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Abstract. We present a variational approach to motion estimation of instationary
fluid flows. Our approach extends prior work along two directions: (i) The full
incompressible Navier-Stokes equation is employed in order to obtain a physi-
cally consistent regularization which does not suppress turbulent flow variations.
(ii) Regularization along the time-axis is employed as well, but formulated in a
receding horizon manner contrary to previous approaches to spatio-temporal reg-
ularization. This allows for a recursive on-line (non-batch) implementation of our
estimation framework.

Ground-truth evaluations for simulated turbulent flows demonstrate that due
to imposing both physical consistency and temporal coherency, the accuracy of
flow estimation compares favourably even with optical flow approaches based on
higher-order div-curl regularization.

1 Introduction

Image sequence analysis of fluid flows constitutes an active research field with a high
industrial impact. Corresponding real-world measurements in concrete scenarios com-
plement numerical results from direct simulations of the Navier-Stokes equation, par-
ticularly in the case of turbulent flows, and for the understanding of the complex spatio-
temporal evolution of instationary flow phenomena. More and more advanced imaging
devices (lasers, high-speed cameras, control logic, etc.) are currently developed that al-
low to record fully time-resolved image sequences of fluid flows at high resolutions. As
a consequence, there is a need for advanced algorithms for the analysis of such data,
to provide the basis for a subsequent pattern analysis, and with abundant applications
across various areas.

The image measurement process proceeds as follows: First, the flow medium is
seeded with small particles that are designed such that they accurately follow the fluid’s
motion. Next, entire velocity fields are measured by taking two or more images of the
flow within short time intervals, and by estimating and interpolating the displacements
of individual particles from frame to frame. This experimental method is known as
Particle Image Velocimetry (PIV) [12]. Figure 1 shows a typical experimental setup in
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a wind tunnel. To avoid blurred images when the flow is fast, laser pulses are used.
As these are only 6-10 ns long, they are capable of freezing any motion. Note that at
present the described experimental setup is only capable of yielding 2D velocity fields.
Therefore, we have to confine ourselves to 2D image analysis, for the time being.

Fig. 1. Left: Experimental setting to study the flow around a cylinder. This setting results in an
unsteady three-dimensional flow which can only be investigated using advanced imaging mea-
suring techniques. Middle: Schematic illustration of typical flow phenomena [8]. Right: Typical
PIV image.

A basic requirement for any motion estimation scheme is physical consistency. Oth-
erwise, the information provided by a subsequent motion analysis is limited. Current
approaches to PIV [12] do not address this issue as part of the motion estimation
scheme. As a consequence, this calls for a novel combination of motion estimation and
the Navier-Stokes equation which governs the real unknown flow in all applications.
Our contribution in this paper is a variational approach to the estimation of motion
fields constrained by the Navier-Stokes equation.

1.1 Related Work

Recently, variational optical flow techniques from the field of computer vision have
been adopted and extended for the purpose of PIV [14,9,13,4,15]. Besides combining
a carefully designed data term and coarse-to-fine estimation schemes with a standard
first-order regularizer [14], a physically more plausible regularization has been sug-
gested recently [15]. Because this approach is based on the Stokes-equation, however, it
is based on related assumptions which are valid only for low Reynold numbers, i.e. non-
turbulent flow. Another competitive research direction concerns the design and use of
higher-order regularizers [9,4,19]. By separately penalizing the gradient of the diver-
gence and the curl of flows, the major disadvantage of first-order regularization that
penalize flow variations too much, are alleviated. Issues like well-posedness, accurated
discretization and numerical stability, on the other hand, become more involved.

1.2 Contribution

We present a framework for fluid motion estimation that utilizes as prior knowledge
that fact that flows have to satisfy the incompressible vorticity transport equation. This
equation relates to the full (incompressible) Navier-Stokes equations and therefore is
also valid in turbulent scenarios. Furthermore, rather than considering image pairs, our
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estimation scheme takes into account the whole image sequence. As a result, it takes
into account previous estimation results so as to enforce spatio-temporal coherency and
regularization, however, without penalizing flow structures that are characteristic for
instationary turbulent flows. Finally, analogously to the corresponding concept from
control theory, our overall algorithm works in a receding horizon manner, that is flow
velocities can be computed as soon as their respective frames have been recorded. In
principle, this sets the stage for the real-time extraction of instationary flow phenomena
from particle image sequences.

1.3 Organization

We present the vorticity transport equation, which embodies our prior knowledge we
use for flow estimation, in section 2.1. Section 2.2 motivates and describes our varia-
tional approach and details the resulting constrained optimization problem. Correspond-
ing numerical issues are dealt with in section 3. Numerical experiments for evaluating
the approach are presented in section 4. We conclude in section 5.

2 Approach

2.1 The Vorticity Transport Equation

Let u = (u1, u2)�, u = u(x, t), x =
(
x1(t), x2(t)

)�
, denote a two-dimensional ve-

locity field.
The incompressible vorticity transport equation is a special form of the Navier-

Stokes equation for homogeneous flow and can be expressed as follows

Dω

Dt
=

∂

∂t
ω + u · ∇ω = νΔω , ω(x, 0) = ω0 . (1)

It describes the evolution of the fluid’s vorticity over time. Note that in the absence of
external forces acting on the fluid, this equation describes the flow completely.

2.2 Variational Model

Let I(x1, x2, t) denote the gray value of an image sequence recorded at location x =
(x1, x2)� within some rectangular image domain Ω and time t ∈ [0, T ]. We adopt the
basic assumption underlying most approaches to motion estimation that I is conserved.
Thus, the total (material) derivative of I vanishes:

DI

Dt
= u · ∇I + It = 0 . (2)

The spatial and temporal derivatives of I of the optical flow constraint (2) are esti-
mated locally by using FIR filters. As the focus of this paper is on physically consistent
regularization and not on design of the data term, we refer the interested reader to [14]
for a detailed description.

As is well known, eqn. (2) alone cannot be used to reconstruct the velocity field u,
because any vector field with components u · ∇I = −It at each location x satisfies (2).
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The standard approach is to minimize the squared residual of (2) over the entire image
domain Ω and to add a variational term that either enforces smoothness of the flow
(first-order regularization) [17]1

∫

Ω

{
(u · ∇I + It)2 + α|∇ · u|2 + β|∇ × u|2

}
dx , (3)

or smoothness of the divergence and vorticity (second-order regularization) [18]
∫

Ω

{
(u · ∇I + It)2 + α

∣
∣∇(∇ · u)

∣
∣2 + β

∣
∣∇(∇× u)

∣
∣2

}
dx . (4)

We emphasize that both approaches (3) and (4) take only into account spatial context
and determine a vector field for a fixed point in time t ∈ [0, T ].

Therefore, following the ideas of [16], our present work is an attempt to elaborate a
dynamic representation of fluid flow. To this end, we solve eqn. (1) for the time interval
[0, T ] between a subsequent pair of image frames, where ω0 denotes our current vortic-
ity estimate. As a result, we obtain a transported vorticity field ωT := ω(x, T ), which
can be regarded as a predicted vorticity based on the assumption that our fluid is gov-
erned by the Navier-Stokes equation. The regularization term that we employ penalizes
derivations from the predicted vorticity values and forces incompressibility:

1
2

∫

Ω

{(
u · ∇I + It

)2 + λ
(∇× u− ωT

)2
}
dx ,

s.t. ∇ · u = 0 .
(5)

We apply Neumann boundary conditions (i.e. ∂u/∂n = 0 on ∂Ω). Note that, while
the regularization term of (5) penalizes deviations between the current vorticity esti-
mate ω and the propagated vorticity estimate of the preceding frame ωT , it does not
enforce smoothness of the current vorticity. In practice, an implementation of (5) there-
fore leads to increasingly noisy vorticity estimates. Increasing the parameter ν reduces
the problem only slightly: ωT becomes smoother, but smoothness of ω is still not en-
forced directly.

To overcome this problem, we add a term that mimics the small viscous term (Lapla-
cian) on the right-hand side of eqn. (1). Expressing the new second-order regularization
term equivalently through a first-order regularizer and an additional linear constraint,
we finally obtain:

E =
1
2

∫

Ω

{
(u · ∇I + It)2 + λ(ω − ωT )2 + κ|∇ω|2

}
dx ,

s.t. ∇ · u = 0 ,
∇× u = ω .

(6)

As we usually do not have a vorticity estimate at the very first frame of an image se-
quence, the overall estimation process is initialized with a vorticity estimate ω0 = 0.

1 It can be shown easily that the Horn&Schunck approach [7] is just the special case of this
regularization where α = β.
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The novel vorticity transport regularizer in (6), in connection with (1), can be per-
ceived as a special second-order div-curl regularizer: Estimated flows from a given
image sequence have vanishing divergence and a curl field (vorticity) that should be
smooth and as close as possible to the transported vorticity.

3 Discretization and Optimization

3.1 Discretisation of the Vorticity Transport Equation

We solve the time-dependent vorticity transport equation (1) with a second-order con-
servative finite difference algorithm. The method is upwind and two-dimensional in that
the numerical fluxes are obtained by solving the characteristic form at cell edges (i.e.
edges between adjacent pixels), and all fluxes are evaluated and differenced at the same
time. The finite difference method that we employ is the Fromm-Van-Leer scheme [11].

The basic idea is to satisfy Godunov’s theorem in a “natural” way. Roughly speak-
ing, Godunov’s theorem says that all methods of accuracy greater than order one will
produce spurious oscillations in the vicinity of large gradients, while being second-
order accurate in regions where the solution is smooth. Accordingly, Fromm-Van-Leer’s
scheme detects discontinuities and adapts its behavior such that the high-order accuracy
of Fromm’s scheme is preserved for smooth parts of the solution, while spurious oscil-
lations are avoided through first-order accuracy at detected discontinuities.

3.2 Variational Approach

For every image pair (two consecutive frames of the image sequence), we have to solve
optimization problem (6) which comprises a convex functional and two linear constraint
equations. We transform this constrained optimization problem into a saddle point prob-
lem. Accordingly, the unique vector field u(x) minimizing (6), along with the vorticity
ω and multipliers p, q, are determined by the variational system

a
(
(u, ω)�, (ũ, ω̃)�

)
+ b

(
(p, q)�, (ũ, ω̃)�

)
=

(
(f, g)�, (ũ, ω̃)�

)
, ∀ũ, ω̃

b
(
(p̃, q̃)�, (u, ω)�

)
= 0 , ∀p̃, q̃ . (7)

The bilinear and linear forms read:

a
(
(u, ω)�, (ũ, ω̃)�

)
:=

∫

Ω

{
u · ∇I∇I · ũ+ λωω̃ + κ∇ω · ∇ω̃

}
dx , (8)

b
(
(p, q)�, (ũ, ω̃)�

)
:= −

∫

Ω

{
p∇ · ũ+ q(∇× ũ− ω̃)

}
dx . (9)

The right-hand side reads:

(
(f, g)�, (ũ, ω̃)�

)
:=

∫

Ω

{
− It∇I · ũ+ λ ωT ω̃

}
dx . (10)

We choose a regular tessellation of the image domain Ω and discretize (7) using finite
elements. It is well-known from computational fluid dynamics (cf. Stokes equation) that
standard first-order finite element discretizations of saddle point problems may result
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Fig. 2. Left: Sketch of 2D Taylor-Hood elements: biquadratic velocity elements (squares) and
bilinear pressure elements (circles). Middle: Basis function φ of a bilinear finite element. Right:
Basis function ψ of a biquadratic finite element.

in instabilities or even in so-called locking effects, where the zero velocity field is the
only one satisfying the incompressibility condition.

Therefore, when solving saddle point problems, mixed finite elements are tradition-
ally used [2]. An admissible choice is the so-called Taylor-Hood element based on a
square reference element with nine nodes (fig. 2). Each component of the velocity field
is defined in terms of piecewise quadratic basis functions ψi located at each node (the
solid squares in fig. 2), whereas the Lagrange multipliers p and q and the vorticity ω
are represented by linear basis functions φi attached to each corner node (indicated
by circles in fig. 2). It can be shown that Taylor-Hood elements fulfill the so-called
Babuska-Brezzi condition [2], making the discretized problem well-posed.

Indexing the velocity nodes (squares in fig. 2) by 1, 2, ..., N , we obtain

u1(x) =
N∑

i=1

uiψi(x) (11)

and similarly for u2(x) (where u = (u1, u2)�) and the components of ũ.
By analogy, we obtain for the M Lagrange multiplier nodes (circles in fig. 2)

p(x) =
M∑

i=1

piφi(x) (12)

and similarly expressions for q, ω, p̃, q̃, ω̃. Hence, each function u, ũ is represented by
2N real variables, and each function p, q, ω, p̃, q̃, ω̃ is represented by M real variables.
For the sake of simplicity, we will use the same symbols to denote the corresponding
vectors. The discretized system (7) then reads

A(u, ω)� · (ũ, ω̃)� +B�(p, q)� · (ũ, ω̃)� = (f, g)� · (ũ, ω̃)� , ∀ũ, ω̃
B(u, ω)� · (p̃, q̃)� = 0 , ∀p̃, q̃ . (13)

These equations have to be satisfied for arbitrary ũ, p̃, q̃, ω̃, thus we obtain:

A

(
u

ω

)
+B�

(
p

q

)
=

(
f

g

)
, B

(
u

ω

)
= 0 . (14)
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In order to numerically solve the saddle point problem (14), we want to employ the
Uzawa algorithm (cf., e.g. [1]). However, this requires A to be positive definite which
is not the case here, because the relations u and ω defining A in (8) are mutually inde-
pendent and u is only involved through a degenerate quadratic form. This problem can
be removed by (a) including a penalty term related to the divergence constraint into our
Lagrange multiplier formulation to obtain an Augmented Lagrangian formulation [5],
and by (b) splitting the vorticity matching term into two equivalent terms, one contain-
ing ∇×u and the other one containing ω. This yields the following modification of the
bilinear form (8):

ap

(
(u, ω)�, (ũ, ω̃)�

)
:=

∫

Ω

{
u · ∇I∇I · ũ+

λ

2
(
ωω̃ + (∇× u)(∇× ũ)

)

+ μ(∇ · u)(∇ · ũ) + κ∇ω · ∇ω̃
}
dx .

(15)

We point out that this modification is done for numerical reasons only. It does not
change the optimization problem (6). Matrix Ap resulting from the discretization of
(15) is positive definite and, because u and ω do not explicitly depend on each other,
can be split into two systems:

– The system containing u is the linear system with a simple first-order div-curl reg-
ularization (cf., e.g. [17], and (3)).

– The system containing ω corresponds to a simple first-order quadratic functional.

BecauseAp is invertible and well-conditioned, we solve the first equation of the system
(14), with A replaced by Ap, for the unknown u

(
u

ω

)
= A−1

p

[(
f

g

)
−B�

(
p

q

)]
, (16)

and insert the result into the second equation:

BA−1
p

[(
f

g

)
−B�

(
p

q

)]
= 0 . (17)

This problem only involves the adjoint variables p, q:

(BA−1
p B�)

(
p

q

)
= BA−1

p

(
f

g

)
. (18)

The matrix (BA−1
p B�) is symmetric and positive definite. Therefore, we apply the

conjugate gradient iteration to (18). This requires a single matrix inversion in every
iteration step. This is efficiently accomplished using multi grid iteration (cf. [6]).

4 Experimental Evaluation

This section shows numerical results on ground truth fluid image sequences obtained
with our approach in comparison with first-order regularization and with second-order
div-curl regularization.
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Fig. 3. Left: 100th frame of the synthetic image sequence with ground truth velocity field. Right:
Estimated velocity field for the 100th frame. The background intensity shows the absolute RMS
error (brighter = larger error), which is about 0.055 px. on average (cf. fig. 4).

The evaluation of our approach from the viewpoint of fluid mechanics (real data,
without ground-truth) is beyond the scope of this paper.

The synthetic PIV image sequence that we used for testing was provided by [3].
The underlying velocity field was computed by a so-called pseudo-spectral code that
solves the vorticity transport equation in Fourier space and evaluates a subgrid model
for simulating small-scale turbulent effects on the larger scales of the flow. These latter
effects, of course, are not known in practice, nor was anything related to that used while
evaluating our approach.

In order to simulate the intensity function of real PIV images, the computed velocity
fields are used to transport collections of (images of) particles that are typically used for
the seeding of flows so as to make them visible (cf. section 1). The scheme resembles
the one described in [10]. We used the first 100 frames of the synthesized PIV image
sequence and compared the following three approaches:

– Horn&Schunck [7]: First-order regularization, temporal coherency is not exploited,
no incompressibility constraint is imposed. The smoothness parameter λ = 0.005
was manually selected for best performance.

– 2nd Order Regularization [19]: These authors used higher-order regularization
with an additional incompressibility constraint. Instead of mixed finite elements (as
we do), the authors used the so-called mimetic finite differencing scheme. Tempo-
ral coherency is not exploited. Parameters: λ1 = 0.5, λ2 = 0.05, manually selected
for best performance.

– Vorticity Transport Approach (this paper): As described above, higher-order reg-
ularization is used, the incompressibility constraint is imposed, and temporal co-
herency is exploited in an on-line manner. Parameters λ = 0.005, μ = 0.005,
ν = 0.1, κ = 0.0005. As for the other approaches, we selected the regularization
parameters λ, μ, κ by hand. Note that the viscosity coefficient ν is not a free user
parameter but characterizes the physical nature of the fluid flow.
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Fig. 4. Average absolute RMS error (in pixels) for frames 1-100, using three different methods.
First-order regularization performs worse than second-order regularization. Both error curves are
constant because temporal coherency is not exploited. The approach based on vorticity transport
starts with a rather low accuracy (assumption of ω = 0, which is not valid) but then becomes
significantly more accurate than the two other techniques due to the physically consistent regu-
larization over time. This novel spatio-temporal regularization is achieved with an on-line compu-
tational scheme and fixed storage requirements, irrespective of the length of the image sequence.
The decay of the error curve within the first 10 frames clearly displays the usage of this implicitly
encoded “memory”.
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Fig. 5. Left: True vorticity of frame 100. Lower Right: Estimated vorticity ω for frame 100. For
the first frame, the estimation process was initialized with ω = 0, corresponding to “nothing is
known in advance”. The result on the right shows that not only the vorticity transport equation has
been successfully adapted to the observed image sequence, but that it improves the accuracy of
flow estimation in terms of u, too (cf. fig. 4). As a consequence, flow derivatives can be estimated
fairly accurate, as shown in the right panel. Such quantitative information is very important in
connection with imaging-based experimental fluid mechanics.

Figure 4 compares the errors of all three approaches over time. The first-order regu-
larization approach yields the highest errors, while the second-order approach is much
more accurate. The errors of both approaches stay constant over time because each
subsequent image pair is independently evaluated and temporal coherency is ignored.

For the first frame, the approach presented in this paper, utilizing the vorticity trans-
port equation, shows worse performance than the other two algorithms. During the
subsequent period of time, however, the error of the vorticity transport approach de-
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creases considerably, because not only higher-order regularization is used but temporal
coherency is successfully exploited as well.

We emphasize that temporal coherency does not mean smoothness. Rather, the flow
exhibits high spatio-temporal gradients as turbulent fluids do. Temporal coherency re-
lates to a physically consistent transport mechanism interacting with flow estimation
from an image sequence. Due to the on-line computational scheme, fixed computa-
tional resources are needed no matter how long the image sequence is. The decay of the
error curve over several frames in figure 4 shows, however, that the approach is able to
memorize the history longer than just the previous frame.

Figure 3 displays the estimated velocity for the for the 100th frame, along with the
respective RMS errors. The reconstructed velocity field is surprisingly exact, in view
of the highly non-rigid motion we are dealing with. Figure 5 shows that even the vor-
ticity related to flow derivatives is reconstructed quite well under these difficult condi-
tions. We expect such quantitative data to be valuable information in connection with
imaging-based fluid mechanics.

5 Conclusion

We presented an approach to fluid motion estimation that uses the vorticity transport
equation for physically consistent spatio-temporal regularization. The approach com-
bines variational motion estimation with higher-order regularization and motion predic-
tion through a transport process. For motions that conform to our assumption (i.e. fluids
that are governed by the incompressible 2D Navier-Stokes equation), a temporal regu-
larization effect, computed in a recursive manner, was demonstrated. In these scenarios,
our approach outperforms advanced variational approaches for optical flow estimation.
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9. T. Kohlberger, E. Mémin, and C. Schnörr. Variational dense motion estimation using the

helmholtz decomposition. In L.D. Griffin and M. Lillholm, editors, Scale Space Methods in
Computer Vision, volume 2695 of LNCS, pages 432–448. Springer, 2003.

10. K. Okamoto, S. Nishio, and T. Kobayashi. Standard images for particle-image velocimetry.
Meas. Sci. Technol., 11:685–691, 2000.

11. E. G. Puckett and P. Colella. Finite Difference Methods for Computational Fluid Dynamics
(Cambridge Texts in Applied Mathematics). Cambridge University Press, 2005.

12. M. Raffel, C. Willert, and J. Kompenhans. Particle Image Velocimetry. Springer, 2001.
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