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Abstract
The assignment flow is a smooth dynamical system that evolves on an 
elementary statistical manifold and performs contextual data labeling on 
a graph. We derive and introduce the linear assignment flow that evolves 
nonlinearly on the manifold, but is governed by a linear ODE on the tangent 
space. Various numerical schemes adapted to the mathematical structure 
of these two models are designed and studied, for the geometric numerical 
integration of both flows: embedded Runge–Kutta–Munthe–Kaas schemes for 
the nonlinear flow, adaptive Runge–Kutta schemes and exponential integrators 
for the linear flow. All algorithms are parameter free, except for setting a 
tolerance value that specifies adaptive step size selection by monitoring 
the local integration error, or fixing the dimension of the Krylov subspace 
approximation. These algorithms provide a basis for applying the assignment 
flow to machine learning scenarios beyond supervised labeling, including 
unsupervised labeling and learning from controlled assignment flows.

Keywords: image labeling, assignment flow, assignment manifold, geometric 
integration, adaptive step size selection, Krylov subspace approximation
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1. Introduction

1.1. Overview, motivation

The assignment flow, recently introduced by [1] and detailed in section 2, denotes a smooth 
dynamical system evolving on an elementary statistical manifold, for the contextual classifi-
cation of a finite set of data given on an arbitrary graph. Vertices of the graph are associated 
with the elements of the data set and correspond to locations in space and/or time in typical 
applications. Classification means to assign each datum exactly to one class representative, 
called label, out of a finite set of predetermined labels. Contextual classification means that 
these decision directly depend on each other, as encoded by the edges (adjacency relation) 
of the underlying graph. In the context of image analysis, classifying given image data on an 
image grid graph in this way is called the image labeling problem. We point out, however, that 
the assignment flow applies to arbitrary data represented on a graph.

A key property of the assignment flow is that decision variables do not live in the space 
used to model the data. Rather, a probability simplex is associated with each datum, on which 
a flow evolves until it converges to one of the vertices of the simplex that encode the labels. 
Each simplex is equipped with the Fisher–Rao metric which turns the relative interior of 
the simplex into a smooth Riemannian manifold. It is this particular geometry that effec-
tively promotes discrete decisions that interact in a smooth way. Replacing in addition the 
Riemannian (Levi-Civita) connection by the α-connection (with α = 1) introduced by Amari 
and Chentsov [2], enables to carry out basic geometric operations in a computationally effi-
cient way. Keeping the assignment flow as ‘inference engine’ separate from the data space and 
model allows to flexibly apply it to a broad range of contextual data classification problems. 
We refer to [2, 3] as basic texts on information geometry and to [4] for more information on 
the image labeling problem.

From a more distant viewpoint, our work ties in with the recent trend to explore the mathe-
matics of deep networks from a dynamical systems perspective [5]. A frequently cited paper in 
this respect is [6] where a connection was made between the so-called residual architecture of 
networks and explicit Euler integration steps of a corresponding system of nonlinear ordinary 
differential equations (ODEs). We refer to [7] for a good exposition. While this offers a novel 
and fresh perspective on the learning problem of network parameters, it does not alter the 
basic ingredients of such networks that apparently have been adopted in an ad-hoc way, like 
parametrized static layers connected by nonlinear transition functions, ReLU activations etc.

By contrast, the assignment flow provides a smooth dynamical system on a graph (net-
work), where all ingredients coherently fit into the overall mathematical framework. Based on 
this, we recently showed how discrete graphical models for image labeling can be evaluated 
using the assignment flow [8], and how unsupervised labeling can be modeled by coupling the 
assignment flow and Riemannian gradient flows for label evolution on feature manifolds [9]. 
Our current work, to be reported elsewhere, studies machine learning problems based on con-
trolling the assignment flow. Here, in particular, algorithms play a decisive role that accurately 
integrate the assignment flow numerically on the manifold where it evolves. A thorough study 
of such algorithms is the subject of the present paper.
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1.2. Contribution, organization

This paper presents two interrelated contributions, as illustrated by figure 1.

 (1)  We derive from the assignment flow—henceforth called nonlinear assignment flow—the 
linear assignment flow, that still is nonlinear but governed by a linear ODE on the tan-
gent space. This property is attractive for modeling tasks (e.g. parameter estimation and 
control) as well as for the design of numerical algorithms. In particular, our experiments 
show that the linear flow closely approximates the nonlinear flow, as far as concerns the 
final labeling results.

 (2)  We study a range of algorithms for numerically integrating both the nonlinear and the 
linear assignment flow, respectively, while properly taking into account the underlying 
geometry.

 (a)  Regarding the nonlinear assignment flow, we adopt the machinery of Lie group 
methods for the numerical integration of ODEs on manifolds [10] and devise corre-
sponding extensions of classical Runge–Kutta (RK) schemes, called RKMK schemes 
(Runge–Kutta–Munthe–Kaas) in the literature [11]. We combine pairs of these exten-
sions to form embedded RKMK schemes for adaptive step size control, analogous to 
classical embedded RK schemes [12].

Figure 1. Topics addressed in this paper and their interrelations. Edge labels refer to the 
corresponding sections. Section numbers framed by squares address modeling aspects, 
whereas those framed by rounded squares address the design of algorithms and their 
numerical evaluation. Unlabeled edges mean ‘is derived from’ or ‘provides the basis 
for’.
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 (b)  Regarding the linear assignment flow, we take advantage in two alternative ways of 
the linearity of the flow on the tangent space.

    (i)  On the one hand, we derive a local error estimate in order to apply classical RK 
schemes [12] on the tangent space, with step sizes that adapt automatically.

    (ii)  On the other hand, we evaluate the integral representation of the linear flow, 
due to Duhamels formula, and approximately evaluate this integral using Krylov 
subspace methods, as has been developed in the literature on exponential inte-

grators [13–15].
All these explicit numerical schemes are evaluated and discussed in section 6, using ‘ground 
truth’ flows as a baseline that were computed using the implicit geometric Euler scheme with a 
sufficiently small step size. All iterative algorithms are parameter free, except for specifying a 
single tolerance value with respect to the local error, that governs adaptive step size selection. 
Our experiments indicate a value for this parameter that ‘works’ regarding integration accu-
racy and labeling quality, but is not too conservative (i.e. small). In the case of the exponential 
integrator, we merely have to supply the final point of time T at which the linear assignment 
flow should be evaluated, in addition to the dimension of the Krylov subspace which controls 
the quality of the approximation. We conclude with a synopsis of our results in section 7.

1.3. Basic notation

Index sets I and J index vertices i ∈ I of the underlying graph and labels j ∈ J, respectively. 
S  and W  denote the basic statistical manifolds that we work with, defined in section 2. Points 
p, q ∈ S are strictly positive probability vectors, and we denote efficiently by

qp = (q1 · p1, . . . , q|J| · p|J|)
�,

q
p
=

(q1

p1
, . . . ,

q|J|
p|J|

)�

 (1.1)

componentwise multiplication for general vectors, and componentwise subdivision only if 
p ∈ S . Likewise, functions like the exponential function and the logarithm with vectors as 
arguments apply componentwise,

ev = (ev1 , ev2 , . . .)�, log v = (log v1, log v2, . . .)�. (1.2)

Exp and exp denote exponential mappings defined in section 2, whereas expm denotes the 
matrix exponential in section 4.2. The ordinary exponential function defined on the real line 
R is always denoted by ex, x ∈ R.

1 = (1, . . . , 1)� denotes the constant 1-vector with appropriate number of components 
depending on the context. We use the common shorthand [n] = {1, 2, . . . , n} with n ∈ N. ‖ · ‖ 
denotes the �2-norm and ‖ · ‖p the �p-norm if p �= 2.

2. The assignment flow

We summarize the assignment flow introduced by [1] and related concepts required in this 
paper. Let G = (I, E) be a given graph and let

FI =
{

fi : i ∈ I
}
⊂ F (2.1a)

be data given in a metric space

(F , d). (2.1b)

A Zeilmann et alInverse Problems 36 (2020) 034004
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We call FI image data even though the f i typically represent features extracted from raw 
image at pixel i ∈ I as a preprocessing step. G may be a grid graph (with self-loops) as in 
low-level image processing or a less structured graph, with arbitrary connectivity in terms of 
the neighborhoods

Ni = {k ∈ I : ik = ki ∈ E} ∪ {i}. (2.2)

We associate with each neighborhood Ni  weights satisfying

wik > 0,
∑
k∈Ni

wik = 1, ∀i ∈ I. (2.3)

These weights parametrize the regularization property of the assignment flow and are assumed 
to be given. How to learn them from data in order to control the assignment flow will be 
reported elsewhere.

Along with FI we assume prototypical data

GJ =
{

gj ∈ F : j ∈ J
}

 (2.4)

to be given, henceforth called labels. Each label gj  represents the data of class j . Image label-
ing denotes the problem to assign class labels to image data depending on the local context 
encoded by the graph G. We refer to [8] for more details and background on the image label-
ing problem.

Assignments of labels to data are represented by discrete probability distributions

Wi = (Wi1, . . . , Wi|J|)
� ∈ S, i ∈ I, (2.5)

where

S =
{

p ∈ R|J| : pj > 0, ∀j ∈ J, 〈1, p〉 = 1
}

 (2.6)

denotes the relatively open probability simplex equipped with the Fisher–Rao metric

gp(u, v) =
∑
j∈J

ujvj

pj
, u, v ∈ T0 = { p ∈ R|J| : 〈1, p〉 = 0}, p ∈ S,

 (2.7)

which turns S  into a Riemannian manifold. In connection with S , we define the

1S =
1
|J|

(1, . . . , 1)� ∈ R|J| (barycenter) (2.8)

of S , i.e. the uniform distribution, the orthogonal projection

ΠT0 : R|J| → T0, ΠT0(z) =
(
Diag(1)− 11�

S
)
z, (2.9a)

and the linear replicator map

Rp : R|J| → T0, Rp(z) =
(
Diag( p)− pp�)z, p ∈ S (2.9b)

satisfying

Rp = RpΠT0 = ΠT0 Rp. (2.10)

Adopting the α-connection with α = 1 from information geometry as introduced by Amari 
and Chentsov [2, section 2.3], [3], the exponential map based on the corresponding affine 
geodesics reads

A Zeilmann et alInverse Problems 36 (2020) 034004
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Exp: S × T0 → S, ( p, v) �→ Expp(v) =
e

v
p

〈p, e
v
p 〉

p (2.11a)

with inverse [1, appendix]

Exp−1 : S × S → T0, ( p, q) �→ Exp−1
p (q) = Rp log

q
p

. (2.11b)

Specifically, we define

expp = Expp ◦ Rp : R|J| = T0 ⊕ R1 → S , z �→ pez

〈p, ez〉
, ∀p ∈ S

 

(2.12a)

with inverse [1, appendix]

exp−1
p : S → T0, q �→ ΠT0 log

q
p

. (2.12b)

Remark 2.1. Calling (2.12b) the ‘inverse’ map is justified by the fact that expp does not 
depend on any constant component R1 ∈ T⊥

0  of the argument vector z. Yet, we choose R|J| 
as domain because expp will be applied to arbitrary distance vectors Di ∈ R|J| (see (2.17)) 
arising from given data, and the notation indicates that the implementation does not need to 
remove this component explicitly [1, remark 4].

These mappings naturally extend to the collections of assignment vectors (2.5), regarded 
as points on the

W = S × . . .× S (|I| times) (assignment manifold) (2.13)

with tangent space

T0 = T0 × . . .× T0 (|I| times) (2.14)

and the corresponding mappings

1W = (1S , . . . , 1S) ∈ W (barycenter) (2.15a)

ΠT0(Z) =
(
ΠT0(Z1), . . . ,ΠT0(Z|I|)

)
∈ T0, W ∈ W , Z ∈ R|I||J|

 
(2.15b)

RW(Z) =
(
RW1(Z1), . . . , RW|I|(Z|I|)

)
∈ T0, W ∈ W , Z ∈ R|I||J|

 
(2.15c)

ExpW(V) =
(
ExpW1

(V1), . . . , ExpW|I|
(V|I|)

)
∈ W , W ∈ W , V ∈ T0

 
(2.15d)

and expW , Exp−1
W , exp−1

W  similarly defined based on (2.11b), (2.12a) and (2.12b). Finally, we 
define the geometric mean of assignment vectors [1, lemma 5]

Gw
i (W) = ExpWi

( ∑
k∈Ni

wikExp−1
Wi

(Wk)
)
= expWi

(
log

∏
k∈Ni

Wwik
k

Wi

)
, i ∈ I

 (2.16)
where Wwik

k  is the componentwise exponentiation of Wk with wik.

A Zeilmann et alInverse Problems 36 (2020) 034004
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Using this setting, the assignment flow accomplishes image labeling as follows. Based on 
(2.1), (2.4), distance vectors

D = (D1, . . . , D|I|) ∈ R|I||J| (distance vectors) (2.17a)

Di =
(
d( fi, g1), . . . , d( fi, g|J|)

)�
, i ∈ I (2.17b)

are defined and mapped to

L(W) = expW(−1
ρ

D) ∈ W , (likelihood vectors)
 

(2.18a)

Li(Wi) =
Wie−

1
ρ Di

〈Wi, e−
1
ρ Di〉

, ρ > 0, i ∈ I, (2.18b)

where ρ  is a user parameter to normalize the distances induced by the specific features f i at 
hand. This representation of the data is regularized by local geometric smoothing to obtain

S(W) ∈ W , Si(W) = Gw
i

(
L(W)

)
, i ∈ I, (similarity vectors) (2.19)

which in turn evolves the assignment vectors Wi, i ∈ I  through the

Ẇ = RW
(
S(W)

)
, W(0) = 1W . (assignment flow). (2.20)

Methods for numerically integrating this flow are examined in the following sections.

3. Geometric Runge–Kutta integration

We apply the general approach of [11] to our problem. For background and more details, we 
refer to [10] and [16, chapter 4].

3.1. General approach

In order to apply Lie group methods to the integration of an ODE on a manifold M, one has 
to check first if the ODE can be represented properly. Let

Λ : G ×M → M (3.1a)

denote the action of a Lie group G  on M satisfying

Λ(e, p) = p with identity e ∈ G, (3.1b)

Λ(g1 · g2, p) = Λ(g1,Λ(g2, p)), for all g1, g2 ∈ G, p ∈ M. (3.1c)

Furthermore, let g denote the Lie algebra of G , X(M) the set of all smooth vector fields on 
M,

λ : g×M → M (3.2)

a smooth function and λ∗ the induced map defined by

λ∗ : g → X(M), (λ∗v)p =
d
dt
λ(tv, p)

∣∣
t=0 for all v ∈ g, p ∈ M.

 (3.3)

A Zeilmann et alInverse Problems 36 (2020) 034004
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Then λ is a Lie algebra action if the induced map λ∗ is a Lie algebra homomorphism, i.e. λ∗ is 
linear and satisfies λ∗[u, v] = [λ∗u,λ∗v], u, v ∈ g, with the Lie brackets on g and X(M) on the 
left-hand side and the right-hand side, respectively. In particular, based on a Lie group action 
Λ, a Lie algebra action is given by [11, lemma 4]

λ(v, p) = Λ(expG(v), p), (3.4)

where expG : g → G denotes the exponential map of G . Thus, for this choice of λ, the induced 
map (3.3) is given by [11, theorem 5]

(λ∗v)p =
d
dt
Λ(expG(tv), p)

∣∣
t=0 for all v ∈ g, p ∈ M. (3.5)

Now, given an ODE on M, the basic assumption underlying the application of Lie group meth-
ods is the existence of a function f : R ×M → g such that the ODE admits the representation

ẏ =
(
λ∗f (t, y)

)
y, y(0) = p. (3.6)

For sufficiently small t, the solution of (3.6) then can be parametrized as

y(t) = λ
(
v(t), p

)
, (3.7a)

where v(t) ∈ g satisfies the ODE

v̇ = (dexp−1
G )v

(
f (t,λ(v, p))

)
, v(0) = 0, (3.7b)

with the inverse differential (dexp−1
G )v of expG evaluated at v ∈ g. A major advantage of the 

representation (3.7) is that the task of numerical integration concerns the ODE (3.7b) evolving 
on the vector space g, rather than the original ODE evolving on the manifold M. As a conse-
quence, established methods can be applied to (3.7b), possibly after approximating dexp−1

G  by 
a truncated series in a computationally feasible form.

3.2. Application to the assignment flow

Assume an ODE on S  defined by (2.6) is given. The application of the approach of section 3.1 
is considerably simplified by identifying G = T0 with the flat tangent space (2.7) and con-
sequently also T0 ∼= g = TeG. One easily verifies that the action Λ : T0 × S → S  defined as

Λ(v, p) = expp(v), (3.8)

with the right-hand side given by (2.12a), satisfies (3.1), i.e.

Λ(0, p) = p, (3.9a)

Λ(v1 + v2, p) =
pev1+v2

〈p, ev1+v2〉
= Λ(v1,Λ(v2, p)). (3.9b)

Proposition 3.1. The solution W(t) to assignment flow (2.20) emanating from any 
W0  =  W(0) admits the representation

W(t) = expW0

(
V(t)

)
 (3.10a)

where V(t) ∈ T0 solves

V̇ = ΠT0 S
(
expW0

(V)
)
, V(0) = 0. (3.10b)

A Zeilmann et alInverse Problems 36 (2020) 034004



9

Proof. Since geodesics through 0 ∈ T0  in directions v ∈ T0 have the form γ(t) = tv, the 
differential of the exponential map of T0 = G, expT0

(v) = γ(1) = v , is the identity and thus 
(3.5) gives

(λ∗v)p =
d
dt
Λ
(
γ(t), p

)∣∣
t=0 = Rp(v), (3.11)

with Rp defined by (2.9b). As a result, the basic assumption (3.6) concerns ODEs on S  that 
admit the representation

ṗ = Rp
(

f (t, p)
)
, p(0) = p0, (3.12)

for some function f : R × S → T0 and some p0 ∈ S . Since λ = Λ by (3.4), the parametriza-
tion (3.7) reads

p(t) = Λ
(
v(t), p0

)
 (3.13a)

where v(t) ∈ T0 solves

v̇ = f
(
t,Λ(v, p0)

)
, v(0) = 0. (3.13b)

This setting extends to the assignment flow by defining (see (2.15)) Λ : T0 ×W → W  and 
λ∗ : T0 → T0 as

Λ(V , W) = expW(V),
(
λ∗(V)

)
W = RW(V). (3.14)

The basic assumption (3.6) then reads

Ẇ =
(
λ∗f (t, W)

)
W = RW

(
ΠT0 S(W)

) (2.10)
= RW

(
S(W)

)
, W(0) = 1W ,

 (3.15)

which is the assignment flow (2.20). Due to (3.6), for any W0  =  W(0), it admits the representa-
tion

W(t) = Λ
(
V(t), W0

)
, (3.16a)

where V(t) ∈ T0 solves

V̇ = f
(
t,Λ(V , W0)

)
= ΠT0 S(expW0

(V)), V(0) = 0, (3.16b)

which is (3.10). □ 

Remark 3.2. While the basic formulation (2.20) of the assignment flow is autonomous, we 
keep in what follows the explicit time dependency of the function f (t, ·) of the parametrization 
(3.10), because in more advanced scenarios the flow may become non-autonomous. A basic 
example concerns unsupervised problems [9] where labels vary, and hence the distance vec-
tors (2.17) and in turn the vector field defining the assignment flow depend on t.

Using the above representation and taking into account the simplifications of the general 
approach of section 3.1, the RKMK algorithm [11] for integrating the assignment flow from 
t  =  0 to t  =  h is specified as follows. Let ai, j, bj be the coefficients of an s-stage, qth order 

A Zeilmann et alInverse Problems 36 (2020) 034004
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classical RK method satisfying the consistency condition ci =
∑

j∈[s] ai,j [12, chapter  II]. 
Starting from any point

W0 = W(0), (3.17a)

the algorithm amounts to compute the vector fields

Ui = h
∑
j∈[s]

ai,jŨ j, i ∈ [s]
 (3.17b)

Ũi = f
(
hci,Λ(Ui, W0)

)
, i ∈ [s] (3.17c)

V = h
∑
j∈[s]

bjŨ j
 (3.17d)

and the update

W(h) = Λ(V , W0). (3.17e)

Replacing W0 ← W(h), computing the update and iterating this procedure generates the 
sequence (W(k))k�0 which approximates (W(tk))k�0, tk = kh.

A s-stage RKMK scheme is specified using the corresponding Butcher tableau of the form

0

c2 a21

c3 a31 a32

⋮ ⋮ ⋮ . . .
cs as1 as2 … as(s−1)

b1 b2 … bs−1 bs

Specifically, we consider the following explicit RKMK schemes of order 1, 2, 3, 4:

      

      

Note the increasing number of stages that raise the approximation order. This comes at 
a price, however, because each stage evaluates at step (3.17c) the right-hand side of (3.10b) 
which is the most expensive operation. As a consequence, it is not clear a priori if using a 
multi-stage scheme and a larger step size h is superior to a simpler scheme that is evaluated 
more frequently using a smaller step size.

0

1
Forward Euler (FE)

0

1 1
1/2 1/2

Heun-2 (H2)

0

1/3 1/3
2/3 0 2/3

1/4 0 3/4
Heun-3 (H3)

0

1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6
Classical RK (RK4)

A Zeilmann et alInverse Problems 36 (2020) 034004
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In addition to the above explicit schemes, we consider the simplest implicit RKMK scheme

1 1

1

Backward Euler ( BE)

Implicit schemes are known to be stable for much larger step sizes. Yet, they require to solve 
at every step a fixed point equation which is done by an iterative inner loop.

The performances of these numerical schemes are examined in section 6.

4. Linear assignment flow, exponential integrator

The ODE (3.10b) which parametrizes the assignment flow together with (3.10a), evolves on 
a linear space but is a nonlinear system of ordinary differential equations. In this section, we 
provide an approximate representation of the assignment flow within time intervals through 
a linear ODE evolving on the tangent space (section 4.1), and a corresponding numerical 
scheme (section 4.2).

The resulting flow on the assignment manifold is still nonlinear, though. The basic idea is to 
capture locally a major part of the nonlinearity of the (full) assignment flow, by a linear ODE 
on the tangent space that enables to apply alternative integration schemes.

4.1. Linear assignment flow

Our ansatz has two ingredients. Firstly, we adopt the parametrization

W(t) = ExpW0

(
V(t)

)
, V(t) ∈ T0 

(4.1)

of the solution W(t) to the assignment flow by a trajectory in the tangent space T0, similar to 
(3.10a), except for using the ‘true’ exponential map (2.11a) and (2.15d), respectively, corre-
sponding to the underlying affine connection. Secondly, we use an affine approximation of the 
vector field on the right-hand side of (2.20), that defines the assignment flow. The following 
corresponding definition generalizes the flow studied by [17] from the barycenter to arbitrary 
base points W0, and from a flow on S  to a flow on W .

Definition 4.1 (linear assignment flow). We call linear assignment flow every flow in-
duced by an ODE of the form

Ẇ = RW

(
s0 + S0RW0 log

W
W0

)
, W(0) = W0 ∈ W , (4.2)

with a fixed vector s0 and a fixed matrix S0, for arbitrary W0.

An important property of the flow (4.2)—which explains its name—is the possibility to 
parametrize it by a linear ODE evolving on the tangent space T0.

Proposition 4.2. The linear assignment flow (4.2) admits the representation

W(t) = ExpW0

(
V(t)

)
, (4.3a)

where V(t) ∈ T0 solves

V̇ = RW0(s0 + S0V), V(0) = 0. (4.3b)
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Proof. Parametrization (4.1) yields

V(t) = Exp−1
W0

(W(t))
(2.11b)
= RW0 log

W(t)
W0

 (4.4)

and by differentiation

V̇(t) = RW0

(Ẇ(t)
W(t)

)
. (4.5a)

Solving (4.2) for ẆW  after inserting (2.15c), and substitution in the preceding equation gives

= RW0

(
s0 + S0Exp−1

W0

(
W(t)

)
−
〈
W(t), s0 + S0Exp−1

W0

(
W(t)

)〉
1
)

, (4.5b)

and since RW01 = 0 by (2.9b)

= RW0

(
s0 + S0Exp−1

W0

(
W(t)

)) (4.4)
= RW0

(
s0 + S0V(t)

)
. (4.5c)

The initial condition follows from V(0) = Exp−1
W0

(W0) = 0. □ 

Remark 4.3. Note that, despite the linearity of (4.3b), the resulting flow (4.3a) solving 
(4.2) is nonlinear. Thus, one may hope to capture the major nonlinearity of the full assign-
ment flow (2.20) by a linear ODE on the tangent space, at least locally in some time interval. 
Within this interval, the evaluation of (2.19) is not required, and the linearity of the tangent 
space ODE (4.3b) can be exploited for integration.

We conclude this section by computing the natural choice

s0 = S(W0), S0 = dSW0 (4.6)

of the parameters of the linear assignment flow (4.2) in explicit form, where s0 is immediate 
due to (2.19), but the Jacobian S0 = dSW0 of S(W), evaluated at W0, is not.

Proposition 4.4. Let S(W) ∈ R|I||J| denote the global similarity vector obtained by stack-
ing the local similarity vectors S1(W), . . . , S|I|(W) of (2.19). Then, with

s0 = S(W0), s0i = Si(W0), s0i,j = Sij(W0) =
(
Si(W0)

)
j, i ∈ I, j ∈ J

 (4.7a)

and the replicator map Rs0,i defined by (2.9b), the Jacobian of S(W) at W0 ∈ W is given by

S0 = dSW0 =




A11(W0) . . . A1|I|(W0)
...

. . .
...

A|I|1(W0) . . . A|I||I|(W0)


 ∈ R|I||J|×|I||J|, (4.7b)

where the action of each |J| × |J| block matrix has the form

Aik(W0)(Vk) =

{
wikRs0,i

(
Vk

W0,k

)
, if k ∈ Ni

0, if k �∈ Ni

, W0 ∈ W , Vk ∈ T0, i, k ∈ I (4.7c)
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and the non-zero entries if k ∈ Ni (using (4.7a))

Aik,jl(W0) =
(
Aik(W0)

)
jl = wik

{
(1 − s0i,j)

s0i,j

W0,kj
, if j = l

−s0i,j
s0i,l

W0,kl
, if j �= l

, j, l ∈ J. (4.7d)

The proof follows below after two preparatory lemmata.

Lemma 4.5. Let p ∈ S . Then the differential of expp : T0 → S at u ∈ T0  applied to v ∈ T0 
is given by

d expp(u)(v) = Rexpp(u)(v), u, v ∈ T0, p ∈ S . (4.8)

Moreover, we have

expp(v − log p) = exp1S
(v), v ∈ T0, p ∈ S. (4.9)

Proof. Let γ(t) be a smooth curve in T0 with γ(0) = u and γ̇(0) = v. Using (2.12a), we 
compute

d
dt

peγ(t)

〈p, eγ(t)〉

∣∣∣∣
t=0

=
〈p, eu〉pveu − 〈p, veu〉peu

〈p, eu〉2 =
peu

〈p, eu〉

(
v − 〈peu, v〉

〈p, eu〉
1
)
= Rexpp(u)(v), (4.10)

which is (4.8). As for (4.9), using the representation

p
(2.12a)
= exp1S

(log p) = exp1S
(ΠT0 log p), (4.11)

where the last equation takes into account remark 2.1, we obtain

expp(v − log p)

= expp(v −ΠT0 log p)
(4.11)
= expexp1S

(ΠT0 log p)(v −ΠT0 log p)
 

(4.12a)

(3.8)
= Λ

(
v −ΠT0 log p,Λ(ΠT0 log p, 1S)

) (3.9)
= Λ(v −ΠT0 log p +ΠT0 log p, 1S)

 
(4.12b)

= Λ(v, 1S) = exp1S
(v).

 (4.12c)

□
 

We use this lemma to represent the similarity vectors in a convenient form for subsequently 
proving proposition 4.4.

Lemma 4.6. The similarity vectors (2.19) admit the representation

Si(W) = exp1S

( ∑
k∈Ni

wik
(
logWk −

1
ρ

Dk
))

, i ∈ I. (4.13)

Proof. By (2.19) and (2.16), we obtain

Si(W) = expWi

(
log

∏
k∈Ni

Lk(Wk)
wik

Wi

)
= expWi

( ∑
k∈Ni

wik log Lk(Wk)− logWi

)

 (4.14a)
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(2.18b)
= expWi

( ∑
k∈Ni

wik

(
logWk −

1
ρ

Dk − log
(
〈Wk, e−

1
ρ Dk〉

)
1
)
− logWi

)

 (4.14b)

using again expp(v + λ1) = expp(v) for all λ ∈ R, v ∈ T0, p ∈ S (see remark 2.1)

= expWi

( ∑
k∈Ni

wik
(
logWk −

1
ρ

Dk
)
− logWi

)
(4.9)
= exp1S

( ∑
k∈Ni

wik
(
logWk −

1
ρ

Dk
))

.

 

(4.14c)
 □

Proof of proposition 4.4. Setting

Si(W)
(4.13)
= exp1S

◦ Zi(W), Zi(W) =
∑
k∈Ni

wik
(
logWk −

1
ρ

Dk
)
, (4.15)

we compute using a smooth curve γ(t) in W  with γ(0) = W  and γ̇(0) = V ,

dZi(W)(V) =
d
dt

Zi
(
γ(t)

)∣∣
t=0 =

∑
k∈Ni

wik
d
dt

log
(
γ(t)

)∣∣
t=0 =

∑
k∈Ni

wik
Vk

Wk
.

 (4.16)

Thus, using (4.15) and (4.8) gives

dSi(W)(V)
(4.15)
= d exp1S

(
Zi(W)

)(
dZi(W)(V)

) (4.8),(4.15)
= RSi(W)

(
dZi(W)(V)

)
,

 (4.17a)

and using the linearity of the map RSi(W) and (4.16),

=
∑
k∈Ni

wikRSi(W)

( Vk

Wk

)
, (4.17b)

which proves (4.7c). Inserting RSi(W) due to (2.9b) yields (4.7d).

The following section specifies an alternative integration scheme for the linear assignment 
flow (4.2). Its approximation properties are numerically examined in section 6.

4.2. Exponential integrator

We focus on the linear ODE (4.3b) that together with (4.3a) determines the linear assignment 
flow due to (4.2). The solution to (4.3b) is given by Duhamel’s formula [18],

V(t) = expm (tA)V(0) +
∫ t

0
expm

(
(t − τ)A

)
adτ where A = RW0 S0, a = RW0 s0, (4.18)

which involves the matrix exponential of the matrix A of dimension |I||J| × |I||J| (square of 
number of pixels × number of labels), which can be quite large in image labeling problems 
(104–107 variables). Explicitly computing the matrix exponential is neither feasible, because it 
is dense even if A is sparse, nor required in view of the multiplication with the vector a. Rather, 
taking into account V(0) = 0 and that uniformly converging series can be integrated term by 
term, we set t  =  T large enough and evaluate
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V(T) =
∫ T

0
expm

(
(T − τ)A

)
adτ = expm(TA)

∫ T

0

∞∑
k=0

(−τA)k

k!
adτ (4.19a)

= expm(TA)
∞∑

k=0

[τ(−τA)k

(k + 1)!

]T

τ=0
a = Texpm(TA)

∞∑
k=0

(−TA)k

(k + 1)!
a (4.19b)

= Tϕ1(TA)a (4.19c)

where ϕ1 is the entire function

ϕ1(z) =
∞∑

k=0

zk

(k + 1)!
=

ez − 1
z

, (4.20)

whose series representation yields valid expressions (4.19c) also if the matrix A is singular.
We refer to [19] for a detailed exposition of matrix functions and to [20] and [19, sec-

tions 10 and 13] for a survey of methods for computing the matrix exponential and the product 
of matrix functions times a vector. For large problem sizes, the established methods of the two 
latter references are known to deteriorate, however, and methods based on Krylov subspaces 
have been developed [13, 14] and become the method of choice in connection with exponen-
tial integrators [15].

We confine ourselves with sketching below a state-of-the-art method [21] for the approxi-
mate numerical evaluation of (4.19). The evaluation of its performance for integrating the lin-
ear assignment flow and a comparison to the methods of section 5.1, are reported in section 6. 
A more comprehensive evaluation of further recent methods for evaluating (4.19) that cope 
with large problem sizes as well (e.g. [22]), is beyond the scope of this paper.

In order to compute approximately ϕ1(TA)a, one considers the Krylov subspace

Km = span{a, Aa, . . . , Am−1a}, (4.21)

with orthogonal basis Vm = (v1, . . . , vm) arranged as column vectors of an orthogonal matrix 
Vm  and computed using the basic Arnoldi iteration [13]. The action of A is approximated by

Hm = V�
m AVm (4.22)

which in turn yields the approximation

ϕ1(A)a ≈ ϕ1(VmHmV�
m )a = Vmϕ1(Hm)V�

m a = ‖a‖Vmϕ1(Hm)e1, (4.23)

where e1 = (1, 0, . . . , 0)� denotes the first unit vector and the last equality is implied by the 
Arnoldi iteration producing Vm,Hm, which sets v1 = a/‖a‖. Note that ϕ1 merely has to be 
applied to the much smaller m × m matrix Hm, which can be safely and efficiently computed 
using standard methods [19, 20]. The vector ϕ1(Hm)e1 can be recovered [23, theorem 1] in 

form of the upper m entries of the last column of expm(Ĥm) with the extended matrix

Ĥm =

(
Hm e1

0 0

)
. (4.24)

If the degree of the minimal polynomial of a (i.e. the nonzero monic polynomial p  of lowest 
degree such that p(A)a = 0) is equal to m, then the approximation (4.23) is even exact [13, 
theorem 3.6].
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5. Step sizes, adaptivity

We specify in this section the step size selection for the numerical RKMK schemes of sec-
tion 3. In addition, for the linear assignment flow (section 4.1), we conduct a local error analy-
sis in section 5.1 for RK schemes based on the linearity of the tangent space ODE that governs 
this flow. A corresponding explicit error estimate enables to determine a sequence (hk)k�0 of 
step sizes that ensure a prespecified local accuracy at each step k.

In order to determine step sizes for the nonlinear assignment flow (2.20), we proceed dif-
ferently, because the corresponding vector field depends nonlinearly on the current iterate and 
estimating local Lipschitz constants will be expensive and less sharp. We therefore adapt in 
section 5.2 classical methods for local error estimation and step size selection for nonlinear 
ODEs based on embedded Runge–Kutta methods [12, section II.4], to the geometric RKMK 
methods of section 3.

The experimental evaluation of both approaches is reported in section 6.

5.1. Linear assignment flow

We focus on the linear ODE (4.3b) that together with (4.3a) determines the linear assignment 
flow (4.2). Due to its approximation property demonstrated in section 6.3.1, we only consider 
the linearization point W0 = 1W . Since the ODE (4.2) evolves on the linear space T0, we apply 
the classical s-stage explicit RK scheme, rather than the geometric s-stage RKMK scheme 
(3.17), to obtain

Ui = RW0 s0 + RW0 S0

(
V(k) + h

∑
j∈[s−1]

ai,jU j
)

, i ∈ [s], (5.1a)

V(k+1) = V(k) + h
∑
i∈[s]

biUi, V(0) = V(0) = 0.
 (5.1b)

Specifically, regarding the explicit schemes listed at the end of section 3.2 in terms of their 
Butcher tableaus, consecutively inserting (5.1a) into (5.1b) yields with the shorthands a, A 
defined by (4.18),

V(k+1) = ha + (I + hA)Vk, (FE) (5.2a)

V(k+1) =
(

h +
h2

2
A
)

a +
(

I + hA +
h2

2
A2

)
V(k), (H2)

 
(5.2b)

V(k+1) =
(

h +
h2

2
A +

h3

6
A2

)
a +

(
I + hA +

h2

2
A2 +

h3

6
A3

)
V(k), (H3)

 
(5.2c)

V(k+1) =
(

h +
h2

2
A +

h3

6
A2 +

h4

24
A3

)
a +

(
I + hA +

h2

2
A2 +

h3

6
A3 +

h4

24
A4

)
V(k). (RK4)

 
(5.2d)

Comparison with (4.18) shows that due to the linearity of the ODE, each scheme results in 
a corresponding Taylor series approximation, depending on its order q, of the equation

V(tk+1) = hϕ1(hA)a + expm(hA)V(tk) (5.3)
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that is,

V(k+1) = h
( q−1∑

i=0

(hA)i

(i + 1)!

)
a +

( q∑
i=0

(hA)i

i!

)
V(k) (5.4a)

= p1,q(hA)a + p2,q(hA)V(k), (5.4b)

with matrix-valued polynomials p1,q, p2,q. Our strategy for choosing the step size h is based on 
the local error estimate specified below as theorem 5.2 and prepared by the following Lemma.

Lemma 5.1 ([24, equation (8.4.8)]). Let q ∈ N and t ∈ R. Then
q∑

i=0

ti

i!
= et Γ(1 + q, t)

q! (5.5)

with the incomplete Gamma function

Γ(1 + q, t) =
∫ ∞

t
τ qe−τdτ . (5.6)

Theorem 5.2. Let V(t) solve (4.2) with W0 = 1W , and let (V(k))k>0 be a sequence gener-
ated by a RK scheme (5.1) of order q. Set V(tk) = V(k) in (5.3). Then V(tk+1) in (5.3) is the 
exact value of the linear assignment flow emanating from V(k), and regarding (5.4) the local 
error estimate

‖V(tk+1)− V(k+1)‖ � eh‖A‖
(

1 − Γ(1 + q, h‖A‖)
q!

)( ‖a‖
‖A‖

+ ‖V(k)‖
)

 (5.7a)

< eh‖A‖(1 − e−h‖A‖)(1+q)
( ‖a‖
‖A‖

+ ‖V(k)‖
)

 (5.7b)

holds, where Γ(1 + q, h‖A‖) is given by (5.6) and ‖A‖ denotes the spectral norm of the matrix 
A = RW0(S0).

Proof. Using (5.3) and (5.4) and V(tk) = V(k), we bound the local error by

‖V(tk+1)− V(k+1)‖ � ‖hϕ1(hA)− p1,q(hA)‖‖a‖+ ‖expm(hA)− p2,q(hA)‖‖V(k)‖, (5.8a)

and inserting the series (5.4a) gives

� h
( ∞∑

i=q

(h‖A‖)i

(i + 1)!

)
‖a‖+

( ∞∑
i=q+1

(h‖A‖)i

i!

)
‖V(k)‖. (5.8b)

Both series absolutely converge for any h. By Lemma 5.1, we have
∞∑

i=q

ti

(i + 1)!
j=i+1
=

∞∑
j=q+1

1
t
· t j

j!
=

et

t

(
1 − Γ(1 + q, t)

q!

)
, (5.9a)
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∞∑
i=q+1

ti

i!
= et

(
1 − Γ(1 + q, t)

q!

)
. (5.9b)

Applying these equations to (5.8b) yields

h
∞∑

i=q

(h‖A‖)i

(i + 1)!
=

eh‖A‖

‖A‖

(
1 − Γ(1 + q, h‖A‖)

q!

)
, (5.10a)

∞∑
i=q+1

(h‖A‖)i

i!
= eh‖A‖

(
1 − Γ(1 + q, h‖A‖)

q!

)
, (5.10b)

and substitution into (5.8)

‖V(tk+1)− V(k+1)‖ � eh‖A‖
(

1 − Γ(1 + q, h‖A‖)
q!

)( ‖a‖
‖A‖

+ ‖V(k)‖
)

, (5.11)

which is (5.7a). To show (5.7b), we use the representation

1
p
Γ
(1

p
, x p

)
(5.6)
=

1
p

∫ ∞

x p
t

1
p −1e−tdt t=τ p

=

∫ ∞

x
e−τ p

dτ (5.12)

and the lower bound [25, corollary of theorem 1]

1
Γ(1 + 1/p)

∫ ∞

x
e−t p

dt > 1 − (1 − e−αx p
)1/p, α � max

{
1,
(
Γ(1 + 1/p)

)−p}
, (5.13)

that holds for all x  >  0 and 0 < p �= 1, with the Gamma function

Γ(q) =
∫ ∞

0
τ q−1e−τdτ , Γ(n + 1) = n! if n ∈ N. (5.14)

Put

x = h‖A‖ and p =
1

1 + q
. (5.15)

Since q � 1 and 
(
Γ(1 + 1/p)

)−p = Γ(2 + q)−
1

1+q =
( 1
(q+1)!

) 1
1+q < 1, we set α = 1 in view 

of (5.13). Furthermore, we have

Γ(1 + q, h‖A‖) (5.15)
= Γ

(
1/p, x

)
= Γ

(
1/p, (x1/p) p) (5.12)

= p
∫ ∞

x1/p
e−t p

dt (5.16a)

(5.13),α=1
> pΓ

(
1 + 1/p

)(
1 −

(
1 − e−x)1/p)

, (5.16b)

and using pΓ
(
1 + 1/p

) (5.15)
= Γ(2+q)

1+q = (1+q)!
1+q = q!, since q is integer,

= q!
(
1 − (1 − e−x)(1+q)). (5.16c)

Thus,

ex
(

1 −
Γ
(
1/p, x

)
q!

)
< ex(1 − e−x)(1+q)

 (5.17)
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which after substituting (5.15) and in turn into (5.11), proves (5.7b). □ 

Theorem 5.2 enables to control the local integration error by choosing the step size h, using 
the simple form of the bound (5.7), depending on the constants ‖a‖, ‖A‖ and the norm ‖V(k)‖ 
of the current iterate. Specifically, we choose

h = hk such that ‖V(tk+1)− V(k+1)‖ � τ (5.18)

by (5.7), for some prespecified value τ . Inspecting the parametrization (4.3) shows that ‖V(t)‖ 
grows—and hence the step sizes (5.18) decrease—until W(t) is close enough to a vertex of W  
(which represents a labeling) and satisfies a termination criterion that stops the chosen itera-
tive RK scheme (5.1).

In order to check how large ‖V(t)‖ then will be, assume

Wi = (ε, . . . , ε, 1 − (|J| − 1)ε, ε, . . . , ε) ∈ R|J| and ε � 1
|J| − 1

� 1,

 (5.19)
that is Wij ≈ 1 and Wil ≈ 0 if l �= j. Then with W0 = 1W  and by (4.3) and (2.12a)

Vi = Exp−1
1S

(Wi) = R1S

(
logWi − log 1S

)
=

1
|J|

(
logWi −

1
|J|

〈1, logWi〉1
)

 (5.20a)

logWi ≈ (log ε, . . . , log ε, 0, log ε, . . . , log ε),
1
|J|

〈1, logWi〉 ≈
|J| − 1
|J|

log ε ≈ log ε (5.20b)

and hence

‖Vi‖ ≈ 1
|J|

log
1
ε

, ‖V‖ ≈ |I|
|J|

log
1
ε

.
 (5.20c)

Thus, as soon as the norm ‖V(t)‖ has grown to the order log 1
ε, a termination criterion that 

checks if W(t) is ε-close to some vertex of W , will be satisfied.
Figure 2 quantitatively illustrates how much the factor eh‖A‖(1 − eh‖A‖)(1+q) of the upper 

bound (5.7) overestimates the exact factor (5.11) computed in the proof of theorem 5.2, and 
hence how conservative (i.e. too small) the step size hk will be chosen to achieve (5.18). The 
curves of figure 2 show that the estimate (5.7) is fairly tight and suited to adapt the step size. 
Furthermore, comparing the ordinate values of both panels for q  =  1 and q  =  4 shows that, in 
order to achieve a fixed accuracy τ  in (5.18), using a higher-order RK scheme (5.1) enables 
to choose a larger step size.

5.2. Nonlinear assignment flow

Similar to the preceding section, we wish to select step sizes (hk)k�0 in order to control the 
local error on the left-hand side of (5.7). Because an estimate like the right-hand side of (5.7) 
that is valid at each step k, is not available for the nonlinear assignment flow, we adapt estab-
lished embedded RK methods [12, section II.5] to the geometric RKMK schemes (3.17).

The basic strategy is to evaluate twice step (3.17d)

V = h
∑
j∈[s]

bjŨ j, V̂ = h
∑
j∈[s]

b̂jŨ j, (5.21)
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using a second collection of coefficients b̂j, j ∈ s, but with the same vector fields Ui, Ũi, i ∈ [s]. 
Thus each embedded method can be specified by augmenting the corresponding Butcher tab-
leau accordingly,

0

c2 a21

c3 a31 a32

⋮ ⋮ ⋮ . . .
cs as1 as2 … as(s−1)

b1 b2 … bs−1 bs

b̂1 b̂2
… b̂s−1 b̂s

Proper embedded methods combine a pair of RK schemes of different order q, q̂  so that 
‖V − V̂‖ indicates if the step size h is small enough, at each step k of the overall iteration. 
Since the vectors Ui, Ũi, i ∈ [s] are used twice, this comes at little additional costs. We also 
point out that unlike the linear case, the magnitude ‖V‖ of tangent vectors has much less 
influence, because the scheme (3.17) that is consecutively applied at each step k, is based 
on (3.10b) with the initial condition V(0) = 0. As a consequence, the magnitude ‖V‖ of the 
update (3.17d) will be relatively small at each step k.

We list the tableaus of two embedded methods that we evaluate in section 6.

      

Figure 2. The factor eh‖A‖(1 − e−h‖A‖)(1+q) of the upper bound (5.7) (beige curve) 
and the numerically computed exact factor due to (5.11) (blue line), as a function of 
h‖A‖, for q  =  1 (left panel) and q  =  4 (right panel). The relative overestimation factor 
increases with the order q and leads to more or less conservative step size choices 
(5.18). Comparing the absolute ordinate values of both panels shows that in order to 
achieve (5.18), using a higher-order RK-scheme (5.1) enables to choose a larger step 
size.

0

1 1

1 0
1/2 1/2

(RK-1/2)

0

1/3 1/3
2/3 0 2/3

1/4 0 3/4
1/3 2/3 0

(RK-3/2)
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The first method combines the forward Euler scheme and Heun’s method of order 2. The 
second method complements Heun’s method of order 3 as specified on [12, p 166]. We call 
RKMK-1/2 and RKMK-3/2 the geometric versions of these schemes when they are applied 
in connection with (3.17).

We conclude this section by specifying the extension of (3.17) in order to include adaptive 
step size control.

Algorithm 1. Embedded RKMK with adaptive step size control.

Data: Tolerance 0 < τ � 1,
      Tolerance factor nτ ∈ N,
      sufficiently small initial step size h  =  h0.
k ← 1
while termination criterion (6.2) is not satisfied do

      Compute Ui, Ũi, i ∈ [s] by (3.17b) and (3.17c).

      Compute V , V̂  by (5.21).

      if dI(V , V̂) < τ
nτ

 then
           h ← 1.25h                           /* increase the step size */
            compute the update W(h) by (3.17e).
           W0 ← W(h)
           k ← k + 1

     else if dI(V , V̂) < τ  then
                                                  /* keep the step size */
            compute the update W(h) by (3.17e),
           W0 ← W(h)
           k ← k + 1
     else
           h ← h

2                               /* decrease the step size */
                         /* do not increase k, but repeat iteration k */
end

The distance function dI defined by (6.1). Typical parameter values are τ = 0.01, nτ = 20. 
Starting with a small initial step size h0, the algorithm adaptively generates a sequence (hk) 
whose values increase whenever the local error estimate is much smaller (by a factor nτ ) than 
the prescribed tolerance τ .

6. Experiments and discussion

This section is organized as follows (see also figure 1). We specify details of our implementa-
tion in section 6.1. Section 6.2 reports the evaluation of the geometric RKMK schemes (3.17) 
with embedded step size control (algorithm 1), for integrating the nonlinear assignment flow. 
Section 6.3 is devoted to the linear assignment flow: assessment of how closely it approxi-
mates the nonlinear assignment flow, evaluation of the RK schemes (5.1) with adaptive step 
size selection (5.18), and evaluation of the exponential integrator introduced in section 4.2.
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6.1. Implementation details

All algorithms were implemented and evaluated using Mathematica. We did not apply any 
assignment normalization as suggested by [1, section 3.3.1], since mathematica can work with 
arbitrary numerical precision. Our experiments thus illustrate intrinsic properties of the assign-
ment flow the hold on the open assignment manifold W , and the reliability and efficiency of 
a variety of algorithms for integrating this flow numerically while respecting the underlying 
geometry. We do not examine the flow on the boundary of W  which does not belong to the 
domain of our approach, by definition. For an investigation of a particular numerical scheme 
in this specific context, we refer to [26].

Throughout the experiments, we used uniform weights in (2.19) and (2.16), respectively, 
since how to choose these ‘control variables’ in a proper way depending on the application at 
hand, is subject of our current work. Yet, we point out that the algorithms of the present paper 
do cover such more general scenarios. For example, the simplest geometric RKMK scheme 
(3.17) was recently used for integrating the assignment flow in unsupervised scenarios [9], 
where labels evolve and hence distance vectors (2.17) no longer are static but vary with time 
D = D(t), too.

6.1.1. Ground truth flows. In order to obtain a baseline for assessing the performance of lin-
earizations, of approximate numerical integration by various schemes or both, we always 
solved the assignment flow (nonlinear or linear) with high numerical accuracy using the geo-
metric implicit Euler scheme (nonlinear flow) or the euclidean implicit Euler scheme (linear 
flow), with a sufficiently small step size h. This requires to solve a fixed point equation as part 
of every iteration k, involving the nonlinear mapping on the right-hand side of (3.10b) in case 
of the nonlinear assignment flow, or the linear mapping on the right-hand side of (4.3b) in 
case of the linear assignment flow. These fixed point equations were iteratively solved as well, 
and the corresponding iterations terminated when subsequent elements of the corresponding 
subsequences (Vki)i�0 that measure the residual of the fixed point equation, satisfied

dI(Vki+1 , Vki) =
1
|J|

max
i∈I

‖Vki+1
i − Vki

i ‖ � 10−8. (6.1)

Starting these inner iterative loops with Vk0 = V(k) and terminating with Vki,end, we set 
V(k+1) = Vki,end and continued with the outer iteration k  +  1.

6.1.2. Termination criterion. As suggested by [1], all iterative numerical schemes generating 
sequences (W(k)) were terminated when the average entropy of the assignment vectors dropped 
below the threshold

− 1
|I||J|

∑
i∈I

∑
j∈J

W(k)
ij logW(k)

ij < 10−3. (6.2)

If this happens, then—possibly up to a tiny subset of pixels i ∈ I—all assignment vectors Wi 
are very close to a unit vector and hence almost uniquely indicate a labeling.

6.1.3. Data. Besides using the one-dimensional signal shown by figure 7 that enables to visu-
alize the entire evolution of the flow as plot in a single simplex (see figure 9), we used two 
further labeling scenarios for evaluating the numerical integration schemes.
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Figure 3(a) shows a scenario adopted from [1, figure 6] using ρ = 0.1 and |Ni| = 7 × 7. 
The input data (right panel) comprise 31 labels encoded as vertices (unit vectors) of a corre-
sponding simplex. This results in uniform distances (2.17) and enables to assess in an unbiased 
way the effect of regularization by geometric diffusion in terms of the similarity map (2.19).

Figure 3(b) shows a color image together with four color vectors used as labels, as illus-
trated by the panel on the right. In contrast to the data of figure 3(a) with a high level of noise 
and a uniform data term (as motivated and explained above), the input data shown on the 
left of figure 3(b) are not noisy but comprise spatial structures at quite different scales (fine 
texture, large homogeneous regions), causing a nonuniform data term and a more complex 
assignment flow.

Both scenarios together provide a testbed in order to check and compare schemes for 
numerically integrating the assignment flow.

6.2. Nonlinear flow: embedded RKMK-schemes

Figures 4 and 5 show the results of the two embedded RKMK schemes of section 5.2 used 
to integrate the full nonlinear assignment flow (2.20), for the data shown by left panels of 
figures 3(a) and (b).

The two embedded RKMK schemes combine RKMK schemes of different approximation 
order q/q′, 1/2 and 3/2, respectively, which reuse vector field evaluations (3.17) in order to 
produce sequences of tangent vectors (V(k)), (V̂(k)) that enable to estimate the local approxi-
mation error by monitoring the distances dI(V(k), V̂(k)). As specified by algorithm 1, step sizes 
hk adaptively increase provided a prescribed error tolerance is not violated.

The parameter values τ = 0.01 (tolerance) and nτ = 20 (tolerance factor), used to produce 
the results shown by figures 4 and 5, suffice to integrate accurately the full nonlinear assign-
ment flow by the respective explicit schemes, as the comparison with the ground truth labeling 
generated by the implicit geometric Euler scheme shows. Since RKMK-3/2 has higher order 
q than RKMK-1/2, larger step sizes can be tolerated. On the other hand, each iteration of 
RKMK-3/2 is about twice expensive as RKMK-1/2.

Both plots of the step size sequences (hk) reveal that the initial step size h0  =  0.01 was much 
too small (conservative), and that a fixed value of hk is adequate for most of the iterations. 

(a) (b)

Figure 3. Labeling scenarios for evaluating numerical schemes for integrating the 
assignment flow. (a) Noisy computer-generated data (left) made from a ground truth 
with 31 labels (right). (b) A color image used as input data (left) using four color values 
as labels. These labels are illustrated on the right where each pixel has been replaced 
by the closest label.
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This value was larger for the experiment corresponding to figure 4 due to the uniform data 
term (by construction, as explained in section 6.1.3) and the more uniform scale of spatial 
structures. By contrast, the presence of spatial structures at quite different scales in the data 
corresponding to figure 5 causes a more involved assignment flow to be integrated, and hence 
to a smaller step size after adaption. Comparing the two rightmost panels of figure 5 shows 
that the strength of regularization (neighborhood size |Ni|) had only little influence on the 
sequences of step sizes.

We never observed decreasing step sizes in these supervised scenarios, that is the corre-
sponding step of algorithm 1 never was active. This may change in more involved scenarios, 
however (see remark 3.2).

Overall, a few dozens of explicit iterations suffice for accurate geometric numerical inte-
gration of the assignment flow with well below 1% wrongly labeled pixels (figure 6). Each 
iteration may be implemented in a fine-grained parallel way and has computational costs 
roughly equivalent to a convolution, besides mapping to the tangent space T0 and back to the 
assignment manifold W , at each iteration.

6.3. Linear assignment flow

The approach of section 4 involves two different approximations:

 (i)  the linear assignment flow (4.2) approximating the full assignment flow (2.20), and
 (ii)  the numerical integration of the linear assignment flow using two alternative numerical 

schemes:

 (a)  adaptive RK schemes (section 5.1) based on the parametrization of proposition 4.2 
and

 (b)  the exponential integrator (section 4.2).

Figure 4. Nonlinear assignment flow, embedded RKMK schemes. Results of processing 
the data shown by figure 3(a), left panel (parameter: ρ = 0.1, |Ni| = 7 × 7). The ground 
truth labeling resulting from integrating the (full nonlinear) assignment flow using the 
implicit geometric Euler scheme (step size h  =  0.01) is displayed in the left panel. 
The labeling results of these explicit schemes are shown in the middle. Because there 
is almost no difference to the ground truth result, both explicit schemes integrate the 
assignment flow sufficiently accurate. The corresponding sequences of adaptive step 
sizes (hk) generated by the embedded geometric schemes RKMK-1/2 and RKMK-3/2 
of section 5.2 are shown in the rightmost panel.
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Due to the remarkable approximation properties of the linear assignment flow when a single 
linearization at the barycenter is only used (section 6.3.1), we entirely focused on this flow 
when evaluating the numerical schemes (a) and (b) in sections 6.3.2 and 6.3.3.

6.3.1. Approximation property. We report a series of experiments for the 1D signal depicted 
by figure 7 using both the full and the linear assignment flow in order to check how closely 
the latter approximates the former. Then we discuss the linear assignment flow for the two 2D 
scenarios shown by figure 3.

The parameter value ρ = 0.1 for scaling in (2.18) the data, for all 1D experiments discussed 
below. This gave a larger weight to the ‘data term’ so that—in view of the noisy data (figure 
7)—the regularization property of the assignment flow (2.20), in terms of the similarity vec-
tors Si(W) interacting through (2.19), was essential for labeling.

We first explain how the linearizations of the assignment flow were controlled. According 
to proposition 4.2, using the parametrization (4.3a) and the linear ODE (4.3b) is equivalent 
to the linear assignment flow (4.2). Using again the parametrization (4.3a) and repeating the 
proof of proposition 4.2 shows that the full assignment flow (2.20) is locally governed by the 
nonlinear ODE

V̇ = RW0

(
S(expW0

(V))
)
, V(0) = 0. (6.3)

Taking into account (4.6) and subtracting the right-hand side of the approximation (4.3b) from 
the above right-hand side gives

RW0

(
S(expW0

(V))
)
− RW0(s0 + S0V) = RW0

(
S(expW0

(V))− S(W0)− dSW0(V)
)
,

 (6.4)

Figure 5. Nonlinear assignment flow, embedded RKMK schemes. Results of 
processing the data shown by figure 3(b), left panel (parameters: ρ = 0.5, |Ni| = 3 × 3 
(less regularization; top row) and |Ni| = 5 × 5 (more regularization; bottom row). The 
ground truth labeling was computed by integrating the (full nonlinear) assignment flow 
using the implicit geometric Euler scheme (step size h  =  0.01). The embedded RKMK 
schemes (section 5.2) generated the adaptive step sizes shown in the panels on the right 
and almost identical labeling results.
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which shows that this approximation deteriorates with increasingly large tangent vectors V . 
As a consequence, we first solved the linear flow (4.2) using (4.3) without updating the point 
of linearization W0 = 1W  and fixed after termination at kend (=number of required outer itera-
tions) the constant

‖V‖max = max
i∈I

‖V(kend)
i ‖. (6.5)

Then we solved the linear assignment flow again and updated the linearization point W0 in 
view of (6.4) whenever

max
i∈I

‖V(k)
i ‖ >

‖V‖max

c
, c � 1, (6.6)

using the parameter c to control the number of linearizations: a single linearization and no lin-
earization update if c  =  1 and an increasing number of updates for larger values of c. We updated 
components of the linearization point W0,i by Wi(h), i ∈ I  only when minj∈J Wij(h) > 0.01, 
in order to keep linearization points inside the simplex, in view of the entries (4.7d) of dSW0 
normalized by components of W0,k.

After termination, the induced labelings were compared to those of the full assignment 
flow, and the number of wrongly assigned labels was taken as a quantitative measure for the 
approximation property of the linear assignment flow: Except for the minimal neighborhood 
size |Ni| = 3, a single linearization almost suffices to obtain a correct labeling. Overall, the 
maximal number of 3 labeling errors (out of 192) is very small, and these errors merely cor-
respond to shifts by a single pixel position of the signal transition in the case |Ni| = 9 (see 
figure 8). We conclude that for supervised labeling, the linear assignment flow (4.2) (which is 
nonlinear(!)—see remark 4.3) indeed captures a major part of nonlinearity of the full assign-
ment flow (2.20). Figure 9 illustrates the similarity of the two flows (and the dissimilarity 

Figure 6. Number of iterations versus wrongly labeled pixels. We relate the number of 
iterations to the percentage of wrongly labeled pixels (compared to the ground truth) 
for the nonlinear assignment flow (integrated by RKMK-3/2 with tolerance τ  and 
initial step size h0 as in algorithm 1) and the linear assignment flow (integrated by an 
adaptive RK scheme of order 4, with τ  defined by (5.18)) for the mandrill experiment. 
In general, parameter choices which increase the number of iterations, yield a better 
labeling. Thus the parameters of the (non-)linear assignment flow can be chosen to 
achieve an application-specific compromise between runtime and accuracy.
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in the case |Ni| = 3) in terms of all |I| = 192 sequences (W(k)
i ), i ∈ |I|, plotted as piecewise 

linear trajectories.
We cannot assure, however, that this approximation property persists in more general cases 

(see remark 3.2) whose study is beyond the scope of the present paper.
We now turn to the scenarios shown by figure  3. Figure  10 shows the results obtained 

using the implicit Euler scheme and the same parameter settings that were used to integrate 
the nonlinear flow, to obtain the ground truth flows and results depicted by the leftmost panels 
of figures 4 and 5. Comparing the labelings returned by the linear and nonlinear assignment 
flow, respectively, confirms the discussion of the 1D experiments detailed above: the results 
agree except for a very small subset of pixels close to signal transitions which are immaterial 
for subsequent image interpretation.

The results shown by figure 10 served as ground truth for studying the explicit numerical 
schemes of sections 6.3.2 and 6.3.3 for integrating the linear assignment flow.

6.3.2. Adaptive RK schemes. We evaluated the adaptive RK schemes (FE) of order q  =  1 
and (RK4) of order q  =  4, due to (5.1), supposed to integrate the linear ODE (4.3b), after rear-
ranging the polynomials of (5.1) in Horner form.

Figures 11 and 12 show the results for the linear assignment flow based on a single lin-
earization at the barycenter, using the results shown by figure 10 as ground truth. The step 
sizes hk were computed at each iteration k using the local error estimate (5.7) such that 

1
|I|1/2 ‖V(tk+1)− V(k+1)‖ � τ = 0.01, that is on average ‖Vi(tk+1)− V(k+1)

i ‖ � τ  for all pix-

els i ∈ I. The spectral norm ‖A‖ was computed beforehand using the basic power iteration.
As explained above when the criterion (5.18) was introduced, step sizes must decrease 

due to the increasing norms ‖V(k)‖, in order to keep the local integration error bounded. 
Furthermore, in agreement with figure 2, raising the order q of the integration scheme leads 
to significantly larger step sizes and hence to smaller total numbers of iterations, at the cost of 
more expensive iterative steps. Yet, roughly taking these additional costs into account by mul-
tiplying the total iteration numbers for q  =  4 by 4, indicates that raising the order q reduces 
the overall costs. In this respect our findings for the linear assignment flow differ from the 
corresponding findings for the nonlinear assignment flow and the embedded RKMK schemes, 
discussed in section 6.2.

Figure 7. (a) A noisy 1D signal used for the experiments of section  6.3.1. (b) The 
piecewise constant signal (red) used to generate (a) by superimposing noise. (c) Local 
rounding to the next label and comparing to (b) indicates the noise level. Local rounding 
is equivalent to omitting regularization in the assignment flow by replacing the 
interacting similarity vectors S(W) in (2.20) by the non-interacting likelihood vectors 
L(W) of (2.18).
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6.3.3. Exponential integrator. For integrating the linearized assignment flow with exponential 
integrators, we consider equation (4.19) and the Krylov space approximation (4.23)

V(T) = Tϕ1
(
TA

)
a ≈ T‖a‖Vmϕ1(THm)e1. (6.7)

As the evaluation of ϕ1(THm)e1 is explained in section 4.2, we only discuss here the choice 
of the parameters m and T.

The dimension m of the Krylov subspace controls the quality of the approximation, where 
larger values theoretically lead to a better approximation. In our experiments, rather small 
numbers, like m  =  5, turned out to suffice to produce labelings very close to the ground truth 
labelings, that were generated by the implicit Euler method—see figures 13 and 14. As the 
runtime of the algorithm increases with growing m, this parameter should not be chosen too 
large.

Figure 8. Nonlinear versus linear assignment flow. top row: labelings determined 
by the assignment flow as a reference for the linear assignment flow, using different 
neighborhood sizes |Ni|. bottom row: labeling determined by the linear assignment 
flow that differs in 3 pixels from the corresponding above result of the full assignment 
flow. These errors and the two errors in the case |Ni| = 9 are shown in the center and 
right panel. These and further results listed as table 1 show that the linear assignment 
flow achieves high-quality labelings.

Table 1. Approximation property of the linear assignment flow. The 
entries x, y specify the number x of linearizations and the number y  of 
wrongly assigned labels (out of 192 assigned labels), depending on the 
neighborhood size |Ni| (strength of regularization) and the parameter c 
specifying the tangent space threshold (6.6).

c

1 2 3 4 5
3 1, 3 4, 3 7, 3 10, 1 13, 0

|Ni| 5 1, 0
9 1, 2 5, 0
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Figure 9. Nonlinear versus linear assignment flow. Comparison of the assignment 
flow (2.20) (top row) and the linear assignment flow (4.2) (bottom row) in terms of 
all |I| solution curves Wi(t), i ∈ I , plotted in the 3-label simplex. A major part of the 
trajectories approaches more or less directly a vertex, whereas another part changes the 
original direction due to regularization by geometric smoothing. Except for the cases 
with the minimal neighborhood |Ni| = 3, the similarity of both flows is apparent. This 
illustrates the reason for very small observed numbers of labeling errors, as listed and 
depicted by table 1 and figure 8.

Figure 10. Linear assignment flow. Labeling results for the two scenarios of figure 3, 
using the linear assignment flow with a single linearization at the barycenter and the 
implicit Euler scheme for numerical integration. Comparison with the labeling results 
of the nonlinear assignment flow (figure 4(a), figure 5 ‘ground truth’) demonstrates a 
remarkable approximation property of the linear assignment flow.
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Scaling A and a in (4.18) affects the vector field defining the linear ODE (4.3b). Hence, 
fixing any time point T depends on this scaling factor, too. As a consequence, since A and a 
depend on the problem data (4.18), the choice of T is problem dependent. On the other hand, 
the discussion following the proof of theorem 5.2 showed that ‖V(t)‖ increases with t, and T 
merely has to chosen large enough such that W(T) defined by (4.3a) satisfies the termination 
criterion (6.2)—see (5.20c) for a rough estimate. Choosing T overly large will cause numeri-
cal underflow and overflow issues, however.

Almost all runtime is consumed by the Arnoldi iteration producing the subspace basis Vm . 
Due to the small dimension m, the total runtime is very short, and time required for the subse-
quent evaluation of the right-hand side of (6.7) is negligible.

Figure 11. Linear assignment flow, adaptive RK-schemes. Results of the linear 
assignment flow (4.2) based on the parametrization (4.3), the RK schemes (5.1) of order 
q  =  1 (FE) and q  =  4 (RK4), and adaptive step size selection based on the local error 
estimate (5.7). The labeling results for q  =  1, q  =  4 are almost identical to ground truth 
from figure 10.

Figure 12. Linear assignment flow, adaptive RK-schemes. Results of the linear 
assignment flow (4.2) for |Ni| = 3 × 3 (top row) and |Ni| = 5 × 5 (bottom row) based 
on the parametrization (4.3), the RK schemes (5.1) of order q  =  1 (FE, second column) 
and q  =  4 (RK4, third column). The labeling results for q  =  1, q  =  4  are almost 
identical to the ground truth from figure 10. The rightmost column shows the adaptive 
step size selection based on the local error estimate (5.7). For fixed q, increasing the 
neighborhood size |Ni| has almost no effect: the step size sequences agree up to the 
second digit.
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7. Conclusion

We investigated numerical methods for image labeling by integrating the large system of non-
linear ODEs defining the assignment flow (2.20), which evolves on the assignment manifold. 
All methods exactly respect the underlying geometry. Specifically, we adapted RKMK meth-
ods and showed that embedded RKMK-methods work very well for automatically adjusting 
the step size, at negligible additional costs. Raising the order enables leads to larger step sizes, 
which is compensated by the higher computational costs per iteration, however. In either case, 

Figure 13. Linear assignment flow, exponential integrators, influence of the Krylov 
subspace dimension m and the point of evaluation T. The results correspond to the 
labeling problem shown by figure 14. They demonstrate that m can be chosen quite 
small. Figure (a) shows that the mean entropy decreases with increasing T but does not 
decrease for fixed T and m  >  3. Figure (b) shows for T = 1, . . . , 29 (same color code as 
(a)) and for each m the number of labels that change when the dimension of the Krylov 
subspace is increased to m  +  1. All curves decrease with increasing m, and curves that 
reach 0 label changes just discontinue due to the logarithmic scale. The plot shows that 
independent of T (i.e. for any T) there is an m such that increasing the dimension of the 
Krylov space does not change the labeling at all.

Figure 14. Linear assignment flow, exponential integrators, sample labelings. Figure (a) 
shows the ground truth labeling as generated by the implicit Euler method. Figure (b) 
displays the labeling generated by the exponential integrator using the Krylov subspace 
dimension m  =  5, which is very close to the ground truth labeling. As demonstrated 
by figure  13, m cannot be chosen too small, however, since labelings then start to 
deteriorate rapidly. This is illustrated by figure (c) which shows the labeling for m  =  3. 
Comparison with (b) shows that dimensions 4 and 5 ‘contain’ small-scale details of the 
correct labeling induced by the linear assignment flow.
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each iteration only involves convolution like operations over local neighborhoods together 
with pixelwise nonlinear functions evaluations.

We derived and introduced the linear assignment flow, a nonlinear approximation of the 
(full) assignment flow that is governed by a large linear system of ODEs on the tangent space. 
Experiments showed that the approximation is remarkably close, as measured by the number 
of different label assignments.

We investigated two further families of numerical schemes for integrating the linear assign-
ment flow: established RK schemes with adaptive step size selection based on a local inte-
gration error estimate, and exponential integrators for approximately evaluating Duhamel’s 
integral using a Krylov subspace. In the former case, higher-order schemes really pay, unlike 
for the RKMK schemes and the full assignment flow, as mentioned above. Choosing the clas-
sical RK scheme with q  =  4, for example, few dozens of iterations suffice to reach the termi-
nation criterion, with high potential for parallel implementation. The exponential integrators, 
on the other hand, directly approximate the integral determining V(T) and in this sense are 
non-iterative. Here, a Krylov subspace basis of low dimension merely has to be computed, 
using a standard iterative method. Even though this method is differs mathematically from the 
RK schemes, it has potential for real-time implementation as well.

All methods provide a sound basis for more advanced image analysis tasks that involve 
labeling by evaluating the assignment flow as a subroutine. Accordingly, our future work 
concerns an extension of the unsupervised labeling approach [9], where label dictionaries are 
directly learned from data through label assignment. Furthermore, methods under investiga-
tion for learning to adapt regularization parameters of the assignment flow to specific image 
classes, require advanced discretization and numerical methods based on the results reported 
in the present paper.
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