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Abstract. The total variation (TV) measure is a key concept in the field
of variational image analysis. Introduced by Rudin, Osher and Fatemi
in connection with image denoising, it also provides the basis for convex
structure-texture decompositions of image signals, image inpainting, and
for globally optimal binary image segmentation by convex functional
minimization. Concerning vector-valued image data, the usual definition
of the TV measure extends the scalar case in terms of the L

1-norm of
the gradients.
In this paper, we show for the case of 2D image flows that TV reg-
ularization of the basic flow components (divergence, curl) leads to a
mathematically more natural extension. This regularization provides a
convex decomposition of motion into a richer structure component and
texture. The structure component comprises piecewise harmonic fields
rather than piecewise constant ones. Numerical examples illustrate this
fact. Additionally, for the class of piecewise harmonic flows, our regular-
izer provides a measure for motion boundaries of image flows, as does
the TV-measure for contours of scalar-valued piecewise constant images.

1 Introduction

The total variation (TV) measure has been introduced by Rudin, Osher and
Fatemi [1] in connection with image denoising. The precise definition will be
given in Section 2. In the following, letΩ ⊂ R

2 be a bounded domain. Minimizing
the convex functional

1

2
‖u− d‖2

Ω + λTV(u) (1)

for given image data d leads to an edge-preserving nonlinear smoothing process
that effectively removes noise and small-scale spatial patterns from d.

Starting with the work of Meyer [2], the more general viewpoint of image
decomposition has been adopted – see [3] and references therein. The basic model
is again given by (1), leading to a decomposition

d = u+ v (2)
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of given image data d in a piecewise constant image structure u and oscillatory
patterns and noise v.

Another key property of the TV measure is due to its geometric interpretation
via the co-area formula [4]: TV(u) equals the length of level lines of u, summed up
over the range of u (contrast). As a consequence, TV(u) measures the length of
contours of piecewise constant images, hence implements the regularization term
of the Mumford-Shah variational approach to segmentation. This fact has been
explored for image inpainting [5] and more recently also for image segmentation,
in order to replace non-convex variational approaches [6, 7] by convex ones that
can be globally optimized [8, 9].

A natural issue concerns the application of the TV measure to vector -valued
data u = (u1, u2)

⊤. Usually definitions are applied that, for sufficiently regular
u (cf. next section), take the form [10]

TV(u) =

∫

Ω

√

|∇u1|2 + |∇u2|2 dx . (3)

The Helmholtz decomposition of u into its basic components, divergence and
curl, suggest an alternative:

∫

Ω

√

(div u)2 + (curlu)2 dx. (4)

This viewpoint has been suggested recently in [11] for decomposing image flows.
However, a geometric interpretation and its connection to the definitions (3) and
(1) has not been given. It will turn out below, that

– (4) is a mathematically more natural definition extending (1), and that
– (4) decomposes flows into a richer “structural” component – analogous to
u in the scalar case (2) – comprising piecewise harmonic flows rather than
piecewise constant flows.

The paper is organized as follows. We recall necessary material of TV-based
scalar image decomposition in Section 2. Next, we consider the Helmholtz and
Hodge decompositions of vector fields into orthogonal subspaces in Section 3.
Comparing by analogy the latter decomposition to the scalar-valued case, and
then re-considering the convex TV-based decomposition of scalar images in Sec-
tion 2, we are led in Section 4 to the interpretation of (4) as a generalized con-
vex decomposition of image flows. Section 5 embedds this decomposition into a
variational denoising approach for image flows. We illustrate this result and its
consequences numerically in Section 6 and conclude in Section 7.

2 TV-Based Convex Image Decomposition

The total variation of a scalar function u is defined as

TV(u) = sup
‖p‖
∞

≤1

〈u, div p〉Ω , p|∂Ω = 0 , (5)
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where ‖p‖∞ = maxx∈Ω
√

p2
1(x) + p2

2(x) and p ∈ C1
0 (Ω; R2). Based on this defi-

nition, the convex variational image denoising approach (1) can be transformed
into its dual formulation [12]

min
‖p‖
∞

≤1

{

‖λdiv p− d‖2
Ω

}

, d = u+ λdiv p . (6)

This results in a decomposition of scalar image data d,

d = u+ λdiv p , ‖p‖∞ ≤ 1 , p|∂Ω = 0 ,

where u provides the piecewise smooth component, i.e. the large-scale structural
parts of the image signal d, and λdiv p comprises the corresponding small-scale
structure, i.e. texture and noise. To this end, it is also called the structure-texture
decomposition.
In order to be consistent with the following definitions, we rewrite the TV-based
scalar decomposition as

d = u+ div p , ‖p‖∞ ≤ λ , p|∂Ω = 0 . (7)

The small-scale component div p is the orthogonal projection

Π : L2(Ω) → divCλ

of the data d onto a convex set divCλ, i.e. onto the image of the set of norm-
constrained vector fields

Cλ =
{

(p1, p2)
⊤

∣

∣ ‖p‖∞ ≤ λ
}

(8)

under the divergence operator. For d with mean zero, the smallest value of λ
such that the solution u of (1) becomes zero equals the G-norm of d (cf. [2])
which measures the size of the small-scale oscillating component (noise, texture)
of the image function.

Hence, we formally write

L2(Ω) = U ⊕Π divCλ , (9)

where the index of ⊕Π indicates that this is a convex decomposition, rather than
an orthogonal decomposition into subspaces.

3 Orthogonal Hodge Decomposition of Image Flows

In this section, we summarize orthogonal decomposition of vector fields, the
Helmholtz decomposition and, as an extension thereof, the Hodge decomposition.
The latter decomposition together with (9) will provide the basis for our novel
decomposition of image flows in the subsequent section.
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Theorem 1 (2D Orthogonal Decomposition). Any vector field u ∈ (L2(Ω))2

can be decomposed into into an irrotational and a solenoidal part

u = v + ∇⊥φ , φ∂Ω = 0 , (10)

where curl v = 0. This decomposition is unique, and the components are or-
thogonal in the sense

〈

v,∇⊥φ
〉

Ω
= 0.

The representation (10) corresponds to an orthogonal decomposition of the space
of all vector fields into subspaces of gradients and curls

(

L2(Ω)
)2

= ∇H(Ω) ⊕∇⊥Ho(Ω) , (11)

where H(Ω) and Ho(Ω) are suitably defined Sobolev-type spaces. We refer to
[13] for details.

The curl-free component can be further decomposed into

v = h+ ∇ψ , (12)

where ψ∂Ω = 0 and
div v = div∇ψ .

The component h satisfies

div h = 0 , curlh = 0 ,

and is called harmonic flow. We summarize these facts:

Theorem 2 (2D Hodge Decomposition). Let Ω be a bounded, sufficiently
regular 2D domain (Poincaré lemma [13]). Then any vector field u ∈ (L2(Ω))2

can be decomposed into

u = h + ∇ψ + ∇⊥φ , φ∂Ω = 0 , ψ∂Ω = 0 , (13)

where div h = curlh = 0 . This decomposition is unique, and the three parts
on the right-hand side are orthogonal to each other.

Accordingly, the decomposition (11) can be refined to

(

L2(Ω)
)2

= H ⊕ ∇Ho(Ω) ⊕ ∇⊥Ho(Ω) , (14)

where the additional index of the second component indicates the boundary
condition ψ∂Ω = 0, and where H denotes the space of all harmonic flows.

4 Convex Hodge Decomposition of Image Flows

In this section, we first provide an orthogonal decomposition of scalar-valued
functions analogously to the orthogonal decomposition of vector fields in the
previous section. Next, we generalize this to a novel convex decomposition of
image flows, in view of the convex decomposition of scalar functions described
in Section 2.
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4.1 Orthogonal Decomposition of Scalar-Valued Functions

We look for an orthogonal decomposition of scalar-valued image functions, anal-
ogous to the decomposition (13) for vector fields.

Any scalar-valued function d ∈ L2(Ω) can be decomposed into

d = c+ div p , p|∂Ω = 0 . (15)

Since
∫

Ω
div p dx = 0, due to the boundary condition on p, the constant function

c is just the mean value
∫

Ω
d dx/|Ω|, and we have also the orthogonality of the

two components 〈c, div p〉Ω = 0. Referring to (13), it makes sense to regard (15)
as Hodge decomposition of scalar fields.

Next, let us consider the connection between (15) and the convex decompo-
sition (7). As in (7), d is decomposed into two components, a smooth component
and a remaining component of small-scale structure.

The difference between (7) and (15) is that the latter projects onto special
convex sets : orthogonal subspaces.

This leads to a constant “smooth” component c in (15), as opposed to u in (7)
that tends to be piecewise constant. Of course, if λ is large enough, then u in
(7) also becomes a constant.

Likewise, analogous to the convex decomposition (9), we obtain as a result
of (15) the orthogonal decomposition

L2(Ω) = Hc ⊕ divP , (16)

where Hc is the set of all constant functions on Ω, and P the subspace of all
vector fields vanishing on the boundary ∂Ω.

4.2 Convex Decomposition of Vector Fields

Based on the previous discussion, natural questions arise:

1. Because the orthogonal decomposition of scalar fields (15), (16) is clearly
inferior to the convex decomposition (7), (9) in that the structural compo-
nent u models more general functions, what is the convex counterpart of the
orthogonal decomposition of vector fields (13), (14)?

2. What is the natural generalization of the variational denoising approach (1)
to the case of vector fields?

We will address the first question next and the second question in the following
section.

Definition 1 (Convex Hodge Decomposition). Given a vector field d ∈
(

L2(Ω)
)2

, we define the convex decomposition

d = u+ ∇ψ + ∇⊥φ , (17)
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where the non-smooth component u is given by the orthogonal projection of d
onto the convex set

Sλ =
{

∇ψ + ∇⊥φ
∣

∣ (ψ, φ) ∈ Cλ ∩
(

Ho(Ω)
)2}

, (18)

with Cλ from (8). Formally, write

(

L2(Ω)
)2

= UH ⊕Π
〈

(∇,∇⊥), Cλ
〉

, (19)

where Π is the orthogonal projector onto Sλ (18).

Note the structural similarity between (7), (9) and (17), (19). Likewise, as U in
(9) generalizes Hc in (16) from constant functions to piecewise constant func-
tions, so UH in (19) generalizes H in (14) to piecewise harmonic vector fields.

5 Variational Denoising of Image Flows

In this section, we investigate a natural generalization of the variational approach
(1) to vector fields. First, we present the objective function and reveal its con-
nection to the convex decomposition (17). Next, we show that for the particular
case of piecewise harmonic vector fields, it regularizes motion boundaries in a
similar way as the functional (1) does for the contours of piecewise constant and
scalar-valued functions.

5.1 Variational Approach

For a given vector field d, we study the convex functional

inf
u

{1

2
‖u− d‖2

Ω + λR(u)
}

(20)

with
R(u) = sup

s∈S
〈s, u〉Ω , (21)

where S = S1 from (18). Because R(u) is positively homogeneous, λR(u) equals
sups∈Sλ

〈s, u〉Ω. Hence, (20) reads

inf
u

sup
s∈Sλ

{1

2
‖u− d‖2

Ω + 〈s, u〉Ω

}

.

Exchanging inf and sup yields the convex decomposition (17) (cf. (18))

d = u+ s ,

and as the dual convex problem of (1) the projection of the data d onto the
convex set Sλ

inf
s∈Sλ

‖s− d‖2
Ω , d = u+ ∇ψ + ∇⊥φ . (22)
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Let us point out again the similarities of our approach for denoising vector fields
with the ROF-model (1) for denoising scalar-valued functions, based on the
convex Hodge decomposition introduced in the previous section. The regularizer
R(u) in (21) is defined as support function of a convex set, as is the total variation
measure TV(u) in (5). Likewise, the dual convex problem (22) characterizes the
non-smooth, oscillating component (“motion texture”) of a given vector field
d as a projection onto a convex set, as does the ROF-model for scalar-valued
functions in (6).

5.2 Motion Segmentation and Piecewise Harmonic Image Flows

We take a closer look to the analogy between the ROF-model and our general-
ization to vector fields, as discussed in the previous section.

Assuming u to be sufficiently smooth, and taking into account the repre-
sentation (18) and that the boundary values of functions ψ, φ representing an
element s ∈ S vanish, we rewrite the regularizing term (21)

R(u) = sup
s∈S

〈s, u〉Ω = sup
‖(ψ,φ)‖∞≤1

〈∇ψ + ∇⊥φ, u〉Ω

= sup
‖(ψ,φ)‖∞≤1

{

− 〈ψ, div u〉Ω − 〈φ, curlu〉Ω
}

=

∫

Ω

√

(div u)2 + (curlu)2dx . (23)

This differs from the commonly used term (3). In particular, for a piecewise
harmonic flow (i.e. with almost everywhere vanishing divergence and curl), cor-
responding to the structural part of the decomposition (19), this measure only
contributes at motion boundaries. In fact, we can show that R(u) plays a similar
role as does the TV-measure at discontinuities of scalar-valued functions [14].

6 Numerical Examples

The main contribution of this paper is the mathematically thorough investigation
of non-smooth convex regularization of image flows, based on the decomposition
framework presented in Section 4, and leading to the variational approach (20)
in Section 5 that naturally extends the ROF-model (1) to the vector-valued case.

In this section, we confine ourselves to underline the difference between the
novel approach (20) and the commonly used regularization term (3) with few
numerical experiments.

Figure 1 shows an image flow additively composed of a harmonic flow and a
second small-scale motion component. While the usual regularization (3) always
returns a constant vector field as structural part, the regularizer (21) is able to
separate these two components. This result clearly validates the theory.

Figure 2 presents a more involved non-rigid flow composed of several compo-
nents, a global harmonic flow and four very local constant ones (i.e. harmonic as
well), and further two local non-harmonic local flows. Figures 3 and 4 show the
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Fig. 1. Left two columns: A flow comprising a harmonic component and motion
texture as vector plot and orientation plot (top) and its divergence and curl (bottom).
Third column: Standard TV-regularization is unable to separate the flows. Right

column: Our novel regularizer clearly separates motion texture and nonrigid flows.

results for the usual TV method (3) und our approach for two different values of
the regularization parameter λ that determines what large-scale and small-scale
motion structures mean. The key observation is that the (3) does not lead to a
meaningful result, whereas the novel term (23) clearly separates motion discon-
tinuities and non-harmonic flows from harmonic ones, depending on their scale
relative to the value of λ.

7 Conclusions

Our work enlarges the class of convex variational approaches that can be used
to denoise and separate – in our case – vector-valued data. Our results elucidate
a further mathematical setting where to some extent decisions (separation and
segmentation) can be done just by convex programming, that is globally optimal.

Our further work will explore the connection of spaces of harmonic flows to
other low-dimensional spaces of flows that are relevant for applications.
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