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Abstract. We propose a novel method to obtain a part of an optimal non-relaxed
integral solution for energy minimization problems with Potts interactions, known
also as the minimal partition problem. The method empirically outperforms previ-
ous approaches like MQPBO and Kovtun’s method in most of our test instances
and especially in hard ones. As a starting point our approach uses the solution
of a commonly accepted convex relaxation of the problem. This solution is then
iteratively pruned until our criterion for partial optimality is satisfied. Due to its
generality our method can employ any solver for the considered relaxed problem.

1 Introduction

1.1 Problem Formulation

Continuous model. Consider the minimal partition problem

min
u∈BV (Ω ;{1,...,k})

ˆ
Ω

|Du|+W (x,u(x))dx . (1.1)

This problem and approximation algorithms for it are discussed in [12] for the discrete
case, and in [7] and [15] for the continuous case.

Minimizing discretizations of the above problem is NP-hard for n≥ 3, therefore it is
common to resort to a convex relaxation. Introduce

ui(x)≥ 0 , i = 1 . . . ,k ,
∑

k
i=1 ui(x) = 1 , x ∈Ω ,

(1.2)

or equivalently u(x) ∈ ∆k, x ∈Ω , and minimize (1.1) over (1.2). In general a minimizer
u∗ of the relaxed problem will not be binary anymore, but for some x∈Ω it may still hold
true. A natural question is: Is there a minimizer ũ of the original NP-hard problem (1.1)
and such a subset A ⊂ Ω , that ũ(x) = u∗(x) for x ∈ A? In other words, is u∗ partially
optimal or persistent on some set A? How can we determine such a set A?

Finding persistency is not only theoretically interesting, but it also allows in many
cases to solve the problem w.r.t. the remaining non-persistent variables with other
methods as done in [3] and thereby to obtain its complete globally optimal solution.
Moreover, solving the problem with respect to the non-persistent variables is simplified
by the fact, that the latter are often weakly connected or/and form small connected
components.
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Discrete model. For solving problem (1.1) in practice, one must discretize it. There
are many possible ways to do so, see e.g. [7] or [15]. We consider a discretization, which
introduces anisotropies, but can be stated for general graphs G = (Ω ,E):

J(u) = ∑
a∈Ω

〈c(a),u(a)〉+ ∑
(a,b)∈E

k

∑
l=1

αa,b|ul(a)−ul(b)| (1.3)

with αa,b > 0, (a,b)∈E, c(a)∈Rk and u(a)∈ {0,1}k, a∈Ω , satisfies additionally (1.2).
The discrete problem (1.3) is also known as a Potts model.

Note that for a grid graph, uniform weights αa,b and c being a local average of W ,
this is a particular discretization of the minimal partition problem (1.1). One can system-
atically approximate the minimal partition problem with graphs of higher connectivity
with the method presented in [6], while still solving a problem of the form (1.3).

1.2 Related Work and Contribution

The task of finding persistent variables in labeling problems has been studied and many
approaches have been proposed [5, 9, 10, 13, 14, 16, 17, 20]. To our best knowledge
the earliest paper concerning itself with persistency is [16], which states a persistency
criterion for the stable set problem and verifies it for every solution of a certain relaxation,
which the roof duality method in [5] uses and which is also the basis for the well known
QPBO-algorithm [5, 17]. Roof Duality has been extended for Multi-Label problems
in [13,20] and for higher order binary problems in [10]. A different approach, specialized
for Potts models, is pursued in [14], where possible labelings are tested for persistency.

MQPBO. In [13] the authors transform the multilabeling problem into a quadratic
binary problem. Their transformation is dependent upon choosing a label order and
their results are so as well. It is not known how to choose an optimal label ordering to
obtain the maximum number of persistent variables. For actually solving their problem
they use a relaxation which is an outer relaxation of the local polytope [18, Prop. 1].
One can show that the relaxation we use is strictly tighter than theirs and our approach
also generalizes to tighter relaxations as well. Experimentally we are able to label a
much higher percentage of points persistently. In case of high regularization weights our
approach can determine a substantially higher number of persistently labeled variables.
While the model [18] can solve more general interaction potentials, it needs significantly
more memory for the interaction terms. For the Potts model our approach consumes
substantially less memory, if a suitable algorithm for solving the relaxation is used.

Kovtun’s Approach [14] consists in searching for partially optimal labelings by
constructing auxiliary problems, solving these and testing for persistent variables. Each
of the auxiliary problems is however less tight than the relaxation we use. Also experi-
mentally, we could usually label more variables than this method.

1.3 Organization

We present

– a new persistency criterion for ensuring a labeling to be partially optimal, see
Section 2,
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– an algorithm for finding the provably biggest labeling, such that the persistency
criterion is satisfied, see Section 2,

– experimental validation of our approach and a comparison to existing methods and
new ways to use them together, see Section 3.

For the sake of clarity of presentation we have moved the proofs of all theoretical
statements to Section 5.

1.4 Notation

We reserve the variable k for the number of classes in problem (1.3) and denote by
ei = (0, . . . ,0,1,0, . . . ,0)> the ith basis vector of Rk with a 1 in its ith component. Let
Ek := {e1, . . . ,ek} contain the k unit basis vectors and denote by ∆k = conv(Ek) its
convex hull. For notational convenience we introduce two labeling spaces. Let

D = {u : Ω → Ek} , (1.4a)
D′ = {u : Ω → ∆k} . (1.4b)

The set D consists of all integral labelings and is nonconvex. The set D′ is its convex
hull, consists of functions defined by (1.2) and is used as feasible set in the relaxations.

The characteristic function of a set C is defined as δC(x) =
{

0 ,x ∈C
∞ ,x /∈C .

For a subset of nodes A⊂Ω let the functional restricted to A be

JA(u) = ∑a∈A〈u(a),c(a)〉+∑(a,b)∈E ∑
k
l=1 αa,b|ul(a)−ul(b)| . (1.5)

For A⊂Ω let its boundary be given by

∂A = {a ∈ A : ∃b ∈Ω\A s.t. (a,b) ∈ E} . (1.6)

Definition 1. For a boundary term w : ∂A→ Ek let the functional restricted to A with
the boundary term w be defined by

JA,w(u) = JA(u)+ ∑
(a,b)∈E:a∈A,b∈Ω\A

2αa,b〈w(a),u(a)〉 . (1.7)

2 Persistency for the Discretized Potts Problem

First we propose a criterion for partial optimality. Suppose we have found an integer
labeling on a set A, optimal for JA, which is not affected by what happens on its
complement Ω\A. Then it is immediate that the labeling is partially optimal. We propose
in the following Lemma 1 a sufficient condition for this situation. More specifically, a
binary minimizer of JA,w +δD′ , which conforms to the boundary conditions w on ∂A is
partially optimal.

Lemma 1. Let w : ∂A→ Ek be given. Suppose u∗ : A→ Ek is optimal for the functional

JA,w(u)+δD(u) (2.1)

and u∗(a) = w(a) ∀a ∈ ∂A. Then there exists a labeling ũ : Ω → Ek which is optimal for
J(u)+δD and such that ũ|A = u∗.
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Fig. 1. An exemplaric graph for the set-
ting of Lemma 1. The blue dashed line
encloses the set A, the green nodes with
the diagonal pattern have a boundary la-
beling w while the yellow node with the
crosshatch pattern is in the interior of A
and thus has no boundary labeling.

For computational purposes we must relax the functional JA,w+δD. Still the statement
of Lemma 1 essentially holds:

Corollary 1. Let w : ∂A→ Ek be given. Suppose the integral labeling u∗ : A→ Ek, is
optimal for the relaxed functional

JA,w(u)+δD′ , (2.2)

and the boundary condition

u∗(a) = w(a), a ∈ ∂A , (2.3)

holds. Then there exists ũ : Ω → Ek optimal for J(u)+δD such that ũ|A = u∗, i.e. u∗ is
partially optimal.

Corollary 1 forms the basis for Algorithm 1, which constructs a set of persistent
variables. The algorithm is initialized with the whole set Ω and recursively shrinks it
by removing variables taking non-integral values or not conforming to the boundary
condition (2.3). The process stops, when there is an optimizer u∗ fulfilling the conditions
of Corollary 1 for the remaining set A∗.

Algorithm 1: Finding persistent variables

Data: G = (Ω ,E), c : Ω → Rk,
αa,b ∈ R+ : (a,b) ∈ E

Result: A∗ ⊂Ω , u∗ : A∗→ Ek
Initialize:
A0 = Ω ;
w̃0 = 0;
Choose a ũ0 ∈ argminu JA0,w̃0(u)+δD′ ;
t = 1;

Solve the relaxed prob-
lem over Ω without
boundary conditions

while ũt /∈ D or ũt
|∂At 6= w̃t do

W t = {b ∈ ∂At−1 : ũt−1(b) 6= w̃t−1(b)};
At = {a ∈ At−1 : ũt−1(a) ∈ Ek}\W t ;
w̃t = ũt

|∂At ;
Choose a ũt ∈ argminu JAt ,w̃t (u)+δD′ ;
t = t +1;

Shrink the set At by re-
moving variables taking
non-integral values or not
conforming to the current
boundary condition

end
A∗ = At ;
u∗ = ũt ;
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In each iteration the set At shrinks. Since Ω is finite, the algorithm converges in at
most |Ω | steps. If the algorithm stops, then we have that

u∗ ∈ argminu JA∗,w +δD′ , (2.4)

w = u∗|∂A∗ and u∗ ∈ D. Hence u∗, w and A fulfill the conditions of Corollary 1, which
proves persistency. In what follows we will show, that under a mild technical assumption
Algorithm 1 is in some sense optimal, i.e. it delivers the greatest persistent set conforming
to Corollary 1.

Assumption 1 There is a unique solution of JAt ,wt +δD′ for each At and each wt : ∂At→
Ek obtained during iterations of Algorithm 1.

Definition 2. A subset A⊂Ω is the greatest persistent set for the functional J+δD′ , if
for all other sets A′ ⊂Ω fulfilling the conditions of Corollary 1, it follows that A′ ⊂ A.

Theorem 1. Under Assumption 1 Algorithm 1 returns the greatest persistent set A∗.

Remark 1. If Assumption 1 does not hold, then Algorithm 1 is not deterministic and the
obtained set A∗ is not necessarily the greatest persistent set. The simplest example of
such a situation occurs if the relaxation J+δD′ is tight, but has several integer solutions.
Any convex combination of these solutions will form a non-integral solution. However
this fact cannot be recognized by our method and hence these entries of the solution will
not be marked as persistent.

Remark 2. Algorithms similar to Algorithm 1 can be applied also to tighter relaxations,
e.g. when one includes cycle inequalities similar to [19]. All our results are independent
of the specific relaxation and the method one uses to optimize the relaxed problems (2.2).
One can show that the persistent variables one obtains with a tighter relaxation are a
superset of persistent variables one gets from a weaker relaxation.

At first glance it may seem that Algorithm 1 is not very efficient, due to the need to
compute optimal solutions to possibly many slightly differing problems in the iterations
of the while loop in Algorithm 1. The procedure is however significantly accelerated
with a warm start, i.e. initializing the algorithm with the variables from the previous
iteration. We discuss time issues in Section 3.

3 Experiments

We compare to the following methods:

– MQPBO: see section 1.2 and [13,18]. As in [13] we fix a label order before running
the MQPBO algorithm. The labels are ordered according to the strength of the local
data term. Note that contrary to our and Kovtun’s approach, MQPBO can also detect
persistency for labels which will not belong to any optimal solution.

– Kovtun: see section 1.2 and [14].
– KMQPBO: We first run Kovtun’s method and then we run MQPBO on the variables

which could not be found persistent by Kovtun’s method.
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– KMQPBO100: We first run Kovtun’s method and then run sequentially 100 iteration
of the MQPBO algorithm with a randomly sampled label order and accumulate
persistent variables.

Note that KMQPBO100 is an improvement upon the remaining (K)MQPBO methods
and obviously also over Kovtun’s method. MQPBO’s results really depend upon the
label ordering and therefore finding a good or somehow optimal label order for specific
problems remains an interesting task. This can be seen in the experiments, where
KMQPBO100 outperforms KMQPBO. While it would be favourable for KMQPBO to
optimize over all possible permutation per variable, this is computationally not tractable.
The problem of choosing the best label order has not been dealt with in literature, as far
as we know.

Our method uses the fast primal-dual method from [8] for minimizing the relaxations
JAt ,wt +δD′ .

For illustrating the strength of our method we present three datasets for the Potts
model. The datasets are explained in greater detail in [11] and are available on the
accompanying website [2]. The first dataset contains segmentation problems, for which
we are given a few prototypical color vectors. The distance between each pixel’s color
value and each prototypical vector is measured, thereby obtaining the local data term
c(a) in (1.3). The regularization strength αa,b in (1.3) was set uniformly. See Table 1 for
the results. The number of classes is written in parentheses behind the instance name
and the numbers denote the percentage of persistently labelled variables. The image
dimensions are usually 360×240 or slightly less. We have also included a time plot for
the clownfish dataset in Table 1, see Fig. 2.

Dataset Our method KMQPBO KMQPBO100 Kovtun MQPBO

clownfish (12) 0.9852 0.7659 0.9495 0.7411 0.0467
crops (12) 0.9308 0.6486 0.8803 0.6470 0.0071
fourcolors(4) 0.9993 0.6952 0.7010 0.6952 0.0
lake (12) 0.9998 0.7613 0.9362 0.7487 0.0665
palm (12) 0.8514 0.6866 0.7192 0.6865 0.0
penguin (8) 0.9999 0.9240 0.9471 0.9199 0.0103
peacock (12) 0.1035 0.0559 0.1234 0.0559 0.0
snail (3) 0.9997 0.9786 0.9819 0.9778 0.5835
strawberry-glass (12) 0.9639 0.5502 0.5997 0.5499 0.0

Table 1. Results for segmentation problems with prototypical color vectors. Entries in the table
denote the percentage of persistently labelled variables. The numbers in parentheses behind the
dataset name denote the number k of classes.

The second dataset consists of segmentation problems of a simulated brain scan with
5 prototypical vectors. The brain images were generated with the simulator [1]. The local
data terms c(a) in (1.3) were computed as for the first dataset and the regularization
strength αa,b in (1.3) was set uniformly as well. Instances can become very huge due
to the volumes being three-dimensional. See Table 2 for results. The dimensions of the
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Fig. 2. Percentage of partial optimal variables of the 5 compared methods over time for the
clownfish dataset. The method of Kovtun provides partial optimality very fast. KMQPBO100
finds more and more partially optimal variables, which illustrates that the performance of MQBPO
depends on the label order. While our pruning method gives the best result, our current research
implementation is not competitive with respect to time.

problems are denoted in the left column, while the entries denote the percentage of the
variables determined to be persistent.

Dataset Our method KMQPBO KMQPBO100 Kovtun MQPBO

181×217×20 0.9968 0.9993 0.9994 0.9235 0.3886
181×217×26 0.9969 1 0.9996 0.9322 0.3992
181×217×36 0.9967 † † 0.9363 0.4020
181×217×60 0.9952 † † 0.9496 0.4106

Table 2. Results for the simulated brain scan dataset. Entries in the table denote the percentage of
persistently labelled variables. The numbers in the left column denote the image dimensions. The
number k of classes is 5. Entries denoted by † indicate that the instance could not be solved with
the specified method for implementation reasons.

The third dataset consists of object segmentation problems with the local data
terms c(a) in (1.3) denoting the probability of pixels to belong to object classes. The
regularization strength αa,b in (1.3) is chosen to be inversely proportional to the image
gradient. The data was taken from [4]. It turned out that the relaxation we use was
already tight for the data. Hence we could determine all variables in the initial run. This
illustrates experimentally, that the relaxations used in Kovtun’s method and in MQPBO
are less tight than our relaxation. See Table 3 for results.

Most often we could label over 95% of all variables persistently with our method and
outperform the other tested approaches. Note that we can use an arbitrary algorithm for
solving the problem (2.2) in contrast to the approaches based on roof duality. It is very
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Dataset Our method KMQPBO KMQPBO100 Kovtun MQPBO

Plane (4) 1 0.9833 0.9833 0.9833 0.0002
Bikes (5) 1 0.9570 0.9570 0.9569 0.0
Road (5) 1 0.9579 0.9579 0.9579 0.0
Building (7) 1 0.8051 0.8053 0.8051 0.0
Car (8) 1 0.9902 0.9904 0.9902 0.0002

Table 3. Results for the object segmentation dataset. Entries in the table denote the percentage of
persistently labelled variables. The numbers in the left column the number of classes k.

noteworthy, that KMQPBO and KMQPBO100 outperform our approach in the brain
scan dataset as well as in one instance of the color segmentation dataset. Although the
relaxation we use is tighter than MQPBO’s, all the integral variables MQPBO obtains
are persistent. In contrast, only a subset of the integral variables of the solution to the
relaxation we use are found persistent. Hence, it may occur that in some instances
(K)MQPBO(100) can label more variables persistently although our approach yields
more integral variables which however cannot be proved persistent. The same reasoning
applies to Kovtun’s method, so possibly some variables could be found persistent in
Kovtun’s method and hence also in KMQPBO and KMQPBO100 which could not be
verified to be persistent in our approach.

Kovtun’s method from [14] is very fast, usually faster than solving the relaxation
of problem (1.3). Therefore using a layered approach by first applying Kovtun’s Partial
Optimal Labeling Search from [14] and then applying our approach on the remaining
variables will result in at least the same number of persistent variables while still retaining
a very fast runtime. For properly comparing the approaches however, we have used our
method on its own.

4 Conclusion and Outlook

We have presented a method for finding persistent variables for the Potts model, which
outperforms other approaches to this problem with respect to the number of persistent
variables found. The presented method can use an arbitrary algorithm for minimizing a
relaxed labeling problem and generalizes to tighter relaxations as well.

In future we will address the problem of finding persistent variables for arbitrary
graphical models and the discretized minimal partition problem with better discretiza-
tions.
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12. J. Kleinberg and É. Tardos. Approximation algorithms for classification problems with
pairwise relationships: metric labeling and Markov random fields. J. ACM, 49(5):616–639,
September 2002.

13. P. Kohli, A. Shekhovtsov, C. Rother, V. Kolmogorov, and P. Torr. On partial optimality in
multi-label MRFs. In ICML, pages 480–487, 2008.

14. Ivan Kovtun. Partial optimal labeling search for a NP-hard subclass of (max, +) problems. In
DAGM, pages 402–409, 2003.
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5 Appendix

Lemma 1.

Proof. Let u : Ω\A→ Ek be optimal for the functional

JΩ\A(u)−∑a∈(Ω\A),b∈A,(a,b)∈E 2αa,b〈w(b),u(a)〉+δD. (5.1)
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Then

ũ(a) =
{

u∗(a) ,a ∈ A
u(a) ,a /∈ A (5.2)

is optimal for J+δD. Let u′ : Ω → Ek be another labeling. If we will show, that J(ũ)≤
J(u′), it will prove the lemma. Indeed, taking into account that u∗(a) = w(a), a ∈ ∂A we
have

J(ũ)
= JA(u0)+ JΩ\A(u)+∑b∈Ω\A,a∈A,(a,b)∈E ∑

k
l=1 αa,b|ũl(a)− ũl(b)|

= JA(u0)+ JΩ\A(u)+∑b∈Ω\A,a∈A,(a,b)∈E ∑
k
l=1 αa,b|wl(a)− ũl(b)|

= JA(u0)+ JΩ\A(u)+∑b∈Ω\A,a∈A,(a,b)∈E 2αa,b(1−1u(b)=w(a))

= JA(u0)+ JΩ\A(u)+∑b∈Ω\A,a∈A,(a,b)∈E 2αa,b〈w(a),u0(a)−u(b)〉
≤ JA(u′|A)+ JΩ\A(u′|Ω\A)+∑b∈Ω\A,a∈A,(a,b)∈E 2αa,b〈w(a),u′(a)−u′(b)〉
= JA(u′|A)+ JΩ\A(u′|Ω\A)+∑b∈Ω\A,a∈A,(a,b)∈E 2αa,b(1w(a)=u′(a)−1w(a)=u′(b))

≤ JA(u′|A)+ JΩ\A(u′|Ω\A)+∑b∈Ω\A,a∈A,(a,b)∈E αa,b ∑
k
l=1|u′(a)−u′(b)|

= J(u′) ,

(5.3)

which finalizes the proof.

Corollary 1.

Proof. u∗ ∈ argminJA,w+δD′ and u∗ ∈D⇒ u∗ ∈ argminJA,w+δD. Now apply Lemma 1
and get statement of the corollary.

To prove Theorem 1 we will require the following three lemmas.

Lemma 2. Let α ∈ Ek, β ∈ ∆k. Then

2〈α,α−β 〉=
k

∑
l=1
|α l−β

l | (5.4)

Proof. Without loss of generality assume α = ei. Then

2〈α,α−β 〉= 2−2β i = 1−β i +1−β i

= 1−β i +∑l 6=i bl = |1−β i|+∑l 6=i|bl |= ∑
k
l=1|α l−β l | (5.5)

Lemma 3. Let α,β ∈ ∆k and ei ∈ Ek. Then

2〈ei,α−β 〉 ≤
k

∑
l=1
|α l−β

l |. (5.6)

Proof.

2〈ei,α−β 〉= 2(α i−β i) = (α i−β i)+(1−∑l 6=i al)− (1−∑l 6=i β l)

= (α i−β i)+∑l 6=i(β
l−al)≤ ∑

k
l=1|α l−β l |. (5.7)

Note that equality holds in (5.6) iff ai ≥ β i and α j ≤ β j for all j 6= i.
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Lemma 4. Let A⊂Ω , u : A→ Ek and w : ∂A→ Ek satisfy the persistency criterion of
Corollary 1.

Then for any B ⊃ A and boundary condition w̃ satisfying w̃(a) = w(a) for all a ∈
∂A∩∂B, such ũ exists, that

ũ ∈ argminu JB,w̃(u)+δD′ (5.8)

and ũ|A = u and w̃(a) = ũ(a) for a ∈ ∂A.

Proof. Let u′ be optimal for the functional

JB\A(u)− ∑
(a,b)∈E : b∈B\A,a∈A

2αa,b〈w(a),u(b)〉

+ ∑
(a,b)∈E : a∈B\A,b∈B\Ω

2αa,b〈w̃(a),u(a)〉+δD′ . (5.9)

Let

ũ(a) =
{

u(a) ,a ∈ A
u′(a) ,a ∈ B\A .

(5.10)

The lemma will be proved when we show that ũ ∈ argminu JB,w̃(u)+δD′(u). For this let
û be arbitrary relaxed labeling from ∈ δD′ . The following inequalities then hold:

JB,w̃(ũ) (5.11)
=JA(u)+ JB\A(u

′) (5.12)

+∑(a,b)∈E : a∈A,b∈B\A

k

∑
l=1

αa,b|ul(a)− (u′)l(b)| (5.13)

+∑(a,b)∈E : a∈B,b∈Ω\B 2αa,b〈w̃(a), ũ(a)〉 (5.14)

=JA(u)+ JB\A(u
′) (5.15)

+∑(a,b)∈E : a∈A,b∈B\A

k

∑
l=1

αa,b|ul(a)− (u′)l(b)| (5.16)

+∑(a,b)∈E : a∈A,b∈Ω\B 2αa,b〈w(a),u(a)〉 (5.17)

+∑(a,b)∈E : a∈B\A,b∈Ω\B 2αa,b〈w̃(a),u′(a)〉 (5.18)

(∗)
=JA(u)+ JB\A(u

′) (5.19)

+∑(a,b)∈E : a∈A,b∈B\A 2αa,b〈w(a),u(a)−u′(b)〉 (5.20)

+∑(a,b)∈E : a∈A,b∈Ω\B 2αa,b〈w(a),u(a)〉 (5.21)

+ ∑
(a,b)∈E : a∈B\A,b∈Ω\B

2αa,b〈w̃(a),u′(a)〉 (5.22)

=JA(u)+ JB\A(u
′) (5.23)

+∑(a,b)∈E : a∈A,b∈Ω\A 2αa,b〈w(a),u(a)〉 (5.24)

−∑(a,b)∈E : a∈A,b∈B\A 2αa,b〈w(a),u′(b)〉 (5.25)
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+∑(a,b)∈E : a∈B\A,b∈Ω\B 2αa,b〈w̃(a),u′(a)〉 (5.26)

(∗∗)
≤ JA(û|A)+ JB\A(û|B\A) (5.27)

+∑(a,b)∈E : a∈A,b∈Ω\A 2αa,b〈w(a), û(a)〉 (5.28)

−∑(a,b)∈E : a∈A,b∈B\A 2αa,b〈w(a), û(b)〉 (5.29)

+∑(a,b)∈E : a∈B\A,b∈Ω\B 2αa,b〈w̃(a), û(a)〉 (5.30)

=JA(ũ|A)+ JB\A(û|B\A) (5.31)

+∑(a,b)∈E : a∈A,b∈B\A 2αa,b〈w(a), û(a)− û(b)〉 (5.32)

+∑(a,b)∈E : a∈A,b∈Ω\B 2αa,b〈w(a), û(a)〉 (5.33)

+∑(a,b)∈E : a∈B\A,b∈Ω\B 2αa,b〈w̃(a), û(a)〉 (5.34)

(∗∗∗)
≤ JA(û|A)+ JB\A(û|B\A) (5.35)

+∑(a,b)∈E : a∈A,b∈B\A

k

∑
l=1

αa,b|ûl(a)− ûl(b)| (5.36)

+∑(a,b)∈E : a∈B,b∈Ω\B 2αa,b〈w̃(a), û(a)〉 (5.37)

=JB,w̃(û) , (5.38)

where (∗) is due to lemma 2, (∗∗) is due to the optimality of u and u′ for the
respective functionals and (∗∗∗) is due to lemma 3.

Theorem 1
Proof. We prove the statement that A∗ is the greatest persistent set by showing the
following claim to hold true:
Claim: Assume that for some A⊂Ω there exists a persistent labeling u. Then in each
iteration of the algorithm A⊂ Ai holds. Furthermore u = u∗|A and hence w(a) = w∗(a)

for a ∈ ∂A∩∂A∗, where w∗ = u∗|∂A∗ .
In the initialization step the claim clearly holds true, since A0 = Ω and Lemma 4

ensures that there exists ũ0 ∈ argminJΩ +δD′ such that u = ũ0
|A and w(a) = w̃0(a) for

all a ∈ ∂A∩∂Ω =∅ is an empty condition. Finally assumption 1 gives us that there is
only one such minimizer ũ0, so the claim holds initially.

Now assume the claim to hold for i− 1. We need to show that it also holds for
i. For this just invoke Lemma 4 with A = A, B = Ai−1 and w̃ = w̃i−1. The conditions
of Lemma 4 hold by assumption on i− 1. Lemma 4 now ensures existence of ũi ∈
argminu JAi−1,w̃i−1(u)+δD′(u) with the required properties. Again by Assumption 1, ũi

is unique, so we are done.
Inspecting the proof of the claim above, we see that Assumption 1 is necessary

because otherwise the labels for nodes in A could possibly change during iterations of
the algorithm or be convex sums of optimal persistent labellings in which case they
would be discarded from the sets Ai at some point.


