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Abstract—We consider the energy minimization problem for undirected graphical models, also known as MAP-inference problem for
Markov random fields which is NP-hard in general. We propose a novel polynomial time algorithm to obtain a part of its optimal non-
relaxed integral solution. Our algorithm is initialized with variables taking integral values in the solution of a convex relaxation of the
MAP-inference problem and iteratively prunes those, which do not satisfy our criterion for partial optimality. We show that our pruning
strategy is in a certain sense theoretically optimal. Also empirically our method outperforms previous approaches in terms of the
number of persistently labelled variables. The method is very general, as it is applicable to models with arbitrary factors of an arbitrary
order and can employ any solver for the considered relaxed problem. Our method’s runtime is determined by the runtime of the convex
relaxation solver for the MAP-inference problem.
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1 INTRODUCTION

FINDING the most likely configuration of a Markov ran-
dom field (MRF), also called MAP-inference or energy

minimization problem for graphical models, is of big impor-
tance in computer vision, bioinformatics, communication
theory, statistical physics, combinatorial optimization, sig-
nal processing, information retrieval and statistical machine
learning, see [1], [13], [39] for an overview of applications.
This key problem however is NP-hard. Therefore approxi-
mate methods have been developed to tackle big instances
commonly arising in image processing, see [13], [36] for an
overview of such methods. These approximate methods
often cannot find an optimal configuration, but deliver close
solutions. If one could prove, that some variables of the
solution given by such approximate algorithms belong to
an optimal configuration, the value of such approximate
methods would be greatly enhanced. In particular, the prob-
lem for the remaining variables could be solved by stronger,
but computationally more expensive methods to obtain a
global optimum as done, e.g., in [15].

In this paper we propose a way to gain such a partially
optimal solution for theMAP-inference problemwith general
discrete MRFs from possibly also non-exact solutions of the
commonly used local polytope relaxation (see [39]). Solving
over the local polytope amounts to solving a linear problem
for which any linear programming (LP) solver can be used
and for which dedicated and efficient algorithms exist.

1.1 Related Work
We distinguish two classes of approaches to partial
optimality.

(i) Roof duality based approaches. The earliest paper deal-
ing with persistency is [22], which states a persis-
tency criterion for the stable set problem and verifies
it for every solution of a certain relaxation. This
relaxation is the same, as used by the roof duality
method in [2] and which is also the basis for the well
known QPBO-algorithm [2], [23]. The MQPBO
method [17] extends roof duality to the multi-label
case. The authors transform multi-label problems
into quadratic binary ones and solve them via
QPBO [2]. However, their transformation is depen-
dent upon choosing a label order and their results
are so as well, see the experiments in [34], where the
label order is sampled randomly. It is not known
how to choose an optimal label order to obtain the
maximum number of persistent variables.

The roof duality method has been extended to
higher order binary problems in [4], [10], [12]. The
generalized roof duality (GRD) method for binary
higher order problems [12] computes partially opti-
mal variables directly for higher order potentials,
while Ishikawa’s and Fix et al’s approaches [4], [10]
transform .the higher order problem to one with
unary and pairwise terms only. Fix et al’s method [4]
is an improvement upon Ishikawa’s [10].
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Windheuser et al. [40] proposed a multi-label
higher-order roof duality method, which is a generali-
zation of both MQPBO [17] to higher order and Kahl
and Strandmark’s work [12] to the multi-label case.
However Windheuser et al. neither describe an
implementation nor provide experimental validation
for the higher order multi-label case.

(ii) Labeling testing approaches. A different approach, spe-
cialized for Potts models, is pursued by Kovtun [20],
where possible labelings are tested for persistency by
auxiliary submodular problems. The dead-end elimi-
nation procedure [3] tests, if certain labels of nodes
cannot belong to an optimal solution. It is a local heu-
ristic and does not perform any optimization.

Since for non-binary multi-labeling problems the sub-
modular approximations constructed by approaches of class
(i) are provably less tight than the standard local polytope
relaxation [29, Prop. 1], we consider class (ii) in this paper.
Specifically, based on ideas in [34] to handle the Potts
model, we develop a theoretically substantiated approach
to recognizing partial optimality for general graphical mod-
els, together with a competitive comparison to the five
approaches [4], [10], [12], [17], [20] discussed above, that
define the state-of-the-art.

Unified study. In addition we point to the recent
paper [29], which provides a unified study of most men-
tioned methods and a systematic way of their analysis.
While their persistency criterion is provably not weaker
than ours, due to the general structure of the resulting LP it
cannot be applied to large-scale problems in a straightfor-
ward manner. Moreover, our approach is directly applica-
ble to higher order models and tighter then the local
polytope relaxations, whereas [29] requires generalization
to these cases, though such a generalization is presumably
possible. We show that our algorithm solves a special case
of the maximal presistency problem formulated in [29].

Shrinking technique. The recent work [25] proposes a
method for efficient shrinking of the combinatorial search
area with the local polytope relaxation. Though the algorith-
mic idea is similar to the presented one, the method [25]
does not provide partially optimal solutions. We refer to
Section 4 for further discussion.

Furthermore, preliminary shorter version of the our
study was published at a conference as [35].

1.2 Contribution and Organization
Adopting ideas from [34], we propose a novel method for
computing partial optimality, which is applicable to general
graphical models with arbitrary higher order potentials. Similarly
to [34] our algorithm is initialized with variables taking
integral values in the solution of a convex relaxation of the
MAP-inference problem and iteratively prunes those, which
do not satisfy our persistency criterion. We show that our
pruning strategy is in a certain sense theoretically optimal.
Though the used relaxation can be chosen arbitrarily, for
brevitywe restrict our exposition and experiments to the local
polytope relaxation. Tighter relaxations provably yield better
results. However even by using the local polytope relaxation
we can often achieve a substantially higher number of persis-
tent variables, than competing approaches, whichwe confirm
experimentally. We also show how our approach can be
made invariant against reparametrizations. This improves
our partial optimality criterion and we can show equivalence
with the all-to-one improving mapping class of partial opti-
mality methods proposed in [29]. Our approach is very gen-
eral, as it can use any, also approximate, solver for the
considered convex relaxation. Moreover, the computational
complexity of our method is determined mainly by the run-
time of the used solver.

The comparison to existing persistency methods is sum-
marized in Table 1.

Our code together with the experimental setup is avail-
able at http://paulswoboda.net.

Organization. In Section 2 we review the energy minimiza-
tion problem and the local polytope relaxation, in Section 3
our persistency criterion is presented. The corresponding
algorithm and its theoretical analysis are presented in
Sections 4, 5 and 6 respectively. Extensions to the higher order
case and tighter relaxations are discussed in Section 7. Sec-
tion 8 provides experimental validation of our approach and
a comparison to the existingmethods [4], [10], [12], [17], [20].

2 MAP-INFERENCE PROBLEM

The MAP-inference problem for a graphical model over an
undirected graph G ¼ ðV; EÞ, reads

min
x2XV

EVðxÞ :¼
X

v2V
uvðxvÞ þ

X

uv2E
uuvðxu; xvÞ; (2:1)

TABLE 1
Comparison between Partial Optimality Methods

Work Non-binary Higher order Non-Potts Auxiliary problem

Boros & Hammer 2002 [2] & & þ QPBO
Kovtun 2003[20] þ & & submodular
Rother et al. 2007 [23] & & þ QPBO
Kohli et al. 2008 [17] þ & þ QPBO
Kovtun 2011 [21] þ & þ submodular
Ishikawa 2011 [10] & þ þ QPBO
Fix et al. 2011 [4] & þ þ QPBO
Kahl & Strandmark 2012 [12] & þ þ bi-submodular
Windheuser et al. 2012 [40] þ þ þ bi-submodular
Swoboda et al. 2013 [35] þ & & local polytope
Shekhovtsov 2014 [29] þ & þ general linear program

Ours þ þ þ any convex relaxation

Detailed description is presented in Section 1.1.
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where xu belongs to a finite label set Xu for each node u 2 V,
uu : Xu ! R and uuv : Xu 'Xv ! R are the unary and pair-
wise potentials associated with the nodes and edges of G.
The label space for A ( V is XA ¼ )u2AXu, where ) stands
for the Cartesian product. For notational convenience we
write Xuv ¼ Xu 'Xv and xuv ¼ ðxu; xvÞ for uv 2 E. Nota-
tions like x 2 XA implicitly indicate that the vector x only
has components xu indexed by u 2 A. With xjA 2 XA we
denote restriction of the labeling x 2 XV to the set A ( V.

More general graphical models with terms depending on
three or more variables can be considered as well. For brev-
ity we restrict ourselves here to the pairwise case. An exten-
sion to the higher order case is discussed in Section 7.

Problem (2.1) is equivalent to the integer linear problem

min
m2LV

X

v2V

X

xv2Xv

uvðxvÞmvðxvÞ þ
X

uv2E

X

xuv2Xuv

uuvðxuvÞmuvðxuvÞ

s:t: mwðxwÞ 2 f0; 1g for w 2 V [ E; xw 2 Xw;

(2:2)

where the local polytope LV [38] is the set of m fulfilling

X

xv2V
mvðxvÞ ¼ 1; v 2 V;

X

xv2V
muvðxu; xvÞ ¼ muðxuÞ; xu 2 Xu; uv 2 E;

X

xu2V
muvðxu; xvÞ ¼ mvðxvÞ; xv 2 Xv; uv 2 E;

mwðxwÞ * 0; w 2 V [ E; xw 2 Xw:

(2:3)

We define LA for A ( V similarly. Slightly abusing notation
we will denote the objective function in (2.2) as EVðmÞ. The
formulation (2.2) utilizes the overcomplete representa-
tion [38] of labelings in terms of indicator vectors m,
which are often called marginals. The problem of finding
m+ 2 argminm2LVEVðmÞ (i.e., solving (2.2) without integrality

constraints) is called the local polytope relaxation of (2.1).
While solving the local polytope relaxation can be done

in polynomial time, the corresponding optimal marginal m+

may not be integral anymore, hence infeasible and not opti-
mal for (2.2). For a wide spectrum of problems however
most of the entries of optimal marginals m+ for the local pol-
ytope relaxation will be integral. Unfortunately, there is no
guarantee that any of these integral variables will be part of
a globally optimal solution to (2.2), except in the case of
binary variables, that is Xu ¼ f0; 1g 8u 2 V, and unary and
pairwise potentials [6]. Natural questions are: (i) Is there a
subset A ( V and a minimizer m0 of the original NP-hard
problem (2.2) such that m0

v ¼ m+
v 8v 2 A? In other words, is

m+ partially optimal or persistent on some set A? (ii) Given a
relaxed solution m+ 2 LV , how can we determine such a set
A? We provide a novel approach to tackle these problems in
what follows.

3 PERSISTENCY

Assume we have marginals m 2 LV . We say that the mar-
ginal mu, u 2 V, is integral if muðxuÞ 2 f0; 1g 8xu 2 Xu. In this
case the marginal corresponds uniquely to a label xu with
muðxuÞ ¼ 1. If this integrality condition holds for all u 2 V the
corresponding vector m will be denoted as dðxÞ. The convex

hull of marginals corresponding to all labelings known as
marginal polytope will be denoted as MV :¼ convðdðXVÞÞ.
The non-relaxed energy minimization (2.1) can be equiva-
lently written asminm2MVEVðmÞ.

Let the boundary nodes and edges of a subset of nodes
A ( V be defined as follows:

Definition 1 (Boundary and interior). For the set A ( V
the set @VA :¼ fu 2 A : 9v 2 VnA s:t: uv 2 Eg is called its
boundary. The respective set of boundary edges is defined
as @EA ¼ fuv 2 E : u 2 A and v 2 VnAg. The set An@VA is
called the interior of A.

An exemplary graph illustrating the concept of interior
and boundary nodes can be seen in Fig. 1.

Definition 2 (Persistency). A labeling x0 2 XA on a subset
A ( V is partially optimal or persistent if x0 coincides with
an optimal solution to (2.1) on A.

In the remainder of this section, we state our novel per-
sistency criterion in Theorem 1. Taking additionally into
account convex relaxation yields a computationally tracta-
ble approach in Corollary 1.

As a starting point, consider the following sufficient
criterion for persistency of x0 2 XA. Introducing a
concatenation of labelings x0 2 XA and ~x 2 XVnA as ðx0; ~xÞ :¼
x0v; v 2 A;
~xv; v 2 VnA

!
, the criterion reads:

Proposition 1. The partial labeling x0 2 XA is persistent if
there holds

8~x 2 XVnA : x0 2 argmin
x2XA

EVððx; ~xÞÞ: (3:1)

Proof. Consider the equation

min
x2XV

EðxÞ ¼ min
~x2XVnA

min
x2XA

EVððx; ~xÞÞ: (3:2)

Let ~x 2 XVnA be such that it leads to a minimal value on
the right hand side of (3.2). Then ~x is part of an optimal
solution. By the assumption (3.1), x0 is an optimal solu-
tion to the inner minimization problem of (3.2), hence
ðx0; ~xÞ is optimal for (2.1). tu

This means that if we fix any labeling ~x on the comple-
ment of A and optimize with respect to x0 on A, the
concatenated labeling ðx0; ~xÞ has to be optimal. Informally

this means that the solution x0 is independent of what

Fig. 1. An exemplary graph containing inside nodes (yellow with
crosshatch pattern) and boundary nodes (green with diagonal pattern).
The blue dashed line encloses the set A. Boundary edges are those
crossed by the dashed line.
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happens on VnA. This criterion however is hard to check
directly, as it entails solving NP-hard minimization prob-
lems over an exponential number of labelings ~x 2 XVnA.

We relax the above criterion (3.1) so that we have to
check the solution of only one energy minimization problem
by modifying the unaries uv on boundary nodes so that they
bound the influence of all labelings on VnA uniformly.

Definition 3 (Boundary potentials and energies). For a set
A ( V and a test labeling y 2 XA, we define for each boundary

edge uv 2 @EA, u 2 @VA the “boundary” potential ûuv;yu :
Xu ! R as follows:

ûuv;yuðxuÞ :¼
max
xv2Xv

uuvðxu; xvÞ; yu ¼ xu

min
xv2Xv

uuvðxu; xvÞ; yu 6¼ xu:

8
<

: (3:3)

Define the energy ÊA;y : XA ! R with test labeling y as

ÊA;yðxÞ :¼ EAðxÞ þ
X

uv2@EA:u2@VA

ûuv;yuðxuÞ; (3:4)

where EAðxÞ ¼
P

u2A uuðxuÞ þ
P

uv2E:u;v2A uuvðxuvÞ is the
energy with potentials with support in A.

Given a test labeling y 2 XA, energy (3.4) assigns a higher
value than the original energy (2.1) for all labelings con-
forming to y and makes it more favourable for all labelings
to not conform to y. An illustration of a boundary potential
is depicted by Fig. 2.

As a consequence, if the test labeling y from Definition 1
minimizes the energy (3.4), the proof of the following
theorem asserts that changing an arbitrary labeling x 2 XV

as follows: x0ðvÞ ¼ yðvÞ; v 2 A
xðvÞ; v =2 A

!
will always result in a

labeling with not bigger energy (2.1), hence y in particular
fulfills the conditions (3.1) of Proposition 1 and thus is
persistent.

Theorem 1 (Partial optimality criterion). A labeling x0 2 XA

on a subset A , V is persistent if

x0 2 argminx2XA
ÊA;x0ðxÞ; (3:5)

where ÊA;x0 is the augmented energy functional (3.4).

To prove the theorem we need the following technical
lemma.

Lemma 1. Let A ( V be given together with y 2 XA. Let x0 and
x0 be two labelings on V such that x0jA ¼ y. Then it holds for

uv 2 @EA, u 2 @VA that

uuvðx0
u; x

0
vÞ þ ûuv;yðx0

uÞ & ûuv;yðx0
uÞ - uuvðx0

u; x
0
vÞ: (3:6)

Proof. The case x0u ¼ x0
u is trivial. Otherwise, by Definition 3,

inequality (3.6) is equivalent to

uuvðx0
u; x

0
vÞ þ min

xv2Xv
uuvðx0

u; xvÞ

& max
xv2Xv

uuvðx0
u; xvÞ & uuvðx0u; x

0
vÞ - 0:

(3:7)

Choose x0
v for xv in the minimization and maximization

in (3.7) to obtain the result. tu
Proof of Theorem 1. Let

~x 2 arg min
x2XV

xjA¼x0 jA

EVðxÞ; (3:8)

and let x0 2 XV be an arbitrary labeling. Then

EVð~xÞ ¼ EAðx0Þ þ EVnAð~xÞ þ
X

uv2@EA

uuvðx0
u; ~xvÞ

¼ EAðx0Þ þ
X

uv2@EA

ûuv;yðx0
uÞ

(3:9)

þ EVnAð~xÞ þ
X

uv2@EA

uuvðx0
u; ~xvÞ & ûuv;yðx0

uÞ
" #

¼ ÊA;x0ðx0Þ þ EVnAð~xÞ þ
X

uv2@EA

uuvðx0; ~xvÞ & ûuv;x0ðx0
uÞ

h i

- ÊA;x0ðx0Þ þ EVnAðx0Þ þ
X

uv2@EA

uuvðx0; x0
vÞ & ûuv;x0ðx0

uÞ
h i

(3:10)

¼ EAðx0Þ þ
X

uv2@EA

ûuv;x0ðx0
uÞ

þ EVnAðx0Þ þ
X

uv2@EA

uuvðx0
u; x

0
vÞ & ûuv;x0ðx0uÞ

h i

- EAðx0Þ þ EVnAðx0Þ þ
X

uv2@EA

uuvðx0
u; x

0
vÞ ¼ EVðx0Þ:

(3:11)

The equality (3.9) is due to definition of ~x in (3.7). The

first inequality 3.10 is due to x0 2 argminxÊA;x0ðxÞ, as

assumed, and of ~x for (3.8). The second inequality 3.11 is
due to Lemma 1. Hence x0 is part of a globally optimal
solution, as x0 was arbitrary. tu

Checking the criterion in Theorem 1 is NP-hard,
because (3.5) is a MAP-inference problem of the same class
as (2.1). By relaxing the minimization problem (3.5) one
obtains the polynomially verifiable persistency criterion in
Corollary 1.

Corollary 1 (Tractable partial optimality criterion). Labeling
x0 2 XA on A ( V fulfilling the condition

dðx0Þ 2 argminm2LA
ÊA;x0ðmÞ (3:12)

is also a solution to (3.5), hence persistent on A.

Proof. Expression (3.12) implies

dðx0Þ 2 argminm2LA;m2f0;1gÊA;x0ðmÞ (3:13)

Fig. 2. Illustration of a boundary potential ûy constructed in (3.3). The
second label comes from the test labeling y, therefore entries are
maximized for the second row and minimized otherwise.
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because dðx0Þ is integral by definition. As (2.1)
and (2.2) are equivalent and the corresponding label-
ing x0 satisfies the conditions of Theorem 1, x0 is par-
tially optimal on A. tu

4 PERSISTENCY ALGORITHM

Now we concentrate on finding a set A and labeling x 2 XA

such that the solution of minm2LA
ÊA;xðmÞ fulfills the condi-

tions of Corollary 1. Our approach is summarized in
Algorithm 1.

In the initialization step of Algorithm 1 we solve the
relaxed problem over V without boundary labeling and ini-
tialize the set A0 with nodes having an integer label. Then in
each iteration t we minimize over the local polytope the

energy ÊAt;xt defined in (3.4), corresponding to the set At and
boundary labeling coming from the solution of the last itera-
tion. We remove from At all variables which are not integral
or do not conform to the boundary labeling. In each iteration t
ofAlgorithm1we shrink the setAt by removing variables tak-
ing non-integral values or not conforming to the current
boundary condition. See Fig. 3 for an illustration of one itera-
tion of Algorithm 1.

Algorithm 1. Finding Persistent Variables.

Data: G ¼ ðV; EÞ, uu : Xu ! R, uuv : Xuv ! R
Result: A+ ( V, x+ 2 XA+

Initialize:
Choose m0 2 argminm2LVEVðmÞ
A0 ¼ fu 2 V : m0

u 2 f0; 1gjXujg
t ¼ 0
repeat
Set xt

u such that mt
uðxt

uÞ ¼ 1; u 2 At

Choose mtþ1 2 argminm2LAt
ÊAt;xtðmÞ

t ¼ tþ 1
Wt ¼ fu 2 @VAt&1 : mt

uðxt&1
u Þ 6¼ 1g

At ¼ fu 2 At&1 : mt
u 2 f0; 1gjXujgnWt

until At ¼ At&1

A+ ¼ At

Set x+ 2 XA+ such that mt
uðx+

uÞ ¼ 1

Convergence. Since V is finite and jAtj is monotonically
decreasing, the algorithm converges in at most jVj steps.
Solving each subproblem in Algorithm 1 can be done in
polynomial time. As the number of iterations of Algorithm 1
is at most jVj, Algorithm 1 itself is polynomial as well. In
practice only few iterations are needed.

After termination of Algorithm 1, we have

dðx+Þ 2 argminm2LA+ ÊA+;x+ðmÞ: (4:1)

Hence x+ and A+ fulfill the conditions of Corollary 1, which
proves persistency.

Choice of solver.All our results are independent of the spe-
cific algorithm one uses to solve the relaxed problems

minm2LA
ÊA;y, provided it returns an exact solution. How-

ever this can be an issue for large-scale datasets, where clas-
sical exact LP solvers like, e.g., the simplex method become
inapplicable. It is important that one can also employ
approximate solvers, as soon as they provide (i) a proposal
for potentially persistent nodes and (ii) sufficient conditions

for optimality of the found integral solutions such as, e.g.,
zero duality gap. These properties have the following pre-
cise formulation.

Definition 4 (Consistent labeling). A labeling c 2 )v2V Xvð
[f#gÞ is called a consistent labeling for the energy minimi-
zation problem (2.1), if from cv 2 Xv 8v 2 V follows that
c 2 argminx2XVEVðxÞ.

We will call an algorithm for solving the energy minimiza-
tion problem (2.1) consistency ascertaining, if it provides a
consistent labeling as its output.

Consistent labelings can be constructed for a wide range
of algorithms, e.g.:

! Dual decomposition based algorithms [14], [18], [19],
[24], [26] deliver strong tree agreement [37] and algo-
rithms considering the Lagrangian dual [5], [7], [28]
return strong arc consistency [39] for some nodes. If
one of these properties holds for a node v, we set cv
as the corresponding label. Otherwise we set cv ¼ #.

! Naturally, any algorithm solving minm2LVEðmÞ exa-
ctly is consistency ascertaining with

cv ¼
xv; mvðxvÞ ¼ 1

#; mv =2 f0; 1gjXvj:

!

Proposition 2. Let operations m 2 argminð:::Þ in Algorithm 1 be
exchanged with

8v 2 V; xv 2 Xv; mvðxvÞ :¼
1; cv ¼ xv

0; cv =2 fxv;#g;
1=jXvj; cv ¼ #

8
<

:

where c are consistent labelings returned by a consistency
ascertaining algorithm applied to the corresponding minimiza-
tion problems. Then the output labeling x+ is persistent.

Proof. At termination of Algorithm 1 we have obtained a
subset of nodes A+, a test labeling y+ 2 XA, a labeling x+

equal to y+ on A and a consistency mapping cu ¼ x+
u for

u 2 A+. Hence, by Definition 4, x+ 2 argminx2XA
ÊA+;y+

and x+ fulfills the conditions of Theorem 1. tu

Remark 1. Note that a bad or early stopped solver, i.e., one
which rarely (or even never) returns an optimality certifi-
cate or solves a weak relaxation, will also work with
Algorithm 1. However it will find smaller (or even
empty) partial optimal solutions.

Comparison to the Shrinking Technique (CombiLP) [25]. The
recently published approach [25], similar to Algorithm 1,
describes how to shrink the combinatorial search area with
the local polytope relaxation. However (i) Algorithm 1 solves
a series of auxiliary problems on the subsets At of integer
labels, whereas the method [25] considers nodes, which got
fractional labels in the relaxed solution; (ii) Algorithm 1 is
polynomial and provides only persistent labels, whereas the
method [25] has exponential complexity and either finds an
optimal solution or gives no information about persistence.

From the practical point of view, both algorithms have
different application scenarios: CombiLP [25] will only
work on sparse graphs, as otherwise the combinatorial part,
which one has to solve with exact methods, becomes too

1374 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 38, NO. 7, JULY 2016



big, as the boundary @VA for AzV grows very quickly then.
Also, even for sparse graphs, the combinatorial part may
not grow too big during the application of the algorithm, as
otherwise the combinatorial solver will again not be able to
cope with it. Our algorithm does not possess these two dis-
advantages. From the perspective of running time it does
not matter how big the set VnAt becomes during the itera-
tions of Algorithm 1. On the other hand, the subsets of vari-
ables to which the method [25] applies a combinatorial
solver to achieve global optimality are often smaller than
VnAt in Algorithm 1, because potentials in CombiLP [25]
remain unchanged in contrast to the perturbation (3.4).
Another advantage of the method [25] is that it needs to
solve the (typically) big LP relaxation of the original prob-
lem only once, whereas our method does this iteratively,
which makes it often slower then CombiLP.

One other possible application scenario which is possible
with our method but not with CombiLP [25] is the follow-
ing: Assume we want to solve an extremely big inference
problem, one that does not fit even into memory. To do this,
choose a subset AzV of nodes of the graphical model, solve
the inference problem on the induced subgraph GðAÞ with
some boundary conditions, and find a partially optimal
labeling on it. This is akin to the windowing technique
of [29]. By doing so for an overlapping set of subgraphs, one
may try to find a labeling for the overall problem on G.

The major differences between CombiLP [25] and our
method are summarised in Table 2.

5 LARGEST PERSISTENT LABELING

Let A0 , V and m0 2 LA0 be defined as in Algorithm 1. Sub-
sets A ( A0 which fulfill the conditions of Corollary 1 taken
with labelings m0jA can be partially ordered with respect to
inclusion ( of their domains. In this section we will show
that the following holds:

! There is a largest set among those, for which there
exists a unique persistent labeling fufilling the condi-
tions of Corollary 1.

! Algorithm 1 finds this largest set.
This will imply that Algorithm 1 cannot be improved

upon with regard to the criterion in Corollary 1.

Definition 5 (Strong persistency). A labeling x+ 2 XA is
called strongly persistent on A, if x+ is the unique labeling
on A fulfilling the conditions of Theorem 1.

Lemma 2. Let x+ 2 XA be strongly persistent. Then for any opti-
mal solution x of (2.1) we have x+ ¼ xjA.

Proof. This follows from Inequality 3.10 being strict in this
case. tu

Theorem 2 (Largest persistent labeling). Algorithm 1 finds a
superset A+ of the largest set A+

strong , A+ ( V of strongly per-
sistent variables identifiable by the criterion in Corollary 1.

To prove the theorem we need the following technical
lemma.

Lemma 3. Let A ( B ( V be two subsets of V and mA 2 LA

marginals on A and xA 2 XA a labeling fulfilling the condi-
tions of Corollary 1 uniquely (i.e., xA is strongly persistent).
Let yB 2 XB be a test labeling such that yBjA ¼ xA.

Then for all marginals m+ 2 argminm2LB
ÊB;yBðmÞ on B it

holds that m+
vðxA

v Þ ¼ 1 8v 2 A.

Proof. Similar to the proof of Theorem 1. Replace V by B. tu

Proof of Theorem 2 We will use the notation from Algo-
rithm 1. It will be enough to show that for every A , V
such that there exists a strongly persistent labeling x 2 XA

we have A , At in each iteration of Algorithm 1 and fur-
thermore xv ¼ xt

v for all v 2 VA. Hence the union of sets
A0

strong, for which a strongly persistent labeling exists

which fulfills the conditions of Corollary 1, is a subset of
At 8t. Also by Lemma 2 the associated strongly persistent
labelings agreewhere they overlap, hencewe are done.

For t ¼ 0 apply Lemma 3 with A :¼ A and B :¼
A0ð¼ VÞ. Condition x ¼ yBjA in Lemma 3 is assured by

Corollary 1. Hence, Lemma 3 ensures that for all m0 2
argminm2LVEðmÞ it holds thatm0

vðxvÞ ¼ 1 for all v 2 A.

Now assume the claim to hold for iteration t& 1. We
need to show that it also holds for t. For this invoke

Lemma 3 withA :¼ A, B :¼ At&1 and yB :¼ xt&1. The con-
ditions of Lemma 3 hold by assumption on t& 1. Lemma 3

now ensures that for all mt 2 argminm2LAt&1
ÊAt&1;xt&1ðmÞ

there holdsmtðxA
v Þ ¼ 1 8v 2 A. tu

From the proof of Theorem 2 we can directly conclude
the existence and uniqueness of a largest strongly persistent
labeling identifiable by Corollary 1 and a set supporting it.

Corollary 2. There exists a unique largest set A+
strong, for which

there exists a strongly persistent labeling identifiable by
Corollary 1.

Also exactly the largest strongly persistent labeling iden-
tifiable by Corollary 1 can be found under a mild unique-
ness assumption.

Corollary 3. If there is a unique solution of minm2LAt ÊAt;xtðmÞ
for all t ¼ 0; . . . obtained during the iterations of Algorithm 1,
then Algorithm 1 finds the largest subset of persistent variables
identifiable by the sufficient partial optimality criterion in
Corollary 1.

Remark 2. Above we showed that Algorithm 1 will find a
persistent labeling which contains the largest strongly
persistent one identifiably by Corollary 1. The two may
differ when the optimization problems solved in the
course of Algorithm 1 have multiple optima. The sim-
plest example of such a situation occurs if the relaxation

TABLE 2
Comparison between Our Method and CombiLP [25]

CombiLP
[25]

Our
method

Dense graphs & þ
Very large-scale & þ
Big fractional part of LP solution & þ
Relaxed MAP-inference is solved
only once

þ &

Provides a complete solution to
Labeling Problem (2.1)

þ &
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minm2LVEVðmÞ is tight, but has several integer solutions.
Any convex combination of these solutions will form a
non-integral solution, hence the strongly persistent
labeling is defined on a smaller set than any integral
solution of minm2LV EVðmÞ, which is non strongly persis-
tent. Note however that a labeling obtained by Algo-
rithm 1, also when it is not strongly persistent, comes
from one globally optimal labeling, i.e., it can be com-
pleted to a globally optimal labeling by solving for the
remaining variables.

6 REPARAMETRIZATION AND OPTIMALITY OF THE

METHOD

It is well-known [27] (see also [39]) that representation (2.1)
of the energy function is not unique. There are other poten-
tials, which keep the energy of all labelings unchanged.
Any such potentials u’ can be represented as

u’vðxvÞ :¼ uvðxvÞ &
X

u2nbðvÞ
’v;uðxvÞ; (6:1)

u’uvðxu; xvÞ :¼ uuvðxu; xvÞ þ ’v;uðxvÞ þ ’u;vðxuÞ (6:2)

with some numbers ’u;vðxuÞ, uv 2 E, xu 2 Xu, where
nbðvÞ :¼ fu 2 V : uv 2 Eg denotes the set of nodes adjacent
to v 2 V. The vector ’ with coordinates ’u;vðxuÞ is called
reparametrization.

6.1 Optimal Reparametrization
The boundary potentials (3.3) and hence the persistency
approach described above are dependent on reparametriza-
tion. The natural question is existence of an optimal reparamet-
rization, that is, the one providing the largest persistent set.

The only coordinates of the reparametrization vector ’,
which can potentially influence the solution of the test prob-
lem (3.5) are ’v;uðxvÞ, u 2 @VA, uv 2 @EA. Reparametrization
’v;uðxvÞ, v 2 A “inside” A does not influence the solution,

because it does not change the augmented energy ÊA;. of
any labeling. Similarly, the reparametrization ’u;vðxuÞ,
u; v =2 A “outside” A does not influence it, because the opti-
mization is performed over A only.

Considering the reparametrized potentials u’ and sub-
tracting maxxv2Xvuuvðyu; xvÞ in (3.3) the boundary potentials

û’uv;yuðxuÞ can be equivalently exchanged with

0; yu ¼ xu

min
xv2Xv

u’uvðxu; xvÞ & max
xv2Xv

u’uvðyu; xvÞ; yu 6¼ xu
:

(

(6:3)

It means that the labelings x not coincidingwith y on @VA will
be “encouraged” with (typically negative) value D’

uvðxuÞ :¼
minxv2Xvu

’
uvðxu; xvÞ &maxxv2Xvu

’
uvðyu; xvÞ. Intuitively clear

that the bigger D’
uvðxuÞ is, the better the proposal labeling yjA

comparing to xjA 6¼ yjA is and hence the greater the found
persistent set A+ returned by Algorithm 1 would be. We will
prove correctness of this intuition formally, but first let us
find the maximal possible value ofD’

uvðxuÞw.r.t. the reparamet-
rization ’, where we consider as non-zero only coordinates
’v;uðxvÞ, u 2 @VA, uv 2 @EA, xv 2 Xv.

Clearly

D’
uvðxuÞ - min

xv2Xv
ðu’uvðxu; xvÞ & u’uvðyu; xvÞÞ

¼ min
xv2Xv

ðuuvðxu; xvÞ þ ’v;uðxvÞ & uuvðyu; xvÞ & ’v;uðxvÞÞ

¼ min
xv2Xv

ðuuvðxu; xvÞ & uuvðyu; xvÞÞ;

(6:4)

hence, the right-hand-side of this inequality does not
depend on the reparametrization, whereas the left-hand-
side does. There is indeed such a reparametrization that
turns the inequality (6.4) into equality and in this way guar-
antees the largest possible values of D’

uvðxuÞ for all xu. This,
as we show below, optimal reparametrization is defined as

’u;vðxvÞ ¼ &uuvðyu; xvÞ; (6:5)

which can be seen when plugging (6.5) into (6.3).
Moreover, since as we mentioned above the reparametri-

zation “outside” an “inside” At does not influence the crite-
rion (3.3), we can construct a single, equal for all iterations
of Algortihm 1 optimal reparametrization c according to
the rule (6.5) as

cu;vðxvÞ ¼ &uuvðyu; xvÞ; u 2 V; uv 2 E; (6:6)

where y is arbitrarily extended from A0 to V. Now we are
ready to formulate our main result related to the
reparametrization.

Let us denote Ê’
A;y the energy with boundary labeling

defined as in Definition 3 w.r.t. the potentials u’. Then for
the reparametrization c defined as in (6.6) there holds

Lemma 4. From

dðyÞ 2 arg min
m2LA

ÊA;yðmÞ (6:7)

follows dðyÞ 2 argminm2LA
Êc

A;yðmÞ, which means: if y satisfies
the persistency criterion of Corollary 1 w.r.t. potentials u then
it satisfies it w.r.t. the reparametrized potentials uc.

Proof. From (6.4) and (6.7) it follows that for all uv 2 EA,

xu 2 Xu there holds ûcuv;yðxuÞ & ûcuv;yðyuÞ *^ uuv;yðxuÞ &
ûuv;yðyuÞ and hence

Êc
A;yðmÞ & Êc

A;yðyÞ *
ð6:4Þ

ÊA;yðmÞ & ÊA;yðyÞ * 0 (6:8)

for all m 2 LA. Thus Ê
c
A;yðyÞ - Êc

A;yðmÞ, which proves the
statement of the lemma. tu

Remark 3. Lemma 4 holds for any polytope containing all
integer solutions, i.e., LA / MA and hence it holds also
when LA ¼ MA. In this case it corresponds to the non-
relaxed persistency criterion provided by Theorem 1.

Let now A’;+
y be the largest set containing all strongly per-

sistent variables satisfying Corollary 1 w.r.t. the reparame-
trized potentials u’ and test labeling y 2 XV . Let also A+

y

correspond to the trivial reparametrization ’ 0 0.
Applying Lemma 4 to the set A+

y leads to the following

Theorem 3. For any test labeling y 2 XV there holds A+
y , Ac;+

y .

Proof. Same proof as in Lemma 4 applied to A+
y. tu
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Remark 4. For Potts models, where uuvðxu; xvÞ ¼
0; xu ¼ xv
a; xu 6¼ xv

!
; the inequality (6.4) holds as equality also

for trivial reparametrization ’v;uðxvÞ ¼ 0 8u; v 2 V, uv 2 E,
xv 2 Xv. For such models Algorithm 1 with trivial repara-
metrization delivers the same persistent set as with the
optimal one (6.6).

6.2 Optimality of the Method
Theorem 2 proves optimality of Algorithm 1 w.r.t. the formu-
lated persistency criterion provided by Theorem 1. However
it does not prove optimality of the method with respect to
other possible criteria and hence does not guarantee its supe-
riority over other partial optimality techniques. There is how-
ever a recent study [29], which provides such an optimal
relaxed persistency criterion covering all existing methods. In
what follows we will introduce key notions from [29] and
show that our persistency criterion coincides with the optimal
one provided in [29] for a certain class of persistencymethods,
those providing only node-persistency, i.e., either eliminating
all labels except one in a given node or not eliminating any.

In this section we will employ the commonly used repre-
sentation of energy EVðmÞ in a form of an inner product
u;mh i, where vectors of potentials u and marginals m belong
to the vector space RI with the suitably selected dimension
I ¼

P
v2V jXvjþ

P
uv2E jXuvj.

Definition 6. A mapping p : XV ! XV is called (strictly)
improving for the potentials u if it is idempotent (pðpðxÞÞ ¼
pðxÞ) and for all x 2 XV such that pðxÞ 6¼ x there holds
u; dðpðxÞÞh i - u; dðxÞh i (resp. u; dðpðxÞÞh i < u; dðxÞh i).

Following [29] we consider only node-wise maps of the
form pðxÞv ¼ pvðxvÞ, where pv : Xv ! Xv are idempotent,
i.e., pvðpvðxvÞÞ ¼ pvðxvÞ for all xv 2 Xv. This class is already
general enough to include nearly all existing techniques.

Improving mappings defines persistency due to the fol-
lowing proposition:

Proposition 3 (Stat.1 [29]). Let p be an improving mapping.
Then there exists an optimal solution x of (2.1) such that for
all v 2 V from pvðiÞ 6¼ i follows xv 6¼ i. In case p is strictly
improving this holds for any optimal solution.

For an idempotent mapping p a linear mapping
P : RI ! RI satisfying dðpðxÞÞ ¼ PdðxÞ for all x 2 XV is
called its linear extension. A particular linear extension
denoted as ½p2 is defined as follows. For each pv we define

the matrix Pv 2 RXv'Xv by Pv;ii0 ¼
1; pvði0Þ ¼ i
0; pvði0Þ 6¼ i

!
. The lin-

ear extension P ¼ ½p2 is given by

ðPmÞv ¼
X

i02Xv
Pv;ii0mvði0Þ ¼ Pvmv; ðPmÞuv ¼ PumuvP

>
v :

(6:9)
Denote by I the identity matrix. From Definition 6 follows
that p is improving iff the value of

min
x2XV

u; ðI & ½p2ÞdðxÞh i 0 minx2XV ðI & ½p2Þ>u; dðxÞ
D E

0 minm2MV ðI & ½p2Þ>u;m
D E (6:10)

is zero. If additionally pðxÞ ¼ x for all minimizers of (6.10)
then the mapping p is strictly improving.

Problem (6.10) is of the same form as energy minimiza-
tion (2.1) and is therefore as hard as Problem (6.10). Its relax-
ation is obtained by letting m to vary in the local polytope
LV ( RI , an outer approximation toMV .

Definition 7. Mapping p : XV ! XV is LV-improving for
potentials u 2 RI if

min
m2LV

ðI & ½p2Þ>u;m
D E

¼ 0: (6:11)

If additionally ½p2m ¼ m for all minimizers m of (6.11) then p is
strictly LV-improving.

Compared to (6.10), only the polytope was changed to
LV 3 MV . This implies the following simple fact:

Proposition 4. If mapping p is (strictly) LV-improving then it is
(strictly) improving.

The method presented in this work can be interpreted
as considering all-to-one node-wise mappings p having
the form

pvðiÞ ¼
yv; if v 2 A
i; if v =2 A

!
(6:12)

for a fixed test labeling y. All labels in the nodes v 2 A ( V
are mapped to yv. Among all all-to-one (strictly) LV-improv-
ing mappings the one with the largest set A will be called
maximal.

Corollary 1 determines LV-improving mappings, as
stated by

Lemma 5. The relaxed persistency criterion provided by Corol-
lary 1 with the reparametrization given by (6.6) is equivalent
to Definition 7 with the improving mapping p defined as
in (6.12) for a given test labeling y.

Proof. For future references we write down potentials uc

with c defined by (6.6) explicitly:

ucu ðxuÞ ¼ uuðxuÞ þ
X

v2nbðuÞ
uuvðxu; yvÞ; ucuvðxu; xvÞ

¼ uuvðxu; xvÞ & uuvðxu; yvÞ & uuvðyu; xvÞ: (6:13)

In what follows we will show that the criteria (3.12)
and (6.11) coincide. Both of them represent the local
polytope relaxation of specially constructed energy
minimization problems. To prove that the relaxations
coinside it is sufficient to prove that the non-relaxed
energies are equal.

First we write down the non-relaxed test problem (3.5)
with potentials uc as

arg min
x2XV

X

v2V
bvðxvÞ þ

X

uv2E
buvðxu; xvÞ þ

X

uv2@EA:u2@VA

ûcuv;yuðxuÞ

(6:14)

with potentials b equal to uc on A and vanishing outside
it, i.e.,
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buðxuÞ ¼
uuðxuÞ þ

P
v2nbðuÞ uuvðxu; yvÞ; u 2 A

0; u 2 VnA

!
(6:15)

buvðxu; xvÞ ¼
uuvðxu; xvÞ & uuvðxu; yvÞ & uuvðyu; xvÞ; u; v 2 A

0; otherwise:

!

(6:16)

Border potentials ûc for uv 2 E; u 2 VA; v 2 VnA and
xu 6¼ yu read:

ûcuv;yuðxuÞ ¼ min
xv2Xv

ucuvðxu; xvÞ ¼

¼ min
xv2Xv

ðuuvðxu; xvÞ & uuvðxu; yvÞ & uuvðyu; xvÞÞ

¼ &uuvðxu; yvÞ þ min
xv2Xv

ðuuvðxu; xvÞ & uuvðyu; xvÞÞ ;

(6:17)

for xu ¼ yu:

ûcuv;yuðyuÞ ¼ max
xv2Xv

ucuvðyu; xvÞ ¼

¼ max
xv2Xv

ðuuvðyu; xvÞ & uuvðyu; yvÞ & uuvðyu; xvÞÞ

¼ &uuvðyu; yvÞ:

(6:18)

Note that (6.17) turns into (6.18) when xu ¼ yu, hence it is
sufficient to use only expression (6.17).

The non-relaxed version of condition (6.11) defining
LV-improving all-to-one mapping, with the labeling pro-
posal y can be formulated as checking whether

y 2 arg min
x2XV

X

v2V
gvðxvÞ þ

X

uv2E
guvðxu; xvÞ þ

X

u2@EA

ĝuv;yuðxuÞ

(6:19)
with potentials g defined as:

guðxuÞ ¼
uuðxuÞ & uuðyuÞ; u 2 A

0; u 2 VnA

!
(6:20)

guvðxu; xvÞ ¼
uuvðxu; xvÞ & uuvðyu; yvÞ; u; v 2 A

0; otherwise;

!
(6:21)

and the border term

ĝuv;yuðxuÞ ¼ min
xv2Xv

ðuuvðxu; xvÞ & uuvðyu; xvÞÞ: (6:22)

Comparing (6.20), (6.21) and (6.22) to (6.15), (6.16)
and (6.17) respectively it can be seen that they can be
transformed to each other by several operations, which
equally change energies of all labelings and thus do not
influence the criterions provided by Theorem 1 and [29,
eq.(14)]. These operations are:

1) Subtract uuðyuÞ from buðxuÞ for all u 2 VA,
xu 2 Xu.

2) Subtract uuvðyu; yvÞ from buvðxu; xvÞ for all uv 2 EA,
ðxu; xvÞ 2 Xu 'Xv.

3) Reparametrize b with the reparametrization vec-
tor f defined as

fu;vðxuÞ ¼
&uuvðxu; yvÞ; u 2 A

0; u 2 VnA:

!
(6:23)

tu

The following theorem states that our method provably
delivers the best results among the methods providing
node-persistency:

Theorem 4. Under conditions of Corollary 3, Algorithm 1 with
the reparametrizations given by (6.6) finds the maximal
strict LV-improving all-to-one mapping for a given proposal
labeling x0.

Proof. Under condition of Corollary 3 (i.e., when on each
iteration there is a unique solution mt) Lemma 5 guaran-
tees equivalence of our criterion (Corollary 1 with repara-
metrization c) to Definition 7 for the strict LV-improving
all-to-one mapping. Theorem 2 states that Algorithm 1
delivers the largest set A+ satisfying this criterion, which
in turn proves the theorem. tu

7 EXTENSIONS

Higher order models. Assume now we are not in the pairwise
case anymore but have an energy minimization problem
over a hypergraph G ¼ ðV; EÞ with E ( PðVÞ a set of subsets
of V:

min
x2XV

EVðxÞ :¼
X

e2E
ueðxeÞ: (7:1)

All definitions, our persistency criterion and Algorithm 1
admit a straightforward generalization. Analoguously
to Definition 1 define for a subset of nodes A ( V the

Fig. 3. Illustration of one iteration of Algorithm 4.

1378 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 38, NO. 7, JULY 2016



boundary nodes as

@VA :¼ fu 2 A : 9v 2 VnA; 9e 2 Es:t:u; v 2 eg (7:2)
and the boundary edges as

@EA :¼ fe 2 E : 9u 2 A; 9v 2 VnAs:t:u; v 2 eg: (7:3)

The equivalent of boundary potential in Definition 3 for
e 2 @EA is

ûe;yðxÞ :¼
max

~x2Xe:~xjA\e¼xjA\e
ueð~xÞ; xjA\e ¼ yjA\e

min
~x2Xe:~xjA\e¼xjA\e

ueð~xÞ; xjA\e 6¼ yjA\e
:

8
<

: (7:4)

Now Theorem 1, Corollary 1 and Algorithm 1 can be
directly translated to the higher order case.

Tighter relaxations. Essentially, Algorithm 1 can be
applied also to tighter relaxations than LA, e.g., when one
includes cycle inequalities [30]. One merely has to replace
the local polytope LA for A ( V by the tighter feasible con-
vex set:

Proposition 5. Let the polytopes ~LA / MA satisfy ~LA , LA

8A , V. Use ~LAt in place of LAt in Algorithm 1 and let ~A+ be
the corresponding persistent set returned by the modified algo-
rithm. Let A+

strong , A+ be the largest subset of strongly persis-

tent variables identifiable by Corollary 1 subject to the

relaxations ~LA and LA. Then A+
strong , ~A+

strong.

Remark 5. For approximate dual solvers for tighter relaxa-
tions like [31], [32] there are analogues of strict arc-con-
sistency, hence these are also consistency-ascertaining
solvers as in Definition 4 and we can also use these algo-
rithms in Algorithm 1 with the obvious modifications.

Optimal reparametrization for tighter relaxations and
higher order models is beyond the scope of this paper.

8 EXPERIMENTS

We tested our approach with initial and optimal reparamet-
rizations (described in Section 6) on several datasets from

different computer vision and machine learning bench-
marks, 47 problem instances overall, see Table 3. We
describe each dataset and the corresponding experiments in
detail below.

Competing methods. We compared our method to
MQPBO [17], [30], Kovtun’s method [20], Generalized Roof
Duality by Kahl and Strandmark [12], Fix et al’s [4] and
Ishikawa’s Higer Order Clique Reduction (HOCR) [10]
algorithms. For the first two methods we used our own
implementation, and for the other the freely available code
of Strandmark [33]. We were unable to compare to the
method of Windheuser et al. [40], because the authors do
not give a description for implementing their method in the
higher order case and only provide experimental evaluation
for problems with pairwise potentials, where their method
coincides with MQPBO [17].

Implementation details. We employed TRWS as an
approximate solver for Algorithm 1 and strong tree agree-
ment as a consistency mapping (see Proposition 2) for most
of the pairwise problems. We stop TRWS once it has either
arrived at (i) tree-agreement; (ii) a small duality gap of
10&5; (iii) when number of nodes with tree agreement did
not increase over the last 100 iterations or (iv) overall 1;500
iterations. For the higher-order models protein-inter-

action, cell-tracking and geo-surf we employed
CPLEX [9] as an exact linear programming solver. We have
run Algorithm 1 with boundary potentials computed as
in (3.3) for all problems and with boundary potentials com-
puted with the optimal reparametrization as in (6.3) for the
pairwise problems.

Datasets and Evaluation. We give a brief characterization
of all datasets and report the obtained total percentage of
persistent variables of our and competing methods in
Table 3. The percentage of partial optimality is computed as
follows: Suppose we have found a persistent labeling on set

A ( V. Then the percentage is 1&
P

u62A log jXujP
u2V log jXuj

. Note that by

this formulation we take into account the size of the label

TABLE 3
Percentage of Persistent Variables Obtained by Methods [17],[20],[12],[4],[10] and Our Methods with Boundary Potentials

Computed as in (3.4) (Ours Original) and as in (6.3) (Ours Optimal)
E
xp

er
im

en
t

#I #L #V O M
Q
P
B
O
\
[1
7]

K
o
v
tu
n
\
[2
0]

G
R
D
\
[1
2]

F
ix
\
[4
]

H
O
C
R
\
[1
0]

O
u
rs

o
ri
g
in
al
\
[3
6]

O
u
rs

o
p
ti
m
al

teddy 1 60 168,749 2 0 y y y y 0.3820 0.3820
venus 1 20 166,221 2 0 y y y y 0 0
family 1 5 425,631 2 0.0432 y y y y 0.0044 0.0611
pano 1 7 514,079 2 0.1247 y y y y 0.2755 0.3893
Potts 12 -12 -424,720 2 0.1839 0.7475 y y y 0.9220 0.9220
side-chain 21 -483 -1,971 2 0.0247 y y y y 0.1747 0.2558
protein -interaction 8 2 -14,440 3 y y 0.2603 0.2545 0.2545 0.0008 y
cell-tracking 1 2 41,134 9 y y y 0.1771 y 0.2966 y
geo-surf y y y y y y y y y 0.0743 y

Notation y means inapplicability of the method. The columns #I,#L,#V,O denote the number of instances, labels, variables and the highest order of potentials
respectively.
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space for each node. For an uniform label space the above

formula equals jAj
jVj. The latter measure was used in [35].

Remark 6. Note that in comparison to our conference
paper [35], persistency results for some datasets with
higher order potentials, which were solved with CPLEX
are lower now. This is due to two reasons: First, we
weight the size of the label space instead of simply count-
ing the number of variables which are partially optimal.
In models with nonuniform label space our method
tends to find partial optimality for nodes with small label
space, hence the new formula gives a smaller percentage.
Second, our original research implementation contained
subtle bugs which resulted in a higher number of
wrongly assigned partially optimal nodes for these mod-
els. We apologize for reporting incorrect results in the
experimental section of [35].

The problem instances teddy, venus, family, pano,
Potts and geo-surf were made available by [13], while
the datasets side-chain and protein-interaction

were made available by [1].
The problem instances teddy and venus come from

the disparity estimation for stereo vision [36]. None of the
competing approaches was able to find even a single persis-
tent variable for these datasets, presumably because of the
large number of labels, whereas we labeled over one third
of them as persistent in teddy, though none in venus.

Instances named pano and family come from the photo-
montage dataset [36]. These problems havemore complicated
pairwise potentials than the disparity estimation problems,
but less labels. For both datasets we found significantly more
persistent variables thanMQPBO, in particular, we were able
to labelmore than a third of the variables inpano.

We also chose 12 relatively big energy minimization
problems with grid structure and Potts interaction terms.
The underlying application is a color segmentation problem
previously considered in [34]. Our general approach repro-
duces results of [34] for the specific Potts model.

We considered also side-chain prediction problems
in protein folding [41]. The datasets consist of pairwise
graphical models with 32&1971 variables and 2&483
labels. The problems with fewer variables are densely con-
nected and have very big label spaces, while the larger
ones are less densely connected and have label space up
to 81 variables.

The protein interaction models [11] aim to find the
subset of proteins, which interact with each other. Roof-
duality based methods, i.e., Fix et al., GRD, HOCR [4], [10],
[12] gave around a quarter of persistent labels. This is the
only dataset where our methods gives worse results. Note
that for higher-order models we do not provide an optimal
reparametrization and hence our method is not provably
better then the competitors. We consider this as a direction
for future work.

The cell tracking problem consists of a binary higher
order graphical model [16]. Given a sequence of microscopy
images of a growing organism, the aim is to find the lineage
tree of all cells. For implementation reasons we were not
able to solve cell-tracking dataset with Ishikawa’s [10]
method. However Fix [4] reports that his method outper-
forms Ishikawa’s method [10]. Other methods are not appli-
cable even theoretically.

Last, we took the higher order multi-label geometric
surface labeling problems (denoted as geo-surf in
Table 3) from [8]. The only instance having an integrality
gap has 968 variables with seven labels each and has ter-
nary terms. Note that MQPBO cannot handle ternary
terms, Fix et al.’s [4] Ishikawa’s [10] methods and the

Fig. 4. Iterations needed by TRWS [18] in Algorithm 4 for three instances from the Potts dataset.

Fig. 5. Comparison between Kovtun’s Method [20] and Our Method. The red area denotes pixels which could not be labelled persistently. Contrary to
ours the Kovtun’s method allows to eliminate separate labels, which is denoted by different intensity of the red color: the more intensive is red, the
less labels were eliminated.
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generalized roof duality method by Strandmark and
Kahl [12] cannot handle more than two labels. Hence we
report our results without comparison.

Runtime. The runtime of our algorithmmainly depends on
the speed of the underlying solver for the local polytope relax-
ation. Currently there seems to be no general rule regarding
the runtime of our algorithm, neither in the number of Algo-
rithm 1-iterations nor in the number of TRWS [18]-iterations.
We show three iteration counts for instances of the Potts

dataset in Fig. 4.
Exemplary pictures comparing the pixels optimally

labelled between Kovtuns’s method [20] and our method
for some Potts-models can be seen in Fig. 5.

9 CONCLUSION AND OUTLOOK

We have presented a novel method for finding persistent
variables for undirected graphical models. Empirically
it outperforms all tested approaches with respect to the
number of persistent variables found on every single data-
set. Our method is general: it can be applied to graphical
models of arbitrary order and type of potentials. Moreover,
there is no fixed choice of convex relaxation for the energy
minimization problem and also approximate solvers for
these relaxations can be employed in our approach.

In the future we plan to significantly speed-up the imple-
mentation of our method and consider finer persistency
criteria, as done in [29], where the subset-to-one class of per-
sistency conditions was introduced, but no efficient algo-
rithm for finding persistency in this class was proposed.
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