV be defined by

(3.8) \widetilde \Theta (x, y) =

\Biggl\{ 
\Omega (x, y) if y \in \scrN (x),

0 else,
\widetilde \alpha 2(x, y) = 1, x, y \in \scrV .

Further, denote by \Theta , \alpha \in \scrF \scrV \times \scrV the extensions of \widetilde \alpha , \widetilde \Theta to \scrV \times \scrV by 0, that is,

(3.9) \Theta (x, y) =
\Bigl( 
\delta \scrV \times \scrV (\widetilde \Theta )

\Bigr) 
(x, y), \alpha (x, y) := (\delta \scrV \times \scrV (\widetilde \alpha )) (x, y), x, y \in \scrV ,

where \delta \scrV \times \scrV : \BbbZ d \times \BbbZ d \rightarrow \{ 0,1\} is the indicator function of the set \scrV \times \scrV \subset \BbbZ d \times \BbbZ d. Then
the potential flow (2.38a) with \Omega satisfying \Omega (x, y) = \Omega (y,x) is equivalently represented by
the system (3.7) with an empty interaction domain (2.8). This shows how Proposition 3.3
generalizes the assignment flow introduced in section 2.2 by ignoring the constraint (2.34)
imposed on \Omega , and thus enables use of a broader class of parameter matrices \Omega controlling
the labeling process; see also Remark 3.2.

3.2. Tangent-space parametrization of the \bfitS -flow G-PDE. Because S(x, t) solving (3.7)
evolves on the non-Euclidean space \scrS , applying some standard discretization in order to eval-
uate (3.7) numerically will not work. Therefore, motivated by the work [20] on the geometric
numerical integration of the original assignment flow system (2.35), we devise a parametriza-
tion of (3.7) on the flat tangent space (2.24) by means of the equation

(3.10) S(t) = expS0(V (t))\in \scrW , V (t)\in \scrT 0, S0 = S(0)\in \scrW ,

where analogous to (2.40)

(3.11) expS0(V (t)) =
\Bigl( 
. . . , expS0(x)( - V (x, t)), . . .

\Bigr) \top 
\in \scrW 

with expS0(x) given by (2.41). Applying d
dt to both sides and using the expression of the

differential of the mapping expS0 due to [29, Lemma 3.1], we get

(3.12) \.S(t) =R\mathrm{e}\mathrm{x}\mathrm{p}S0 (V (t))
\.V (t)

(3.10)
= RS(t)

\.V (t).

Comparing this equation and (2.38a), and taking into account RS = RS\Pi 0, shows that V (t)
solving the nonlinear ODE

(3.13) \.V (t) =\Pi 0\Omega expS0(V (t)), V (0) = 0,

determines S(t) by (3.10) solving (2.38a). Hence it suffices to focus on (3.13), which evolves on
the flat space \scrT 0. Repeating the derivation above that resulted in the G-PDE representation

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

9/
23

 to
 1

47
.1

42
.9

.5
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



516 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

(3.7) of the S-flow (2.38a) yields the nonlinear PDE representation of (3.13)

\partial tV (x, t) =

\biggl( 
1

2
\scrD \alpha (\Theta \scrG \alpha (expS0(V ))) + \lambda expS0(V )

\biggr) 
(x, t) on \scrV \times \BbbR +,(3.14a)

V (x, t) = 0 on \scrV \alpha \scrI \times \BbbR +,(3.14b)

V (x,0) = V (x)(0) on \scrV \times \BbbR +,(3.14c)

where V \in \scrF \scrV ,\scrT 0
denotes the zero extension of the \scrT 0-valued vector field to the interaction

domain \scrV \alpha \scrI . From the numerical point of view, this new formulation (3.10), (3.14) has the
following expedient properties. First, using a parameter matrix as specified by (3.3) and (3.9)
enables us to define the entire system (3.14) on \scrV . Second, since V (x, t) evolves on the flat
space T0, numerical techniques of geometric integration as studied by [20] can here be applied
as well. We utilize this fact in sections 3.4.1 and 5.

3.3. Nonlocal balance law. A key property of PDE-based models are balance laws im-
plied by the model; see [28, section 7] for a discussion of various scenarios. The following
proposition reveals a nonlocal balance law of the assignment flow based on the novel G-PDE-
based parametrization (3.14), which we express for this purpose in the form

\partial tV (x, t) +\scrD \alpha (F (V ))(x, t) = b(x, t), b(x, t) = \lambda (x)S(x, t), x\in \scrV ,(3.15a)

F (V (t))(x, y) = - 1

2
(\Theta \scrG \alpha (expS0(V (t)))) (x, y),(3.15b)

where S(x, t) = expS0(V (x, t)) is given by (3.10) and \lambda (x) is given by (3.5).

Proposition 3.4 (nonlocal balance law of assignment flows). Under the assumptions of
Lemma 3.1, let V (t) solve (3.14). Then, for each component Sj(t) = \{ Sj(x, t) : x\in \scrV \} , j \in [c],
of S(t) = expS0(V (t)), the identity

1

2

d

dt
\langle Sj ,1\rangle \scrV +

1

2
\langle \scrG \alpha (Sj),\Theta \scrG \alpha (Sj)\rangle \scrV \times \scrV + \langle Sj , \phi S  - \lambda Sj\rangle \scrV 

+ \langle Sj ,\scrN \alpha (\Theta \scrG \alpha (Sj))\rangle \scrV \scrI \alpha = 0
(3.16)

holds, where the inner products are given by (2.5) and (2.6), and \phi S(\cdot ) \in \scrF \scrV is defined in
terms of S(t)\in \scrW by

(3.17) \phi S : \scrV \rightarrow \BbbR , x \mapsto \rightarrow \langle S(x),\Pi 0 (\Omega S) (x)\rangle .

Proof. See section A.2 for the proof.

The nonlocal balance law (3.16) comprises four terms. Since
\sum 

j\in [c] Sj(x) = 1 at each
vertex x\in \scrV , the first term of (3.16) measures the rate of ``mass"" assigned to label j over the
entire image. This rate is governed by two interacting processes corresponding to the three
remaining terms:

(i) spatial propagation of assignment mass through the nonlocal diffusion process includ-
ing nonlocal boundary conditions (second and fourth terms);

(ii) exchange of assignment mass with the remaining labels \{ l \in [c] : l \not = j\} (third term
comprising the function \phi S (3.17)).
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A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 517

We point out that other approaches to image labeling, including Markov random fields and
deep networks, do not reveal the flow of information during inference in such an explicit
manner.

3.4. Illustration: Parametrization and nonlocal boundary conditions. In this section,
we illustrate two aspects of the mathematical results presented above by numerical results:

(1) The use of geometric integration for numerically solving the nonlocal G-PDE (3.7).
Here we exploit a basic numerical scheme established for the assignment flow (2.38a)
and the one-to-one correspondence to the nonlocal G-PDE (3.7), due to Proposition
3.3.

(2) The effect of zero versus nonzero nonlocal Dirichlet boundary conditions and uniform
versus nonuniform parametrizations (3.3). Using nonzero boundary conditions refers
to the observation stated above in connection with (3.8), (3.9): the nonlocal G-PDE
(3.7) generalizes the assignment flow when constraints are dropped. Here specifically,
the homogeneous Dirichlet boundary condition may be nonhomogeneous, and the con-
straint (2.34) is ignored; see also Remark 3.2.

Topic (1) is addressed here to explain how the results illustrating topic (2) were computed, and
to set the stage for section 5, which presents an advanced numerical scheme. Item (2) merely
illustrates basic choices of the parametrization and boundary conditions. More advanced
generalizations of the assignment flow are conceivable but are beyond the scope of this paper;
see section 8.

3.4.1. Numerically solving the nonlocal G-PDE by geometric integration. According
to section 3.2, imposing the homogeneous Dirichlet condition via the interaction domain (2.8)
makes the right-hand side of (3.14a) equivalent to (3.13). Applying to (3.14a) a simple explicit
time discretization with step size h results in the iterative update formula

V (x, t+ h)\approx V (x, t) + h\Pi 0 expS0(x)(\Omega V (x, t)), h > 0.(3.18)

By virtue of the parametrization (3.10), one recovers with any nonnegative symmetric mapping
\Omega as in Lemma 3.1 the explicit geometric Euler scheme on \scrW 

S(t+ h)\approx expS0

\Bigl( 
V (t) + h \.V (t)

\Bigr) (2.42\mathrm{a})
(3.10)
= expS(t)

\Bigl( 
h \.V (t)

\Bigr) 
(3.19a)

(2.42\mathrm{b})
(3.13)
= expS(t) (h\Omega S(t)) .(3.19b)

Higher-order geometric integration methods [20] generalizing (3.19) can be applied in a sim-
ilar way. This provides a new perspective on solving a certain class of nonlocal G-PDEs
numerically, conforming to the underlying geometry, as we demonstrate in section 5.2.

3.4.2. Basic parametrizations, effect of nonlocal Dirichlet boundary conditions. We
consider two different parametrizations as well as zero and nonzero nonlocal Dirichlet bound-
ary conditions.
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518 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

Uniform parametrization: Mappings \Theta , \alpha \in \scrF \scrV \times \scrV are given by

| \scrN (x)| =\scrN \forall x, | \scrN | = (2k+ 1)\times (2k+ 1), k \in \BbbN ,(3.20a)

\alpha 2(x, y) =

\Biggl\{ 
1

(2k+1)2 if y \in \scrN (x),

0 otherwise,
\Theta (x, y) =

\Biggl\{ 
1

(2k+1)2 if x= y,

1 otherwise.
(3.20b)

Nonuniform parametrization: Uniform neighborhoods (3.20a) and mappings \Theta , \alpha \in 
\scrF \scrV \times \scrV are given by

\alpha 2(x, y) =

\Biggl\{ 
e
 - \| x - y\| 2

2\sigma 2
s if y \in \scrN (x)

0 otherwise,
, \sigma s > 0,

\Theta (x, y) =

\Biggl\{ 
e - G\sigma p\ast \| s(x) - s(y)\| 2

if y \in \scrN (x),

0 otherwise,
\sigma p > 0,

(3.21)

where the nonlocal function \Theta is designed using a patchwise similarity measure analo-
gous to the basic nonlocal means approach [4]: s(x) = \{ s(x, z) : z \in \scrV , s(x, z) =X(z)\} 
with X \in \scrF \scrV ,\BbbR c denoting the zero extension of data X \in \scrF \scrV ,\BbbR c to \scrV \alpha \scrI . G\sigma p

is the
Gaussian kernel at scale \sigma p and \ast denotes spatial convolution.

We iterated (3.19) with step size h= 1 until assignment states (2.38b) of low average entropy
10 - 3 were reached. To ensure a fair comparison and to assess solely the effects of the boundary
conditions through nonlocal regularization, we initialized (3.7) in the same way as (2.38a) and
adopted a uniform encoding of the 31 labels as described by [17, Figure 6].

Figure 5 depicts labelings computed using the uniform parametrization with zero and
nonzero nonlocal Dirichlet boundary conditions, respectively. Inspecting panels (c) (zero
boundary condition) and (d) (nonzero boundary condition) shows that using the latter may
improve labeling near the boundary (cf. close-up views), whereas the labelings almost agree
in the interior of the domain.

Figure 6 shows how the average entropy values of label assignments decrease as the iter-
ation proceeds (left panel) and the number of iterations required to converge (right panel),
for different neighborhood sizes. Moreover, a closer look at the right panel of Figure 6 reveals
besides a slightly slower convergence of the scheme (3.18) applied to the nonlocal G-PDE
(3.14) (red curve), the dependence of number of iterations required until convergence is com-
parable to the S-flow (green curve). Consequently, generalizing the S-flow by the nonlocal
model (3.7) does not have a detrimental effect on the overall numerical behavior. We observe,
in particular, that integral label assignments corresponding to zero entropy are achieved no
matter which boundary condition is used, at comparable computational costs.

Iterating (3.19) with step size h = 0.1 and \sigma s = 1, \sigma p = 5 in (3.21) yields labeling results
for different patch sizes as depicted by Figure 7. As opposed to segmentation results obtained
with uniform parametrization (3.20b) for \scrN = 7 depicted in Figure 5(d), a direct comparison
with Figure 7 (close-up views) indicates more accurate labelings when using regularization as
given by the nonuniform parametrization (3.21).

4. Related work. In this section, we discuss how the system (3.7) relates to approaches
based on PDEs and variational models in the literature. Specifically, we conduct an analytical
ablation study of the nonlocal model (3.7) in order to clarify the impact of omitting operators
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Fig. 2: Labeling through nonlocal geometric flows. (a) Ground truth with 31 labels.
(b) Noisy input data used to evaluate (24a) and (32). (c) Labeling returned by (24a)
corresponding to a zero extension to the interaction domain. (d) Labeling returned
by (41) with a uniform extension to the interaction domain in terms of Θ,α specified
above. The close-up view show differences close to the boundary, whereas the results
in the interior domain are almost equal.
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Fig. 3: Left: Convergence rates of the scheme (49) solving (32) with nonempty inter-
action domain specified by Θ,α above. The convergence behavior is rather insensitive
with respect to the neighborhood size. Right: Number of iterations until convergence
for (32) ( ) and (24a) ( ). This result shows that different nonlocal boundary condi-
tions have only a minor influence on the convergence of the flow to labelings.
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Fig. 4: From left to right: Labeling results using (32) for nonuniform interaction domains
of size N (x) = 3 × 3, 7 × 7 and 15 × 15, with close up views indicating the regular-
ization properties of the nonlocal PDE (32) with zero Dirichlet conditions. Schematic
illustration of the nonlocal interaction domain y ∈ Vα

I (red area) induced by nodes
(blue area) according to (50) with a Gaussian window of size 5× 5 centered at x ∈ V.
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Figure 5. Labeling through the nonlocal geometric assignment flow with uniform parametrization (3.20b)
and neighborhood size | \scrN | = 7. (a) Ground truth with 31 labels. (b) Noisy input data used to evaluate (2.38a)
and (3.7), respectively. (c) Labeling returned when using the zero nonlocal Dirichlet boundary condition. (d)
Labeling returned when using the nonzero nonlocal Dirichlet boundary condition (uniform extension to the
interaction domain). The close-up views show differences close to the boundary, whereas the results in the
interior domain are almost equal.
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in the latter case. The result shows that different nonlocal boundary conditions have only a minor influence on
the required number of geometric integration steps.
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Figure 7. From left to right: Labeling results using (3.7) with the nonuniform parametrization (3.21), zero
nonlocal Dirichlet boundary conditions, and neighborhood sizes | \scrN | \in \{ 3\times 3,7\times 7,15\times 15\} . Schematic illustration
of the nonlocal interaction domain y \in \scrV \alpha 

\scrI (red area) induced by nodes (blue area) in \scrN (x) with | \scrN | = 5\times 5.
Using nonuniform weights (3.21) improves labeling accuracy.
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520 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

of the nonlocal model and the connection to existing methods. We exhibit both structural
similarities from the viewpoint of diffusion processes and differences that account for the
different scope of our approach: labeling metric data on graphs.

4.1. General nonlocal processes on graphs. We consider again the identity (3.4) that
defines the nonlocal G-PDE (3.7) in terms of symmetric parameter mapping (3.3) and show
next how (3.4) is generalized when a nonsymmetric parameter matrix \Omega \in \scrF \BbbZ d\times \BbbZ d is used.
Specifically, suppose a kernel k \in \scrF \BbbZ d\times \BbbZ d is given and the induced nonlocal functional

(4.1) \scrL kf(x) =
\sum 

y\in \BbbZ d

(f(y)k(y,x) - f(x)k(x, y)) .

Then, for a mapping \alpha that satisfies \alpha 2(x, y) = 1 whenever k(x, y) \not = 0, the decomposition

(4.2) k= ks + ka with ks =
k+ k\prime 

2
, ka =

k - k\prime 

2
, k\prime (x, y) := k(y,x), x, y \in \BbbZ d,

results in the representation

(4.3) k(x, y) =

\Biggl\{ 
2\Theta (x, y)\alpha 2(x, y) + \alpha (x, y)\nu (x, y), x \not = y,

2\Theta (x,x), x= y,

of the kernel k in terms of \alpha ,\Theta \in \scrF \BbbZ d\times \BbbZ d and \nu \in \scrF \BbbZ d\times \BbbZ d given by

(4.4) \Theta (x, y) :=
1

2
ks(x, y), \nu (x, y) := ka(x, y)\alpha (x, y),

where the mapping \nu is symmetric due to the antisymmetry of \alpha . Inserting (4.3) into (4.1)
yields

(4.5) \scrL kf(x) = 2
\sum 

y\in \BbbZ d

\Theta (x, y)\alpha 2(x, y) (f(y) - f(x)) - 
\sum 

y\in \BbbZ d

\alpha (x, y)\nu (x, y) (f(y) - f(x))

and applying nonlocal calculus of section 2.1 along with Lemma 3.1, we arrive at an equivalent
representation of \scrL k through nonlocal divergence and gradient operators

(4.6) \scrL kf(x)
(4.3)
= \scrD \alpha (\Theta \scrG \alpha (f)) (x)\underbrace{}  \underbrace{}  

\mathrm{d}\mathrm{i}ff\mathrm{u}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}

 - \scrD \alpha (\nu f)(x)\underbrace{}  \underbrace{}  
\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}

+\lambda (x)f(x)\underbrace{}  \underbrace{}  
fi\mathrm{d}\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}

,

where \nu plays the role of the convection parameter. Consequently, on a grid graph \scrG with
\scrV \subset \BbbZ d and setting \Omega by (4.3), we get

\partial tS(x, t) =RS(x,t) (\scrD \alpha (\Theta \scrG \alpha (S)) - \scrD \alpha (\nu S)) (x, t) + \lambda (x)S(x, t) on \scrV \times \BbbR +,(4.7a)

S(x, t) = 0 on \scrV \alpha \scrI \times \BbbR +,(4.7b)

S(x,0) = S(x)(0) on \scrV \times \BbbR +,(4.7c)

with the interaction domain (2.8) directly expressed through the connectivity of kernel k by

(4.8) \scrV \alpha \scrI = \{ x\in \BbbZ d \setminus \scrV : k(x, y) \not = 0 for some y \in \scrV \} .
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Table 1
Summary of the analytical ablation study. Key differences of our approach to existing nonlocal diffu-

sion models are inclusion of the replicator operator RS and a nonzero fidelity term \lambda S that results in nontrivial
solution at the steady state S\ast = S(t=\infty ).

Labeling Denoising and inpainting
Parameters G-PDE (3.7) Local PDE [29] Nonlocal Laplacian [5] Descent flow [3]

\Theta \geq 0 3 8 8 8
\lambda \lambda > 0 \lambda =1 \lambda = 0 \lambda = 0
RS 3 3 8 8
\nu 8 8 8 8
\scrV \alpha 
\scrI \subseteq \BbbZ d \setminus \scrV \partial \scrV h \partial \scrA \subset \scrV \emptyset 

S\ast (t\rightarrow \infty ) 3 3 8 8

\bfg \bfe \bfn \bfe \bfr \bfa \bfl \bfi \bfz \bfe \bfd \bfG -\bfP \bfD \bfE 

\partial tS = RS

\Bigl( 
\scrD \alpha 

\bigl( 
\Theta \scrG \alpha (S)

\bigr) 
 - \scrD \alpha (\nu S)

\Bigr) 
+ \lambda S

\nu = 0

\bfn \bfo \bfn \bfl \bfo \bfc \bfa \bfl \bfG -\bfP \bfD \bfE 

\partial tS = RS

\Bigl( 
\scrD \alpha 

\bigl( 
\Theta \scrG \alpha (S)

\bigr) \Bigr) 
+ \lambda S

Section 3

nonlocal diffusion [3]

\partial tf =
1

2
\scrD \alpha (\Theta \scrG \alpha f) + \lambda f

S-fl\bfo \bfw 

\partial tS = RS

\Bigl( 
\scrD \alpha 

\bigl( 
\Theta \scrG \alpha (S)

\bigr) \Bigr) 
+ S Section 2.2

\bfl \bfo \bfc \bfa \bfl \bfP \bfD \bfE 

RS\ast 
\bigl( 
 - \Delta S\ast  - S\ast \bigr) = 0Section 7.4

Section 7.1 Section 7.2 Section 7.3

nonlocal laplacian [24]

\partial tf =
1

2
\scrD \alpha (\scrG \alpha f)

descent flow [29]

\partial tf =
1

2
\scrD \alpha (\scrG \alpha f)

RS = id

\bfl \bfa \bfb \bfe \bfl \bfi \bfn \bfg 

Figure 8. Overview of nonlocal diffusion processes proposed in related work [3, 5, 37] and their interrelations
to the nonlocal G-PDE (4.7). The approaches highlighted by the blue region only model the image labeling
problem. Edge labels refer to the corresponding sections of the analytical ablation study.

In view of (4.7), we therefore recognize the system (3.7) as a specific nonlocal process that is
induced by nonnegative symmetric kernels k with nonzero fidelity parameter \lambda , which account
for nontrivial steady state solutions and zero convection (\nu (x, y) = 0).

In the following sections, we relate different established nonlocal models to the proposed
G-PDE (3.7) by adapting the parameter mappings \Theta , \alpha \in \scrF \scrV \times \scrV that parametrize the G-PDE
and determine the interaction domain (2.8). Figure 8 provides an overview of the analytical
ablation study by specifying the model and the corresponding section where it is derived from
the generalized G-PDE (4.7). Table 1 lists the involved parameters for each model.

4.2. Relation to a local PDE that characterizes labelings. We focus on the connection
of the system (3.7) and the continuous-domain local formulation of (2.38a) on an open simply
connected bounded domain \scrD \subset \BbbR 2, as introduced by [29]. The variational formulation
has been rigorously derived in [29] along with a PDE that formally characterizes solutions
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522 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

S\ast = limt\rightarrow \infty S(t)\in \scrW only under strong regularity assumptions. This nonlinear PDE reads

RS\ast (x) ( - \Delta S\ast (x) - S\ast (x)) = 0, x\in \scrD .(4.9)

We next show that our novel approach (3.7) includes, as a special case, a natural dis-
cretization of (4.9) on the spatial discrete grid \scrV h = h\BbbZ d \cap \scrD with boundary \partial \scrV h specified
by a small spatial scale parameter h > 0. (4.9) is complemented by local zero Dirichlet
boundary conditions imposed on S\ast on \partial \scrV h. Adopting the sign convention Lh

\vargamma =  - \Delta h
\vargamma for

different discretizations of the continuous negative Laplacian on \scrV h, by a nine-point stencil
[45] parametrized by \vargamma \in [0,1], leads to strictly positive entries Lh

\vargamma (x,x)> 0 on the diagonal.
We introduce the weighted undirected graph (\scrV h,\Omega h) and identify nodes x = (k, l) \in \scrV h

with interior grid points (hk,hl)\in \scrV h (grid graph). Let the parameter matrix \Omega h be given by
(3.3) and the mappings \alpha ,\Theta \in \scrF \scrV \times \scrV be defined by

\alpha 2(x, y) =

\Biggl\{ 
1, y \in \widetilde \scrN (x),

0 else,
\Theta (x, y) =

\left\{ 
  
  

 - Lh
\vargamma (x, y), y \in \widetilde \scrN (x),

1 - Lh
\vargamma (x,x), x= y,

0 else ,

(4.10)

where the neighborhoods \widetilde \scrN (x) = \scrN (x) \setminus \{ x\} represent the connectivity of the stencil of the
discrete Laplacian Lh

\vargamma on the mesh \scrV h \.\cup \partial \scrV h. Recalling the definitions from section 2.1 with
respect to undirected graphs and setting \alpha by (4.10), the interaction domain (2.8) agrees for
parameter choices \vargamma \not = 0 with the discrete local boundary, i.e., \scrV \alpha \scrI = \partial \scrV h; see Figure 9 and the
caption for further explanation. Then, for each x\in \scrV h, the action of \Omega h on S reads

(\Omega hS)(x) =
\sum 

y\in \widetilde \scrN (x)

 - Lh
\vargamma (x, y)S(y) +

\Bigl( 
1 - Lh

\vargamma (x,x)
\Bigr) 
S(x) = - 

\Bigl( 
 - \Delta h

\vargamma (S) - S
\Bigr) 
(x),(4.11)

which is the discretization of (4.9) by Lh
\vargamma multiplied by the minus sign. In particular, due

to the relation RS( - W ) =  - RS(W ) for W \in \scrW , we conclude that the novel approach (3.7)
includes the local PDE (4.9) as a special case and hence provides a natural nonlocal extension.

4.3. Continuous-domain nonlocal diffusion processes. We follow [37]. Consider a
bounded domain \scrD \subset \BbbR d and let J :\BbbR d\rightarrow \BbbR + be a radial continuous function satisfying

(4.12)

\int 

\BbbR d

J(x - y)dy= 1, J(0)> 0, \forall x\in \BbbR d.

The term J(x - y) in (4.12) may be interpreted as a probability density governing jumps from
position y \in \BbbR d to x\in \BbbR d. The authors of [37] introduced the integral operator

\scrL f(x) =
\int 

\BbbR d

J(x - y)f(y, t)dy - f(x, t), x\in \BbbR d,(4.13)

acting on f \in C(\BbbR d,\BbbR +) and studied nonlocal linear diffusion processes of the form

\partial tf(x, t) =\scrL f(x, t) on \scrD \times \BbbR +,(4.14a)

f(x, t) = g(x) on \BbbR d \setminus \scrD \times \BbbR +,(4.14b)

f(x,0) = f0 on \BbbR d \times \BbbR +,(4.14c)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

9/
23

 to
 1

47
.1

42
.9

.5
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 523

h

h

1
h2

\left[  0  - 1 0
 - 1 4  - 1
0  - 1 0

\right]  

1
2h2

\left[   - \vargamma 2\vargamma  - 2  - \vargamma 
2\vargamma  - 2 8 - 8\vargamma 2\vargamma  - 2
 - \vargamma 2\vargamma  - 2  - \vargamma 

\right]  

\vargamma = 0

\vargamma \not = 0

Figure 9. Illustration of the rectangular grid \scrV h and the interaction domain \scrV \alpha 
\scrI represented by \bullet and

, respectively, with \alpha \in \scrF \scrV \times \scrV given by (4.10) for a family of discrete Laplacians  - \Delta h
\vargamma proposed in [45].

Left: Neighborhood \widetilde \scrN (x) specified in terms of the connectivity of the standard five-point stencil (\vargamma = 0). The
corresponding interaction domain is part of the local boundary \scrV \alpha 

\scrI \subset \partial \scrV h. Right: Analogous construction with
the nine-point stencil (\vargamma \not = 0). The interaction domain coincides with the discrete local boundary configuration,
i.e., \scrV \alpha 

\scrI = \partial \scrV h.

where f0 \in C(\scrD ,\BbbR +) and g \in C(\BbbR d\setminus \scrD ,\BbbR +) specify the initial state and the nonlocal boundary
condition of the system (4.14), respectively. We compare this system with our model (3.7) and
introduce, as in section 4.3, the weighted undirected graph (\scrV h,\Omega h) with a Cartesian mesh
\scrV h, with boundary \partial \scrV h and neighborhoods (2.3), and with \Omega h defined by (3.8) through

\Theta (x, y) =

\left\{ 
  
  

0 for x, y /\in \scrV h,
J(0) - 1 for x= y,

1 else,

\alpha 2(x, y) = J(x - y).(4.15)

Then, for the particular case g = 0 in (4.14a) and using (3.4) with \lambda (x) defined by (3.5), the
spatially discrete counterpart of (4.14) is the linear nonlocal scalar-valued diffusion process

\partial tf(x, t) =
1

2
\scrD \alpha (\Theta \scrG \alpha f)(x, t) + \lambda (x)f(x, t) on \scrV \times \BbbR +,(4.16a)

f(x, t) = 0 on \scrV \alpha \scrI \times \BbbR +,(4.16b)

f(x,0) = f0 on \scrV \times \BbbR +.(4.16c)

System (4.16) possesses a structure which resembles the structure of nonlinear system (3.7)
after dropping the replicator mapping RS and assuming S(x)\in \BbbR to be a scalar-valued rather
than simplex-valued S(x)\in \scrS , as in our approach.

This comparison shows by virtue of the structural similarity that assignment flows may
be characterized as genuine nonlocal diffusion processes. Essential differences, i.e., simplex-
valued variables and the underlying geometry, reflect the entirely different scope of this process,
however: labeling metric data on graphs.

4.4. Nonlocal variational models in image analysis. We relate the system (4.16) to
variational approaches presented in [3] and to graph-based nonlocal PDEs proposed by [2, 5].

Based on a scalar-valued positive function \phi (t) which is convex in
\surd 
t with \phi (0) = 0,

Gilboa and Osher [3] studied isotropic and anisotropic nonlocal regularization functionals on
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524 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

a continuous spatial domain \scrD \subset \BbbR d defined in terms of a nonnegative symmetric mapping
\omega :\scrD \times \scrD \rightarrow \BbbR +:

J\phi 
i (f) =

\int 

\scrD 
\phi (| \nabla \omega (f)(x)| 2)dx (isotropic),(4.17a)

J\phi 
a (f) =

\int 

\scrD 

\int 

\scrD 
\phi (f(y) - f(x))2\omega (x, y)dydx (anisotropic).(4.17b)

(4.17a) involves the nonlocal graph-based gradient operator which for given neighborhoods
\scrN (x) reads

\nabla \omega f(x) =
\Bigl( 
. . . , (f(y) - f(x))

\sqrt{} 
\omega (x, y), . . .

\Bigr) T
, y \in \scrN (x).(4.18)

Given an initial real-valued function f0(x) on \Omega , the variational models of (4.17) define dy-
namics in terms of the steepest descent flows

\partial tf(x, t) = - \partial fJ\phi 
i (f)(x, t), \partial tf(x, t) = - \partial fJ\phi 

a (f)(x, t), f(x,0) = f0(x),(4.19)

where the variation with respect to f on right-hand side of (4.19) is expressed in terms of
(4.18) via

\partial fJ
\phi 
i (f)(x, t) = - 2

\int 

\scrD 
(f(y, t) - f(x, t))\omega (x, y)

\bigl( 
\phi \prime (| \nabla \omega f(y, t)| 2)(y) + \phi \prime (| \nabla \omega f(x, t)| 2)(x)

\bigr) 
dy,

(4.20)

\partial fJ
\phi 
a (f)(x, t) = - 4

\int 

\scrD 
(f(y, t) - f(x, t))\omega (x, y)\phi \prime \bigl( (f(y, t) - f(x, t))2\omega (x, y)

\bigr) 
dy.

Then, given a graph (\scrV ,\scrE , \omega ) with neighborhoods as in section 2.1, the discrete counterparts
of the dynamical systems (4.19) on \scrV read

\.f(x, t) =
\sum 

y\in \scrN (x)

A\phi 
\omega ,f (x, y)f(y),

\.f(x, t) =
\sum 

y\in \scrN (x)

B\phi 
\omega ,f (x, y)f(y),(4.21)

where the mappings A\phi 
\omega ,f ,B

\phi 
\omega ,f \in \scrF \scrV \times \scrV represent explicit expressions of the right-hand sides

of (4.19) on \scrV ,

A\phi 
\omega ,f (x, y) =

\left\{ 
  
  

2\omega (x, y)
\bigl( 
\phi \prime (| \nabla \omega f(y, t)| 2)(y) + \phi \prime (| \nabla \omega f(x, t)| 2)(x)

\bigr) 
, x \not = y,

 - 2 \sum 
z\in \scrN (x)
z \not =x

\omega (x, z)
\bigl( 
\phi \prime (| \nabla \omega f(z, t)| 2)(z) + \phi \prime (| \nabla \omega f(x, t)| 2)(x)

\bigr) 
, x= y,(4.22a)

B\phi 
\omega ,f (x, y) =

\left\{ 
  
  

4\omega (x, y)\phi \prime \bigl( (f(z, t) - f(x, t))2\omega (x, y)
\bigr) 
, x \not = y,

 - 4 \sum 
z\in \scrN (x)
z \not =x

\omega (x, z)\phi \prime \bigl( (f(z, t) - f(x, t))2\omega (x, y)
\bigr) 
, x= y.(4.22b)

Depending on the specification of \phi (t), the dynamics governed by the systems (4.21) de-
fine nonlinear nonlocal diffusion processes with various smoothing properties according to

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

9/
23

 to
 1

47
.1

42
.9

.5
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 525

the mappings (4.22). Specifically, for \phi (t) = t, the functionals (4.17) coincide, as do the
systems (4.21), since the mappings (4.22) do not depend on f(x, t), but only on \omega , which
is symmetric and nonnegative, and hence agree. Invoking Lemma 3.1 with \Omega \in \scrF \scrV \times \scrV de-
fined through (4.22), setting \Theta , \alpha \in \scrF \scrV \times \scrV by \Theta (x, y) = 1, \alpha 2(x, y) = 4\omega (x, y), x \not = y, and
\Theta (x,x) = - 4\sum y\in \scrN (x)\omega (x, y), x\in \scrV , yields the decomposition (3.3), which characterizes (4.18)
in terms of the nonlocal operators from section 2.1 if f| \scrV \alpha 

\scrI 
= 0 holds, by means of relation (3.4).

Consequently, (4.21) admits the representation by (4.16) for the particular case of zero non-
local Dirichlet conditions.

While the above approaches are well suited for image denoising and inpainting, our geo-
metric approach performs labeling of arbitrary metric data on arbitrary graphs.

4.5. Nonlocal graph Laplacians. Elmoataz, Toutain, and Tenbrinck [5] studied discrete
nonlocal differential operators on weighted graphs (\scrV ,\scrE , \omega ). Specifically, based on the nonlocal
gradient operator (4.18), a class of Laplacian operators acting on functions f \in \scrF \scrV was defined
by

\scrL \omega ,pf(x) =

\left\{ 
  
  

\beta +(x)
\sum 

y\in \scrN +(x)

(\nabla \omega f(x, y))
p - 1 + \beta  - (x)

\sum 
y\in \scrN  - (x)

( - 1)p (\nabla \omega f(x, y))
p - 1 , p\in [2,\infty ),

\beta +(x) max
y\in \scrN +(x)

(\nabla \omega f(x, y)) + \beta  - (x) max
y\in \scrN  - (x)

( - 1)p (\nabla \omega f(x, y)) , p=\infty ,

(4.23a)

where

\scrN +(x) = \{ y \in \scrN (x) : f(y) - f(x)> 0\} , \scrN  - (x) = \{ y \in \scrN (x) : f(y) - f(x)< 0\} .(4.23b)

As detailed in [5, section 4] depending on the weighting function \omega \in \scrF \scrV \times \scrV and on the
positive functions \beta +, \beta  - \in \scrF \scrV satisfying \beta +(x) + \beta  - (x) = 1, x \in \scrV , the Laplacians (4.23)
enable generalizing a broad class of variational approaches including [2], whose Euler Lagrange
equations involve graph Laplacians.

In the following, we focus on undirected graphs (\scrV ,\scrE , \omega ) with \omega (x, y) = \omega (y,x). Then, for
the purpose of data inpainting and following [5], given a vertex set \scrA \subset \scrV together with a
function g \in \scrF \partial \scrA ,\BbbR c specifying the boundary condition imposed on

\partial \scrA = \{ x\in \scrV \setminus \scrA : \exists y \in \scrA with y \in \scrN (x)\} ,(4.24)

the nonlocal Laplacian (4.23) generates a family of nonlocal discrete diffusion processes of the
form

\partial tf(x, t) =\scrL \omega ,pf(x, t) on \scrA \times \BbbR +,(4.25a)

f(x, t) = g(x, t) on \partial \scrA \times \BbbR +,(4.25b)

f(x,0) = f0(x) on \scrA .(4.25c)

To establish a comparison with the proposed nonlocal formulation (3.7), we represent the
model (4.25) with g= 0 on \partial \scrA in terms of the operators introduced in section 2.1. Following
[5, section 5] and setting the weighting function

\alpha f (x, y) =

\Biggl\{ 
\beta +(x)

\sqrt{} 
\omega (x, y)

p - 1
(\nabla \omega f(x, y))

p - 2 if f(y)> f(x),

\beta  - (x)
\sqrt{} 

\omega (x, y)
p - 1

(\nabla \omega f(y,x))
p - 2 if f(y)< f(x),

(4.26)
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526 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

the particular case p= 2 simplifies to a linear diffusion process (2.18) with (4.26) directly given
in terms of weights \omega (x, y) prescribed by the adjacency relation of the graph \scrV . Moreover,
if at each vertex x \in \scrV the equation \beta +(x) = \beta  - (x) = 1

2 holds, then for any p \in [2,\infty ) the
mapping (4.26) is nonnegative and symmetric. As a consequence, \alpha f from (4.26) can substitute
\omega (x, y) in (2.18) and hence specifies a representation of the form (2.17) when choosing the
antisymmetric mapping \alpha \in \scrF \scrV \times \scrV to satisfy 2\alpha 2(x, y) = \alpha f (x, y). Finally, specifying the
symmetric mapping \Theta \in \scrF \scrV \times \scrV as \Theta (x, y) = 1 if x \not = y and \Theta (x,x) =  - \sum y\in \scrN (x)\alpha 

2(x, y)
expresses the system (4.25) through (4.16) with \scrV and \scrV \alpha \scrI given by \scrA and \partial \scrA , respectively.

We conclude with a comment similar to the previous sections. While the similarity of
the above mathematical structures to our approach is evident from the viewpoint of diffusion
processes, the scope of our approach, data labeling, differs and is not directly addressed by
established diffusion-based approaches. We further point out the different role of interaction
domain (2.8). While for model (4.25) we set \alpha through (4.26) to satisfy \scrV \alpha \scrI = \partial \scrA which is
subset of given set of vertices \scrV , i.e., \scrV = \scrV as illustrated by the right panel of Figure 10,
we focus in our work on mappings \alpha that lead to an extension of \scrV by vertices in \BbbZ d \setminus \scrV , as
presented by the left panel of Figure 10.

5. Nonconvex optimization by geometric integration. We show in section 5.1 how geo-
metric integration provides a numerical scheme for solving the nonlocal partial difference
equation (3.7) on a regular discrete grid \scrV by generating a sequence of states on \scrW that
monotonically decrease the energy objective (2.46). In particular, we show that the geometric
Euler scheme is equivalent to the basic two-step iterative approach provided by [33] for solving
nonconvex optimization problems in DC format.

In section 5.2, we prove the monotonic decrease property for a novel class of geometric
multistage integration schemes that speed up convergence and show the relation of this class
to the nonconvex optimization framework presented in [46, 47]

Figure 11 provides a schematic overview over key components of the two proposed al-

\in \scrV 

\in \scrV \alpha 
\scrI 

\in \scrV \in 

\in \scrA 

\in \partial \scrA 

\bfn \bfo \bfn \bfl \bfo \bfc \bfa \bfl \bfG -\bfP \bfD \bfE (3.7) \bfn \bfo \bfn \bfl \bfo \bfc \bfa \bfl \bfa \bfp \bfp \bfr \bfo \bfa \bfc \bfh [24]

\scrV 

Figure 10. Schematic illustration of two different instances of \scrV \alpha 
\scrI . Nodes and \bullet represent points of the

interaction domain \scrV \alpha 
\scrI and the vertex set \scrV , respectively, in terms of the mapping \alpha \in \scrF \scrV \times \scrV . Left: Boundary

configuration for the nonlocal G-PDE (3.7) introduced in this paper. Nonzero interaction of nodes in \scrV with
nodes outside the graph \BbbZ d\setminus \scrV results in an extended domain \scrV according to (2.6). Right: Boundary configuration
for the task of inpainting as proposed in [5]. The parameter \alpha is specified entirely on \scrV resulting in a disjoint
decomposition \scrV = \scrA \.\cup \partial \scrA where now \scrV \alpha 

\scrI satisfies \scrV \alpha 
\scrI = \partial \scrA to represent the set of all nodes with missing

information \scrV \setminus \scrA .
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gorithms, including references to the corresponding subsections. Proofs are provided in sec-
tion A.4 to enable efficient reading.

5.1. First-order geometric integration and DC programming. We focus on a one-stage
iterative numerical scheme derived by discretizing the explicit geometric Euler integration
(3.19) in time with a fixed time step size h > 0. In this specific case, (3.19) generates the
sequence of iterates for approximately solving (2.38a) given by

(5.1)

(Sk)k\geq 1 \subset \scrF \scrV ,\scrW , Sk+1(x) = expSk(x) (h(\Omega S)(x)) , S0(x) = exp1c

\biggl( 
 - D\scrX (x)

\rho 

\biggr) 
, x\in \scrV ,

where the index k represents the point in time kh. We next show that the sequence (5.1) locally
minimizes the potential (2.46) and hence, based on the formulation derived in Proposition
3.3, how geometric integration provides a finite difference scheme for numerically solving the
nonlocal G-PDE (3.7) for the particular case of zero nonlocal boundary conditions.

Proposition 5.1. Let \alpha ,\Theta \in \scrF \scrV \times \scrV , \lambda \in \scrF \scrV , and \Omega \in \scrF \scrV \times \scrV be given as in Lemma 3.1. Then
the sequence (5.1) satisfies

Sk+1(x) = expSk(x)

\biggl( 
h

\biggl( 
1

2
\scrD \alpha 
\Bigl( 
\Theta \scrG \alpha (hSk

)
\Bigr) 
+ \lambda S

k
\biggr) 
(x)

\biggr) 
, x\in \scrV ,(5.2)

where the zero extension S
k
of Sk to \scrV is a discrete approximation S(hk) of the continuous

time solution to the system (3.7), initialized by S0(x) (5.1) with imposed zero nonlocal boundary
20 D. SITENKO, B. BOLL, C. SCHNÖRR

acceleration

initialization: S0 ∈ W , h > 0

Labeling S∗ as minimum of
the nonconvex functional (2.46)

min

S ∈ W
J(S) = −1

2
〈 Ω S, S〉

nonlocal connectivity

manifold constraint

Section 5.1 Section 5.2

Section 2,3

geometric DC accelerated geometric DC

initialization: S0 ∈ W , θ0 > 0

stepsize selection
hk ≥ 0 , Algorithm 4

if hk = 0

descent direction
dk = Π0ΩSk + hk

2 ΩRSk(ΩSk)
second order information

line search → Sk+1

convergence criterion
(Sk near the boundary)

explicit Euler update:
Sk+1 = expSk(hΠ0ΩSk), Algorithm 1

convergence criterion

final labeling S∗
yes

no

yes
no

FIGURE 5.1. Sketch of the two algorithmic schemes, Algorithm 1 and Algorithm 4, developed in Section 5.
Common basic components as well as essential differences are highlighted. The major difference corresponds to
the acceleration of the basic numerical scheme by geometric integration for solving the nonconvex DC program
displayed in the top box.

where the index k represents the point in time kh. We next show that the sequence (5.1) locally minimizes the
potential (2.46) and hence, based on the formulation derived in Proposition 3.3, how geometric integration
provides a finite difference scheme for numerically solving the nonlocal PDE (3.8) for the particular case of
zero nonlocal boundary conditions.

Proposition 5.1. Let α,Θ ∈ FV×V , λ ∈ FV and Ω ∈ FV×V be given as in Lemma 3.1. Then the sequence
(5.1) satisfies

Sk+1(x) = expSk(x)

(
h
(1

2
Dα
(
ΘGα(hS

k
)
)

+ λS
k
)

(x)

)
, x ∈ V, (5.2)

where the zero extension Sk of Sk to V is a discrete approximation S(hk) of the continuous time solution to
the system (3.8), initialized by S0(x) (5.1) with imposed zero nonlocal boundary conditions. In addition, if

h ≤ 1

|λmin(Ω)|
, (5.3)

where λmin(Ω) denotes the smallest eigenvalue of Ω, then the sequence (Sk) achieves the monotone decrease
property

J(Sk+1) ≤ J(Sk), k ∈ N (5.4)
for the potential function (2.46).

Proof. Equation (5.2) directly follows from Proposition 3.3, from the specification (2.32) of the similarity
mapping and from the relation expp = Expp ◦Rp for p ∈ S (cf. (2.40), (2.41)). Leveraging the parametriza-
tion (3.16) of system (3.8), discretization of (3.16) by forward finite differences with step size parameter
h > 0 yields for x ∈ V

V k+1(x)− V k(x)

h
=
(1

2
Dα
(
ΘGα(expS0(V k))

)
+ λ expS0(V k)

)
(x) (5.5)

Figure 11. Sketch of the two algorithmic schemes, Algorithms 1 and 4, developed in section 5. Common
basic components as well as essential differences are highlighted. The major difference corresponds to the
acceleration of the basic numerical scheme by geometric integration for solving the nonconvex DC program
displayed in the top box.
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528 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

Algorithm 1 Geometric DC programming scheme.

1 Initialization: γ > |λmin(Ω)| (DC-decomposition parameter, see proof
of Proposition 5.1)

2 S0 = S(0) ∈ W (initial point by (2.38a))
3 ε > 0 (termination threshold)
4 ε0 = ‖ gradg J(S0)‖ (gradg J(S) = RS(∂SJ(S)))

5 k = 0
6 while εk > ε do

7 S̃k = ΩSk + γ logSk

8 compute: Sk+1 = argminS∈W{γS logS − 〈S̃k, S〉} given by (5.1), resp., (5.2) with
h = 1

γ

9 εk = ‖ gradg J(Sk+1)‖
10 k ← k + 1

conditions. In addition, if

(5.3) h\leq 1

| \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega )| 
,

where \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega ) denotes the smallest eigenvalue of \Omega , then the sequence (Sk) achieves the
monotone decrease property

(5.4) J(Sk+1)\leq J(Sk), k \in \BbbN ,

for the potential function (2.46).

Proof. See section A.3 for the proof.

Recent work [19] on the convergence of (2.38a) showed that, up to negligible situations
that cannot occur when working with real data, limit points S\ast = limt\rightarrow \infty S(t) of (2.38a) are
integral assignments S\ast \in \scrW . Proposition 5.1 says that for step sizes h < 1 the geometric
integration step (5.1) yields a descent direction for moving S(t) \in \scrW to S(t + h) \in \scrW and
therefore sufficiently approximates the integral curve corresponding to (2.38a) at time t+ h.
We conclude that the fixed point determined by Algorithm 1 solves the nonlocal G-PDE (3.7).

5.2. Higher-order geometric integration. In this section we show how higher-order geo-
metric integration schemes can be used and we enhance the first-order method of the previous
section.

We continue the discussion of the numerical integration of the assignment flow (2.38a)
by employing the tangent space parameterization (3.10). For a discussion of relations to the
geometry of \scrW , we refer to [20]. In what follows, we drop the argument x \in \scrV and just work
with matrix products (cf. (2.48)), besides the lifting map expS that acts rowwise as defined
by (2.40).

Our starting point is the explicit geometric Euler scheme (3.19) and (5.1), respectively,

(5.5) S(t+ h)\approx expS0

\Bigl( 
V (t) + h \.V (t)

\Bigr) 
= expS(t) (h(\Omega S)(t)) .
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A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 529

Now compute the second-order derivative of all component functions on \scrT 0,

(5.6) \"V (t)
(3.13)
= \Pi 0\Omega 

d

dt
expS0(V (t))

(3.10)
(3.12)
= \Pi 0\Omega R\mathrm{e}\mathrm{x}\mathrm{p}S0 (V (t))

\.V (t)
(3.10)
= \Pi 0\Omega RS(t) (\Omega S(t)) .

Then the second-order expansion V (t+h) = V (t)+h \.V (t)+ h2

2
\"V (t)+\scrO (h3) in \scrT 0 leads to the

second-order geometric integration scheme

S(t+ h)\approx expS(t)

\biggl( 
h \.V (t) +

h2

2
\"V (t)

\biggr) 
(5.7a)

= expS(t)

\biggl( 
h\Omega S(t) +

h2

2
\Omega RS(t)(\Omega S(t))

\biggr) 
,(5.7b)

which may be read due to (2.44a) as the two-stage iterative algorithm

\widetilde S(t) = expS(t) (h\Omega S(t)) ,(5.8a)

S(t+ h) = exp\widetilde S(t)
\biggl( 
h2

2
\Omega RS(t)(\Omega S(t))

\biggr) 
.(5.8b)

Below, we set in view of (3.10)

(5.9) J(V ) := J(S)| S=\mathrm{e}\mathrm{x}\mathrm{p}S0 (V ) = J (expS0(V ))

to simplify the notation. The following lemma prepares our main result.

Lemma 5.2. Based on the parametrization (3.10), the Euclidean gradient of the function
V \mapsto \rightarrow J(V ) is given by

\partial J(V ) = - R\mathrm{e}\mathrm{x}\mathrm{p}S0 (V ) (\Omega expS0(V )) = gradgJ(S),(5.10)

that is, by the Riemannian gradient of the potential (2.46).

Proof. See section A.4 for the proof.

The next proposition asserts that applying the second-order geometric integration scheme
(5.8) leads to a sufficient decrease of the sequence of values (J(Sk))k\in \BbbN if at each iteration
the step sizes are chosen according to a Wolfe rule like the line search procedure [48, 49].
Specifically, the step sizes h and h2 in (5.8a) and (5.8b), respectively, are replaced by step
size sequences (\theta k)k\geq 0 and (hk\theta k)k\geq 0. In addition, the proposition reveals that, under mild
assumptions on the sequence (hk)k\geq 0, the norm of the Riemannian gradient (5.10) becomes
arbitrarily small. The proposition is proved in section A.4.

Proposition 5.3. Let \Omega (x, y) be as in Lemma 3.1 and let d :\scrW \times \BbbR + \rightarrow \scrT 0 be a mapping
given by

d(S,h) =\Pi 0

\biggl( 
\Omega S +

h

2
\Omega RS(\Omega S)

\biggr) 
, S \in \scrW , h\in \BbbR +.(5.11)

Then the following holds:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

9/
23

 to
 1

47
.1

42
.9

.5
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



530 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

(i) There exist sequences (hk)k\geq 0, (\theta k)k\geq 0 and constants 0< c1 < c2 < 1 such that setting

Sk+ 1

2 = expSk(\theta k\Omega S
k),(5.12a)

Sk+1 = exp
Sk+1

2

\biggl( 
hk\theta k
2

\Omega RSk(\Omega Sk)

\biggr) 
,(5.12b)

and

(5.13) dk := d(Sk, hk)\in \scrT 0

yields iterates

(5.14) Sk+1 = expSk(\theta kd
k), k \in \BbbN ,

satisfying

J(Sk+1) - J(Sk)\leq c1\theta k\langle gradgJ(Sk),RSk(dk)\rangle Sk (Armijo condition),(5.15a)

| \langle gradgJ(Sk+1),RSk(dk)\rangle Sk | \leq c2| \langle gradgJ(Sk),RSk(dk)\rangle Sk (curvature condition)

(5.15b)

and (recall (2.22)),

(5.16) \langle U,V \rangle S =
\sum 

x\in \scrV 
gS(x) (U(x), V (x)) , U,V \in \scrT 0, S \in \scrW .

(ii) Suppose the limit point \gamma \ast of (\theta k)k\geq 0 is bounded away from zero, i.e., \gamma \ast = limk\rightarrow \infty \theta k >
0. Then any limit point S\ast \in \scrW of the sequence (5.12) is an equilibrium of the flow
(2.38a).

(iii) If S\ast is a limit point of (5.12) which locally minimizes J(S), with sequences
(\theta k)k\geq 0, (hk)k\geq 0 as in (ii), then S\ast \in \scrW \setminus \scrW .

(iv) If additionally
\sum 

k\geq 0 hk = 0 holds in (ii), then the sequence (\epsilon k)k\geq 0 with \epsilon k :=

\| gradgJ(Sk)\| is a zero sequence.

Proof. See section A.4 for the proof.

Given a state Sk \in \scrW , Proposition 5.3 asserts the existence of step size sequences
(hk)k\geq 0, (\theta k)k\geq 0 \subset \BbbR + that guarantee a sufficient decrease of the objective (2.46) through
(5.14) while still remaining numerically efficient by avoiding too small step sizes through
(5.15). A corresponding proper step size selection procedure is summarized as Algorithm 3
that calls Algorithm 2 as a subroutine. Based on Algorithm 3, the two-stage geometric in-
tegration scheme (5.8) that accelerates Algorithm 1 is given as Algorithm 4. Acceleration is
accomplished by utilizing at each Sk descent directions dk given by (5.13), based on second-
order information provided by the vector field (5.6).

In section 6, we show that Algorithm 4 converges. This implies, in particular, that Al-
gorithms 1 and 4 terminate after a finite number of steps for any termination parameter \varepsilon 
with respect to the entropy of the assignment vectors, which measures closeness to an integral
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A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 531

Algorithm 2 Search (Sk, \theta k, dk, c1, c2, a, b).

Algorithm 3 Step (Sk, \theta k, dk, c1, c2, \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega )).
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532 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

solution. Theorem 6.6 asserts the existence of basins of attraction around integral solutions
from which the sequence (Sk) can never escape once it has reached such a region.

We elaborate in terms of Theorem 6.4 a theoretical guideline for choosing a sequence
(hk)k\geq 0 which meets the condition of Proposition 5.3(iv). In practice, to achieve an acceler-
ation by Algorithm 4 in comparison with Algorithm 1, we choose a large value of the step
size parameter hk in the beginning and monotonically decrease hk to zero after a fixed num-
ber of iterations. One particular step size selection strategy that we used for the numerical
experiments will be highlighted in section 7.

The following remark clarifies how the line search procedure formulated as Algorithm 3,
which is used in Algorithm 4, differs from the common line search accelerated DC programming
schemes proposed by [46] and [47].

Remark 5.4 (directly related work). Using the notation of Proposition 5.1 and its proof,
the step iterated by Algorithm 1 at Sk \in \scrW reads

\widetilde Sk = argminS\in \BbbR n

\Bigl\{ 
h\ast (S) - \langle Sk, S\rangle 

\Bigr\} 
with h(S) = \langle S,\Omega S\rangle + \gamma S logS,(5.17a)

Sk+1 = argminS\in \BbbR n

\Bigl\{ 
g(S) - \langle S, \widetilde Sk\rangle 

\Bigr\} 
with g(S) = \delta \scrW (S) + \gamma S logS,(5.17b)

where h\ast is the conjugate of the convex function h. Motivated by the work [46], Arag\'on
Artacho, Fleming, and Vuong [47] proposed an accelerated version of the above scheme by
performing an additional line search step along the descent direction

(5.18) \widetilde dk = Sk+1  - Sk

in (5.17b) for scenarios where the primary variable S to be determined is not manifold-valued.
The direct comparison with Algorithm 1 reveals that for the specific choice hk = 0, k \in \BbbN ,

in (5.13), (5.11), line search is performed along the descent direction

(5.19) dk =\Pi 0\Omega S
k = V k+1  - V k \in \scrT 0,

where the last equation follows from applying the parametrization (3.10) to (5.12) while taking
into account (2.41) and RS =RS\Pi 0 for S \in \scrW .

Comparing \widetilde dk and dk shows the geometric nature of our algorithm in order to handle
properly the manifold-valued variable S and the more general descent directions dk with step
sizes hk > 0 in Algorithm 4.

5.3. Influence of nonlocal boundary conditions. We conclude this section by explaining
in more detail the effect of imposing in (3.7) the zero nonlocal boundary condition on the
nonempty interaction domain, on the step size selection procedure presented as Algorithm 3.
This explanation is formulated as Remark 5.6 below after the following proposition, which
states a result analogous to [37, Proposition 2.3]. The proposition is proved in section A.5.

Proposition 5.5. For mappings \Theta , \alpha \in \scrF \scrV \times \scrV , let \Omega \in \scrF \scrV \times \scrV and \lambda \in \scrF \scrV be given as in
Lemma 3.1 such that property (2.34) holds and \lambda = 1, x \in \scrV in (3.5) is achieved. Assume
further that the weighted graph (\scrV ,\scrE ,\Omega ) in (2.1) is connected. Then the following holds:
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Algorithm 4 Accelerated geometric DC-optimization

(i) The smallest Dirichlet eigenvalue of the nonlocal operator (2.17)

\lambda D
1 = inf

f \not =0
 - 

1
2\langle f,\scrD \alpha (\Theta \scrG \alpha f)\rangle \scrV 

\langle f, f\rangle \scrV 
, f \in \scrF \scrV , f| \scrV \alpha 

\scrI 
= 0,(5.20)

is bounded away from zero and admits the equivalent expression

0<\lambda D
1 = inf

f \not =0

\langle f, (\Lambda  - \Omega )f\rangle \scrV 
\langle f, f\rangle \scrV 

,(5.21)

where

(5.22) \Lambda =Diag(\lambda ), \lambda = (. . . , \lambda (x), . . .)\top 

with \lambda (x) given by (3.5).
(ii) One has \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega )> - 1.
Proof. See section A.5 for the proof.

We are now in position to characterize the effect of imposing the zero nonlocal boundary
condition on the step size selection procedure (Algorithm 3).

Remark 5.6 (parameter selection). Recalling the proof of Proposition 5.1, the update (5.2)
amounts to performing at each step k \in \BbbN one iteration of a basic DC programming scheme
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Figure 12. Effect of imposing nonlocal boundary conditions. The green ( ) and red ( ) curves plot the
smallest eigenvalues \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega ) of the parameter matrix (3.3) for uniform and nonuniform averaging, respectively,
and for different neighborhood sizes | \scrN | . Choosing larger neighborhoods (2.3) increases the smallest eigenvalue
and consequently, by (5.3), enables us to choose bigger step sizes in Algorithm 1 that achieve the monotone
decrease property (5.4).

[33] with respect to the suitable DC-decomposition (A.10) of (2.46), with \Omega satisfying (2.2),
(2.34) by choosing parameter \gamma > 0 such that \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega +\gamma Diag( 1

S ))> 0. In the case of a nonzero
interaction domain (2.8) with \Omega , \alpha ,\Theta as in Lemma 5.5, Proposition 5.5(ii) and estimate (A.13)
yield for S \in \scrW 

\lambda \mathrm{m}\mathrm{i}\mathrm{n}

\biggl( 
\Omega + \gamma Diag

\biggl( 
1
S

\biggr) \biggr) 
> - 1 + \beta + \gamma > 0 for \gamma > 1 - \beta ,(5.23a)

\beta =
\sum 

x\in \scrV b

\sum 

y\in \scrV \alpha 
\scrI 

\Theta (x, y)\alpha 2(x, y)f2(x).(5.23b)

In particular, following the steps in the proof of Lemma 5.1, relation h = 1
\gamma in connection

with (5.23) accounts for bigger step sizes in Algorithm 1 for integrating (3.7) with nonzero
interaction domain (2.8). This will be numerically validated in section 7 (see Figure 12).

We conclude this section with a final comment on the lower bound of the objective (2.46).

Remark 5.7 (global minimizer of (2.46)). Recalling the terms involved in the objective
(2.46), the lower bound is attained precisely when the first term

\sum 
x\in \scrV 

\sum 
y\in \scrN (x)\Omega (x, y)\| S(x) - 

S(y)\| 2 is minimal and the last term  - 1
2\| S\| 2F is maximal. Therefore the global minimizers of

J(S) are given by the set of spatially constant assignments, where to each node in graph \scrV 
the same prototype X\ast 

j \in \scrX is assigned.

6. Convergence analysis. This section is devoted to the convergence analysis of Algorithm
4 that performs accelerated geometric integration of the Riemannian descent flow (2.38a). The
main results are stated as Theorems 6.4 and 6.6 in section 6.2. The lengthy proofs have been
relegated to section A.6.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

9/
23

 to
 1

47
.1

42
.9

.5
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 535

6.1. Preparatory lemmata.
Lemma 6.1. For a nonnegative, symmetric mapping \Omega \in \scrF \scrV \times \scrV , let the sequences (Sk)k\geq 0,

(\theta k)k\geq 0, (hk)k\geq 0 be recursively defined by Algorithm 4 and let \Lambda denote the set of all limit
points of the sequence (Sk)k\geq 0,

(6.1) \Lambda = \{ S \in \scrW : \exists (Skl)l\geq 0 with Skl\rightarrow S for l\rightarrow \infty \} .

Then there exists J\ast \in \BbbR with limk\rightarrow \infty J(Sk) = J\ast , i.e., J(S) is constant on \Lambda .

Proof. See section A.6 for the proof.

Next, we inspect the behavior of the iterates generated by Algorithm 4 near a limit point
S\ast \in W . To this end, the following index sets are considered at each node x\in \scrV :

J+(S
\ast (x)) = \{ j \in [c] : (\Omega S\ast )j(x) - \langle S\ast (x), (\Omega S\ast )(x)\rangle < 0\} ,(6.2a)

J - (S\ast (x)) = \{ j \in [c] : (\Omega S\ast )j(x) - \langle S\ast (x), (\Omega S\ast )(x)\rangle > 0\} ,(6.2b)

J0(S
\ast (x)) = \{ j \in [c] : (\Omega S\ast )j(x) - \langle S\ast (x), (\Omega S\ast )(x)\rangle = 0\} .(6.2c)

Lemma 6.2. Let \Omega \in \scrF \scrV \times \scrV and (Sk)k\geq 0, (\theta k)k\geq 0, (hk)k\geq 0 be as in Proposition 5.3(iv) with
a sequence (\theta k)k\geq 0 bounded by \theta k \in [\theta \mathrm{m}\mathrm{i}\mathrm{n}, \theta \mathrm{m}\mathrm{a}\mathrm{x}]. Let S

\ast \in \scrW be a limit point of (Sk)k\geq 0. Then,
for the positive function Q(S) =

\sum 
x\in \scrV 

\sum 
j\in J+(S\ast (x)) Sj(x), there are constants \varepsilon > 0, M\ast > 1

and an index k0 such that \forall k\geq k0 with \| S\ast  - Sk\| < \varepsilon the inequality

(6.3) Q(Sk+1) - Q(Sk)<
\theta k
M\ast 

\sum 

x\in \scrV 

\sum 

j\in J+(S\ast (x))

Sk
j (x)((\Omega S

\ast )j(x) - \langle \Omega S\ast (x), S\ast (x)\rangle )< 0

is satisfied.

Proof. See section A.6 for the proof.

6.2. Main results. This section provides the main results of our convergence analysis:
convergence of the accelerated Algorithm 4 (Theorem 6.4) and an estimate of the basins of
attraction around equilibria that enable early stopping of Algorithm 4 (Theorem 6.6).

Definition 6.3 (convex functions of Legendre type [50, Chapter 26]). Let f :X\rightarrow ( - \infty ,\infty ] be
a lower-semicontinuous proper convex function with nonempty open domain C = int(domf) \not =
\emptyset . Then f is called

(i) essentially smooth if f is differentiable on C and for every sequence (xk)k\in \BbbN \subset C
with xk \rightarrow x\ast \in C \setminus C converging to a boundary point for k \rightarrow \infty , it follows that
\| \nabla f(xk)\| \rightarrow \infty ;

(ii) a Legendre type function if h is essentially smooth and strictly convex on C.

Convex functions f of Legendre type yield a class of Bregman divergence functions Df

through

Df : C \times C\rightarrow \BbbR +,

(x, y) \mapsto \rightarrow f(x) - f(y) - \langle \nabla f(y), x - y\rangle ;(6.4)
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536 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

see, e.g., [51, 52] for a detailed exposition. Strict convexity of f and Jensen's inequality imply

(6.5) \forall (x, y)\in C \times C : Df (x, y)\geq 0 and (Df (x, y) = 0) \leftrightarrow (x= y).

In the following, we will use the Kullback--Leibler (KL) divergence (a.k.a. relative entropy,
information divergence) D\mathrm{K}\mathrm{L} =Df ,

(6.6) D\mathrm{K}\mathrm{L} : \scrS \times \scrS \rightarrow \BbbR +, D\mathrm{K}\mathrm{L}(s, p) =

\biggl\langle 
s, log

s

p

\biggr\rangle 
,

induced by the negative discrete entropy function

(6.7) f = \langle s, log s\rangle + \delta S(s)

(with the convention 0 \cdot log 0 = 0). Accordingly, we define with abuse of notation

(6.8) D\mathrm{K}\mathrm{L} : \scrW \times \scrW \rightarrow \BbbR +, D\mathrm{K}\mathrm{L}(S,P ) =
\sum 

x\in \scrV 
D\mathrm{K}\mathrm{L} (S(x), P (x)) .

Theorem 6.4 (convergence of Algorithm 4). Let (Sk)k\geq 0 be a sequence generated by Algo-
rithm 4, where the sequences of step sizes (\theta k)k\geq 0, (hk)k\geq 0 additionally satisfy the assumptions
of Lemma 6.2 and Proposition 5.3, respectively. If there exists an index K \in \BbbN such that the
sequence (hk)k\geq K satisfies

hk \leq C(\Omega )
\| gradgJ(Sk)\| 2Sk

n
(6.9a)

with C(\Omega ) := 2
\theta \mathrm{m}\mathrm{i}\mathrm{n}c1
\lambda 2(\Omega )

, \lambda (\Omega ) =max\{ | \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega )| , | \lambda \mathrm{m}\mathrm{a}\mathrm{x}| (\Omega )\} ,(6.9b)

then the set \Lambda = \{ S\ast \} defined by (6.1) is a singleton and limk\rightarrow \infty D\mathrm{K}\mathrm{L}(S
\ast , Sk) = 0 holds, i.e.,

the sequence (Sk)k\geq 0 converges to a unique S\ast \in \scrW which is an equilibrium of (2.38a).

Proof. See section A.7 for the proof.

According to Proposition 5.3(iii), (iv), the sequence (Sk)k\geq 0 converges to a critical point
S\ast \in \scrW \setminus \scrW on the boundary of convex set \scrW . Since both functions g,h of the DC-
decomposition (A.10) have been regularized by the negative entropy, global Lipschitz con-
tinuity of the derivatives does not hold and hence does not allow us to study the convergence
rate of Algorithm 4 along the lines pursued in [47], [53], [54]. Therefore, we confine ourselves
to establishing a local linear rate of convergence Sk \rightarrow S\ast within a suitably defined basin of
attraction in \scrW around S\ast . To this end, we adopt the following basic assumption.

Assumption. Any stationary point S\ast \in \scrW of the sequence (Sk) generated by Algorithm
4 is a stable equilibrium of the flow (2.38a):
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A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 537

(6.10) (\Omega S\ast )j(x) - (\Omega S\ast )j\ast (x)(x)< 0, j \in [c] \setminus j\ast (x) = arg maxl\in [c]S
\ast 
l (x), \forall x\in \scrV .

Remark 6.5. As worked out in [19, section 2.3.2], the set of initial points S(0) of the
flow (2.38a) for which assumption (6.10) is not satisfied has measure zero. Hence assumption
(6.10) holds in all practically relevant cases.

Based on assumption (6.10), we adopt the results reported in [19, section 2.3.3] by defining
the open convex polytope for each integral equilibrium S\ast \in \scrW \ast as

(6.11) A(S\ast ) :=
\bigcap 

x\in \scrV 

\bigcap 

j \not =j\ast (x)

\{ S \in \scrF \BbbR n\times c : (\Omega S)j(x)< (\Omega S)j\ast (x)(x)\} 

and by introducing the basins of attraction

B\varepsilon (S
\ast ) := \{ S \in W : max

x\in \scrV 
\| S(x) - S\ast (x)\| 1 < \varepsilon \} \subset A(S\ast )\cap W,(6.12)

where \varepsilon > 0 is small enough such that the inclusion in (6.12) holds. Due to [19, Proposition
2.3.13] a sufficient upper bound \varepsilon \leq \varepsilon \ast for the inclusion (6.12) to hold is

(6.13) \varepsilon \ast =min
x\in \scrV 

min
j\in [c]\setminus j\ast (x)

2
\bigl( 
(\Omega S\ast )j\ast (x)  - (\Omega S\ast )j

\bigr) 
(x)\sum 

y\in \scrN (x)

\Omega (x, y) +
\bigl( 
(\Omega S\ast )j\ast (x)  - (\Omega S\ast )j

\bigr) 
(x)

> 0.

The following theorem asserts that a modified criterion applies to the sequence generated by
Algorithm 4, together with a linear convergence rate Sk \rightarrow S\ast , whenever the sequence (Sk)
enters a basin of attraction B\varepsilon (S

\ast ).

Theorem 6.6 (basins of attraction). For \Omega \in \scrF \scrV \times \scrV as in Lemma 3.1, let (Sk)k\geq 0 be a
sequence generated by Algorithm 4. Let S\ast \in \scrW be a limiting point (Sk)k\geq 0 that fulfills
assumption (6.10) and let \varepsilon \ast > 0 be as in (6.13). Then, introducing the positive constants

h=max
k\in \BbbN 

hk, \rho \ast =max
S\in \scrW 

\Bigl( 
max
x\in \scrV ,

j\in [c]\setminus j\ast (x)

\bigl( 
(\Omega S)j\ast (x)  - (\Omega S)j

\bigr) 
(x)
\Bigr) 
, N =max

y\in \scrV 
| \scrN (y)| ,(6.14)

\forall \varepsilon > 0 small enough such that

(6.15) \varepsilon \leq min
x\in \scrV 

min
j\in [c]\setminus j\ast (x)

2 \cdot 
\bigl( 
(\Omega S\ast )j\ast (x)  - (\Omega S\ast )j

\bigr) 
(x)

1 +C \cdot \rho \ast +
\bigl( 
(\Omega S\ast )j\ast (x)  - (\Omega S\ast )j

\bigr) 
(x)

, C = h \cdot c \cdot N,

the following applies: If for some index k0 \in \BbbN it holds that Sk0 \in B\varepsilon (S
\ast ) \subset B\varepsilon \ast (S

\ast ), then
\forall k\geq k0 there exists a mapping \xi \in \scrF \scrV with \xi (x)\in (0,1), \forall x\in \scrV , such that

(6.16) \| Sk(x) - S\ast (x)\| 1 < \xi k - k0(x)\| Sk0(x) - S\ast (x)\| 1 \forall x\in \scrV .

Proof. See section A.7 for the proof.

7. Experiments and discussion. In this section, we report numerical results obtained
with the algorithms introduced in section 5. Details of the implementation and parameters
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538 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

settings are provided in section 7.1. Section 7.2 deals with the impact of the nonlocal boundary
conditions of system (3.14) on properties of averaging matrices \Omega (see section 3) and how this
affects the selection of the step size parameter h> 0 in Algorithm 1. Section 7.3 reports results
obtained by computing the assignment flow with Algorithm 1 and different constant step sizes
h > 0 using the nonlocal G-PDE parametrization (3.14). In addition, we studied numerical
consequences of nonlocal boundary conditions (3.7b), (3.7c) using the maximal allowable step
size (5.3) according to Proposition 5.1. Finally, in section 7.4, we compare Algorithm 1 and
the accelerated Algorithm 4 by evaluating their respective convergence rates to an integral
solution of the assignment flow corresponding to a stationary point of the potential (2.46) for
various nonlocal connectivities.

7.1. Implementation details. All evaluations were performed using the noisy image data
depicted by Figure 5(b). System (3.7) was initialized by S0 = L(1\scrW ) \in \scrW with \rho = 1, as
specified by (2.29). Since the iterates (Sk) converge in all cases to integral solutions which are
located at vertices on the boundary \partial \scrW of\scrW , whereas the numerics is designed for evolutions
on \scrW , we applied the renormalization routine adopted in [17, section 3.3.1] with \varepsilon = 10 - 10

whenever the sequence (Sk)k\geq 0 came that close to \partial \scrW on its path to the vertex.
The averaging matrix \Omega was assembled in two ways as specified in section 3.4.2 as items

(i) and (ii), called uniform and nonuniform averaging in this section. In the latter case, the
parameter values \sigma s = 1, \sigma p = 5 were chosen in (3.21), as for the experiments reported in
section 3.4.2. The iterative algorithms were terminated at step k when the averaged gradient
norm

(7.1) \epsilon k =
1

n

\sum 

x\in \scrV 
\| RSk(x)(\Omega S

k(x))\| \leq \epsilon 

reached a threshold \epsilon which when chosen sufficiently small to satisfy bound (6.15) guarantees
a linear convergence rate as specified in Theorem 6.6.

We point out that during the evaluation and discussion of realized experiments our focus
was not on assessing a comparison of computational speed in terms of absolute runtimes,
but on the numerical behavior of the proposed schemes with regard to number of iterations
required to solve system (3.14) and in terms of the labeling performance. Thus, we did not
confine ourselves to impose any restriction on the minimum time step size and the maxi-
mum number of iterations and instead appropriately adjusted the parameter (7.1) to stop the
algorithm when a stationary point at the boundary of \scrW was reached.

Since S\ast is unknown, we cannot directly access the exact bound in (6.15) beforehand and
therefore it is not evident how to set \epsilon in practice. However, based on experimental evidence,
setting the termination threshold by \epsilon = 10 - 7 in (7.1) serves as a good estimate; see Figures 16
and 18. Algorithm 3 requires specifying two parameters c1, c2 (see line 3). We empirically
found that using c1 = 0.4, c2 = 0.95 is a good choice that we used in all experiments.

7.2. Step size selection. This section reports results of several experiments that highlight
aspects of imposing nonlocal boundary conditions (3.7b), (3.7c) and their influence on the
selection of step sizes in Algorithms 1 and 4.

To demonstrate these effects we used two different parameter matrices \Omega defined in accor-
dance with Lemma 3.1, with \Theta , \alpha given as in section 3.4.2, called uniform and nonuniform
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Figure 13. Effects of selecting the step size h in Algorithm 1 for various neighborhood sizes | \scrN | . Dashed
vertical lines indicate the step size upper bound 1

| \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega )| that guarantees the monotone decrease property (Propo-

sition 5.1). Left: Number of iterations required to satisfy the termination criterion (7.1). Larger step sizes
decrease the number of iterations but yield unreliable numerical computation when h exceeds the upper bound
(see text). Right: Pixelwise labeling error compared to ground truth. Labeling accuracy quickly deteriorates
when h exceeds the upper bound.

averaging, respectively. To access the maximal bound (5.3) for the step size h > 0, as de-
rived in Proposition 5.1 in order to achieve the monotone decrease property (5.4), we directly
approximated the exact smallest eigenvalue \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega ) using available software [55].

Figure 12 displays values of the smallest eigenvalue for uniform and nonuniform averaging,
respectively, and different sizes of the nonlocal neighborhoods (2.3): Increasing the size | \scrN | 
decreases the value of \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega ) and consequently, by virtue of relation h\geq 1

| \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega )| in Propo-
sition 5.1, to a larger upper bound for setting the step size h in Algorithm 1. This confirms
our observation and statement formulated as Remark 5.6.

In practice, however, it is too expensive to compute \lambda \mathrm{m}\mathrm{i}\mathrm{n} numerically for choosing the step
size h. Figure 13 shows the following for three sizes of neighborhoods | \scrN | and for step sizes
h smaller and larger than the upper bound (5.3) indicated by dashed vertical lines:

(i) the number of iterations required to reach the termination criterion (7.1) (Figure 13,
left panel);

(ii) the labeling accuracy compared to ground truth (Figure 13, right panel).
The results show that the bound (5.3) should be considered as a hard constraint indeed:

Increasing the step size h up to this bound (cf. Figure 13, left panel) decreases the required
number of iterations, as to be expected. But exceeding the bound yields unreliable com-
putation, possibly caused by a too small DC-decomposition parameter \gamma < | \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega )| which
compromises the convexity and hence convergence of the auxiliary optimization problems in
Algorithm 1, line 8. Likewise, Figure 13, right panel, shows that labelings quickly become
inaccurate once the step size exceeds the upper bound. Figure 14 visualizes examples.

Overall, these results show that a wide range of save choices of the step size parame-
ter h exists and that choosing the ``best"" value depends on how accurate \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega ) is known
beforehand.

7.3. First-order optimization. This section is devoted to the evaluation of Algorithm 1.
We examine how effectively this algorithm converges to an integral solution (labeling) for
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Figure 14. Visualization of regularization impacts when increasing the step size h corresponding to the
results in Figure 13. Labeling results for various step sizes and the neighborhood size | \scrN | = 9\times 9. Conforming
to Figure 13, right panel, labeling accuracy quickly deteriorates once h exceeds the upper bound (5.3) (rightmost
panel).

both uniform and nonuniform averaging, for different sizes of nonlocal neighborhoods | \scrN | ,
and for different admissible step sizes h based on the insights gained in section 7.2: the largest
admissible step size increases with the neighborhood size | \scrN | and when using nonuniform,
rather than uniform, averaging.

Figure 15 displays the corresponding values of the objective function (2.46) as a function
of the iteration counter. We observe that this first-order algorithm minimizes quite effectively
the nonconvex objective function during the first few dozen iterations.

Figure 16 displays the same information, this time in terms of the function k \mapsto \rightarrow 
1
n\| Sk  - S\ast \| 1, however. We observe two basic facts: (i) Due to using admissible step sizes,
the sequences (Sk)k\geq 0 always converge to the integral solution S\ast . (ii) In agreement with
Theorem 6.6, the order of convergence increases whenever the sequence (Sk)k\geq 0 reaches the
basin of attraction.

7.4. Accelerated geometric optimization. In this section, we report the evaluation of
Algorithm 4 using Algorithm 1 as the baseline. The main ingredients of Algorithm 4 are as
follows:

(i) The descent direction dk given by (5.11) exploits the second-order term 1
2\Omega RSk

(\Omega Sk)
weighted by parameter hk which, according to line 9 of Algorithm 4, is determined
with negligible additional computational cost by

(7.2) hk = \tau \cdot 
\biggl( \| RSk(\Omega Sk)\| 2Sk

| \langle RSk(\Omega Sk),\Omega RSk(\Omega Sk)\rangle | 

\biggr) 
, \tau \in (0,1).

Choosing the parameter \tau is a compromise between making larger steps (large value of
\tau ) and accuracy of labeling (small value of \tau ). According to our experience, \tau = 0.1 is
a reasonable choice that never compromised labeling accuracy. This value was chosen
for all experiments discussed in this section.
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Figure 15. Minimization of the nonconvex potential (2.46) by Algorithm 1 for various neigborhood sizes
| \scrN | , for uniform averaging (top row) and nonuniform averaging (bottom row), and for three constant step
sizes 0 < h1 < h2 < h3, where in each experiment h3 was chosen smaller than the upper bound discussed
in section 7.2 that guarantees a monotonously decreasing sequence of potential values (Proposition 5.1). All
experiments illustrate this property and that the largest admissible step size h3 is most effective. The curves show
that the objective function values J(S) stop to decrease at a local minimizer S\ast . The corresponding objective

function value J(S\ast ) does not equal the global lower bound  - | \scrV | 
2

which is attained at constant labelings as global
minimizers that are of no interest, see Remark 5.7.

(ii) Algorithm 4 calls Algorithm 3, which in turn calls Algorithm 2 in order to satisfy
both conditions (5.15) for sufficient decrease. In order to reduce the computational
costs of the inner loop started in line 16 of Algorithm 4, we only checked the condi-
tions (5.15a) and (5.15b) at each iteration up to K\mathrm{m}\mathrm{a}\mathrm{x} = 100 iterations. Figure 17
illustrates that while condition (5.15a) is satisfied throughout all outer loop itera-
tions, condition (5.15b) is satisfied too except for a tiny fraction of inner loops, and
therefore the validity of (5.15) is still guaranteed up to a negligible part of iteration
steps.

Parameter \theta k of Algorithm 4 corresponds to the step size parameter hk of Algorithm 4.
According to the discussion of proper choices of hk in section 7.2, parameter \theta k was initialized
by values \theta 0 \in \{ 12 ,2\} and the adaptive search of \theta k was not allowed to exceed the upper bound
\theta \mathrm{m}\mathrm{a}\mathrm{x} = 10.

Like Algorithm 1, Algorithm 4 terminated when condition (7.1) was satisfied with \epsilon = 10 - 7.
Figure 18 illustrates the convergence of Algorithms 1 and 4 toward labelings for the

two initial step sizes \theta 0 \in \{ 12 ,2\} corresponding to the fixed step size h \in \{ 12 ,2\} of Algo-
rithm 1, and for different sizes | \scrN | of neighborhoods with nonuniform averaging. Through-
out all experiments, we observed that due to using adaptive step sizes \theta k and second-order
information for determining the search direction, Algorithm 4 terminates after a smaller num-
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Figure 16. Norm convergence of the sequence generated by Algorithm 1 toward an integral solution (label-
ing). Once the basin of attraction of the integral solution has been reached (Theorem 6.6), the convergence rate
increases considerably.
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Figure 17. Fraction of inner loops of Algorithm 4 based on condition (5.15a) that also satisfied condition
(5.15b) (\{ \} = True) or not (\{ \} = False), with initialization \theta 0 = 0.5 and uniform averaging (left panel)
or nonuniform averaging (right panel). Up to a tiny fraction, condition (5.15b) is satisfied, which justifies
reducing the computational costs of the inner loop by only checking condition (5.15a) and dispensing with
condition (5.15b) after K\mathrm{m}\mathrm{a}\mathrm{x} iterations.

ber of iterations. In particular, the fast convergence of Algorithm 1 within the basins of
attraction is preserved.

Table 2 compares Algorithms 1 and 4 in terms of factors of additional iterations required by
Algorithm 1 to terminate. We observe that the efficiency of Algorithm 4 is more pronounced
when larger neighborhood sizes | \scrN | or uniform averaging are used.
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Figure 18. Comparison of the convergence of Algorithm 1 ( ) and Algorithm 4 ( ) toward integral solu-
tions (labelings) for various sizes | \scrN | of neighborhoods and nonuniform averaging. For all parameter settings,
Algorithm 4 terminates after a smaller number of iterations.

Table 2
Number of iterations required by Algorithms 1 and 4 until convergence to a solution of the nonlocal PDE

(3.7), for uniform and nonuniform averaging and various neighborhood sizes | \scrN | . The Acc. columns list the
additional factor of iterations required by Algorithm 1 relative to Algorithm 4.

Uniform Nonuniform
| \scrN | Alg. 1 Alg. 4 Acc. Alg. 1 Alg. 4 Acc.

3\times 3 828 543 1.52 760 557 1.36
5\times 5 1860 697 2.66 726 526 1.38
7\times 7 3465 1158 3 961 608 1.58
9\times 9 4707 1447 3.25 1123 622 1.81
11\times 11 9216 1806 5.10 1402 668 2.1
13\times 13 9957 2927 3.40 1510 696 2.17

8. Conclusion and future work.

Conclusion. Using established nonlocal calculus, we devised a novel nonlocal PDE with
nonlocal boundary conditions on weighted graphs. Our work adds a novel approach to the
literature on PDE-based image analysis that extends the scope from denoising and inpainting
to image labeling. An in-depth discussion (section 4) clarified common aspects and differences
to related nonlocal approaches from the mathematical viewpoint. Our work has been moti-
vated by the assignment flow approach [17, 18] to metric data labeling, which was shown to
constitute a special instance of our general approach introduced in this paper. In particular,
our PDE contains the local PDE derived in [29] as a special case and thus provides a natural
nonlocal generalization.
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544 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

The second major contribution of our work rests upon the reparametrization introduced in
[29] that turns the assignment flow into a Riemannian descent flow with respect to a nonconvex
potential. We established in the present paper two relations to numerical schemes [20] for the
geometric integration of the assignment flow: (i) Geometric integration can be applied to solve
the novel nonlocal PDE. (ii) We showed that the basic geometric Euler integration scheme
corresponds to the basic DC-algorithm of DC programming [56]. Moreover, the geometric
viewpoint reveals how second-order information can be used in connection with line search in
order to accelerate the basic DC-algorithm for nonconvex optimization.

A range of numerical results were reported in order to illustrate properties of the approach
and the theoretical convergence results. This includes, in particular, a linear convergence rate
whenever a basin of attraction corresponding to an integral labeling solution is reached, whose
existence was established in [19].

Future work. The assignment flow approach (2.35) may be considered as a particular
``neural ODE"" from the viewpoint of machine learning that generates layers of a deep network
by geometric integration of the flow at discrete points of time. For recent work on learning the
parameters from data and on quantifying the uncertainty of label assignments, respectively, we
refer to [23, 24, 25] and [57]. In the present paper, Lemma 3.1 characterizes parametrizations
for which the theoretical results hold. Uniform and data-driven nonuniform parametrizations
were used in the experiments to demonstrate broad applicability. Learning these parameters
from data is conceivable but beyond the scope of this paper and hence left for future work.
Generalizations of the scalar-valued mappings \Theta , \alpha to tensor-valued mappings are conceivable
as well in order to model not only the interaction across the graph but also the interaction
between labels. For the specific case of classification of entire data sets, rather than labeling
individual data points, a first step has been done recently using deep linearized assignment
flows [26].

Finally, we point out recent work [58, 59] on characterizing assignment flows as critical
points of an action functional, provided the nonlocal mapping which specifies the interaction
of label assignments across the graph satisfies a certain condition. Reconsidering the PDE
(1.1) from this viewpoint defines another problem to be addressed by future work.

Appendix A. Proofs.

A.1. Proofs of section 3.1.

Proof of Lemma 3.1. In order to show (3.4), we directly compute using assumption (3.2)
and the parametrization (3.3), for any x\in \scrV ,

\sum 

y\in \scrV 
\Omega (x, y)f(y)

(3.3)
=

\sum 

y\in \scrN (x)

\Theta (x, y)\alpha 2(x, y)f(y) +\Theta (x,x)f(x)(A.1a)

=
\sum 

y\in \scrN (x)

\Theta (x, y)\alpha 2(x, y)f(y) +\Theta (x,x)f(x) + (\lambda (x) - \lambda (x))f(x)(A.1b)

(3.5)
=

\sum 

y\in \scrN (x)

\Theta (x, y)\alpha 2(x, y) (f(y) - f(x)) + \lambda (x)f(x)(A.1c)
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A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 545

f | \scrV \alpha 
\scrI 
=0

=  - 
\sum 

y\in \scrV 
\Theta (x, y)\alpha 2(x, y) ( - (f(y) - f(x))) + \lambda (x)f(x)(A.1d)

(2.13)
=  - 

\sum 

y\in \scrV 
\Theta (x, y) ((\scrD \alpha )\ast (f)(x, y))\alpha (x, y) + \lambda (x)f(x)(A.1e)

=
\sum 

y\in \scrV 

1

2
\Theta (x, y) ( - 2(\scrD \alpha )\ast (f)(x, y)\alpha (x, y)) + \lambda (x)f(x)(A.1f)

(2.14)
=
\sum 

y\in \scrV 

1

2
\Theta (x, y) (2\scrG \alpha (f)(x, y)\alpha (x, y)) + \lambda (x)f(x)(A.1g)

(2.17)
=

1

2
\scrD \alpha (\Theta \scrG \alpha (f)) (x) + \lambda (x)f(x),(A.1h)

which proves (3.4).
Assume that \lambda (x)\leq 1 \forall x\in \scrV . Then, properties (2.2) easily follow from the nonnegativity

of \Theta \in \scrF \scrV \times \scrV and definition (3.5). In addition, if \Omega is given by (3.3) and also satisfies (2.34),
then equality in (3.5) is achieved:

1 =
\sum 

y\in \scrV 
\Omega (x, y) =

\sum 

y\in \scrV 
\Theta (x, y)\alpha 2(x, y) +\Theta (x,x)(A.2a)

= \lambda (x) - 
\sum 

y\in \scrV \alpha 
\scrI 

\Theta (x, y)\alpha 2(x, y)

\underbrace{}  \underbrace{}  
\geq 0

\leq \lambda (x)
(3.5)

\leq 1.(A.2b)

Proof of Proposition 3.3. Recalling definition (2.39), we directly compute

RS(x,t) ((\Omega S)(x, t)) = RS(x,t)

\biggl( \sum 

y\in \scrV 
\Omega (x, y)S(y, t)

\biggr) 
(A.3a)

(3.4)
= RS(x,t)

\biggl( 
1

2
\scrD \alpha (\Theta \scrG \alpha (S)) (x) + \lambda (x)S(x)

\biggr) 
.(A.3b)

A.2. Proof of section 3.3.

Proof of Proposition 3.4. For brevity, we omit the argument t and simply write S =
S(t), V = V (t). Recall the componentwise operation \odot defined by (2.30), e.g., (S \odot V )j(x) =
Sj(x)Vj(x) for j \in [c], and S2(x) = (S \odot S)(x).

Multiplying both sides of (3.15a) with S(x) = expS0(V (x)) and summing over x \in \scrV 
yields

\sum 

x\in \scrV 

\Bigl( 
S \odot \.V

\Bigr) 
j
(x) - 

\sum 

x\in \scrV 

1

2
(S \odot \scrD \alpha (\Theta \scrG \alpha (S)))j (x) =

\sum 

x\in \scrV 

\bigl( 
\lambda S2

\bigr) 
j
(x).(A.4)

Applying Green`s nonlocal first identity (2.15) with u(x) = Sj(x) to the second term on the
left-hand side yields with (2.6)
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546 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

\sum 

x\in \scrV 

\Bigl( 
S \odot \.V

\Bigr) 
j
(x) +

1

2

\sum 

x\in \scrV 

\sum 

y\in \scrV 
(\scrG \alpha (S)\odot (\Theta \scrG \alpha (S)))j (x, y)(A.5a)

+
\sum 

y\in \scrV \alpha 
I

Sj(y)\scrN \alpha (\Theta \scrG \alpha (Sj)) (y) =
\sum 

x\in \scrV 

\bigl( 
\lambda S2

\bigr) 
j
(x).(A.5b)

Now, using the parametrization (3.10) of S, we compute at each x\in \scrV ,

\.S(x) =
d

dt
expS0(x)(V (x))(A.6a)

(3.11)
=

\bigl( 
d
dt

\bigl( 
S0(x)\odot eV (x)

\bigr) \bigr) 
\langle S0(x), eV (x)\rangle  - 

\bigl( 
d
dt\langle S0(x), eV (x)\rangle 

\bigr) 
S0(x)\odot eV (x)

\langle S0(x), eV (x)\rangle 2(A.6b)

=
\langle S0(x), eV (x)\rangle (S0 \odot eV )(x)\odot \.V (x) - \langle S0(x)\odot eV (x), \.V (x)\rangle (S0 \odot eV )(x)

\langle S0(x), eV (x)\rangle 2(A.6c)

= (S \odot \.V )(x) - \langle S(x), \.V (x)\rangle S(x)(A.6d)

(3.13)
= (S \odot \.V )(x) - \langle S(x), (\Pi 0\Omega expS0(V ))(x)\rangle S(x)(A.6e)

(3.17)
= (S \odot \.V )(x) - \phi S(x)S(x).(A.6f)

Solving the last equation for (S \odot \.V )(x) and substitution into (A.5) yields after taking the
sum over x\in \scrV , for each Sj = \{ Sj(x) : x\in \scrV \} , j \in [c],

1

2

d

dt

\Biggl( \sum 

x\in \scrV 
Sj(x)

\Biggr) 
+

1

2
\langle \scrG \alpha (Sj),\Theta \scrG \alpha (Sj)\rangle \scrV \times \scrV +

\sum 

x\in \scrV 
\phi S(x)Sj(x)(A.7a)

+
\sum 

y\in \scrV \scrI \alpha 

Sj\scrN \alpha (\Theta \scrG \alpha (Sj)) (y) =
\sum 

x\in \scrV 

\bigl( 
\lambda S2

j

\bigr) 
(x),(A.7b)

which after rearranging the terms is equal to (3.16).

A.3. Proof of section 5.1.

Proof of Proposition 5.1. Equation (5.2) directly follows from Proposition 3.3, from the
specification (2.32) of the similarity mapping and from the relation expp =Expp \circ Rp for p\in \scrS 
(cf. (2.40), (2.41)). Leveraging the parametrization (3.14) of system (3.7) and discretization
of (3.14) by forward finite differences with step size parameter h> 0 yields for x\in \scrV 

(A.8)
V k+1(x) - V k(x)

h
=

\biggl( 
1

2
\scrD \alpha 
\Bigl( 
\Theta \scrG \alpha (expS0(V k))

\Bigr) 
+ \lambda expS0(V k)

\biggr) 
(x),

which is (5.2) after applying the lifting map (2.41) to V k+1. Consequently, in view of zero

nonlocal boundary conditions, the zero extension of (5.2) to \scrV verifies that S
k
is indeed a

first-order approximation of solution S(kh) to (3.7).
It remains to show that (5.1) implies (5.4). Adding and subtracting a convex negative

entropy term

(A.9) \langle S, logS\rangle =
\sum 

x\in \scrV 
\langle S(x), logS(x)\rangle , logS(x) = (logS1(x), . . . , logSc(x))

\top 
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A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 547

to the potential (2.46), we write with the convex constraint S \in \scrW represented by the delta-
function \delta \scrW ,

(A.10) J(S) = \gamma \langle S, logS\rangle + \delta W (S)\underbrace{}  \underbrace{}  
g(S)

 - 
\biggl( 
1

2
\langle S,\Omega S\rangle + \gamma \langle S, logS\rangle 
\underbrace{}  \underbrace{}  

h(S)

\biggr) 
, \gamma > | \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega )| ,

which is a DC-function [60] if \gamma > | \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega )| , i.e., both g(S) and h(S) are convex. Indeed,
while the convexity of g is obvious, the convexity of h becomes apparent when inspecting its
Hessian. Writing

(A.11) s=vecr(S)

with the row-stacking mapping vecr, we have (\otimes denotes the Kronecker matrix product)

\langle S,\Omega S\rangle = \langle s, (\Omega \otimes Ic)s\rangle ,(A.12a)

\langle S, logS\rangle = \langle s, log s\rangle , log s= (. . . , log si, . . .)
\top (A.12b)

and hence for any v \in \BbbR nc with \| v\| = 1

(A.13) d2h(S)(v, v) =

\biggl\langle 
v,

\biggl( 
(\Omega \otimes Ic) + \gamma Diag

\biggl( 
1
s

\biggr) \biggr) 
v

\biggr\rangle 
>\lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega ) + \gamma ,

where the last inequality follows from \lambda \geq \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega ) for any eigenvalue \lambda of symmetric matrix
\Omega (recall (2.2), (2.34)), \lambda (A \otimes B) = \lambda i(A)\lambda j(B) for some i, j [61], and \lambda \mathrm{m}\mathrm{i}\mathrm{n}(Diag(1

s )) > 1 if
S \in \scrW .

Thus, if \gamma > | \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega )| , then h is convex and minimizing (A.10) is a DC-programming
problem [32, 33]. Using Fenchel's inequality  - h(Sk)\leq h\ast (\widetilde S) - \langle Sk, \widetilde S\rangle \forall \widetilde S, let \widetilde Sk minimize at
the current iterate Sk the upper bound

J(Sk) = g(Sk) - h(Sk)\leq g(Sk) + h\ast (\widetilde S) - \langle Sk, \widetilde S\rangle \forall \widetilde S(A.14a)

with respect to \widetilde S, i.e.,
0 = \partial h\ast (\widetilde Sk) - Sk \leftrightarrow \widetilde Sk \in \partial h(Sk) =\nabla h(Sk).(A.14b)

In particular,  - h(Sk) = h\ast (\widetilde Sk) - \langle Sk, \widetilde Sk\rangle and hence

(A.15) J(Sk) = g(Sk) + h\ast (\widetilde Sk) - \langle Sk, \widetilde Sk\rangle .
Minimizing in turn the right-hand side with respect to Sk guarantees (5.4) and defines the
update Sk+1 by

Sk+1 = argmin
S
\{ g(S) - \langle S, \widetilde Sk\rangle \} \leftrightarrow 0 = \partial g(Sk+1) - \widetilde Sk(A.16a)

\leftrightarrow \gamma (logSk+1(x) + 1) + \partial \delta \scrS 

\Bigl( 
Sk+1(x)

\Bigr) 
(A.14b)
= \nabla h(Sk)(x)(A.16b)

= (\Omega Sk)(x) + \gamma (logSk(x) + 1).(A.16c)

Solving for Sk+1(x) yields (5.1), respectively, (5.2), with step size h = 1
\gamma < 1 due to \gamma >

| \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega )| .
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A.4. Proofs of section 5.2.

Proof of Lemma 5.2. Taking into account the parametrization (3.10), we compute the
partial derivative of (2.46) (recall the operation \odot defined by (2.30))

\partial iJ(V ) = - \langle \Omega expS0(V ), \partial i expS0(V )\rangle (A.17a)

= - \langle \Omega expS0(V ), expS0(V )\odot ei + expS0(V )i expS0(V )\rangle (A.17b)

= - (\Omega expS0(V )\odot expS0(V ))i + \langle \Omega expS(V ), expS0(V )\rangle expS0(V )i(A.17c)

= - 
\bigl( 
R\mathrm{e}\mathrm{x}\mathrm{p}S0 (V )(\Omega expS0(V ))

\bigr) 
i

(A.17d)

and consequently \partial J(V ) = \partial V J(V ) = - R\mathrm{e}\mathrm{x}\mathrm{p}S0 (V )(\Omega expS0(V )) =RS\partial SJ(S) = gradgJ(S).

Proof of Proposition 5.3.

(i) Using Sk = expS0(V k) and

(A.18) \partial J(V k) = - RSk(\Omega Sk) = gradgJ(S
k),

by Lemma 5.2 along with the identities (recall that both RS and the orthogonal pro-
jection \Pi 0 act rowwise)

(A.19) RS =\Pi 0RS =RS\Pi 0 =\Pi 0RS\Pi 0 =RS | \scrT 0
, S \in \scrW , \Pi 2

0 =\Pi 0,

and

(A.20) (RSk | \scrT 0
) - 1 V =

\biggl( 
. . . ,\Pi 0

V (x)

Sk(x)
, . . .

\biggr) \top 
, x\in V, V \in \scrT 0, Sk \in \scrW ,

by [29, Lemma 3.1], we have

\langle \partial J(V k), dk\rangle (5.3)= \langle \partial J(V k), d(Sk, hk)\rangle (A.21a)

=  - \langle RSk(\Omega Sk),\Pi 0\Omega S
k\rangle  - hk

2
\langle \partial J(V k),\Pi 0\Omega \partial J(V

k)\rangle (A.21b)

=  - \langle RSk(\Omega Sk),
\bigl( 
(RSk | \scrT 0

) - 1RSk | \scrT 0

\bigr) 
\Pi 0\Omega S

k\rangle  - hk
2
\langle \partial J(V k),\Pi 0\Omega \partial J(V

k)\rangle (A.21c)

(5.16),(\mathrm{A}.19),(\mathrm{A}.20)
=  - \langle RSk(\Omega Sk),RSk(\Omega Sk)\rangle Sk  - hk

2
\langle \partial J(V k),\Pi 0\Omega \partial J(V

k)\rangle .(A.21d)

Since the first term on the right-hand side of (A.21d) is negative on \scrT 0, setting

(A.22) hk \in 
\biggl( 
0,

\| RSk(\Omega Sk)\| 2Sk

| \langle \partial J(V k),\Pi 0\Omega \partial J(V k)\rangle | 

\biggr) 

yields a sequence (dk)k\geq 1 satisfying

(A.23) \langle \partial J(V k), dk\rangle < 0, k\geq 1.

Consider c1, c2 \in (0,1) with c1 < c2 and set

G(\gamma ) = J(V k + \gamma dk),(A.24a)

L(\gamma ) = J(V k) + c1\gamma \langle \partial J(V k), dk\rangle for \gamma \geq 0.(A.24b)
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A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 549

Due to c1 < 1 and (A.23), the inequality

(A.25) G\prime (0) = \langle \partial J(V k), dk\rangle < c1\langle \partial J(V k), dk\rangle =L\prime (0)< 0

holds. Hence there is a constant tk > 0 such that

G(\gamma )<L(\gamma ), \gamma \in (0, tk),(A.26a)

G(tk) =L(tk).(A.26b)

Substituting the first-order Taylor expansion

G(tk) = J(V k + tkd
k) =G(0) + tkG

\prime (\widetilde \gamma k)(A.27a)

= J(V k) + tk\langle \partial J(V k + \widetilde \gamma kdk), dk\rangle , \widetilde \gamma k \in (0, tk),(A.27b)

into (A.26b) yields with (A.24b), (A.23) and 0< c1 < c2 < 1

\langle \partial J(V k + \widetilde \gamma kdk), dk\rangle = c1\langle \partial J(V k), dk\rangle \geq c2\langle \partial J(V k), dk\rangle .(A.28a)

Therefore, with \partial J(V k), dk \in \scrT 0, and using that the restriction RSk | \scrT 0
of the map RSk

to \scrT 0 is invertible with the inverse (RSk) - 1
| \scrT 0

acting rowwise as specified by (A.20), the

right-hand side of (A.28) becomes

c2\langle \partial J(V k), dk\rangle = c2

\Bigl\langle 
\partial J(V k), (RSk | \scrT 0

) - 1(RSk(dk))
\Bigr\rangle 

(A.28b)

(5.16),(\mathrm{A}.20)
= c2

\Bigl\langle 
\Pi 0\partial J(V

k),RSk(dk)
\Bigr\rangle 
Sk

.(A.28c)

By virtue of (A.18) and \Pi 0\partial J(V
k) = \partial J(V k), both sides of (A.28) correspond to the

expressions of (5.15b) between the bars | \cdot \cdot \cdot | . Since the above derivation shows that
both sides of (A.28) are negative, taking the magnitude on both sides proves (5.15b).
Recalling the shorthand (5.9) and inequality (A.27) and setting \theta k small enough with
\theta k \leq \widetilde \gamma k, the iterates Sk+1 = expS0(V k + \theta kdk) satisfy

J(Sk+1) - J(Sk)
(\mathrm{A}.27)
= tk\langle \partial J(V k + \widetilde \gamma kdk), dk\rangle (A.29a)

\leq \theta k\langle \partial J(V k + \widetilde \gamma kdk), dk\rangle (A.29b)

(\mathrm{A}.28)

\leq \theta kc2\langle \partial J(V k), dk\rangle (A.29c)

(\mathrm{A}.18)
(\mathrm{A}.28)
= \theta kc2\langle gradgJ(Sk),RSk(dk)\rangle Sk(A.29d)

which proves inequality (5.15a) since both sides are nonpositive and c1 < c2.
(ii) We prove by contradiction. Assume, on the contrary, that there exists a sequence

(Sk)k\geq 0 \subset \scrW in the compact set \scrW and a convergent subsequence (Skl)l\geq 0 with
limit point liml\rightarrow \infty Skl = S\ast which is not an equilibrium of (2.38a). Then, since
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550 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

the functional (2.46) is bounded from below on \scrW , taking the sum in (5.15a)
yields

\infty \sum 

l=0

c1\gamma kl
\langle gradgJ(Skl),RSkl (d

kl)\rangle Skl >

\infty \sum 

l=0

\Bigl( 
J(Skl+1) - J(Skl)

\Bigr) 
= J(S\ast ) - J(S0)\underbrace{}  \underbrace{}  

> - \infty 

,

(A.30)

and consequently

(A.31) c1\gamma \ast \langle gradgJ(S\ast ),RS\ast (d\ast )\rangle S\ast = 0.

Using d\ast = d(S\ast , h\ast ) given by (5.11) along with c1 > 0 and the assumption \gamma \ast > 0, we
evaluate this equation similarly to (A.21),

0 = \langle gradgJ(S\ast ),RS\ast (d\ast )\rangle S\ast (A.32a)

(\mathrm{A}.19)
=

\biggl\langle 
 - RS\ast (\Omega S\ast ),RS\ast 

\biggl( 
\Omega S\ast +

h\ast 
2
\Omega RS\ast (\Omega S\ast )

\biggr) \biggr\rangle 

S\ast 

(A.32b)

(5.16),(\mathrm{A}.19)
=  - 

\sum 

x\in \scrV 

\Biggl\langle 
\Pi 0RS\ast (x)(\Omega S

\ast )(x),
RS\ast (x)

\bigl( 
\Omega S\ast + h\ast 

2 \Omega RS\ast (\Omega S\ast )
\bigr) 
(x)

S\ast (x)

\Biggr\rangle 
(A.32c)

(\mathrm{A}.20)
=  - 

\sum 

x\in \scrV 

\biggl\langle 
RS\ast (x)(\Omega S

\ast )(x), (RS\ast (x)| T0
) - 1RS\ast (x)

\biggl( 
\Omega S\ast +

h\ast 
2
\Omega RS\ast (\Omega S\ast )

\biggr) 
(x)

\biggr\rangle 
(A.32d)

(\mathrm{A}.19)
=  - \langle \Omega S\ast ,RS\ast (\Omega S\ast )\rangle  - h\ast 

2
\langle \Omega S\ast ,RS\ast (\Omega RS\ast (\Omega S\ast ))\rangle .(A.32e)

Hence

h\ast 
2
\langle \Omega S\ast ,RS\ast (\Omega RS\ast (\Omega S\ast ))\rangle = - \langle \Omega S\ast ,RS\ast (\Omega S\ast )\rangle (A.33a)

= - 
\sum 

x\in \scrV 

\bigl\langle 
(\Omega S\ast )(x),RS\ast (x)(\Omega S

\ast )(x)
\bigr\rangle 

(A.33b)

using Rp1c = 0, p\in \scrS ,

=  - 
\sum 

x\in \scrV 

\bigl\langle 
(\Omega S\ast )(x) - \langle (\Omega S\ast )(x), S\ast (x)\rangle 1c,RS\ast (x)(\Omega S

\ast )(x)
\bigr\rangle 

(A.33c)

(2.36)
=  - 

\sum 

x\in \scrV 

\Bigl\langle 
(\Omega S\ast )(x) - \langle (\Omega S\ast )(x), S\ast (x)\rangle 1c,(A.33d)

S\ast (x)\odot ((\Omega S\ast )(x) - \langle S\ast (x), (\Omega S\ast )(x)\rangle 1c)
\Bigr\rangle 

(A.33e)

=  - 
\sum 

x\in \scrV 

\sum 

j\in [c]
S\ast 
j (x) ((\Omega S

\ast )j(x) - \langle (\Omega S\ast )(x), S\ast (x)\rangle )2 .(A.33f)
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A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 551

By [19, Proposition 5], S\ast is an equilibrium of the flow (2.38a) if and only if

(\Omega S\ast )j(x) = \langle (\Omega S)\ast (x), S\ast (x)\rangle \forall x\in \scrV , \forall j \in supp(S\ast (x)).(A.33g)

Therefore, by assumption, there exists \widetilde x \in \scrV and l \in supp(S\ast (\widetilde x)) with (\Omega S\ast )l(\widetilde x) \not =
\langle \Omega S\ast (\widetilde x), S\ast (\widetilde x)\rangle and consequently

h\ast 
2
\langle \Omega S\ast ,RS\ast (\Omega RS\ast (\Omega S\ast ))\rangle = - \langle \Omega S\ast ,RS\ast (\Omega S\ast )\rangle (A.33h)

\leq  - S\ast 
l (\widetilde x) ((\Omega S\ast )l(\widetilde x) - \langle (\Omega S\ast )(\widetilde x), S\ast (\widetilde x)\rangle )2(A.33i)

< 0.(A.33j)

Since the first two expressions are strictly negative, this yields the contradiction

 - 1

2
\langle \Omega S\ast ,RS\ast (\Omega S\ast )\rangle (A.34a)

= - 1

2

\langle \Omega S\ast ,RS\ast (\Omega S\ast )\rangle 
| \langle \Omega S\ast ,RS\ast (\Omega RS\ast (\Omega S\ast ))\rangle | | \langle \Omega S

\ast ,RS\ast (\Omega RS\ast (\Omega S\ast ))\rangle | 

(\mathrm{A}.19),(5.9)
=  - 1

2

\langle \Omega S\ast ,RS\ast (\Omega S\ast )\rangle 
| \langle gradgJ(S\ast ),\Pi 0\Omega gradgJ(S

\ast )\rangle | | \langle \Omega S
\ast ,RS\ast (\Omega RS\ast (\Omega S\ast ))\rangle | (A.34b)

(\mathrm{A}.22),(5.9)

\leq  - h\ast 
2
| \langle \Omega S\ast ,RS\ast (\Omega RS\ast (\Omega S\ast ))\rangle | (A.34c)

(\mathrm{A}.33h)
=  - \langle \Omega S\ast ,RS\ast (\Omega S\ast )\rangle ,(A.34d)

which proves (ii).
(iii) We prove by contraposition and show that a limit point S\ast \in \scrW cannot locally minimize

J(S). Let S(l) \in \scrW be a constant vector field given for each x\in \scrV by

(A.35) S(l)(x) = el = (0, . . . ,0,1,0 . . . ,0)\top \in \BbbR c

for arbitrary l \in [c]. Then, for any S \in \scrW with S(x) \in \Delta c for each x \in \scrV , and with
\Omega (x, y)\geq 0,

\langle S,\Omega S\rangle =
\sum 

x\in \scrV 

\sum 

j\in [c]

\sum 

y\in \scrN (x)

\Omega (x, y)Sj(x)Sj(y)\leq 
\sum 

x\in \scrV 

\left( 
 \sum 

y\in \scrN (x)

\Omega (x, y)

\right) 
 \sum 

j\in [c]
Sj(x)

\underbrace{}  \underbrace{}  
=1

(A.36a)

=
\sum 

x\in \scrV 

\sum 

j\in [c]

\sum 

y\in \scrN (x)

\Omega (x, y)S(l)j(x)S(l)j(y)(A.36b)

= \langle S(l),\Omega S(l)\rangle ,(A.36c)

where the inequality is strict if S \in \scrW . Consequently, the constant vector S(l)

is a global minimizer of the objective function J(S) (2.46) with minimal value
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552 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

J(S(l)) =  - 1
2

\sum 
x\in \scrV 

\sum 
y\in \scrN (x)\Omega (x, y). Let B\delta (S

\ast ) \subset \scrW be the open ball with radius
\delta > 0 containing S\ast . By assumption, S\ast 

j (x) > 0 \forall x \in \scrV , \forall j \in [c] and there exists an
\epsilon > 0 small enough such that

(A.37) S\ast 
\epsilon := S\ast + \epsilon (S(l)  - S\ast )\in B\delta (S

\ast )\subset \scrW .

Evaluating J(S) at S\ast 
\epsilon yields

J(S\ast 
\epsilon )

(\mathrm{A}.37)
=  - 1

2

\bigl\langle 
S\ast + \epsilon (S(l)  - S\ast ),\Omega (S\ast + \epsilon (S(l)  - S\ast ))

\bigr\rangle 
(A.38a)

= J(S\ast ) - \epsilon \langle S\ast ,\Omega (S(l)  - S\ast )\rangle  - \epsilon 2

2
\langle S(l)  - S\ast ,\Omega (S(l)  - S\ast )\rangle (A.38b)

(\mathrm{i}\mathrm{i}),(2.2)
= J(S\ast ) - \epsilon 

\bigl\langle 
\langle S\ast ,\Omega S\ast \rangle 1, Sl  - S\ast \bigr\rangle + \epsilon 2

2

\bigl\langle 
\langle S\ast ,\Omega S\ast \rangle 1, S(l)  - S\ast \bigr\rangle (A.38c)

+ \epsilon 2
\biggl( 
J(S(l)) +

1

2
\langle S(l),\Omega S

\ast \rangle 
\biggr) 
,(A.38d)

and since \langle 1, S(l) - S\ast \rangle =\sum x\in \scrV 
\sum 

j\in [c](S(l)j(x) - S\ast 
j (x))

(A.35)
=

\sum 
x\in \scrV (1 - 

\sum 
j\in [c] S

\ast 
j (x)) =

0,

= J(S\ast ) + \epsilon 2
\biggl( 
J(S(l)) +

1

2
\langle S(l),\Omega S

\ast \rangle 
\biggr) 
.(A.38e)

It follows from (ii) that S\ast is an equilibrium point. Hence we can invoke condition
(A.33g) to obtain the identity

1

2
\langle S(l),\Omega S

\ast \rangle = 1

2

\sum 

x\in \scrV 

\sum 

j\in [c]
(\Omega S\ast )j(x)S(l)j(x) =

1

2

\sum 

x\in \scrV 
(\Omega S\ast )l(x)(A.38f)

(\mathrm{A}.33\mathrm{g})
=

1

2

\sum 

x\in \scrV 
\langle S\ast (x),\Omega S\ast (x)\rangle = - J(S\ast )(A.38g)

and consequently, since S(l) was shown above to be a global minimizer of J ,

J(S\ast 
\epsilon ) = J(S\ast ) + \epsilon 2

\bigl( 
J(S(l)) - J(S\ast )

\bigr) 
<J(S\ast ).(A.38h)

By assumption we have S\ast \in \scrW and using (A.36) it holds that J(S\ast 
\epsilon )<J(S\ast ). As \delta > 0

was chosen arbitrarily subject to the constraint (A.37), this shows that S\ast cannot be
a local minimizer, which proves (iii).
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A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 553

(iv) Analogous to (A.33) we compute

 - hk
2

\Bigl\langle 
\Omega Sk,RSk

\Bigl( 
\Omega RSk(\Omega Sk)

\Bigr) \Bigr\rangle 
 - \langle \Omega Sk,RSk(\Omega Sk)\rangle 

= - hk
2

\Bigl\langle 
\Omega Sk,RSk

\Bigl( 
\Omega RSk(\Omega Sk)

\Bigr) \Bigr\rangle 

 - 
\sum 

x\in \scrV 

\sum 

j\in [c]
Sk
j (x)

\Bigl( 
(\Omega Sk)j(x) - 

\Bigl\langle 
(\Omega Sk)(x), Sk(x)

\Bigr\rangle \Bigr) 2

= - hk
2

\Bigl\langle 
\Omega Sk,RSk

\Bigl( 
\Omega RSk(\Omega Sk)

\Bigr) \Bigr\rangle 

 - 
\sum 

x\in \scrV 

\sum 

j\in [c]

1

Sk
j (x)

\Bigl( 
Sk
j (x)

\Bigl( 
(\Omega Sk)j(x) - 

\Bigl\langle 
(\Omega Sk)(x), Sk(x)

\Bigr\rangle \Bigr) \Bigr) 2

= - hk
2

\Bigl\langle 
\Omega Sk,RSk

\Bigl( 
\Omega RSk(\Omega Sk)

\Bigr) \Bigr\rangle 

 - 
\sum 

x\in \scrV 

\biggl\langle 
1

Sk(x)
,gradg(J(S

k))(x)\odot gradg(J(S
k))(x)

\biggr\rangle 
.

(A.39)

Since this expression converges to 0 for k\rightarrow \infty , the additional assumption
\sum \infty 

k=0 hk <
\infty implies that the second term on the right-hand side is a zero sequence which
shows (iv).

A.5. Proof of section 5.3.

Proof of Proposition 5.5.

(i) Let D be the diagonal degree matrix

(A.40) D(x,x) =
\sum 

y\in \scrV 
\Omega (x, y),

and let f \in \scrF \scrV . Then, using
\sum 

x,y\in \scrV f2(x) =
\sum 

x,y\in \scrV f2(y), one has

\langle f, (D - \Omega )f\rangle \scrV =
\sum 

x\in \scrV 

\sum 

y\in \scrV 
\Omega (x, y)

\bigl( 
(f2(x) - f(x)f(y)

\bigr) 
(A.41a)

\Omega (x,y)=\Omega (y,x)
=

\sum 

x\in \scrV 

\sum 

y\in \scrV 
\Omega (x, y)

\biggl( 
(
1

2
f2(x) - f(x)f(y) +

1

2
f2(y)

\biggr) 
(A.41b)

=
1

2

\sum 

x\in \scrV 

\sum 

y\in \scrV 
\Omega (x, y)(f(x) - f(y))2.(A.41c)

Now we directly derive the right-hand side of (5.21) from (5.20).

 - \langle f,\scrD 
\alpha (\Theta \scrG \alpha f)\rangle \scrV 
\langle f, f\rangle \scrV 

(A.42a)

(2.17),(2.14)
=

\sum 
x\in \scrV 

f(x)2

\Biggl( 
\sum 
y\in \scrV 

\Theta (x, y)\alpha 2(x, y)(f(x) - f(y))

\Biggr) 

\sum 
x\in \scrV 

f2(x)
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554 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

(2.6),f | \scrV \alpha 
\scrI 
=0

=

\sum 
x\in \scrV 

f(x)2

\Biggl( 
\sum 

y\in \scrV \.\cup \scrV \alpha 
\scrI 

\Theta (x, y)\alpha 2(x, y)(f(x) - f(y))

\Biggr) 

\sum 
x\in \scrV 

f2(x)
(A.42b)

=

\sum 
x\in \scrV 

\sum 
y\in \scrV 

\bigl( 
\Theta (x, y)\alpha 2(x, y)(f2(x) - 2f(x)f(y) + f2(x))

\bigr) 

\sum 
x\in \scrV 

f2(x)
(A.42c)

+

2
\sum 
x\in \scrV 

\Biggl( 
\sum 

y\in \scrV \alpha 
\scrI 

\Theta (x, y)\alpha 2(x, y)

\Biggr) 
f2(x)

\sum 
x\in \scrV 

f2(x)
(A.42d)

and analogous to (A.41)

=

\sum 
x\in \scrV 

\sum 
y\in \scrV 

\Theta (x, y)\alpha 2(x, y)(f(x) - f(y))2 + 2
\sum 
x\in \scrV 

\biggl( \sum 
y\in \scrV \alpha 

\scrI 

\Theta (x, y)\alpha 2(x, y)

\biggr) 
f2(x)

\sum 
x\in \scrV 

f2(x)
(A.42e)

(2.6)
(3.5)
(3.3)
=

\sum 
x\in \scrV 

\sum 
y\in \scrV 

\Omega (x, y)(f(x) - f(y))2 + 2
\sum 
x\in \scrV 

\Bigl( 
\lambda (x) - \sum y\in \scrV \Omega (x, y)

\Bigr) 
f2(x)

\sum 
x\in \scrV 

f2(x)
(A.42f)

(\mathrm{A}.41)
= 2

\langle f, (D - \Omega )f\rangle \scrV + \langle f, (\Lambda  - D)f\rangle \scrV 
\langle f, f\rangle \scrV 

(A.42g)

= 2
\langle f, (\Lambda  - \Omega )f\rangle \scrV 
\langle f, f\rangle \scrV 

,(A.42h)

which proves that the right-hand sides of (5.20) and (5.21) are equal. By virtue of
(3.5), which is an equation by assumption, the matrix \Lambda  - \Omega defined by (5.22) and
(3.3) is diagonal dominant, i.e.,

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
(\Lambda (x,x) - \Omega (x,x)) - 

\sum 

y\in \scrV 
y \not =x

\Omega (x, y)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
=
\sum 

y\in \scrV \alpha 
\scrI 

\Theta (x, y)\alpha 2(x, y)\geq 0, x\in \scrV ,(A.43)

and therefore positive semidefinite, which shows \lambda D
1 \geq 0. In order to show that in

fact the strict inequality \lambda D
1 > 0 holds, let f \in \scrF \scrV be such that equality is achieved

in (5.20). We distinguish constant and nonconstant functions f . For constant f =
c1, c \in \BbbR , since the set \scrV \alpha \scrI given by (2.8) is nonempty, there exists an \widetilde x \in \scrV with\sum 

y\in \scrV \scrI \alpha 
\Theta (\widetilde x, y)\alpha 2(\widetilde x, y)> 0. Hence by (A.42e), (A.42h),

\lambda D
1 =
\langle f, (\Lambda  - \Omega )f\rangle \scrV 
\langle f, f\rangle \scrV 

>

\sum 
y\in \scrV \scrI \alpha 

\Theta (\widetilde x, y)\alpha 2(\widetilde x, y)
2n

> 0.(A.44)
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A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 555

If f is nonconstant, then there exist \widetilde x, \widetilde y \in \scrV with f(\widetilde y) \not = f(\widetilde x). Hence, since \scrV is
connected, (A.42e), (A.42h) yield

\lambda D
1 =
\langle f, (\Lambda  - \Omega )f\rangle \scrV 
\langle f, f\rangle \scrV 

>
\Omega (\widetilde x, \widetilde y)(f(\widetilde x) - f(\widetilde y))2

2max
x\in \scrV 

f2(x)
> 0.(A.45)

(ii) We perform similarly to (2.8) a disjoint decomposition of the vertex set \scrV and introduce
the sets

\scrV i = \{ x\in \scrV : \alpha (x, y) = 0 for y \in \scrV \alpha \scrI \} , \scrV b = \scrV \setminus \scrV i.(A.46)

Hence \scrV b \not = \emptyset if and only if \scrV \alpha \scrI \not = \emptyset and (3.2), (3.3) yield

\forall x\in \scrV i, \lambda (x) - 
\sum 

y\in \scrV 
\Omega (x, y) = 0.(A.47)

Let f be a normalized eigenvector to the smallest eigenvalue \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega ) of \Omega . Then,
using (A.47) and the inequality

(f(x) - f(y))2 \leq 2(f2(x) + f2(y)), x, y \in \scrV , f \in \scrF \scrV ,(A.48)

further yields

 - \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega ) =  - \langle f,\Omega f\rangle \scrV = \langle f, (D - \Omega )f\rangle \scrV  - \langle f,Df\rangle \scrV (A.49a)

(\mathrm{A}.40),(\mathrm{A}.41)
=

1

2

\sum 

x\in \scrV 

\sum 

y\in \scrV 
\Omega (x, y)(f(x) - f(y))2  - 

\sum 

x\in \scrV 

\sum 

y\in \scrV 
\Omega (x, y)f2(x)(A.49b)

(A.48)

\leq 
\sum 

x\in \scrV 

\sum 

y\in \scrV 
\Omega (x, y)f2(x)(A.49c)

(\mathrm{A}.46)
=

\sum 

x\in \scrV i

\sum 

y\in \scrV 
\Omega (x, y)f2(x) +

\sum 

x\in \scrV b

\sum 

y\in \scrV 
\Omega (x, y)f2(x)(A.49d)

(2.34),(3.3)

\leq 
\sum 

x\in \scrV i

f2(x) +
\sum 

x\in \scrV b

\left( 
 1 - 

\sum 

y\in \scrV \alpha 
\scrI 

\Theta (x, y)\alpha 2(x, y)

\right) 
 f2(x)(A.49e)

=
\sum 

x\in \scrV 
f2(x) - 

\sum 

x\in \scrV b

\sum 

y\in \scrV \alpha 
\scrI 

\Theta (x, y)\alpha 2(x, y)f2(x)(A.49f)

(2.6)
= 1 - 

\sum 

x\in \scrV b

\left( 
 1 - \Theta (x,x) - 

\sum 

y\in \scrV 
\Theta (x, y)\alpha 2(x, y)

\right) 
 f2(x)(A.49g)

(3.5)
< 1.(A.49h)
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556 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

A.6. Proofs of section 6.1.

Proof of Lemma 6.1. Since \scrW \subset \BbbR nc is compact, (Sk)k\geq 0 \subset \scrW is bounded and there exists
a convergent subsequence (Skl)l\geq 0 with liml\rightarrow \infty Skl = S\ast and \Lambda nonempty and compact. Due
to Proposition 5.3, the sequence (J(Sk))k\geq 0 is nonincreasing and bounded from below with
limk\rightarrow \infty J(Sk) = J\ast for some J\ast > - \infty .

In view of the definition (2.39) of the mapping S \mapsto \rightarrow RS(\Omega S), the right-hand side of (5.11)
is bounded for any S \in \scrS . Hence the subsequence (dkl)l\geq 0 induced by (Skl)l\geq 0 through
(5.11), (5.13) is convergent as well. Consequently, for any limit point S\ast \in \Lambda , there exists a
subsequence (Skl)l\geq 0 with

(A.50) Skl\rightarrow S\ast and dkl\rightarrow d\ast as l\rightarrow \infty .

It remains to show that liml\rightarrow \infty J(Skl) = J(S\ast ) = J\ast .
Analogous to the proof of Proposition 5.1, we adopt the decomposition (A.10) of J(S) by

J(S) = g(S) - h(S) with g(S) = \delta \scrW (S) + \gamma \langle S, logS\rangle ,(A.51a)

h(S) =
1

2
\langle S,\Omega S\rangle + \gamma \langle S, logS\rangle ,(A.51b)

with appropriately chosen initial decomposition parameter \gamma in Algorithm 4 such that g,h are
strictly convex on \scrW . By the lower semicontinuity of J(S), we have

(A.52) lim inf
l\rightarrow \infty 

J(Skl)\geq J(S\ast ).

In addition, by invoking line 13 of Algorithm 4 defining the iterate Skl by the inclusion
\gamma \theta kl - 1

\widetilde Skl - 1 \in \partial g(Skl) if \theta k satisfy the Wolfe conditions, and by line (16) otherwise, we have

g(Skl) - \gamma \theta kl - 1\langle \widetilde Skl - 1, Skl  - Skl - 1\rangle \leq g(S\ast ) - \gamma \theta kl - 1\langle \widetilde Skl - 1, S\ast  - Skl - 1\rangle ,(A.53)

which after rearranging reads

g(Skl)\leq g(S\ast ) - \gamma \theta kl - 1\langle dkl - 1, S\ast  - Skl\rangle  - \gamma 

\biggl\langle 
log

\biggl( 
Skl - 1

1c

\biggr) 
, S\ast  - Skl

\biggr\rangle 
.(A.54)

Setting

(A.55) \delta =
\sum 

x\in \scrV 

\sum 

j\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(S\ast (x))

log(S\ast 
j (x)) \cdot S\ast 

j (x)

and using (A.50), we obtain for the last term

lim
l\rightarrow \infty 

\biggl\langle 
log

\biggl( 
Skl - 1

1c

\biggr) 
, S\ast  - Skl

\biggr\rangle 
= lim

l\rightarrow \infty 
\langle log(Skl - 1), S\ast  - Skl\rangle (A.56a)

= lim
l\rightarrow \infty 

\Bigl( 
\langle log(Skl - 1) + log(e\theta kl - 1dkl - 1

), S\ast  - Skl\rangle  - \theta kl - 1\langle dkl - 1, S\ast  - Skl\rangle 
\Bigr) 

(A.56b)

= lim
l\rightarrow \infty 

\Bigl( \Bigl\langle 
log
\Bigl( 
expSkl - 1(\theta kl - 1d

kl - 1)
\Bigr) 
+ log\langle Skl - 1, e\theta kl - 1dkl - 1\rangle 1c, S

\ast  - Skl

\Bigr\rangle 
(A.56c)

 - \theta kl - 1\langle dkl - 1, S\ast  - Skl\rangle 
\Bigr) 

(A.56d)
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A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 557

using \langle 1c, S
\ast  - Skl\rangle = 1 - 1 = 0

(\mathrm{A}.55)
= lim

l\rightarrow \infty 
\langle log(Skl), S\ast  - Skl\rangle 

\underbrace{}  \underbrace{}  
\rightarrow \delta  - \delta =0

 - lim
l\rightarrow \infty 
\langle \theta kl - 1d

kl - 1, S\ast  - Skl\rangle 
\underbrace{}  \underbrace{}  

\rightarrow 0

(A.56e)

= 0.(A.56f)

Hence by noticing \theta k \in [\theta 0,
1

| \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega )| ], the sequence (\theta kl
) is bounded and taking the limit in

(A.54) yields

limsup
l\rightarrow \infty 

g(Skl)\leq g\ast (S\ast ).(A.57)

Now, turning to the function h of (A.51), lower semicontinuity yields lim inf l\rightarrow \infty h(Skl)\geq h(S\ast )
and hence

limsup
l\rightarrow \infty 

J(Skl) = limsup
l\rightarrow \infty 

\Bigl( 
g(Skl) - h(Skl)

\Bigr) 
\leq limsup

l\rightarrow \infty 
g(Skl) - lim inf

l\rightarrow \infty 
h(Skl)(A.58a)

(\mathrm{A}.57)

\leq g(S\ast ) - h(S\ast ).(A.58b)

Finally, combining this with (A.52) and by uniqueness of the limit J\ast , we have J(S\ast ) = J\ast 

for any S\ast \in \Lambda , which completes the proof.

Proof of Lemma 6.2. Throughout the proof we skip the action of projection operator \Pi 0

in dk(x) given by (5.11) and (5.14), due to the invariance of lifting map (2.41) by property
(2.42b). By definition (5.14) of Sk+1, it follows for x\in \scrV and j \in J+(S\ast (x)) that

\Bigl( 
Sk+1(x) - Sk(x)

\Bigr) 
j
= Sk

j (x)

\Biggl( 
e\theta kd

k(x)

\langle Sk(x), e\theta kdk(x)\rangle  - 1

\Biggr) 

j

=
Sk
j (x)

\langle Sk(x), e\theta kdk(x)\rangle 
\Bigl( 
e\theta kd

k
j (x)  - \langle Sk(x), e\theta kd

k(x)\rangle 
\Bigr) 

=
Sk
j (x)

\langle Sk(x), e\theta kdk(x)\rangle 

\Biggl( \infty \sum 

l=0

\beta k
l,j(x)

\Biggr) 
\forall J+(S\ast (x)),

(A.59)

where we employed the power series of the exponential function and the shorthand
(\beta k

l,j(x))l\geq 0

\beta k
l,j(x) =

\theta lk
l!

\Bigl( 
(dkj (x))

l  - \langle Sk(x), (dk(x))l\rangle 
\Bigr) 

(A.60a)

(5.11)
=

\theta lk
l!

\Bigl( 
(\Omega Sk)lj(x) - \langle Sk(x), (\Omega Sk)l(x)\rangle 

\Bigr) 
+\scrO (hk).(A.60b)

Let M :\scrW \times \BbbR +\rightarrow \BbbR + denote the function

(A.61) M(S,\gamma ) =max
x\in \scrV 

max
h\in [0,h\mathrm{m}\mathrm{a}\mathrm{x}]

\langle S(x), e\gamma d(S,h)(x)\rangle 2 \leq M\ast , S \in \scrW ,
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558 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

with h\mathrm{m}\mathrm{a}\mathrm{x} = maxk\geq 0 hk and d(S,h) as in (5.11). Since M(S,\gamma ) is a continuous mapping on
a compact set \scrW \times [\theta \mathrm{m}\mathrm{i}\mathrm{n}, \theta \mathrm{m}\mathrm{a}\mathrm{x}], it attains its maximum M\ast > 1. Due to the equilibrium
condition (A.33g) there exists an \varepsilon 1 > 0 such that, \forall S \in \scrW with \| S\ast  - S\| < \varepsilon 1, the inequality

(A.62)  - ((\Omega S)j(x) - \langle \Omega S(x), S(x)\rangle )> - 
1\surd 
M\ast ((\Omega S

\ast )j(x) - \langle \Omega S\ast (x), S\ast (x)\rangle )> 0

is satisfied for all indices j \in J+(S
\ast (x)) given by (6.2) (i.e., the terms inside the brackets on

either side are negative) and x \in \scrV . In particular, since S\ast \in \scrW is a limit point of (Sk)k\geq 0,
there is a convergent subsequence (Sks)s\geq 0 with Sks\rightarrow S\ast and consequently \| Sks0  - S\ast \| < \varepsilon 1
for some ks0 \in \BbbN . Now, using the componentwise inequality pl \leq p for l \in \BbbN and p \in \scrS , we
have

0\leq 
\biggl\langle 

1,
\Bigl( 
Sk(x)\odot \Omega Sk(x)

\Bigr) l\biggr\rangle 
\leq 
\Bigl\langle 
Sk(x), (\Omega Sk(x))l

\Bigr\rangle 
.(A.63)

Employing (A.63) in (A.60) and using hks\rightarrow 0 shows that there exists a smallest index k0 \geq ks0
such that

(A.64)

\beta l,j(x)\leq 
\theta lk
l!

\Bigl( 
(\Omega Sks0 )lj(x) - \langle Sks0 (x), (\Omega Sks0 (x))\rangle l

\Bigr) 
+O(hks0 )< 0 \forall j \in J+(S\ast (x)), l \in \BbbN .

Therefore, setting \varepsilon 1 := \| S\ast  - Sk0\| \forall Sk satisfying \| Sk  - S\ast \| < \varepsilon and k \geq k0 with \varepsilon :=
min\{ \varepsilon 0, \varepsilon 1\} , the inequalities (A.62) and (A.64) are simultaneously satisfied and using

(A.65) (\Omega Sks0 )lj(x)
(6.2)
< \langle (\Omega Sks0 )(x), Sks0 (x)\rangle l \forall j \in J+(S\ast (x)), l \in \BbbN ,

enables one to estimate (A.59) by

\Bigl( 
Sk+1(x) - Sk(x)

\Bigr) 
j

=
Sk
j (x)

\langle Sk(x), e\theta kdk(x)\rangle 

\Biggl( \infty \sum 

l=1

\beta k
l,j(x)

\Biggr) 
(A.66a)

(\mathrm{A}.64)

\leq 
Sk
j (x)

\langle Sk(x), e\theta kdk(x)\rangle 
\Bigl( 
\theta k

\Bigl( 
(\Omega Sk)j(x) - \langle Sk(x),\Omega Sk(x)\rangle 

\Bigr) 
(A.66b)

+

\infty \sum 

l=2

\theta lk
l!

\Bigl( 
(\Omega Sk)lj(x) - \langle Sk(x),\Omega Sk(x)\rangle l

\Bigr) 
+\scrO (hk)

\Bigr) 
(A.66c)

(\mathrm{A}.62)

\leq 
 - Sk

j (x)

\langle Sk(x), e\theta kdk(x)\rangle \cdot 
\surd 
M\ast (\theta k (\langle \Omega S

\ast (x), S\ast (x)\rangle  - (\Omega S\ast )j(x)))(A.66d)

(\mathrm{A}.61)

\leq  - \theta k
Sk
j (x)

M\ast (\langle \Omega S\ast (x), S\ast (x)\rangle  - (\Omega S\ast )j(x)) \forall J+(S+(x)).(A.66e)

Taking the sum over x\in \scrV shows (6.3).

A.7. Proofs of section 6.2.

Proof of Theorem 6.4. Let S\ast \in \Lambda be a limiting point of (Sk)k\geq 0 with S\ast (x)\in \scrS \setminus \scrS , \forall x\in \scrV ,
by Proposition 5.3(iii), and let \theta k \in \BbbR +, S

k+1 \in \scrW , and \widetilde Sk be determined by Algorithm 4 (see
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A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 559

lines 13 and 14), respectively. Then, by the well-known three-point identity [62, Lemma 3.1]
with respect to Sk+1, Sk \in \scrW , S\ast \in \scrW , one has

(A.67) D\mathrm{K}\mathrm{L}(S
\ast , Sk+1) - D\mathrm{K}\mathrm{L}(S

\ast , Sk) = - D\mathrm{K}\mathrm{L}(S
k+1, Sk) - \langle \nabla f(Sk+1) - \nabla f(Sk), S\ast  - Sk+1\rangle .

Recalling step size selection 3 it holds that \theta k \in (\theta 0,
1

| \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\Omega )| ) and leveraging the DC-

decomposition (A.51) with \gamma = 1
\theta k
, the inclusion \Omega Sk + 1

\theta k
log(S

k

1c
) \in \partial h(Sk) and the strict

convexity of h(S) on \scrW imply by the gradient inequality

(A.68) h(Sk+1) - h(Sk) - 
\biggl\langle 
\Omega Sk +

1

\theta k
log

\biggl( 
Sk

1c

\biggr) 
, Sk+1  - Sk

\biggr\rangle 
> 0

and hence

h(Sk+1) - h(Sk) - 
\biggl\langle 
\Omega Sk +

1

\theta k
log

\biggl( 
Sk

1c

\biggr) 
, Sk+1  - Sk

\biggr\rangle 
(A.69a)

(\mathrm{A}.51\mathrm{b})
=

1

2
\langle Sk+1,\Omega Sk+1\rangle  - 1

2
\langle Sk,\Omega Sk\rangle (A.69b)

+
1

\theta k

\biggl( 
\langle Sk+1, log(Sk+1)\rangle  - \langle Sk, logSk\rangle  - 

\biggl\langle 
log

\biggl( 
Sk

1c

\biggr) 
, Sk+1  - Sk

\biggr\rangle \biggr) 
(A.69c)

 - \langle \Omega Sk, Sk+1  - Sk\rangle (A.69d)

(2.46),(6.4)
= J(Sk) - J(Sk+1) +

1

\theta k
D\mathrm{K}\mathrm{L}(S

k+1, Sk) - \langle \Omega Sk, Sk+1  - Sk\rangle .(A.69e)

Therefore inequality (A.68) is equivalent to

(A.70)  - D\mathrm{K}\mathrm{L}(S
k+1, Sk)\leq \theta k

\Bigl( 
J(Sk) - J(Sk+1) - \langle \Omega Sk, Sk+1  - Sk\rangle 

\Bigr) 
.

Combining (A.70) and (A.67) yields

D\mathrm{K}\mathrm{L}(S
\ast , Sk+1) - D\mathrm{K}\mathrm{L}(S

\ast , Sk)\leq \theta k

\Bigl( 
J(Sk) - J(Sk+1) - \langle \Omega Sk, Sk+1  - Sk\rangle 

\Bigr) 

 - \langle \nabla f(Sk+1) - \nabla f(Sk), S\ast  - Sk+1\rangle .
(A.71)

Next, in view of Algorithm 4, line 14, we rewrite the last term in (A.71) in the form

\langle \nabla f(Sk+1) - \nabla f(Sk), S\ast  - Sk+1\rangle 
(6.7)

Sk,Sk+1\in \scrW 
= \langle 1c + log(Sk+1) - (1c + log(Sk)), S\ast  - Sk+1\rangle 

(A.72a)

\mathrm{A}\mathrm{l}\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m} 4
\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e} 14= \langle log(Sk) + log(e\theta kd

k

) - log(Sk), S\ast  - Sk+1\rangle (A.72b)

 - \langle log(\langle Sk, e\theta kd
k\rangle )1c, S

\ast  - Sk+1\rangle \underbrace{}  \underbrace{}  
=0

(A.72c)

= \theta k\langle dk, S\ast  - Sk+1\rangle .(A.72d)
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560 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

Consequently, (A.71) becomes

D\mathrm{K}\mathrm{L}(S
\ast , Sk+1) - D\mathrm{K}\mathrm{L}(S

\ast , Sk)(A.73a)

\leq \theta k

\Bigl( 
J(Sk) - J(Sk+1)

\Bigr) 
 - \theta k\langle \Omega Sk, S\ast  - Sk\rangle  - \theta khk

2
\langle \Omega RSk(\Omega Sk), S\ast  - Sk+1\rangle (A.73b)

(2.46)
= \theta k

\Bigl( 
2
\Bigl( 
J(S\ast ) - J(Sk+1)

\Bigr) 
+ J(Sk+1) - J(Sk)(A.73c)

 - hk
2
\langle \Omega RSk(\Omega Sk), S\ast  - Sk+1\rangle  - \langle Sk,\Omega S\ast \rangle  - 2J(S\ast )

\Bigr) 
.(A.73d)

Using the inequality of Cauchy--Schwarz and taking into account S\ast \in W, S \in \scrW , we estimate
with \lambda (\Omega ) defined by (6.9b)

(A.74) | \langle \Omega RS(\Omega S), S
\ast  - S\rangle | \leq \| \Omega RS(\Omega S)\| \cdot \| S\ast  - S\| \leq \lambda 2(\Omega )

2
\| S\| \surd n\leq \lambda 2(\Omega ) \cdot n

2
,

where the factor 1
2 is due to the fact that the matrices RS(x) given by (2.36) are positive

semidefinite with \lambda \mathrm{m}\mathrm{a}\mathrm{x}(RS(x)) \leq 1
2 , which easily follows from Gershgorin's circle theorem.

Using the descent step based on (5.11) and (A.23), we consider three further terms of (A.73):

J(Sk+1) - J(Sk) - hk
2
\langle \Omega RSk(\Omega Sk), S\ast  - Sk+1\rangle (A.75a)

(5.15\mathrm{a})

\leq \theta kc1 \langle RSk(\Omega Sk),RSk(dk)\rangle Sk\underbrace{}  \underbrace{}  
\leq 0

 - hk
2
\langle \Omega RSk(\Omega Sk), S\ast  - Sk+1\rangle (A.75b)

(5.11)

\leq  - \theta kc1(\langle RSk(\Omega Sk),RSk(\Omega Sk)\rangle Sk(A.75c)

+
\theta kc1hk

2
| \langle RSk(\Omega Sk),RSk\Omega RSk\Omega Sk\rangle Sk | ) + hk

2
| \langle \Omega RSk(\Omega Sk), S\ast  - Sk+1\rangle | (A.75d)

(\mathrm{A}.22),(\mathrm{A}.74)

\leq  - \theta kc1
2
\langle RSk(\Omega Sk),RSk(\Omega Sk)\rangle Sk +

\lambda 2(\Omega )nhk
4

(A.75e)

=  - \theta kc1
2
\| gradJ(Sk)\| 2Sk +

\lambda 2(\Omega )nhk
4

(A.75f)

\leq 0,(A.75g)

where the last inequality holds due to assumption (6.9). Now we focus on the last remaining
term occurring in (A.73). Using the index sets (6.2) with respect to the limit point S\ast \in \scrW 
along with Sk(x)\in \scrS , we get

 - \langle Sk,\Omega S\ast \rangle  - 2J(S\ast )
(2.46)
=  - 

\sum 

x\in \scrV 
\langle Sk(x),\Omega S\ast (x)\rangle +

\sum 

x\in \scrV 
\langle S\ast (x),\Omega S\ast (x)\rangle (A.76a)

=  - 
\sum 

x\in \scrV 

\sum 

j\in [c]
Sk
j (x)(\Omega S

\ast )j(x) +
\sum 

x\in \scrV 

\sum 

j\in [c]
Sk
j (x)

\underbrace{}  \underbrace{}  
=1

\langle S\ast (x),\Omega S\ast (x)\rangle (A.76b)
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A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 561

=  - 
\sum 

x\in \scrV 

\sum 

j\in [c]
Sk
j (x) ((\Omega S

\ast )j(x) - \langle S\ast (x),\Omega S\ast (x)\rangle )(A.76c)

(6.2)
=  - 

\sum 

x\in \scrV 

\Biggl( \sum 

j\in J - (S\ast (x))

Sk
j (x) ((\Omega S

\ast )j(x) - \langle S\ast (x),\Omega S\ast (x)\rangle )(A.76d)

+
\sum 

j\in J+(S\ast (x))

Sk
j (x) ((\Omega S

\ast )j(x) - \langle S\ast (x),\Omega S\ast (x)\rangle )
\Biggr) 
.(A.76e)

As a result, combining (A.75) and (A.76) \forall k \geq K and using J(S\ast )  - J(Sk+1) < 0, (A.73)
becomes

D\mathrm{K}\mathrm{L}(S
\ast , Sk+1) - D\mathrm{K}\mathrm{L}(S

\ast , Sk)\leq \theta k

\biggl( 
J(S\ast ) - J(Sk+1) - 

\sum 

x\in \scrV 

\biggl( \sum 

j\in J - (S\ast (x))

Sk
j (x)((\Omega S

\ast )j(x)

(A.77a)

 - \langle S\ast (x),\Omega S\ast (x)\rangle ) +
\sum 

j\in J+(S\ast (x))

Sk
j (x) ((\Omega S

\ast )j(x) - \langle S\ast (x),\Omega S\ast (x)\rangle )
\biggr) \biggr) 

.(A.77b)

By Lemma 6.2, there exist \varepsilon > 0 and k0 \in \BbbN such that \forall Sk \in \scrW with k\geq k0 and \| Sk - S\ast \| < \varepsilon 
inequality (6.3) is satisfied, where

Q(S) =
\sum 

x\in \scrV 

\sum 

j\in J+(S\ast (x))

Sj(x).

Introducing the mapping

V : \scrW \rightarrow \BbbR +, V (S) =D\mathrm{K}\mathrm{L}(S
\ast , S) +M\ast Q(S)

with M\ast > 1 as in Lemma 6.2, we obtain

V (Sk+1) - V (Sk) =D\mathrm{K}\mathrm{L}(S
\ast , Sk+1) - D\mathrm{K}\mathrm{L}(S

\ast , Sk) +M\ast 
\Bigl( 
Q(Sk+1) - Q(Sk)

\Bigr) 

(6.2\mathrm{a})
(\mathrm{A}.77)

\leq \theta k

\Bigl( 
J(S\ast ) - J(Sk) - 

\sum 

x\in \scrV 

\sum 

j\in J - (S\ast (x))

Sk
j (x) ((\Omega S

\ast )j(x) - \langle S\ast (x),\Omega S\ast (x)\rangle ) .

(A.78)

By Lemma 6.1 J(S) is constant on the set of limit points of the sequence (Sk) and the right-
hand side of (A.78) is strictly negative unless Sk is a stationary point of J(S). Consequently,
(A.78) is strictly negative \forall k\geq k0 with \| Sk - S\ast \| < \varepsilon . Consider U\delta = \{ S \in \scrW : V (S)< \delta \} with
\delta small enough such that U\delta \subset \{ S \in \scrW : \| S - S\ast \| < \epsilon \} . Then, as S\ast \in \Lambda is a limit point, there
exists an index K \geq k0 such that SK \in U\delta and (Sk)k\geq K \subset U\delta due to V (SK+1) < V (SK) < \delta 
by (A.78). Therefore, for k\geq K we conclude

(A.79) 0\leq D\mathrm{K}\mathrm{L}(S
\ast , Sk)\leq V (Sk)\rightarrow 0 for k\rightarrow \infty ,

which shows Sk\rightarrow S\ast .
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Proof of Theorem 6.6. For \varepsilon > 0 let k \in \BbbN be such that Sk \in B\varepsilon (S
\ast ). Then, with

Sk+ 1

2 , Sk+1 \in \scrW given by (5.12) and taking into account assumption (6.10), we have for any
x\in \scrV with S\ast (x) = ej\ast (x)

\| Sk+1(x) - S\ast (x)\| 1 =
\sum 

j\in [c]\setminus j\ast (x)
Sk+1
j (x) + 1 - Sk+1

j\ast (x)(x)(A.80a)

= 2 - 2Sk+1
j\ast (x)(x)(A.80b)

(5.12)
= 2 - 2

Sk
j\ast (x)(x)e

\theta k(\Omega Sk)j\ast (x)(x)+
\theta khk

2
(\Omega RSk (\Omega Sk))j\ast (x)(x)

\langle Sk(x), e\theta k(\Omega Sk)(x)+
\theta khk

2
\Omega RSk (\Omega Sk)(x)\rangle 

(A.80c)

= 2 - 
2Sk

j\ast (x)(x)

Sk
j\ast (x)(x) +

\sum 
j \not =j\ast (x)

Sk
j (x)e

 - \theta kHj(x)
,(A.80d)

with the shorthand

(A.81) Hj(x) := (\Omega Sk)j\ast (x)(x) - (\Omega Sk)j(x)+
hk
2

\Bigl( 
(\Omega RSk(\Omega Sk))j\ast (x)(x) - (\Omega RSk(\Omega Sk))j(x)

\Bigr) 
.

We consider the first two terms of the right-hand side of (A.81). Since Sk(x) \in B\varepsilon (S
\ast ), we

have

(A.82) Sk
j\ast (x)(x)> 1 - \varepsilon 

2
, Sk

j (x)<
\varepsilon 

2
\forall j \not = j\ast (x)

and get

(\Omega S)j\ast (x)(x) - (\Omega S)j(x)
(2.48)
=

\sum 

y\in \scrN (x)

\Omega (x, y)Sj\ast (x)(y) - 
\sum 

y\in \scrN (x)

\Omega (x, y)Sj(y)

=
\sum 

y\in \scrN (x)
j\ast (y)=j\ast (x)

\Omega (x, y)Sj\ast (x)(y) +
\sum 

y\in \scrN (x)
j\ast (y) \not =j\ast (x)

\Omega (x, y)Sj\ast (x)(y)

 - 
\sum 

y\in \scrN (x)
j\ast (y)=j

\Omega (x, y)Sj(y) - 
\sum 

y\in \scrN (x)
j\ast (y)\not =j

\Omega (x, y)Sj(y).(A.83a)

Skipping the nonnegative second term and applying the constraint Sj(y) < 1 for indices
j\ast (y) = j, it follows with (A.82)

(\Omega S)j\ast (x)(x) - (\Omega S)j(x) >
\sum 

y\in \scrN (x)
j\ast (y)=j\ast (x)

\Omega (x, y)Sj\ast (x)(y) - 
\sum 

y\in \scrN (x)
j\ast (y)=j

\Omega (x, y) - 
\sum 

y\in \scrN (x)
j\ast (y)\not =j

\Omega (x, y)Sj(y)

(A.83b)

(\mathrm{A}.82)
>

\Bigl( 
1 - \varepsilon 

2

\Bigr) \sum 

y\in \scrN (x)
j\ast (y)=j\ast (x)

\Omega (x, y) - 
\sum 

y\in \scrN (x)
j\ast (y)=j

\Omega (x, y) - \varepsilon 

2

\sum 

y\in \scrN (x)
j\ast (y)\not =j

\Omega (x, y)(A.83c)
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A NONLOCAL GRAPH-PDE FOR IMAGE LABELING 563

and after rewriting the last sum as 1 - \sum y\in \scrN (x)
j\ast (x)=j

\Omega (x, y) and using S\ast (x) = ej\ast (x)

\geq 
\Bigl( 
1 - \varepsilon 

2

\Bigr) \bigl( 
(\Omega S\ast )j\ast (x)  - (\Omega S\ast )j

\bigr) 
(x) - \varepsilon 

2
.(A.83d)

Now we consider the last two terms of the right-hand side of (A.81), starting with the
expression RSk(\Omega Sk). As B\varepsilon (S\ast ) is compact, the maximum

(A.84) \rho \ast = max
S\in B\varepsilon (S\ast )

\rho (S), \rho (S) =max
x\in \scrV 

max
l\in [c]\setminus j\ast (x)

\bigl( 
(\Omega S)j\ast (x)  - (\Omega S)l

\bigr) 
(x)

is attained. For j \in [c] with (RSk(\Omega Sk))j(x)< 0, we get
\Bigl( 
RSk(\Omega Sk)

\Bigr) 
j
(x) = Sk

j (x)
\Bigl( 
(\Omega Sk)j(x) - \langle Sk(x), (\Omega Sk)(x)\rangle 

\Bigr) 
(A.85a)

= Sk
j (x)

\left( 
 \sum 

l \not =j

Sk
l (x)

\Bigl( 
(\Omega Sk)j(x) - (\Omega Sk)l(x)

\Bigr) 
\right) 
 .(A.85b)

Taking into account (6.12) for Sk \in B\varepsilon (S
\ast ), we have (\Omega Sk)j\ast (x)(x)> (\Omega Sk)l(x) \forall l \in [c]\setminus j\ast (x)

by (6.11), and due to RSk(\Omega Sk)j(x) < 0, we conclude j \not = j\ast (x) in the preceding equation.
Consequently, applying the second inequality in (A.82) further yields

\Bigl( 
RSk(\Omega Sk)

\Bigr) 
j
(x)

(\mathrm{A}.82)
>

\varepsilon 

2

\sum 

l \not =j

Sk
l (x)

\Bigl( 
(\Omega Sk)j  - (\Omega Sk)l

\Bigr) 
(x)(A.85c)

(6.10)

\geq \varepsilon 

2

\sum 

l \not =j

Sk
l (x)

\Bigl( 
(\Omega Sk)j  - (\Omega Sk)j\ast (x)

\Bigr) 
(x)(A.85d)

=
\varepsilon 

2
(1 - Sk

j (x))
\Bigl( 
(\Omega Sk)j  - (\Omega Sk)j\ast (x)

\Bigr) 
(x)(A.85e)

(\mathrm{A}.84)

\geq  - \varepsilon 

2
\rho \ast .(A.85f)

In view of the last two terms of the right-hand side of (A.81), we introduce the index sets

\scrN j
 - (x) := \{ y \in \scrN (x) : (RS(\Omega S))j (y)< (RS(\Omega S))j\ast (x) (y)\} ,
\scrN j

+(x) := \{ y \in \scrN (x) : (RS(\Omega S))j (y)> (RS(\Omega S))j\ast (x) (y)\} 
(A.86)

and estimate

(\Omega RSk(\Omega Sk))j\ast (x)(x) - (\Omega RSk(\Omega Sk))j(x) =
\sum 

y\in \scrN (x)

\Omega (x, y)
\Bigl( 
RSk(\Omega Sk)j\ast (x)  - RSk(\Omega Sk)j

\Bigr) 
(y)

(A.87a)

\geq 
\sum 

y\in \scrN j
+(x)

\Omega (x, y)
\Bigl( 
RSk(\Omega Sk)j\ast (x)  - RSk(\Omega Sk)j

\Bigr) 
(y).(A.87b)

Regarding the term (\cdot \cdot \cdot ) in parentheses, using 1\top RSk = 0\top and consequently\sum 
l\in [c](RSk(\Omega Sk))l(y) = 0 for y \in \scrN j

+(x), it follows that
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564 DMITRIJ SITENKO, BASTIAN BOLL, AND CHRISTOPH SCHN\"ORR

RSk(\Omega Sk)j\ast (x)(y) - RSk(\Omega Sk)j(y) = 2(RSk(\Omega Sk))j\ast (x)(y) +
\sum 

l\in [c]
l /\in \{ j\ast (x),j\} 

(RSk(\Omega Sk))l(y)

(A.88a)

\geq 2c min
l\in [c]\setminus j\ast (y)

(RSk(\Omega Sk))l(y)(A.88b)

(\mathrm{A}.87)
>  - \varepsilon c\rho \ast .(A.88c)

Consequently, applying (A.88) and \Omega (x, y)\leq 1, inequality (A.87) becomes

(A.89)

\biggl( \Bigl( 
\Omega RSk(\Omega Sk)

\Bigr) 
j\ast (x)

 - 
\Bigl( 
\Omega RSk(\Omega Sk)

\Bigr) 
j

\biggr) 
(x)> - \varepsilon | \scrN (x)| c\rho \ast .

Substituting this estimate and (A.83) into (A.81) yields for any x\in \scrV and j \in [c]\setminus \{ j\ast (x)\} 

(A.90) Hj(x)\geq 
\Bigl( 
1 - \varepsilon 

2

\Bigr) 
((\Omega S\ast )j\ast (x)  - (\Omega S\ast )j)(x) - 

\varepsilon 

2
 - hc

2
\varepsilon | \scrN (x)| \rho \ast , h=max

k\geq k0

hk.

Thus, returning to (A.80), we finally obtain \forall \varepsilon satisfying (6.15) and using

(A.91) H\ast (x) := min
j \not =j\ast (x)

Hj(x)> 0

the bound

\| Sk+1(x) - S\ast (x)\| 1 \leq 2 - 
2Sk

j\ast (x)(x)

Sk
j\ast (x)(x) +

\sum 
j \not =j\ast (x)

Sk
j (x)e

 - \theta kH\ast (x)
(A.92a)

=
2
\Bigl( 
1 - Sk

j\ast (x)(x)
\Bigr) 
e - \theta kH\ast (x)

Sk
j\ast (x)(x) +

\Bigl( 
1 - Sk

j\ast (x)(x)
\Bigr) 
e - \theta kH\ast (x)

(A.92b)

Sk
j\ast (x)(x)=ej\ast (x)

= \| Sk(x) - S\ast \| 1
e - \theta kH\ast (x)

Sk
j\ast (x)(x) +

\Bigl( 
1 - Sk

j\ast (x)(x)
\Bigr) 
e - \theta kH\ast (x)

\underbrace{}  \underbrace{}  
=:\xi (x)<1, \mathrm{i}\mathrm{f} H\ast (x)>0.

(A.92c)

=: \| Sk(x) - S\ast \| 1 \cdot \xi (x)(A.92d)

with \xi (x)< 1, since H\ast (x)> 0 by (A.91). Induction over k > k0 yields

\| Sk+1(x) - S\ast (x)\| 1 < \xi k - k0(x)\| Sk0(x) - S\ast (x)\| 1,(A.93)

which proves (6.16).
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